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ABSTRACT

The notion of neural collapse refers to several emergent phenomena that have been
empirically observed across various canonical classification problems. During the
terminal phase of training a deep neural network, the feature embedding of all
examples of the same class tend to collapse to a single representation, and the
features of different classes tend to separate as much as possible. Neural collapse is
often studied through a simplified model, called the layer-peeled model, in which
the network is assumed to have “infinite expressivity” and can map each data point
to any arbitrary representation. In this work we study a more realistic variant of
the layer-peeled model, which takes the positivity of the features into account.
Furthermore, we extend this model to also incorporate the limited expressivity
of the network. Empirical evidence suggests that the memorization of noisy data
points leads to a degradation (dilation) of the neural collapse. Using a model of
the memorization-dilation (M-D) phenomenon, we show one mechanism by which
different losses lead to different performances of the trained network on noisy data.
Our proofs reveal why label smoothing, a modification of cross-entropy empirically
observed to produce a regularization effect, leads to improved generalization in
classification tasks.

1 INTRODUCTION

The empirical success of deep neural networks has accelerated the introduction of new learning
algorithms and triggered new applications, with a pace that makes it hard to keep up with profound
theoretical foundations and insightful explanations. As one of the few yet particularly appealing theo-
retical characterizations of overparameterized models trained for canonical classification tasks, Neural
Collapse (NC) provides a mathematically elegant formalization of learned feature representations
Papyan et al.| (2020).

To explain NC, consider the following setting. Suppose we are given a balanced dataset D =
{(m%’“), yn)} C X x )Y in the instance space X = R and label space Y = [N] :=
k€[K],ne[N]

{1,..., N}, i.e. each class n € [IN] has exactly K samples 2, 2. We consider network
architectures commonly used in classification tasks that are composed of a feature engineering part
g: X — RM (which maps an input signal € X to its feature representation g(x) € RM) and a
linear classifier W (-) + b given by a weight matrix W € RV>*M ag well as a bias vector b € RY,
Let w,, denote the row vector of W' associated with class n € [N]. During training, both classifier
components are simultaneously optimized by minimizing the cross-entropy loss.

“These authors contributed equally to this work.
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Denoting the feature representations g(m%k)) of the sample w%k) by h%k), the class means and the

global mean of the features by

1 X 1N
o (k) — E
h, = % ;Zl h,"”, h = N 2 h,,

NC consists of the following interconnected phenomena (where the limits take place as training
progresses):
2

—0.

(NC1) Variability collapse. For each class n € [N, we have L S5 ‘ " _h,

(NC2) Convergence to simplex equiangular tight frame (ETF) structure. For any m,n € [N]
with m # n, we have

th - h”z - Hhm - h”z - O’ and
< h,—h h, —h > 1
R — — .
[hn = hlly" | — Rl N-—1

(NC3) Convergence to self-duality. For any n € [N], it holds

hn - h wy,
[P =By [lwn,

— 0.

(NC4) Simplification to nearest class center behavior. For any feature representation w € R | it
holds

arg max (wy,, u) + b, — argmin ||lu — h,||, .
ne[N] ne[N]

In this paper, we consider a well known simplified model, in which the features h%k) are not
parameterized by the feature engineering network g but are rather free variables. This model is often
referred to as layer-peeled model or unconstrained features model, see e.g. |Lu & Steinerberger
(2020); |[Fang et al.|(2021));|Zhu et al.|(2021)). However, as opposed to those contributions, in which the

features h%k) can take any value in RM | we consider here the case h%k) > 0 (understood component-
wise). This is motivated by the fact that features are typically the outcome of some non-negative
activation function, like the Rectified Linear Unit (ReLU) or sigmoid. Moreover, by incorporating
the limited expressivity of the network to the layer-peeled model, we propose a new model, called
memorization-dilation (MD). Given such model assumptions, we formally prove advantageous effects
of the so-called label smoothing (LS) technique |Szegedy et al.|(2015) (training with a modification
of cross-entropy (CE) loss), in terms of generalization performance. This is further confirmed
empirically.

2 RELATED WORK

Studying the nature of neural network optimization is challenging. In the past, a plethora of theoretical
models has been proposed to do so|Sun|(2020). These range from analyzing simple linear Kunin et al.
(2019); |Zhu et al.| (2020); |Laurent & von Brecht (2018) to non-linear deep neural networks [Saxe et al.
(2014); Yun et al.|(2018)). As one prominent framework among others, Neural Tangent Kernels Jacot
et al.| (2018)); [Roberts et al.|(2021)), where neural networks are considered as linear models on top
of randomized features, have been broadly leveraged for studying deep neural networks and their
learning properties.

Many of the theoretical properties of deep neural networks in the regime of overparameterization
are still unexplained. Nevertheless, certain peculiarities have emerged recently. Among those, so-
called “benign overfitting” |Bartlett et al.|(2019); [Li et al.| (2021), where deep models are capable
of perfectly fitting potentially noisy data by retaining accurate predictions, has recently attracted
attention. Memorization has been identified as one significant factor contributing to this effect|Arpit
et al.|(2017); [Sanyal et al.| (2021)), which also relates to our studies. Not less interesting, the learning
risk of highly-overparameterized models shows a double-descent behavior when varying the model
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complexity Nakkiran et al.|(2020) as yet another phenomenon. Lastly, the concept of NC|Papyan et al.
(2020) has recently shed light on symmetries in learned representations of overparameterized models.

After laying the foundation of a rigorous mathematical characterization of the NC phenomenon by
Papyan et al.|(2020), several follow-up works have broadened the picture. As the former proceeds
from studying CE loss, the collapsing behavior has been investigated for alternative loss functions.
For instance, squared losses have shown similar collapsing characteristics [Poggio & Liao| (2020;
2021), and have paved the way for more opportunities in its mathematical analysis, e.g., by an
NC-interpretable decomposition Han et al.[(2021). More recently, |Kornblith et al.|(2021) provide an
exhaustive overview over several commonly used loss functions for training deep neural networks
regarding their feature collapses.

Besides varying the loss function, different theoretical models have been proposed to analyze NC.
Most prominently, unconstrained feature models have been considered, which characterize the
penultimate layer activations as free optimization variables Mixon et al.|(2020); Lu & Steinerberger|
(2020); [E & Wojtowytsch|(2021). This stems from the assumption that highly overparameterized
models can approximate any patterns in the feature space. While unconstrained features models
typically only look at the last feature encoder layer, layer-peeling allows for “white-boxing” further
layers before the last one for a more comprehensive theoretical analysis [Fang et al.|(2021). Indeed,
this approach has been applied in|Tirer & Bruna (2022}, which namely extends the unconstrained
features model by one layer as well as the ReLU nonlinearity. On the other hand, Zhu et al.| (2021), Ji
et al.|(2021) and Zhou et al.| (2022a) extend the unconstrained features model analysis by studying
the landscape of the loss function therein and the related training dynamics. Beyond unconstrained
features models, |[Ergen & Pilanci| (2021)) introduce a convex analytical framework to characterize
the encoder layers for a more profound understanding of the NC phenomenon. Referring to the
implications of NC on our understanding of neural networks, Hui et al.|(2022)) and |Galanti et al.
(2021)) discuss the impact of NC on test data in the sense of generalization and transfer learning.
Finally, |Kothapalli et al.|(2022) provides a multifaceted survey of recent works related to NC.

3 LAYER-PEELED MODEL WITH POSITIVE FEATURES

As a prerequisite to the MD model, in this section we introduce a slightly modified version of the
layer-peeled (or unconstrained features) model (see e.g. [Zhu et al|(2021)); Fang et al.| (2021)), in
which the features have to be positive. Accordingly, we will show that the global minimizers of
the modified layer-peeled model correspond to an NC configuration, which differs from the global
minimizers specified in other works and captures more closely the NC phenomenon in practice.

For conciseness, we denote by H the matrix formed by the features R, n e [N], k € [K]
as columns, and define ||W|| and || H || to be the Frobenius norm of the respective matrices, i.e.

2 N 2 2 K N k
WP = S0, o> and | H? = S5, 20, (R

2
‘ . We consider the regularized version
of the model (instead of the norm constraint one as in e.g. |[Fang et al.| (2021 ))[H

. AH 2
Lo(W,H) = L,(W,H)+ \y |W|?+ 22 |H
in Lo(W, H) ( ) +Aw [WIT+ 2= [ H] Po)
st. H>0,
where Ay, Ay > 0 are the penalty parameters for the weight decays. By L, we denote empirical risk
with respect to the LS loss with parameter « € [0, 1), where «« = 0 corresponds to the conventional

CE loss. More precisely, given a value of «, the LS technique then defines the label assigned to class
n € [N] as the following probability vector:

yff‘) =(1-ae, + glN e [o, l]N,
n

where e,, € RY denotes the n-th standard basis vector and 15 € R” denotes the vector consisting
of only ones. Let p : RM — RY be the function that assigns to each feature representation z € RM

"Note that for simplicity we assume that the last layer does not have bias terms, i.e. b = 0. The result can be
however easily extended to the more general case when the biases do not vanish. Namely, in presence of bias
terms, the statement of Theorem[?;z]and also its proof remain unchanged.
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the probability scores of the classes (as a probability vector in RY),

cwnz Y
sz‘v:l elwi2)

Then the LS loss corresponding to a sample in class n € [IN] is given by

pw (z) := softmax(Wz) := e 0,1V,

m=1

N
ea(W z y(a)) <_y1(1a)vlong(z)> = Z y7(wr)1 1Og (pW( )m) (1)

m=1

and the LS empirical risk L,, is defined as
| KN
_ (k) qy(c)
LW H) = 5 323 b o (W, R, ).

We will show that in common settings, the minimizers of ([Py]) correspond to neural collapse (NC)
configurations, which we formalize in Def. [3.1] below.

Definition 3.1 (NC configurations). Let K, M, N € N, M > N. A pair (W, H) of a weight

matrix formed by rows w,, € RM and a feature matrix formed by columns h%k) € ]Rf (with
n € [N], k € [K]) is said to be a NC configuration if

(i) The feature representations h'" within every class n € [IV] are equal for all k € [K], and
thus equal to their class mean h,, := % Zszl h;k).

(ii) The class means {h,, }'_, have equal norms and form an (entry-wise) non-negative orthog-
onal system.

(iii) Let P, 1 be the projection upon the subspace of RM orthogonal to h = ~ Zn 1 . Then
for every n € [N], it holds w,, = CP, 1 h,, for some constant C' independent of 7.

Our main theorem in this section can be represented as follows.

Theorem 3.2. Let M > N, a € [0,1). Assume that & Mo+ 2/ (N = )AwAu < 1. Then any
global minimizer of the problem ([Pg)) is a NC conﬁgumnon

Note that the NC configurations defined in Definition [3.1]above differ significantly from the ones
specified in other works, e.g. [Fang et al.| (2021)); |Zhu et al.| (2021)); [Zhou et al.| (2022b)) or Tirer &
Brunal (2022), see Appendix B.1 for more discussion.

4 THE MEMORIZATION-DILATION MODEL

4.1 EXPERIMENTAL MOTIVATION

Previous studies of the NC phenomenon mainly focus on the collapsing variability of training
activations, and make rather cautious statements about its effects on generalization. For instance,
Papyan et al.| (2020) report slightly improved test accuracies for training beyond zero training
error. Going a step further, |[Zhu et al.| (2021)) show that the NC phenomenon also happens for
overparameterized models when labels are completely randomized. Here, the models seem to
memorize by overfitting the data points, however, a rigorous study how label corruption affects
generalization in the regime of NC is still lacking.

To fill the gap, we advocate to analyze the effects of label corruption in the training data on the
(previously unseen) fest instead of the training feature collapse. Eventually, tight test class clusters
go hand in hand with easier separation of the instances and, thus, a smaller generalization error.
Following [Zhu et al| (2021)), we measure the collapse of the penultimate layer activations by the A'Cy
metric. This metric depicts the relative magnitude of the within-class covariance Xy, with respect to
the between-class covariance X g of the penultimate layer features and is defined as

1
NC; = Ntraee(zwzg), 2)
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where

N
ﬁ SOS (B = hy) (A — BT e RMXM

n=1

1
EBI:f

_ _ )T e RMxM
v D — h)(y — 1) € R,

NeE -

I
—

n

and EE denotes the pseudo-inverse of X 5. Here, we adopt the notations from Section hgk ) e RM
denotes the feature representation of k-th sample in class n, h,, the class mean and h the global
mean. Moreover, we distinguish A’'C{™*" and N'C{™ to be calculated on the training and test instances,
respectively. We call N'C™ dilation.

Let us now turn to the notion of memorization, which is not uniquely defined in deep learning
literature. Here, we define memorization in the context of the NC setting and in a global manner,
different from other works, e.g. [Feldman & Zhang|(2020). Formally, suppose that label noise is
incorporated by (independently) corrupting the instance of each class label n in the training data with
probability n € (0, 1), where corruption means drawing a label uniformly at random from the label

space ). We denote the set of corrupted instances by [IN( ]. For a given dataset D (with label noise 7)),

we define memorization as
N
k
mem:=» > [l — k|2, A3)
n=lje[K]
where h;, denotes the mean of (unseen) test instances belonging to class n.

We call the original ground truth label of a sample its true label. We call the label after corruption,
which may be the true label or not, the observed label. Since instances of the same true label tend
to have similar input features in some sense, the network is biased to map them to similar feature
representations. Instances are corrupted randomly, and hence, instances of the same true label but
different observed labels do not have predictable characteristics that allow the network to separate
them in a way that can be generalized. When the network nevertheless succeeds in separating such
instances, we say that the network memorized the feature representations of the corrupted instances in
the training set. The metric mem in (3) thus measures memorization. The above memorization also
affects dilation. Indeed, the network uses the feature engineering part to embed samples of similar
features (that originally came from the same class), to far apart features, that encode different labels.
Such process degrades the ability of the network to embed samples consistently, and leads to dilation.

To quantify the interaction between mem and NC™, we analyzed the learned representations h in
the penultimate layer feature space for different noise configurations. One may wonder whether one
can see a systematic trend in the test collapse given the memorization, and how this evolves over
different loss functions.

To this end, we trained simple multi-layer neural networks for two classes (N = 2), which we
subsampled from the image classification datasets MNIST [LeCun et al.|(1998)), FashionMNIST Xiao
et al.|(2017), CIFAR-10 |Krizhevsky & Hinton| (2009) and SVHN |Netzer et al.|(2011). The labels are
corrupted with noise degrees n € [0.025, 0.4]. The network consists of 9 hidden layers with 2048
neurons each, thus, it represents a vastly overparameterized model. The feature dimension M is set
to the number of classes N. We trained these networks using the CE and LS loss with a smoothing
factor a = 0.1, as well as the mean-squared error (MSE). Moreover, we consider label relaxation
(LR) Lienen & Hiillermeier| (2021) as a generalization to LS with a relaxation degree o = 0.1. The
networks were trained until convergence in 200 epochs (where the last 50 epochs did not make any
significant changes) using SGD with an initial learning rate of 0.1 multiplied by 0.1 each 40 epochs
and a small weight decay of 0.001. Moreover, we considered ReLU as activation function throughout
the network, as well as batch normalization in each hidden layer. A linear softmax classifier is
composed on the encoder. We conducted each experiment ten times with different seeds.

The results for the above experimental setting are shown in Fig. [1| in which one can observe the
trends of \/NC™ per memorization for various configurations. As can be seen, the figure shows an

approximately linear correspondence between /A CT™ and mem for the CE derivatives (CE and LS)
on all datasets when mem is not large.
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Figure 1: Feature collapse of the test instances in terms of /N C{™ per memorization (top row) and the resulting
test accuracies (bottom row) averaged over ten random seeds. Comparing the markers of the same color, it can
be observed that LS consistently performs better than CE across all datasets, with very few exceptions (the very
low noise degrees in cifar10).
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Figure 2: Feature collapse of the test instances in terms of /N C™ per memorization as the feature dimension
M varies.

Moreover, as CE and LS share the same slope, these results suggest that the degradation of the
test collapse (aka dilation) is a function of memorization and the network expressitivity, and not
of the choice of the loss. The loss only affects how the noise translates to memorization, but not
how memorization translates to dilation. Even though the same amount of noise is mapped to
different memorization values in CE and LS, the memorization-dilation curve is nevertheless shared
between CE and LS. Hence, since LS leads the network to memorize less, it results in improved
performance (cf. Fig. [T). We can further see that MSE and LR show a different memorization-dilation
correspondence, which means that these losses affect the inductive bias in a different way than CE
and LS.

We repeated the experiments for different values of the feature dimension M and show the example
results in Fig. 2] Here, one can see the similar trends of dilation per memorization as before. In the
appendix, we provide additional results showing the behavior in the multi-class case N > 2 with
different models for label noise. The results support our MD model, and show that the memorization-
dilation curve is roughly independent of the noise model for low-to-mid noise levels.

4.2 THE MEMORIZATION-DILATION MODEL

Motivated by the observations of the previous experiments, we propose the so-called memorization-
dilation (MD) model, which extends the unconstrained feature model by incorporating the interaction
between memorization and dilation as a model assumption. By this, we explicitly capture the limited
expressivity of the network, thereby modeling the inductive bias of the underlying model.
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This model shall provide a basis to mathematically characterize the difference in the learning behavior
of CE and LS. More specifically, we would like to know why LS shows improved generalization
performance over conventional CE, as was observed in past works |Miiller et al.[(2019). The main idea
can be explained as follows. We first note that dilation is directly linked to generalization (see also
Kornblith et al.| (2021)), since the more concentrated the feature representations of each class are, the
easier it is to separate the different classes with a linear classifier without having outliers crossing the
decision boundary. The MD model asserts that dilation is a linear function of memorization. Hence,
the only way that LS can lead to less dilation than CE, is if LS memorizes less than CE. Hence, the
goal in our analysis is to show that, under the MD model, LS indeed leads to less memorization than
CE. Note that this description is observed empirically in the experiments of Section {.1]

Next we define the MD model in the binary classification setting.
Definition 4.1. We call the following minimization problem MD. Minimize the MD risk
R)\J%Q(U? ’I") = F>\7Q(W’ H7 7‘) + WGA,a(Wa U» T),

with respect to the noisy feature embedding U = [u1,us] € Rf_x M and the standard deviation
r > 0, under the constraints

Cupr

nllh1 —usl| < m @
Cypr

n|he —uq|| < ﬁ' (5)

Here,
« H € RZ*™ and W € RM*2 form an NC configuration (see Definition .

e Cpp > 0is called the memorization-dilation slope, 0 < « < 1 is called the LS parameter,
1 > 0 the noise level, and A\ > 0 the regularization parameter.

 F)  is the component in the (regularized) risk that is associated with the correctly labeled
samples,

FralW, H.r) o= | (ea(W,hl +0,91") + Al +v|2>dui<v>

+/ (éa(W,h2+v7y§a)) +Ah2+v2>du3(v)

where yi and p? are some probability distributions with mean 0 and standard deviation 7,
and [,, is the LS loss defined in (T).

* (3 o is the component in the (regularized) risk that is associated with the corrupted samples,
defined as

Cra(W, U, 1) = o (Wun, g ) + 0o (W, uz, g™ ) 4+ X Jua|* + Alfus

The MD model can be interpreted as follows. First we consider the feature representations of the
correctly labeled samples in each class as samples from a distribution (namely y2-% in Def. [4.1) with
standard deviation r, a parameter that measures the dilation of the class cluster. In a natural way,
the corresponding risk F , involves the loss average over all samples, i.e. the loss integral over the
distribution. For simplicity, we assume that the class centers h1, ho as well as the weight matrix W
are fixed as described by the NC configuration. This is a reasonable simplification as it has been
always observed in the experiments.

On the other hand, the feature representations of corrupted samples are v, and uQE] The amount of
memorization in the first class is defined to be 7)||he — w1]|, since the more noise 7 there is, the more

2Certainly one can, instead of two single points w; and w2, two distributions centered around w; and us,
similarly as before for uncorrupted samples. However, it is quite straightforward to see that the minimization
of the MD risk over the dilation of these two distributions is independent of other variables (not like ), and
thus the minimum should be attained in the case of collapsing into two single points. Thus, for convenience we
assume directly here that G, involves only two single points.
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examples we need to memorize. The amount of memorization in the second class is defined the same
way. The (normalized) dilation is defined to be m, which models a similar quantity to .

The constraints (@) and (5) tell us that in order to map noisy samples
u; away from ho, we have to pay with dilation r. The larger r
is, the further away we can map u; from h,. The correspondence
between memorization and dilation is linear with slope C'y;p by
assumption. There are two main forces in the optimization problem:
w; would like to be as close as possible to its optimal position h,
and similarly us likes to be close to hs. In view of the constraints

(@) and (3), to achieve this, r has to be increased t0 ryax =

"H’g%"‘”. On the other hand, the optimal r for the term F) ,,

is r = 0, namely, the layer-peeled NC configuration. An optimal
solution hence balances between memorization and dilation. See
Fig. [3for a visualization of the MD model.

Our goal in this section is to compare the optimal value 7 in case
of LS and CE losses. We will distinguish between these two cases
by setting the value of « in the MD model to 0 for CE and to some
ag > 0 for LS. This will result in two different scales of the feature
embeddings H, denoted by H¥ and HS for CE and LS loss
respectively, with the ratio

vi= [HEE| [ H] > 1, ©)

which holds under the reasonable assumption that the LS technique
is sufficiently effective, or more precisely ag > 24/ Aw Aq.

The main result in this section will be Theorem 4.3} which states
informally that in the low noise regime, the optimal dilation in case
of LS loss is smaller than that in case of CE loss. Before presenting
this theorem, we will first establish several assumptions on the

Instances h{

Feature 2

Feature 1

Figure 3: Exemplary illustration of
the MD model for a MLP network
trained on MNIST. The instances
hgk) are test images correctly la-
beled as 1, with centroid hs. The
centroid of the test images with cor-
rect label 0 is h1. The centroid of
training images which were orig-
inally labeled as 1 but are misla-
beled as 0 is w;. The memoriza-
tion of w; moves it close to hq,
and causes dilation of the instances
h®

distributions z.12 and the noise 7 in Assumption Basically we allow a rich class of distributions
and only require certain symmetry and bounded supports in terms of 7, as well as require 7 to be

small in terms of the ratio ~.

Assumption 4.2.
1. Let ag > 0. We assume that the solution of

min
W.H

st. H>0.

Ca (W1, ™) + Lo (W2, o)) 4+ 2w [W I 4+ A | HE?

is given by (W, H) = (WCE _HCYF) fora = 0 and (W,H) = (WLS H%) for

o = Q.

2. Assume that the distributions z} and p? are centered, in the sense that

[ tws = w0 ko) = [ (wr - wav) dii o) =0,
[ o) dut(w) = [ ta,0) dizw) = 0.

Furthermore, we assume that there exists a constant A > 0 such that ||v|| < Ar for any
vector v that lies in the support of p! or in the support of 2.

3. Assume that the noise level 7 and the LS parameter «y satisfy the following. We suppose
ap > 4v/Aw A, which guarantees v := ||[HY#|| / || HS|| > 1. We moreover suppose

that 7 is sufficiently small to guarantee n'/2 < C/(1 — %) where C :=

Now our main result in this section can be formally stated as below.

Cup
AR
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Theorem 4.3. Suppose that Assumptionholds true for M > N = 2 and \ := \p. Let r¢F and
rLS be the optimal dilations, i.e. the optimum r in the MD problem, corresponding to the CE and
LS loss (accordingly o = 0 and o = «y), respectively. Then it holds that

rCF rLks

[P RS~ Es i

Theorem [4.3|reveals a mechanism by which LS achieves better generalization than CE. It is proven
that LS memorizes and dilates less than CE, which is associated with better generalization. Note
that in practice, the data often have noise in the sense that not all examples are perfectly labeled.
More importantly, examples from different classes may share many similarities, a situation that is
also covered by the MD model: the feature representations of samples from those classes are biased
toward each other. In this case, LS also leads to decreased dilation which corresponds to better class
separation and higher performance |Kornblith et al.|(2021).

Interestingly, the concurrent work Zhou et al.| (2022b) has shown that in the noiseless setting CE and
LS lead to largely identical test accuracy, which seems to contradict the statement that LS performs
better claimed by our work as well as many others, e.g. |[Kornblith et al.|(2021); Miiller et al.|(2019).
However, note that|Zhou et al.| (2022b) requires the network to be sufficiently large so that it has
enough expressive power to fit the underlying mapping from input data to targets, as well as to be
trained until convergence. While the latter is easy to obtain, it is difficult even to check if the first
requirement holds. The difference between the two results is hence possibly caused by the effect of
noise and by the network expressivity: while we aim to model the limited expressivity by the MD
relation, [Zhou et al.| (2022b) focuses on networks with approximately infinite expressivity.

The MD model combines a statistical term F) ., that describes the risk over the distribution of
feature embeddings of samples with clean labels, and an empirical term G ,, that describes the
risk over training samples with noisy labels. One point of view that can motivate such a hybrid
statistical-empirical definition is the assumption that the network only memorizes samples of noisy
labels, but not samples of clean labels. Such a memorization degrades (dilates) both the collapse
of the training and test samples, possibly with different memorization-dilation slopes. However,
memorization is not limited to corrupted labels, but can also apply to samples of clean labels|Feldman
& Zhang| (2020), by which the learner can partially negate the dilation of the training features (but not
test features). The fact that our model does not take the memorization of clean samples into account
is one of its limitations. We believe that future work should focus on modeling the total memorization
of all examples. Nevertheless, we believe that our current MD model has merit, since 1) noisy labels
are memorized more than clean labels, and especially in the low noise regime the assumption of
observing memorization merely for corrupted labels appears reasonable, and 2) our approach and
proof techniques can be the basis of more elaborate future MD models.

5 CONCLUSION

In this paper, we first characterized the global minimizers of the Layer-Peeled Model (or the Un-
constrained Features Model) with the positivity condition on the feature representations. Our
characterization shows some distinctions from the results that haven been obtained in recent works
for the same model without feature positivity. Besides the conventional cross-entropy (CE) loss,
we studied the model in case of the label smoothing (LS) loss, showing that NC also occurs when
applying this technique.

Then we extended the model to the so-called Memorization-Dilation (MD) Model by incorporating
the limited expressivity of the network. Using the MD model, which is supported by our experimental
observations, we show that when trained with the LS loss, the network memorizes less than when
trained by the CE loss. This poses one explanation to the improved generalization performance of the
LS technique over the conventional CE loss.

Our model has limitations, however, namely that it is limited to the case of two classes. Motivated by
promising results on the applicability of our model to the multi-class setting, we believe that future
work should focus on extending the MD model in this respect. With such extensions, memorization-
dilation analysis has the potential to underlie a systematic comparison of the generalization capabilities
of different losses, such as CE, LS, and label relaxation, by analytically deriving formulas for the
amount of memorization associated with each loss.
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