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ABSTRACT

This paper introduces distributed speculative inference (DSI), a novel inference
algorithm that is provably faster than speculative inference (SI) (Leviathan et al.,
2023; Chen et al., 2023; Miao et al., 2024; Sun et al., 2025; Timor et al., 2025)
and standard autoregressive inference (non-SI). Like other SI algorithms, DSI
operates on frozen language models (LMs), requiring no training or architectural
modifications, and it preserves the target distribution. Prior studies on SI have
demonstrated empirical speedups over non-SI—but rely on sufficiently fast and
accurate drafters, which are often unavailable in practice. We identify a gap where
SI can be slower than non-SI if drafters are too slow or inaccurate. We close this
gap by proving that DSI is faster than both SI and non-SI—given any drafters.
DSI is therefore not only faster than SI, but also unlocks the acceleration of LMs
for which SI fails. DSI leverages speculation parallelism (SP), a novel type of
task parallelism, to orchestrate target and drafter instances that overlap in time,
establishing a new foundational tradeoff between computational resources and
latency. Our simulations show that DSI is 1.29-1.92x faster than SI in single-node
setups for various off-the-shelf LMs and tasks. We open-source all our code. 1

1 INTRODUCTION

Generative language models (LMs) have demonstrated unprecedented success across various tasks
(OpenAI et al., 2023; Li et al., 2023a; Andreas, 2022; Bubeck et al., 2023). Reducing the inference
latency of these models is a critical challenge for improving downstream applications and enabling
further test-time scaling (OpenAI et al., 2024; Muennighoff et al., 2025). Faster inference can
also drive broader adoption by real-time applications, which often prioritize low latency over other
objectives. With the growing availability of hardware and decreasing costs, effectively utilizing more
computing power for faster inference is becoming increasingly important.

A promising approach to reducing LM inference latency is speculative inference (SI), built upon the
principles of Burton (1985). SI employs faster drafter models to predict likely token continuations,
which are then verified concurrently using modern hardware’s data parallelism, known as batching
(e.g., on GPUs) (Stern et al., 2018). SI has been widely adopted in practice thanks to novel lossless
verification methods, demonstrating empirical speedups of up to 4x over standard autoregressive
inference (Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2024; Sun et al., 2025; Timor
et al., 2025) and increasing throughput in multi-request settings (Sadhukhan et al., 2025). The core
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advantage of SI is that it can generate more than one token per forward pass of a given target language
model.

However, SI relies on a sequential draft-then-verify process, where each verification must be com-
pleted before drafting new tokens. As a result, SI is beneficial only if the drafters are sufficiently
fast and accurate. If the drafters are too slow or inaccurate, SI fails to provide a speedup—or is
even slower than standard autoregressive inference. This fundamental limitation of SI has not been
addressed in prior work.

Contributions. To overcome the fundamental limitation of speculative inference (SI) as a sequential
algorithm, we introduce distributed speculative inference (DSI), a novel inference algorithm that
parallelizes SI by leveraging speculation parallelism (SP), a new type of task parallelism. Unlike
SI, which blocks drafting until verification is complete, DSI overlaps verification with drafting,
transforming SI into a non-blocking algorithm and effectively hiding verification latency.

Our key contributions are:

• Introducing speculation parallelism (SP): A novel type of task parallelism that eliminates
the blocking nature of SI by enabling concurrent verification and drafting using multiple
instances of the target and drafter models.

• Provable speedup over SI and non-SI: We prove that DSI is always at least as fast as non-SI
and is strictly faster than both SI and non-SI in expectation.

• Broader applicability: DSI accelerates inference even with drafters for which SI fails,
making it effective for a wider range of LMs.

• Scalability to available hardware: DSI can orchestrate an arbitrary number of GPUs (≥ 2)
by adjusting its lookahead hyperparameter.

• Empirical validation: Our simulations show that DSI is 1.29-1.92x faster than SI across
various models and tasks in realistic single-node, multi-GPU setups.

2 PRELIMINARIES

Below we describe speculative inference and how to measure latency. For rigorous definitions of
autoregressive language models (LMs) and next-token prediction, we refer the reader to Appendix B.

Speculative Inference (SI) is an approach for accelerating the inference of a target LM fm (e.g.,
a member of the GPT series). Such methods use faster LMs f1, . . . , fm−1 that approximate the
target model fm in order to reduce the total inference time. For example, Leviathan et al. (2023);
Chen et al. (2023) may reduce the amount of time it takes to generate N > 1 tokens from target
model f2 given a prompt x≤0 by using batching as follows. The inference starts by drafting k tokens
x′
i := f1(x

′
≤i−1) := f1(x≤0 ⊕ x′

1 ⊕ · · · ⊕ x′
i−1) for i ∈ [k] and 1 ≤ k < N using a faster drafter

model f1. Then, the algorithm sends the prompts {x′
≤i}ki=0 altogether as one input batch to the target

model f2. The idea is to take advantage of the data parallelism that modern GPUs offer to compute
the logits corresponding to the prompts {x′

≤i}ki=0 in parallel, hence faster than computing these k+1

individual logits sequentially. Given the logits, the algorithm generates [1, k + 1] tokens without
additional forward passes. By repeating this process, the algorithm can generate N > k + 1 tokens.

Straightforward algorithms of speculative inference are typically lossless in expectation, i.e., they
generate tokens from the same distributions as the target would generate without speculation. Naive
algorithms of speculation guarantee returning the same tokens as the target (Gante, 2023; Spector &
Re, 2023; Timor et al., 2025). More sophisticated algorithms of speculation might generate different
tokens, but their generated tokens follow the distribution of the target (Leviathan et al., 2023; Chen
et al., 2023; Miao et al., 2024; Sun et al., 2025; Timor et al., 2025).

To implement distributed algorithms for speculative inference, we use multiple processors or servers,
which are hardware components capable of executing threads. Processors can compute forward
passes and sample tokens from the output probability vectors and we assume that threads can run in
parallel. When using DSI we will run sequences of drafter models fj1 , fj2 , . . . , fjk , where the first
model takes x≤0 and returns some token xj1

1 , the second takes x≤0 ⊕ xj1
1 as a prompt and returns

xj1,j2
2 , and so on. As such, in order to denote that a given thread is computing the output of fjk on
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a sequence x
j1,...,jk−1

≤k−1 := x≤0 ⊕ xj1
1 ⊕ · · · ⊕ x

j1,...,jk−1

k−1 , we denote CJ , where J = (j1, . . . , jk).
When a thread CJ computes an LM, we denote the output probability vector by CJ [prob]. If CJ

samples a new token from CJ [prob], we denote this token by CJ [new]. For example, thread CJ

implementing equation 3 will have

CJ [prompt] := x≤i, CJ [prob] := f (CJ [prompt]) and CJ [new] ∼ CJ [prob].

Once a thread CJ finishes sampling a new token, the thread outputs the concatenation of CJ [prompt]
and CJ [new]. Following the example in equation 3, we have

CJ [return] := CJ [prompt] ⊕ (CJ [new]) := (x≤0, x1, . . . , xi+1).

A new thread that was initiated by CJ is denoted by CJ⊕(j), where J ⊕ (j) is the concatenation of J
and (j). The set of all the threads that originate from CJ is {CJ⊕J′ : J ′ is a nonempty tuple}. We
assume that terminating a concurrent thread terminates all the threads that originate from it.

Time in this paper is the wall time. We measure the time that passes from the initiation of a task until
its termination. A task is a nonempty set of threads, denoted by {CJ : J ∈ J}. Its time is

Twall
[
{CJ}J∈J

]
:= max

J∈J
(Timepoint CJ finishes) −min

J∈J
(Timepoint CJ starts).

When a task consists of a single thread, we omit the curly brackets, namely,

Twall [CJ ] := Twall [{CJ}] where | {CJ} | = 1.

Note that two threads, denoted by CJ and CJ′ , may run concurrently and overlap in time. Hence, it is
possible that max {Twall [CJ ] , Twall [CJ′ ]} ≤ Twall [{CJ , CJ′}] < Twall [CJ ] + Twall [CJ′ ]. However,
if CJ and CJ′ do not overlap in time, then Twall [{CJ , CJ′}] ≥ Twall [CJ ] + Twall [CJ′ ].

3 DISTRIBUTED SPECULATIVE INFERENCE

This section presents a theoretically sound orchestration framework for parallelizing SI (Leviathan
et al., 2023; Chen et al., 2023; Miao et al., 2024; Timor et al., 2025) that is essentially decoupled from
the underlying computation of forward passes. Our method applies to any fixed number of processors
(≥ 2), as shown later. Initially, we introduce a naive version of our approach, which assumes access
to a sufficiently large number of processors, ensuring that threads never need to wait.

Before presenting our algorithm, we first discuss the limitations of existing SI methods. SI reduces
a target forward whenever a draft token is accepted. With an accurate and fast drafter, SI can
significantly cut the number of target forwards, potentially speeding up the inference compared to
non-SI. For instance, if on average one draft token is accepted per iteration, the number of target
forwards drops to half since the average target forward generates two tokens. As long as the total
drafting latency is less than the saved latency from reduced target forwards, SI offers a speedup
over non-SI. The primary limitation of existing SI methods lies in their sequential nature. Each SI
iteration requires a target forward, and the next iteration only begins after the current one is completed.
Therefore, SI with sufficiently slow or inaccurate drafters is slower than non-SI, even if reducing
the number of target forwards. However, we observe that the verification of each SI iteration is not
inherently sequential and could be parallelized.

Previous works on SI exemplified speedups using drafters that run within 1-5% of the time (compared
to the target model), and iterations of 2-5 draft tokens (namely, lookahead ∈ [2, 5]). We can
calculate the maximum speedup of our proposed method compared to SI by Amdahl’s law, as follows.
Assume the drafter is perfectly accurate. In that case, our method hides all the verification latency
such that the overall end-to-end latency remains only the drafting latency. For drafters of 1-5%
latency and lookahead ∈ [2, 5], our proposed parallelization leads to a theoretical speedup of
4x-50x compared to SI.

Figure 1 and Table 1 illustrate potential speedups of our proposed method compared to SI and non-SI,
given a drafter of 14% latency and lookahead = 1. Larger lookahead values (as often used in
practice) yield even larger theoretical speedups.
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Timeline

Non-SI: GPU 0

SI: GPU 0
GPU 1

DSI: GPU 0
GPU 1
GPU 2
GPU 3
GPU 4
GPU 5
GPU 6
GPU 7

t0 = 0 t1 t2 t3 t4

Figure 1: Illustration of the timeline for DSI, SI, and autoregressive inference (non-SI). Blue and
yellow mark the forward latency of the target and drafter, respectively. In this example we have
lookahead = 1, namely, the drafter generates a single token in every yellow square. Non-SI and
SI are both sequential: each of their iterations ends with a target forward, and this target forward must
be completed before the next iteration can start. In DSI, target forwards are not necessarily blocking
as in SI and non-SI. While DSI works for any given number of GPUs (≥ 2), here it orchestrates eight
GPUs.

Table 1: The number of tokens that non-SI, SI, and DSI generate according to Figure 1. In the worst
case, all the draft tokens (yellow in Figure 1) are rejected. In the best case, all the drafts are accepted.
The number of tokens generated by DSI is greater than or equal to the number of tokens generated by
SI and non-SI in all cases, at any time, in expectation.

t1 t2 t3 t4

Worst case
non-SI 2 4 8 9

SI 1 4 7 8
DSI 2 4 8 9

Best case
non-SI 2 4 8 9

SI 2 8 14 16
DSI 8 26 50 58

3.1 METHOD OVERVIEW

Consider the task of computing N output tokens autoregressively from a target model fm given a
prompt x≤0. We have a set of faster drafter models, f1, . . . , fm−1, that are all faster than fm (as
defined in Assumption 2). Our goal is to compute xi = fm(x≤i−1) for all i ∈ [N ]. Appendix C
provides a detailed, step-by-step explanation of Algorithm 1.

Acceptance rate. Lines 8 and 10 of Algorithm 1 terminate any thread (and its descendants) that
returns a token that does not match the token returned by the current verifier. We say that this draft
token is rejected. Given a target, a drafter, and an input prompt, we define the acceptance rate to be
the probability of accepting the draft token. To increase the acceptance rate, we can replace the strict
exact-matching (lines 8, 10) with relaxed methods for rejecting drafts. For example, applying the
procedures proposed in Leviathan et al. (2023); Chen et al. (2023); Miao et al. (2024); Timor et al.
(2025) increases the acceptance rate while maintaining the distribution of the outputs of the target
model (namely, lossless in expectation).

Speculation parallelism (SP). In essence, DSI offers a new type of task parallelism we name
speculation parallelism (SP) that orchestrates instances of the target and drafters to overlap in time.
Speculation parallelism degree (SP degree) is the maximal number of target servers (namely, servers
dedicated to computing the target model) used at the same time. DSI parallelizes all of the non-
sequential parts of SI. Unlike SI, where verifying the drafts of the current iteration is sequential such
that the verification blocks the algorithm from drafting the next iteration, DSI runs verifications on
additional threads to hide their latency. In DSI, verifications contribute to the overall latency only
when they reject a token. Rejecting a token in DSI triggers a synchronization mechanism terminating
threads that received a rejected token (line 8), ensuring the output tokens are all accepted. The portion
of the inference that DSI parallelizes tends to the expected acceptance rate as the number of generated
tokens grows to infinity. For example, in the simple case where we have a single drafter with 80%
acceptance rate, DSI effectively parallelizes 80% of the work such that the expected speedup is 5x by
Amdahl’s law for generating N → ∞ tokens.
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Algorithm 1 Distributed Speculative Inference (DSI) of N tokens
Require: A prompt x≤0, and m autoregressive models, f1, f2, . . . , fm.
1: v = 1.
2: initiate m threads C(1), . . . , C(m) such that C(j1) generates the token xj1 ∼ fj1(x≤0) for all j1 ∈ [m]

concurrently.
3: label thread C(m) as the current verifier.
4: ONCE any thread CJ⊕(j) finishes to generate a token, namely, sampled CJ⊕(j)[new] ∼

fj
(
CJ⊕(j)[prompt]

)
:

5: if |J |+ 1 < N then
6: initiate m threads, CJ⊕(j,1), CJ⊕(j,2), . . . , CJ⊕(j,m), to generate a token concurrently and respectively

from f1, f2, . . . , fm.
7: if CJ⊕(j) is the current verifier thread then
8: terminate all threads CJ⊕(j′) (and their descendant threads) that sampled a different token

than CJ⊕(j).
9: let j∗ = arg min

j′∈[m]
{j′ | CJ⊕(j′)[new] = CJ⊕(j)[new]}.

10: terminate all threads CJ⊕(j′) (and their descendant threads), where j′ > j∗.
11: label CJ⊕(j∗,m) as the current verifier.
12: update v = v + 1.
13: if CJ⊕(j∗,m) has already finished then
14: go back to step 7 with J = J ⊕ (j∗,m).
15: end if
16: end if
17: else if the last entry of J ⊕ (j) equals m (i.e., j = m) then
18: return CJ⊕(j)[return].
19: end if
20: end ONCE

Lookahead. While the abstract version of DSI described in Algorithm 1 takes advantage of a
sufficiently large number of servers, in practice we typically have a fixed number of servers. We can
deploy DSI on an arbitrary number of servers (≥ 2) by selecting a sufficiently large lookahead
hyperparameter, as elaborated in Appendix D. The lookahead is defined as the number of draft
tokens in every verification task sent to a target server. The lookahead in Algorithm 1 is set
to 1 for simplicity, but can be arbitrarily large. For example, verifying every five draft tokens
(lookahead = 5) instead of one (lookahead = 1) is a standard configuration of SI methods
in practice. In DSI, larger lookahead values decrease the frequency at which verification tasks
are sent to the target servers, hence decreasing the required SP degree. Given an SP degree, the
lookahead must be sufficiently large to satisfy the following inequality, ensuring that verification
tasks never wait to be processed by a target server.⌈

(target latency)
(lookahead) · (drafter latency)

⌉
≤ SP (1)

Smaller SP degrees or faster drafters require selecting larger lookahead values. For example,
given a single drafter of 5% latency and SP = 4, having lookahead = 5 is sufficient. Assuming
a single drafter that runs on a single processing unit, the maximum number of required processing
units is 1 +

⌈
1

5·0.05
⌉
= 5. If more than five processing units are available, we can select a smaller

lookahead value, yielding verification tasks more frequently. In general, selecting the minimum
lookahead value that satisfies Equation 1 is the optimal choice, allowing DSI to detect rejections
(line 8) earlier. Using an SP degree such that SP =

⌈
target latency
drafter latency

⌉
reaches the maximum expected

speedup, and any larger SP degree cannot speed up the inference because there will be more target
servers than verification tasks that can be processed in parallel.

Resource contention. In practice, resource contention might occur when multiple threads compete
for the same hardware resources, such as memory bandwidth, data transfer channels, or CPU cores
used for orchestration. By selecting the minimal lookahead that ensures the required SP degree
is supported by the available resources (namely, satisfying Equation 1), we can guarantee that the
algorithm runs efficiently in practice, without significant resource contention, because the verification
requests are sent to the target server at different times, and the responses are expected in staggered
timings.
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Model parallelism (MP). DSI introduces a new way to parallelize that differs from tensor parallelism
(TP) and pipeline parallelism (PP). DSI can employ TP, PP, or a combination of both TP and PP. To
simplify, we say that MP is any such parallelism combination, including TP, PP, or TP+PP. MP speeds
up the computation of forwards, and SI reduces the number of target forwards. Their combination
(SI+MP) reduces the number of target forwards and accelerates each target forward. DSI further
reduces the number of target forwards contributing to latency because DSI hides the latency of
verification tasks by computing them in parallel. Below we compare SP and MP, providing a simple
example demonstrating that SP outperforms MP given the same computing budget.

In DSI, target forwards contribute latency only if they reject a draft. Below is a simple example of
comparing MP and SP. Given a drafter of 10% latency, we can set lookahead = 2 to allow DSI to
run over a single node of only 6 GPUs (5 for the target and 1 for the drafter). Let a be the acceptance
rate of the drafter. The expected number of target forwards that DSI eliminates by hiding is a2. For
example, for a drafter with an 80% acceptance rate, only 36% of the target forwards contribute to
latency (in general, 1− alookahead). Under the same computing budget (MP=5), MP must accelerate
the target forwards by 2.78x or more to become faster than DSI. However, MP is ineffective for
certain hardware setups, model architectures and sizes, while DSI remains effective.

DSI could be naturally combined with MP to accelerate the underlying forwards, requiring no
changes to the algorithm, because DSI offers an orchestration algorithm agnostic to the underlying
computation of forwards. Since DSI can orchestrate multiple nodes, it unlocks setups with sufficiently
large SP degrees so that there is no theoretical tradeoff between DSI and MP. Combining DSI with
MP methods can possibly further accelerate the inference in both single- and multi-node setups. All
the foundational concepts of such an implementation of DSI are covered in this paper.

KV cache. We can view DSI as an orchestration algorithm that constructs and verifies token trees
on the fly. DSI is decoupled from the underlying computation of forwards, including KV cache
management, both in theory and in practice. Each server maintains its own KV cache. The servers
collaboratively process a token tree with shared prefixes. Synchronizations occur at every draft
rejection.

Efficient KV cache management of token trees has already been developed in SpecInfer, where tree
paths can share common prefixes (Miao et al., 2024). Practitioners can apply SpecInfer’s KV cache
management as-is to achieve the expected speedups reported in this paper. While it might require
some engineering effort to implement SpecInfer’s KV cache management, it is a solved research
problem and has been shown to add negligible latency.

3.2 THEORETICAL RESULTS

Next, we formally state that DSI (Algorithm 1) is strictly lossless, always returning the correct
sequence of tokens x1, . . . , xN , runs at least as fast as non-SI, and runs faster than both non-SI and
SI in expectation. Before presenting our main theoretical results, we outline the assumptions used in
the analysis. The proofs are provided in Appendix E.
Assumption 1. We assume the existence of a (universal) constant c > 0 such that, for any input
prompt x≤0 and model index j ∈ [m], we have:

Twall [computing fj (x≤0)] ∈ (0, c) and Twall [sampling x ∼ fj (x≤0)] = 0.

Assumption 2. We assume that for all j ∈ [m− 1], fj is faster than fm (denoted fj ⪯ fm) in the
following sense maxx≤0

Twall [computing fj (x≤0)] ≤ minx≤0
Twall [computing fm (x≤0)].

Assumption 3. We assume that Twall
[
{C(j1,...,ji)}ki=1

]
=

∑k
i=1 Twall

[
C(j1,...,ji)

]
.

The first assumption asserts that computing the output of any model takes a non-zero, bounded
amount of time, and sampling a token from the output probabilities takes a negligible amount of time.
The second assumption asserts that each drafter model runs faster than the target model, for any given
input prompt. The third assumption asserts that computing xj1,...,jk

k takes the time of first computing
xj1
1 , then xj1,j2

2 , and so forth, up to xj1,...,jk
k , with no delays.

The following theorem suggests that our method returns tokens from the same distributions as those
the target would generate without speculation, and is at least as fast as iteratively applying the target
model itself.
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Theorem 1. Under Assumptions 1, 2 and 3, Algorithm 1 returns the same output and runs at least as
fast as running the target model itself without speculative inference (SI).

Theorem 2. Under Assumptions 1, 2 and 3, Algorithm 1 runs at least as fast as SI in expectation.

The advantage of Algorithm 1 lies in its concurrency. The following proposition shows how DSI can
accelerate the inference of a given target model using a drafter model that is faster than the target
model and returns the correct output with high probability.
Proposition 1. Suppose we have a drafter model f1, a target model f2 and a prompt x≤0. Assume
that f1 requires t1 time units to compute each of its outputs, and f2 requires t2 time units, where
t2 > t1. Assume that given the prompt x≤i = x≤0 ⊕ x1 ⊕ · · · ⊕ xi, the probability that f1 returns
the (correct) token xi+1 is p. Then, the expected time it takes Algorithm 1 to calculate the correct
output is at most t1p(N − 1) + t2((1− p)(N − 1) + 1) time units, compared to the t2N time units
required if we were to compute f2 without speculative inference.

4 EMPIRICAL RESULTS

DSI can orchestrate any fixed number of processors (≥ 2) by selecting a sufficiently large
lookahead value. While the theoretical guarantees in section 3.2 hold for both single- and
multi-node setups, our experiments are confined to single-node scenarios with at most eight GPUs.

Configuring DSI for any given number of GPUs (≥ 2), target model, and drafter, requires calculating
the SP degree by selecting the allocation of the available GPUs, then selecting the lookahead to be
the minimal number satisfying Equation 1. In its simplest nontrivial setup, DSI orchestrates a single
node with two GPUs, implementing a target server on one GPU and a drafter server on the other.
More advanced setups involve more GPUs, potentially on other nodes, or combine DSI with other
parallelism techniques so that servers can utilize multiple underlying GPUs. For example, a node
with eight GPUs can run eight servers, each using one GPU, or four servers, each using two GPUs,
employing model parallelism (MP) with tensor parallelism (TP) or pipeline parallelism (TP). To
maximize the expected speedup, we select the minimal lookahead value that satisfies Equation 1
so that verification tasks never wait to be processed by a target server. Some models require more
than one GPU to avoid memory offloading to slower memories (like the host’s CPU memory or hard
disk). For example, given seven GPUs and a target model that requires two of the given GPUs to
run without offloading (namely, MP ≥ 2), the SP degree is at most three, assuming that the drafter
can run on a single GPU. With an SP degree of three, we will select the lookahead to be the
minimal number satisfying Equation 1. If the drafter forwards take 5% of the target forwards, the
ratio between their latencies is 20, hence, the minimum lookahead value guaranteeing no waiting
is 7.

Since our experiments focus on single-node setups, we implemented DSI as a multithreading system.
We implemented DSI in Python, using Python’s built-in thread pool to manage operating system (OS)
threads. These OS-level threads share CPU resources similarly to other real-world multi-threaded
systems. This ensures that real-world thread management latencies, such as context switching,
thread creation, and scheduling delays, are fully incurred in the experiments. For multi-node setups,
implementing DSI as a multiprocessing system with a Message Passing Interface (MPI) would be
more appropriate than multithreading.

In both single- and multi-node setups, DSI can employ a thread pool design pattern, where verification
tasks are sent to a pool of servers computing the target model. The size of this target pool is, by
definition, the SP degree. Our implementation is based on a thread pool of targets and a single drafter
server. In all our experiments, DSI has an SP degree of less than or equal to seven and one drafter
server, where each server employs a single GPU.

Our implementation of DSI and the code for running the experiments are agnostic to the underly-
ing hardware, and have been open-sourced, employing high software development standards with
thousands of tests, ensuring complete reproducibility of the reported results and enabling further
research.

Measuring the actual speedups of DSI for a node with eight GPUs requires access to such a node.
Due to budget constraints, instead of a node with eight GPUs, we only had access to one GPU. To
evaluate DSI over a node with eight GPUs without access to such hardware, we adjusted the DSI
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implementation accordingly. While DSI incurs all the real-world latencies typical of multithreading
systems (e.g., latencies of managing OS threads), each call to compute the forward pass of an LM was
replaced by a wait command. The wait command blocks the thread for a duration that matches
the actual latency.

To ensure realistic wait times, we conducted a separate experiment to estimate the Time to First
Token (TTFT) and Time Per Output Token (TPOT) for each model and dataset. These TTFT and
TPOT values were then used to set the wait times in the main experiment. To estimate the acceptance
rate for each combination of ⟨target, drafter, dataset⟩, we performed another separate experiment and
plugged in the approximated acceptance rate in the main experiment. Appendices F.1 and F.2 provide
detailed explanations of the independent experiments to estimate the TTFT, TPOT, and acceptance
rate.

The results of our main experiment, detailed in Table 2, affirm Theorems 1 and 2, demonstrating that
DSI outperforms SI (Leviathan et al., 2023; Chen et al., 2023) in practical settings across various
models and well-known datasets. Overall, DSI consistently outperforms SI across all models and
tasks. Table 2 also specifies the latency and acceptance rate estimates used in each configuration.

Table 2: DSI speedups over SI for various off-the-shelf target/drafter pairs. We observe that DSI
outperforms SI consistently across all models and tasks.

Target Drafter Dataset Target
Latency

(ms)

Drafter
Latency

(ms)

Drafter
Latency

(%)

Acceptance
Rate
(%)

Speedup
DSI vs. SI

Starcoder-15B Starcoder-168M HumanEval 20.6 6.8 32.3 93 1.92x
Starcoder-15B Starcoder-168M MBPP 21.0 6.8 32.9 90 1.66x
Phi3-14B Phi3-4B Alpaca 49.6 33.4 67.4 87 1.60x
Phi3-14B Phi3-4B HumanEval 52.1 34.0 65.3 95 1.41x
Phi3-14B Phi3-4B CNN-DM 52.4 34.6 66.0 93 1.39x
Phi3-14B Phi3-4B MBPP 52.2 34.3 65.8 94 1.37x
Vicuna-13B Vicuna-68M CNN-DM 37.7 2.5 6.5 63 1.47x
Vicuna-13B Vicuna-68M Alpaca 33.3 2.5 7.4 58 1.41x
Vicuna-7B Vicuna-68M CNN-DM 29.4 2.5 8.4 67 1.29x
Vicuna-7B Vicuna-68M Alpaca 26.0 2.5 9.5 59 1.70x

The reported speedup of DSI relative to SI (“Speedup DSI vs. SI” in Table 2) is the ratio between their
estimated end-to-end latencies (wall time), including prefilling and decoding latency, but excluding
tokenization latency. The end-to-end latency is estimated as follows: we generate 50 tokens using each
target-drafter pair on each dataset, employing real-world forward latencies and acceptance rate values
from independent experiments (elaborated below). Each combination of ⟨target, drafter, dataset⟩ is
run on multiple lookahead values (specifically, 1, 5, and 10, because this range has been shown
in previous works on SI to be effective). For the DSI run, we further restrict the lookahead
values to ensure we only consider configurations for which DSI could have been deployed on a
single node with up to eight GPUs, assuming the drafter runs on a single GPU. That is, we only use
lookahead ∈ {1, 5, 10} if this lookahead value satisfies Equation 1 for SP = 7.

In all our experiments, the models and datasets were downloaded from the Hugging Face Hub and
used as-is. We used four well-established datasets to estimate forward latencies and acceptance
rates, spanning various tasks: text summarization using CNN Daily Mail (Hermann et al., 2015);
instruction-following using Alpaca (Taori et al., 2023); code generation using MBPP and HumanEval
(Austin et al., 2021; Chen et al., 2021). Appendices F.5 and F.6 provide a complete description of the
models, datasets, and examples of prompts.

4.1 ABLATION VIA OFFLINE SIMULATION

The main experiment above (Table 2) can be viewed as an “online” experiment because it employs
thread pools and measures the overall wall time including real-world latencies of multithreading
systems. This section presents a complementary “offline” experiment that simulates the inference
algorithms by simply summing the forward latencies without thread pools, assuming zero multithread-
ing latencies. The offline experiment is important for two reasons: (i) it decouples the implementation
details of DSI from the theoretical analysis, and (ii) it allows us to explore a much larger space of
configurations within a constrained computational budget.
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Figure 2 presents the results of this offline simulation, measuring the pairwise speedups (or slow-
downs): SI compared to non-SI, DSI compared to SI, and DSI compared to non-SI. Since SI is
slower than non-SI in some configurations, we have included Figure 2(d) as an additional comparison
that shows DSI speedups relative to the faster of the two algorithms—SI or non-SI—for any given
configuration. Figure 2(d) helps identify configurations where DSI achieves the highest speedup. It
demonstrates that, unlike SI, our method introduces no slowdown compared to non-SI and consistently
accelerates inference.

As shown in Figure 2(a), to achieve a speedup with SI compared to non-SI, the acceptance rate of the
drafter must at least match the latency of the drafter model, which corresponds to the non-pink region
in the figure. This means that the SI algorithm cannot speed up the inference if the acceptance rate of
the drafter is not sufficiently high for a given latency, corresponding to the pink region in the figure.
Conversely, in Figure 2(b), we observe that DSI consistently speeds up inference time, regardless of
the latency and acceptance rates of the drafter. This provides our method with much greater flexibility
and robustness when selecting drafters for a given target model. In Figure 2(c), we observe that
DSI is faster than non-SI for all configurations for which non-SI is faster than SI. Finally, to obtain
a comprehensive view of the inference speedup achieved by DSI, in Figure 2(d), we compare the
performance of DSI with the minimum runtime for any configuration between SI and non-SI.

The heatmaps represent millions of data points, where each point corresponds to a different configu-
ration. Since offline simulations are insensitive to the real-world latencies of multithreading systems
(e.g., context switching), an offline simulation for a particular configuration could be run in parallel
with other offline simulations. This approach of parallelizing the experiments—rather than running
them sequentially—makes it feasible to scale up the number of configurations explored within a
constrained computational budget and provide comprehensive heatmaps of the expected speedups. In
contrast, for online experiments, each of the millions of configurations represents a distinct online
run that necessitates a separate environment.
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Figure 2: Expected pairwise speedups (or slowdowns) of DSI, SI, and non-SI. Each heatmap is
labeled “X/Y” and plots the ratio between the run time of algorithm X and the run time of algorithm
Y. The run time of each algorithm is computed by summing the latencies of all the forward passes
and intentionally ignoring additional real-world latencies of multithreading systems like context
switching, allowing us to decouple the implementation details from the theoretical analysis. (a): SI is
slower than non-speculative inference (non-SI) when the drafter is either slow or inaccurate enough
(pink marks slowdowns). (b, c, d): DSI is faster than speculative inference (SI) and non-speculative
inference (non-SI) for all configurations of non-zero acceptance rate. DSI is never slower than either
SI or non-SI for all configurations. (d): DSI is up to 1.6x faster than the baseline algorithm, where
the baseline is the faster between SI and non-SI for each configuration.

Appendix F provides additional implementation details about the experiments. We open-source the
code for all the simulations.

5 RELATED WORK

Research on SI has expanded the framework, including dynamically controlling the number of draft
tokens per iteration—a technique widely adopted in practice (Mamou et al., 2024; Liu et al., 2024a;
Gante, 2023)—and exploring various other directions (Li et al., 2024; Cai et al., 2024; Sun et al.,
2024b; Liu et al., 2024b; Zhou et al., 2024; Zafrir et al., 2024; Narasimhan et al., 2025; Bachmann
et al., 2025). However, in prior works, computing target forward passes remains a blocking operation,
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limiting the algorithm from processing tokens in later positions and leaving the fundamental limitation
of SI as a sequential algorithm unaddressed.

PEARL is a recent2 extension to SI, demonstrating that drafting in parallel to verifying speeds up
non-SI and vanilla SI by up to 4.43x and 1.5x, respectively (Liu et al., 2025). Their empirical results
highlight the advantage of DSI in breaking the draft-then-verify sequential nature of SI. However,
PEARL suffers from a fundamental limitation: it remains a sequential algorithm because it can
only process tokens of the next SI iteration, unlike DSI, which can process tokens of any future
iteration. Their algorithm employs a heuristic (controlling whether to verify the first draft token of
every iteration) and has no theoretical guarantees to speed up SI or non-SI. In fact, PEARL is slower
than non-SI if the drafters are too slow or inaccurate, unlike DSI. Since PEARL cannot orchestrate
more than one instance of the target model and one instance of the drafter, it offers limited scalability
to hardware setups, unlike DSI, which can orchestrate an arbitrary number of GPUs (≥ 2). As a
result, PEARL underutilizes the available hardware unless it runs with lookahead = target latency

drafter latency > 1,
and is therefore strictly slower than DSI with a smaller lookahead, in expectation.

For other related work beyond SI, see Appendix A.

6 DISCUSSION

This work proposes a method to reduce the run time of speculative inference algorithms by taking
advantage of an arbitrary number of additional multiple processing units (e.g., GPUs). We have
shown that despite the wide adoption of SI algorithms, they can end up slowing the inference of
language models in various practical settings, when the drafters are insufficiently accurate or fast.
We showed that by taking advantage of at least one additional GPU, we can design a speculatively
inference algorithm that provably reduces the inference time of both non-SI and SI algorithms.
Our simulations affirm our theory, indicating significant speedups over both SI and non-SI for all
possible configurations given a single node with up to eight GPUs. In essence, this work paves the
way to additional SI algorithms that can orchestrate multiple processing units at the same time via
speculation parallelism (SP).

We introduce distributed speculative inference (DSI) and show it is faster than SI and non-SI for all
possible configurations by theoretical analysis and experiments. While the theoretical guarantees
hold for both single- and multi-node setups, our experiments focus on single-node scenarios with up
to eight GPUs with an SP degree ≤ 7. Due to budget constraints, we adjusted our implementation of
DSI to simulate an access to such a node rather than running on a physical node with eight GPUs.
Nevertheless, the empirical results are realistic because DSI is implemented as a multithreading
system, incurring all real-world latencies of such systems (e.g., context switching), and all the
real-world GPU-related latencies are based on independent experiments accessing a GPU.

Future Work. DSI’s key strengths lie in its use of speculation parallelism to reduce latency
through parallelized verification, and its ability to achieve lossless speedups without modifying
model architectures. Building on these, future work should focus on evaluating DSI with LMs
that require multiple GPUs to avoid memory offloading (namely, MP degree > 1). While most
state-of-the-art models can run on a single GPU (via compression, in a lower precision, etc.), we do
see a trend towards even larger LMs. Since larger LMs are often slower, DSI’s parallelism could
be particularly effective. Although multi-node inference is not yet a common setup, testing DSI in
realistic multi-node environments, could unlock its potential despite communication latencies.
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A OTHER RELATED WORK

Beyond SI, other recent efforts to reduce the inference latency of LMs can be classified into two
main categories by their approach to hardware utilization. The first category focuses on acceler-
ating the inference by using more computing power. It includes data parallelism (DP) and model
parallelism (MP) methods of different types, such as pipeline parallelism (PP), tensor parallelism
(TP) (Narayanan et al., 2021), context parallelism (Li et al., 2023b; Yang et al., 2024), and expert
parallelism (Rajbhandari et al., 2022). Such partitioning over multiple processors can speed up
memory-bounded inference setups, for example, by avoiding memory offloading. They are often
effective in increasing the inference throughput and supporting larger context lengths. However, the
typical LM architectures necessitate autoregressive inference. Such inference is inherently sequential
with only limited (if any) MP opportunities, depending on the LM architecture. Since the portion
of the inference that could be parallelized is small (if any) in typical LMs, the potential speedup
of MP methods is limited, by Amdahl’s law (Amdahl, 1967; Rodgers, 1985). Hence, while DP
methods can increase the inference throughput, they remain inherently sequential. Furthermore, as
the parallelisms above shard over more processors, the communication overhead increases, which
can lead to diminishing returns, limiting the number of processors they can effectively utilize.

The second category focuses on making LMs use less computing resources or better utilize the
same resources. This includes post-training compression through pruning (e.g., (Frantar & Alistarh,
2023; Sun et al., 2024a; Ma et al., 2023)), knowledge distillation (e.g., Hinton et al. (2015); Gu
et al. (2024)), quantization (e.g., (Hubara et al., 2018; Frantar et al., 2023; Lin et al., 2024; Yao
et al., 2024; Dettmers et al., 2022)), low-rank factorization (e.g., (Hsu et al., 2022; Xu et al., 2023)),
early exiting (e.g., (Schuster et al., 2022; Kim et al., 2023; Elbayad et al., 2020; Bapna et al., 2020;
Schuster et al., 2021)), and alternative architectures (e.g., (Cai et al., 2024; Li et al., 2024; Zhang
et al., 2024b;a; Xiao et al., 2024; Gu & Dao, 2024)). While these solutions are useful in practice,
they often require modifications to the model architecture, changes to the training procedure and
re-training of the models, without guaranteeing identical outputs. Despite reducing the inference
time, these methods often have a significant drawback of degrading the output quality. There are also
solutions that preserve the output quality, such as kernel optimizations (Dao et al., 2022; Dao, 2024),
but they highly depend on the hardware and therefore are not always available or even feasible.

B EXTENDED PRELIMINARIES

Autoregressive language models (LMs) are deterministic, real-valued multivariate functions. An
input to an LM is a sequence of vectors of dimension nvocab. We call these vectors tokens, and
the sequence a prompt. LMs output a real-valued vector of dimension nvocab, also known as the
logits. Since prompts may vary in length, we simplify the notation of the forward pass as follows:
f : R∗×nvocab → Rnvocab .

Self-Attention LMs are LMs with a pre-defined context length nctx (Vaswani et al., 2017). Hence,
we represent the forward pass of such LMs in the following manner: f : Rnctx×nvocab → Rnvocab . For
example, GPT-2 and GPT-3 are Transformers with nvocab = 50257, and context lengths nctx = 1024
and nctx = 2048, respectively (Radford et al., 2019; Brown et al., 2020). In this paper, all LMs are
Self-Attention ones with pre-trained (frozen) parameters.

We extend the prompt notation such that prompts can have length l ≤ nctx. Self-Attention LMs
handle prompts of length l < nctx by starting the input sequence with a prefix of nctx − l tokens,
followed by the l given tokens. LMs ignore the prefix, either by zeroing (masking) the Attention parts
corresponding to the prefix or by left-padding with dedicated tokens. In this paper, prompts of length
l < nctx are the non-masked, non-padded suffix of the input sequence of length nctx.

Generating the next token is the primary application of autoregressive LMs. This process consists
of two steps: computing the forward pass of the LM and then selecting the next token based on
the output. The selection can be deterministic or non-deterministic. Non-deterministic selection
procedures apply the softmax function after the forward pass of LMs and sample from the resulting
probability vector:

softmax : Rnvocab → [0, 1]nvocab such that the entries sum to 1. (2)
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For convenience, we denote the output probability vector by f (x≤i):

xi+1 ∼ f (x≤i) := softmax (f (x≤i)) := softmax (f (x≤0 ⊕ x1 ⊕ · · · ⊕ xi)) , (3)

where a ⊕ b = (a, b) is the concatenation of the vectors a and b and x≤i := x≤0 ⊕ x1 ⊕ · · · ⊕ xi.
For deterministic selection procedures, composing monotonic functions, such as softmax, is usually
unnecessary. For example, the most likely next token is the argmax of both the logits and the output
of the softmax. Still, for convenience, we assume that LMs always output probability vectors. The
sampling process in equation 3 is either deterministic (i.e., xi+1 is a token with maximal probability)
or random (achieved by randomly selecting xi+1 from the distribution softmax (f (x≤i))).

C STEP-BY-STEP METHOD OVERVIEW

Consider the task of computing N output tokens autoregressively from a target model fm given a
prompt x≤0. We have a set of faster drafter models, f1, . . . , fm−1, that are all faster than fm (as
defined in Assumption 2). Our goal is to compute xi = fm(x≤i−1) for all i ∈ [N ]. To achieve
this, we initiate m threads, C(1), . . . , C(m) (line 2 in Algorithm 1). Each thread, denoted as (j1), is
responsible for computing xj1

1 = fj1(x≤0). Once a thread, C(j1), finishes computation, we instantiate
m new threads, C(j1,j2), to calculate xj1,j2

2 = fj2(x≤0 ⊕ xj1
1 ) for all j2 ∈ [m]. In general, once

we compute x
j1,...,jr−1

r−1 , we initiate m new threads, C(j1,...,jr−1,1), . . . , C(j1,...,jr−1,m), to compute
xj1,...,jr
r = fjr (x≤0 ⊕ xj1

1 ⊕ · · · ⊕ x
j1,...,jr−1

r−1 ) for all jr ∈ [m]. This is captured in lines 4 and 6.

Once C(m) completes its computation and provides the correct value of the first output token xm
1 = x1,

we can verify which other threads, C(j1), have accurately computed x1. Any thread C(j1) where
xj1
1 ̸= x1 is immediately terminated along with its descendant processes (line 8). For each j1 ∈ [m]

that correctly computed xj1
1 = x1, we continue with computing xj1,j2 = fj2(x≤0 ⊕ xj1

1 ) for all
j2 ∈ [m]. However, since all threads are computing the same set of tokens, we terminate all but the
one corresponding to the smallest value of j1 that satisfies xj1

1 = x1 (line 10). In essence, C(m) serves
as a verifier, identifying drafters that miscalculated the initial part of the autoregressive computation.
Once we retain one valid j1, we relabel C(j1,m) as the new verifier thread. We know that since C(j1)

returned the correct token xj1
1 = x1 and x2 = fm(x≤1), the output of C(j1,m) must be correct. When

that thread finishes, among the remaining threads, C(j1,j2), we terminate those that miscalculated
x2 = xj1,m

2 (line 8) and keep only the one with xj1,j2
2 = xj1,m

2 = x2, whose index j2 is minimal
(line 10). We continue this process until the output xj1,...,jN−1,m is obtained from the last verifier
thread C(j1,...,jN−1,m). The process of relabeling verifier threads and terminating irrelevant threads is
outlined in lines 8, 10, and 11. Line 13 considers the case where the newly labeled thread may have
already finished. If so, in line 14, we return to line 7 with the new verifier thread.

D LOOKAHEAD

We can deploy DSI on an arbitrary number of servers by selecting a sufficiently large lookahead
hyperparameter, as explained below. Line 6 of Algorithm 1 invokes a new process to compute the
target model fm immediately after generating any token (except for tokens of poisition N , namely,
tokens corresponding to the last position). In particular, after generating a token from a drafter
fj (where j < m). Such a “draft” token might be rejected in line 8, and is accepted otherwise,
as discussed earlier. We can view this procedure as generating a draft token and sending it to
“verification”. Sending verification tasks of a single draft token is only a private case of DSI, where
lookahead = 1. For a sufficiently large SP degree, the number of such verification tasks that
can run in parallel is unbounded. However, in practice, the number of available processors is given,
hence the SP degree must be fixed. For example, given a single drafter (that is, m = 2) and a single
node with 8 GPUs, DSI must ensure that SP ≤ 7, assuming that 1 GPU is sufficient for computing
the drafter. To control the SP degree, we introduce a new hyperparameter, lookahead, which is
the number of draft tokens in every verification task sent to a target server. For lookahead > 1,
lines 2 and 6 are adjusted as follows: initiate m− 1 threads CJ⊕(j,1), CJ⊕(j,2), . . . , CJ⊕(j,m−1) to
generate lookahead tokens concurrently and respectively from f1, f2, . . . , fm−1, and initiate 1
thread CJ⊕(j,m) to generate 1 token from fm. Here, we overload the notation for simplicity, allowing
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J⊕(j) to be empty so that J⊕(j, j′) = (j′). This change reduces the number of invocations required.
For any given models f1, f2, . . . , fm and an SP degree, there exist a sufficiently large lookahead
value such that there is at least one available target server by the time that any verification task is sent,
so that verification tasks never wait to be processed by a target server. Therefore, the lookahead
hyperparameter allows tuning DSI to use an arbitrary maximal number of available processing units.

Theoretically, without scaling the lookahead such that lookahead ∝ target latency
drafter latency , the SP degree

might grow to infinity. For example, if the time it takes to compute a forward pass of the drafter goes
to 0 or the time it takes to compute a forward pass of the target model goes to infinity.

E PROOFS

Theorem 1. Under Assumptions 1, 2 and 3, Algorithm 1 returns the same output and runs at least as
fast as running the target model itself without speculative inference (SI).

Proof. We begin by demonstrating the losslessness of the algorithm. We would like to prove that
when v = k, there is a thread CJk

, that is the only thread that is labeled as a verifier, and it correctly
computes the next token and that Jk = J ′ ⊕ (m) for some sequence J ′ = (j1, . . . , jk−1) of length
k − 1, where xj1,...,ji

i = xi for all i ∈ [k − 1]. We will prove this by induction on the value of v.
In addition, we note that if this pattern is appreciated by the algorithm, then it is clearly a lossless
algorithm.

Base case (v = 1): Initially, when v = 1, there is only one verifier, C(m), which runs the target
model fm. Thus, when it finishes, it will return the correct token, x1. Since the verifier is relabeled
only when the value of v changes (see lines 11-12), as long as v = 1, the only thread labeled as a
verifier is C(m).

Induction hypothesis: Assume that as long as v = k, there is only one thread CJk
labeled as a

verifier, which returns the correct token xk, and that Jk = J ′ ⊕ (m) for some J ′ = (j1, . . . , jk−1) of
length k − 1, where xj1,...,ji

i = xi for all i ∈ [k − 1].

Induction step: When v is updated from k to k + 1, this change only occurs when the condition in
line 7 is met. This condition indicates that the single verifier thread CJk

, which is of length |Jk| = k,
has finished computing its output token. By the induction hypothesis, this thread returns xk as its
output. Since fm is slower than all drafter models f1, . . . , fm−1, all threads CJ′⊕(i) have already
finished computing their outputs. Thus, when executing lines 8, 10, and 11, the only threads that
remain active are the descendants of CJ′⊕(j∗), and the only thread serving as a verifier is CJ′⊕(j∗,m).

Since xj1,...,ji
i = xi for all i ≤ k − 1 and x

j1,...,jk−1,j
∗

k = xk, then CJ′⊕(j∗,m) simply computes the
output of the target model fm on the correct sequence x≤0 ⊕ x1 ⊕ · · · ⊕ xk. Hence, it correctly
returns the (k + 1)th token xk+1, as desired.

Time: We notice that the algorithm terminates once it has computed the output of CJN
. By

Assumption 3, we have Twall [Algorithm 1] =
∑N

i=1 Twall [computing fji (x≤i)] and by Assump-
tion 2, we have Twall [computing fji (x≤i)] ≤ Twall [computing fm (x≤i)]. Together we obtain
Twall [Algorithm 1] ≤

∑N
i=1 Twall [computing fm (x≤i)] which is the amount of time that it takes

to compute the output tokens without speculative inference.

Proposition 1. Suppose we have a drafter model f1, a target model f2 and a prompt x≤0. Assume
that f1 requires t1 time units to compute each of its outputs, and f2 requires t2 time units, where
t2 > t1. Assume that given the prompt x≤i = x≤0 ⊕ x1 ⊕ · · · ⊕ xi, the probability that f1 returns
the (correct) token xi+1 is p. Then, the expected time it takes Algorithm 1 to calculate the correct
output is at most t1p(N − 1) + t2((1− p)(N − 1) + 1) time units, compared to the t2N time units
required if we were to compute f2 without speculative inference.

Proof. To understand how it works, let j1 ∈ {1, 2} be the smallest index such that xj1
1 = x1 and for

all i ∈ [N −1], we recursively define ji ∈ {1, 2} to be the smallest index such that xj1,...,ji
i = xi. We

also fix jN = 2. In addition, let i0 = 0 and ir be the rth index in [N ] such that jir = 2. We notice that
it takes t1(i1−1)+t2 time units to compute the value of xj1,...,ji1

i1
. This is because we first compute x1

1,
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then x1,1
1 , continuing up to x1,...,1

i1−1 , and finally x1,...,1,2
i1

. Each of the first (i1 − 1) tokens takes t1 time
units, while the final token takes t2 time units. After t1(i1−1)+ t2 time units, we will have computed
x2
1, x1,2

2 , x1,1,2
3 , and so on, up to x1,...,1,2

i1
. Since f1 consistently generates accurate tokens up to index

i1−1, once we observe that x2
1 matches x1

1, we know that x1,2
2 = x2 and can then verify that x1,1

2 = x2

is also correct. Once we verify that x1,1
2 = x2, we can verify x1,1,2

2 and continue this pattern to verify
x1,1,1
2 , and so forth. We note that calculating all of these tokens up to the calculation of x1,...,1,2

i1
take

at most t1(i1−1)+ t2 time units. Thus, we can verify that x1,...,1,2
i1

= xi1 with at most t1(i1−1)+ t2
time units. By the same argument as above, it takes

∑
r(t1((ir − ir−1) − 1) + t2) time units to

compute the value of xj1,...,jN
N (and to verify its correctness). We notice that Q =

∑
r(ir − ir−1 − 1)

is the number of indices i ∈ [N − 1] such that ji = 1. Since E[Q] = p(N − 1), we have
E [

∑
r(t1((ir − ir−1)− 1) + t2)] = t1p(N − 1) + t2((1− p)(N − 1) + 1).

Theorem 2. Under Assumptions 1, 2 and 3, Algorithm 1 runs at least as fast as SI in expectation.

Proof. Suppose we have a drafter model f1, a target model f2, and a prompt x≤0. Assume that f1
requires t1 time units to compute each of its outputs, and f2 requires t2 time units, where t1 < t2.
Assume that given the prompt x≤i = x≤0⊕x1⊕· · ·⊕xi, the probability that f1 returns the (correct)
token xi+1 is p. Consider generating N > k + 1 tokens from f2 using the SI (or DSI) algorithm
with lookahead = k. At time = 0, SI starts generating draft tokens, by the definition of SI. At
time = kt1, SI completes generating the first k draft tokens x1

1, x
1,1
2 , . . . , x1,...,1

k . At time = kt1 + t2,
SI completes verifying the first k tokens x1

1, x
1,1
2 , . . . , x1,...,1

k . Let A1, A2, . . . , Ak+1 be indicator
variables sampled as follows. Ai = 1 with probability p and Ai = 0 otherwise, for all i ∈ [k + 1].
Let n := min{i|Ai = 0} − 1. Note that n is distributed as the number of accepted drafts among
the first k drafts of SI (or DSI). SI completes generating the first n + 1 tokens at time = kt1 + t2
for any n ∈ {0, 1, . . . , k}, by the definition of SI. The first iteration of SI cannot output tokens at
positions > k+1, by the definition of SI. The earliest time at which SI can complete generating xk+2

is by the end of its second iteration. Hence, SI completes generating xk+2 at time ≥ 2(kt1 + t2).
Consider DSI with the same f1, f2, and lookahead over at least

⌈
t2
kt1

⌉
servers. We show that DSI

can complete generating xk+2 at time ≤ 2(kt1 + t2), and, in expectation, at time < 2(kt1 + t2).
By the definition of DSI, DSI never preempt the current verifier. At time = kt1, DSI invokes
concurrently (i) the verifying of the batch containing the first k tokens x1

1, x
1,1
2 , . . . , x1,...,1

k that are
not yet verified, and (ii) the drafting of x1,...,1

k+1 x1,...,1
k+2 , . . . , x1,...,1

2k , by the definition of DSI. We use a
coupling argument to align the two algorithms over the indicator variables Ai for all i. If n = k, then
both SI and DSI complete generating the (k + 1)th first token xk+1 at time = kt1 + t2. At that time,
DSI either invokes a new current verifier thread or labels an existing thread as the current verifier
(depending on t2

t1
and the lookahead). Hence, DSI completes generating xk+2 at time ≤ kt1+2t2,

exactly when the current verifier thread completes its verification. DSI is faster than SI for all
t1, t2, k since kt1 + 2t2 < 2(kt1 + t2). Otherwise, both algorithms accept the first n+ 1 tokens at
time ≤ kt1 + t2. At that time, the proof repeats for N − (n+ 1).

F EXPERIMENTS DETAILS

F.1 TTFT AND TPOT

This section elaborates on our separate experiment that estimates the expected TTFT and TPOT.

To ensure the wait waiting times in our simulations are realistic, we distinguish between time to
first token (TTFT) and time per output token (TPOT). We estimated the TTFT and TPOT latencies
for each combination of a model and a dataset independently on a single NVIDIA A100 80GB GPU.

For each combination ⟨d, f⟩ of a dataset d and a corresponding target or drafter model f , we estimate
the average latencies of f in the following manner. First, we select 50 prompts from d uniformly at
random, and for each prompt, generate 20 tokens using f , measuring the latency for each token in
milliseconds. Following prior work, we distinguish between Time to First Token (TTFT) generation
and Time Per Output Token (TPOT) generation (of all subsequent 19 tokens). Finally, we calculate the
average TTFTs and TPOTs over all prompts per model-dataset pair, to estimate the expected latency
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of a single forward pass. In all our experiments that measure the latency of computing forwards (i.e.,
TTFT and TPOT), models run with an MP degree of one and without memory offloading. We used a
single NVIDIA A100 80GB GPU and the measured model was fully loaded to the GPU memory.

Our main experiment (Table 2) and an ablation experiment (§4.1) both use the estimated TTFT and
TPOT as follows: generating the first token adds a wait of TTFT while generating each subsequent
token adds a wait of TPOT. Since TTFT is usually significantly longer than TPOT (which dominates
the overall sequence generation time), all latency figures in Table 2 refer to TPOT, for brevity. The
estimated TPOT latency of the target model and the drafter are shown in “Target Latency (ms)” and
“Drafter Latency (ms)”, respectively. We also report the ratio between the target and drafter latencies
and present it in percentages (“Drafter Latency (%)”). The effective prefilling-decoding latencies
ratio of every pair of a model and a dataset is provided in Table 3.

Table 3: The ratio between the estimated time to first token (TTFT) and time per output token (TPOT)
for various off-the-shelf models and datasets.

Model Dataset TTFT/TPOT Ratio

lmsys/vicuna-13b-v1.3 cnn dailymail 5.36
double7/vicuna-68m cnn dailymail 1.04
lmsys/vicuna-13b-v1.3 danielkorat/alpaca 1.15
double7/vicuna-68m danielkorat/alpaca 1.05
lmsys/vicuna-7b-v1.3 cnn dailymail 4.53
double7/vicuna-68m cnn dailymail 1.06
lmsys/vicuna-7b-v1.3 danielkorat/alpaca 1.19
double7/vicuna-68m danielkorat/alpaca 1.06
bigcode/starcoder openai/openai humaneval 1.35
bigcode/tiny starcoder py openai/openai humaneval 1.19
bigcode/starcoder mbpp 1.54
bigcode/tiny starcoder py mbpp 1.20
microsoft/Phi-3-medium-128k-instruct openai/openai humaneval 1.29
microsoft/Phi-3-mini-128k-instruct openai/openai humaneval 1.23
microsoft/Phi-3-medium-128k-instruct mbpp 1.43
microsoft/Phi-3-mini-128k-instruct mbpp 1.27
microsoft/Phi-3-medium-128k-instruct cnn dailymail 4.77
microsoft/Phi-3-mini-128k-instruct cnn dailymail 3.88

F.2 ACCEPTANCE RATE

This section elaborates on our separate experiment that estimates the expected acceptance rate.

To ensure our evaluation is realistic, we used real-world acceptance rates, calculated as follows. For
any given combination of ⟨target, drafter, dataset⟩, we estimate their acceptance rate independently.
For each input prompt from the dataset, we generate tokens from both the drafter and the target model.
We then consider the lengths of the longest sequences of exact token matches between the target and
the drafter. Below is a simplified example where tokens are counted as English words. If the target
generates “We can only see a short distance ahead, but we can see plenty there that needs to be done. [...]” and
the drafter generates “We can only see a short distance ahead, we done. [...]”, then the longest sequence of
exact matches is 8 tokens long. The expected number of accepted drafts is n̄ := 1

N

∑N
i=1 ni where

ni is the number of accepted draft tokens for the ith prompt. The acceptance rate is then calculated
from a geometric distribution, (acceptance rate) := 1 − 1

1+n̄ . In general, the reported acceptance
rate is guaranteed to converge to the expected acceptance rate as N → ∞ (Appendix F.2.1). In
this experiment, the reported acceptance rate is calculated based on generating 256 tokens for each
prompt.

This experiment suggests that off-the-shelf model “families” like StarCoder (Li et al., 2023a) or
Vicuna (Zheng et al., 2023) can form good pairs of target and drafter because their acceptance rates are
relatively higher, as reported in Table 2. These families consist of models of different sizes that were
trained similarly and on similar datasets. We observe that even relatively small drafters demonstrate
good alignment with larger models from the same family. For example, Starcoder-168M (drafter)
and Starcoder-15B (target) yield an acceptance rate of 93%.
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F.2.1 ACCEPTANCE RATE FROM GEOMETRIC DISTRIBUTION

Both our main experiment (Table 2) and ablation (§4.1) measure the total latency of Non-SI, SI, and
DSI. The total latency is dominated by the target and drafter forward passes. The numbers of required
target and drafter forwards depend on the acceptance rate. To count the number of forwards, we
can simulate the algorithms by sampling from the models, execute the verification procedure (for
SI and DSI), and count the number of required forwards. Since sampling from models is inherently
stochastic, the total latency T is a random variable, and we focus on its expectation, E[T ].

There exists an acceptance rate p such that the expected latency satisfies E[T ] = T . This acceptance
rate can be estimated in two ways. The first method directly computes the likelihood that a token is
accepted by the verifier. Alternatively, p can be estimated by fitting a geometric distribution to the
acceptance process. Specifically, this involves calculating the average number of tokens accepted per
iteration and extracting p as the parameter of the geometric distribution.

Both approaches are consistent. As the number of iterations approaches infinity, the estimated
acceptance rate converges to the true empirical acceptance rate p. Consequently, the estimated total
latency based on p converges to the actual total latency. This guarantees that the reported latency and
the computed latency are equal in expectation.

Prior works in the field have developed theories and methods based on the simplifying assumption
that token acceptance is independently and identically distributed (i.i.d.); for example, see Leviathan
et al. (2023). In this paper, estimating the acceptance rate from the fitted geometric distribution is
based on the same assumption. The results in Mamou et al. (2024) reveal that such an assumption
is actually realistic. Figure 4 in Mamou et al. (2024) shows that the number of accepted tokens per
iteration follows a geometric distribution.

F.3 ABLATION VIA OFFLINE SIMULATION

This section provides more implementation details about the ablation analysis, involving a comple-
mentary “offline” experiment (§4.1).

We simulate non-SI over all possible configurations of ⟨drafter latency, acceptance rate⟩ which
are the cartesian product {0.01, 0.02, . . . , 1} × {0, 0.01, 0.02, . . . , 1} respectively. We simu-
late SI over all possible configurations of ⟨drafter latency, acceptance rate, lookahead⟩ where
lookahead ∈ {1, 2, . . . , 200}. However, given an arbitrary number of available servers, it is
possible to tune the lookahead hyperparameter such that DSI orchestrates only available servers.
To ensure that DSI could be deployed on a single node with up to eight GPUs, we simulate DSI
over all configurations of SI that satisfy Equation 1 for SP = 7, assuming that the drafter runs
on a single GPU. For each combination of ⟨drafter latency, acceptance rate, lookahead⟩, we run
the algorithm (SI or DSI) for five repeats and average the results. Since the lookahead is a
tunable parameter, our experiment assumes that it will be optimized by the user so that SI is op-
timized for each configuration. To let SI select its optimal lookahead, the expected latency for
each ⟨drafter latency, acceptance rate⟩ configuration is the minimal average latency among all the
lookahead values.

To calculate the speedup of algorithm X over algorithm Y per ⟨drafter latency, acceptance rate⟩,
we divide the latency of Y by the latency of X. The speedups are not smooth for drafter laten-
cies < 20% due to the discretization of the lookahead hyperparameter. For example, the speedups
for lookahead = 5 are smooth for both SI and DSI as seen in Appendix F.7.

As in online experiments, every forward pass in offline experiments is replaced with adding the
realistic wait time to the total latency. Therefore, the latency of non-SI in offline simulations is
simply the target forward latency (i.e., the average time that it takes to compute a single forward pass
of the target model, which is measured in a separate experiment that is described in the previous
section) times the number of tokens to generate. For example, if the target forward latency is 30ms
and the number of tokens to generate is 100, then the latency of non-SI is 3000ms. To estimate
the expected latency of SI, we must introduce the lookahead hyperparameter and the acceptance
rate of the drafter. Under the randomness of the acceptance rate, we count the number of target
and drafter forward passes. Every draft token that is accepted is equivalent to generating another
output token, hence reducing the number of remaining target forwards by one. For example, if the
acceptance rate corresponds to accepting 1.5 drafts per iteration, then the expected number of target
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forward passes is
⌈
100
2.5

⌉
= 40 because every target forward is expected to yield 1.5 + 1 = 2.5 output

tokens (i.e., accepted drafts plus an additional token). The number of drafter forwards depends on
the lookahead hyperparameter. For example, if lookahead = 5, then the number of drafter
forwards is 40 · 5 = 200, because we have 5 drafter forwards for each target forward. The expected
latency of SI is then the sum of the expected latencies of the target and drafter forwards. For example,
if the drafter forward latency is 6ms, then the expected latency of SI is 200 · 6 + 40 · 30 = 2400ms,
which is 1.25x faster than non-SI. The simulation of DSI is similar to the simulation of SI. In both,
the only randomness is the acceptance rate of the drafter. However, since DSI can successfully hide
the latency of almost all the target forwards, naive summing of the forward pass latencies cannot
estimate its total latency accurately. Instead, the DSI simulation is based on an analysis that sums
target forward latencies only if they are not hidden by the speculation parallelism.

F.4 SIMULATION OF SI

We open-sourced our implementation of DSI for the single-node setup and the code for all the
experiments in this paper. Below is the code for estimating an lower bound of the end-to-end latency
of the SI algorithm. The end-to-end latency is the overall wall time, including the prefilling and
decoding latency, and excluding any tokenization latency. It is an lower bound because we ignore any
real-world latencies differ from the forward passes latencies. For example, we ignore all the latencies
corresponding to switching between the models, communication between the CPU and the GPU, etc.
def s i ( t a r g e t l a t e n c y : f l o a t , d r a f t e r l a t e n c y : f l o a t , l o o k a h e a d : i n t , N: i n t ) −> f l o a t :

t o t a l c o s t : f l o a t = 0
t o t a l t o k s : i n t = 0
whi le t o t a l t o k s < N:

num accep ted : i n t = g e t n u m a c c e p t e d ( )
t o t a l t o k s += num accep ted + 1
t o t a l c o s t += l o o k a h e a d * d r a f t e r l a t e n c y + t a r g e t l a t e n c y

re turn t o t a l c o s t

F.5 MODELS

For all models, we retrieve model weights from Hugging Face. For clarity and reproducibility, we
provide the URLs for each model used:

• Vicuna-13B: https://huggingface.co/lmsys/vicuna-13b-v1.3, dis-
tributed under Non-Commercial License.

• Vicuna-7B: https://huggingface.co/lmsys/vicuna-7b-v1.3, dis-
tributed under Non-Commercial License.

• Vicuna-68M: https://huggingface.co/double7/vicuna-68m, distributed
under the Apache License 2.0.

• Starcoder-15B: https://huggingface.co/bigcode/starcoder, dis-
tributed under the Responsible AI License.

• Starcoder-168M: https://huggingface.co/bigcode/tiny_
starcoder_py, also distributed under the Responsible AI License.

• Phi3-14B: https://huggingface.co/microsoft/
Phi-3-medium-128k-instruct distributed under the MIT license.

• Phi3-4B: https://huggingface.co/microsoft/
Phi-3-mini-128k-instruct distributed under the MIT license.

F.6 DATASETS AND PROMPTS

We use standard datasets from Hugging Face and standard prompts from the state-of-the-art.

F.6.1 MBPP

MBPP dataset consists of crowd-sourced Python programming problems and is distributed under the
cc-by-4.0 License.
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Concerning the prompt, we followed (Ben Allal et al., 2022; Fried et al., 2023) and included the
description of the programming task and a single test to verify solution, in order to help the model
catch the signature of the function (see Figure 3).

"""{text}
{test_list[0]}
"""

Figure 3: MBPP Prompt

F.6.2 HUMANEVAL

HumanEval dataset includes programming problems and is distributed under the MIT License.

Prompt contains only prompt field from the dataset.

F.6.3 CNN-DM

CNN-DM contains news articles and is distributed under the Apache License 2.0.

We included the article field in the prompt as in Figure 4.

"""Summarize:
{article}
Summary:
"""

Figure 4: CNN-DM Prompt

F.6.4 ALPACA

Alpaca dataset contains instructions and demonstrations. It is distributed under the cc-by-nc-4.0
License.

We follow Taori et al. (2023) to define the prompts. For samples with a non-empty input field, we use
the prompt as in Figure 5 while for samples with empty input field, we use the prompt as in Figure 6.

"""Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
"""

Figure 5: Alpaca prompt for samples with a non-empty input field.
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"""Below is an instruction that describes a
task. Write a response that appropriately
completes the request.

### Instruction:
{instruction}

### Response:
"""

Figure 6: Alpaca prompt for samples with empty input field.

F.7 SPEEDUPS FOR LOOKAHEAD = 5

Figure 7 illustrates the performance comparison between Speculative Inference (SI), non-
Speculative Inference (non-SI), and Dynamic Speculative Inference (DSI) for a static lookahead of
lookahead = 5. The figure consists of three heatmaps, each representing a pairwise comparison
of these algorithms across different drafter speeds and accuracies.

In Figure 7(a), we compare SI to non-SI. The pink regions indicate scenarios where SI is slower than
non-SI, which occurs when the drafter is either too slow or inaccurate. This highlights the limitations
of SI in certain conditions.

Figures 7(b) and (c) demonstrate that DSI consistently outperforms both SI and non-SI across all
drafter configurations. This empirical evidence supports our theoretical findings that DSI is faster
than both SI and non-SI in expectation, regardless of the drafter’s speed or accuracy.

These results underscore the robustness and efficiency of DSI compared to existing inference methods,
particularly in scenarios where SI might falter due to suboptimal drafter performance.
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(a) SI/non-SI (b) SI/DSI (c) non-SI/DSI

Figure 7: Each heatmap (labeled “X/Y”) plots the ratio between the run time of algorithm X and
the run time of algorithm Y. SI is run with lookahead = 5. (a): SI is slower than non-speculative
inference (non-SI) when the drafter is either slow or inaccurate enough (pink marks slowdowns). DSI
is never slower than either SI or non-SI. (b, c): DSI is always faster than speculative inference (SI)
and non-speculative inference (non-SI) algorithms for various drafters.
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