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Abstract

We present MILS: Multimodal Iterative LLM
Solver, a surprisingly simple, training-free ap-
proach, to imbue multimodal capabilities into
your favorite LLM. Leveraging their innate ability
to perform multi-step reasoning, MILS prompts
the LLM to generate candidate outputs, each of
which are scored and fed back iteratively, eventu-
ally generating a solution to the task. This enables
various applications that typically require training
specialized models on task-specific data. In partic-
ular, we establish a new state-of-the-art on emer-
gent zero-shot image, video and audio captioning.
MILS seamlessly applies to media generation as
well, discovering prompt rewrites to improve text-
to-image generation, and even edit prompts for
style transfer! Finally, being a gradient-free opti-
mization approach, MILS can invert multimodal
embeddings into text, enabling applications like
cross-modal arithmetic. The code to reproduce
MILS is available at ht tps://github.com/
facebookresearch/MILS.

1. Introduction

Test-time reasoning ability of Large Language Models
(LLMs) has emerged as a powerful tool for solving chal-
lenging tasks. Recently, OpenAl introduced O1 (OpenAl),
a model trained using reinforcement learning to leverage
test-time compute for progressively better results, especially
on complex math and coding tasks. Even without additional
training, LLMs have shown impressive improvements by us-
ing test time compute in the form Chain-of-Thought (CoT)
reasoning, by rolling out an execution plan to respond to a
user’s query (Wei et al., 2022; Kojima et al., 2022).

In this work, we leverage this innate reasoning ability
in LLMs to solve multimodal understanding and genera-
tion tasks, without needing any training! Our approach,
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MILS: a Multimodal Iterative LLM Solver, uses LLMs as
a “GENERATOR” to propose candidate solutions to a given
task, and an off-the-shelf multimodal model as a “SCORER”
to evaluate the quality of each proposal for the said task.
The output of the SCORER is fed back into the GENERATOR
to give it feedback, and helps produce the next set of can-
didates that are more likely to solve the task. This iterative
process is run until convergence, or a certain number of
steps, and produces an output for the task. We find this sim-
ple approach is surprisingly powerful and versatile, working
across a variety of tasks and modalities. Using different com-
binations of GENERATORS and SCORERs, MILS is able to
tackle tasks including multimodal captioning, generation,
editing, and multimodal arithmetic.

Most prior work for such tasks uses specialized models,
often trained on data curated for that task. For instance,
zero-shot image captioning models are often still trained on
paired image-caption data. MILS, on the other hand, does
not need any such training, and exhibits emergent zero-shot
capabilities. For instance, for image captioning, MILS uses
a standard Llama (Dubey et al., 2024) LLM as the GENERA-
TOR, along with CLIP (Radford et al., 2021) as the SCORER.
Note that while CLIP is trained on image-text data, it is not
trained on clean image-caption data that typical captioning
models are trained on. Most vision language models that
produce captions leverage CLIP only as an initialization,
and require post-training on curated captioning data. Hence,
while such models may exhibit zero-shot generalization to a
new data distribution at test time, MILS exhibits emergent
zero-shot generalization to the new task of captioning.

Furthermore, while there do exist some captioning ap-
proaches that do not leverage captioning data (Salewski
et al., 2023; Tewel et al., 2022; Shaharabany et al., 2023;
Zeng et al., 2024), they are limited to a specific modality
and more importantly, the specific task. These approaches
typically leverage gradients from CLIP to guide the next
token prediction, limiting them to captioning. MILS, on
the other hand, seamlessly generalizes to new tasks and
modalities by simply swapping out the GENERATOR and
SCORER modules. For instance, a GENERATOR constructed
by simply chaining an LLM to a Text-to-Image (T2I) model,
is able to improve over state-of-the-art T2I models by using
the LLM as a “prompt rewriter”, a capability not afforded
by prior work.
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Figure 1: Our proposed approach, MILS, enables various applications, from captioning images, video, or audio;
improving text-to-image generation; image editing such as style transfer; as well as arithmetic across different modalities by
inverting them all into text. It accomplishes all this using a purely test-time optimization approach without any task specific

training or data curation!

In this work, we show applicability of MILS across three
different visual and non-visual modalities: images, videos
and audio, and three different tasks: captioning, generation
and editing. Additionally, we show that MILS, being a
gradient-free approach, can be used to invert multimodal
embeddings into discrete text. This is in contrast to prior
work (Kazemi et al., 2024) that uses gradient-based inver-
sion of embeddings into continuous spaces like images. This
ability enables novel applications, e.g. multimodal arith-
metic, by inverting multimodal samples into text, combin-
ing them, and mapping them back using MILS’s generation
ability. We visualize some of these capabilities in Figure 1.

2. Related Work

Multimodal embedding spaces are typically learned by
collecting large amounts of paired multimodal data from the
internet, often images and text, and learning encoders for
each modality using a pairwise similarity objective (Radford
et al., 2021; Ilharco et al., 2021; Zhai et al., 2023; Li et al.,
2023a). Such models can further be expanded to additional
modalities by collecting text-paired data (Wang et al., 2023;
Guzhov et al., 2022), or data paired to a different modality
in that embedding space (Girdhar et al., 2023; Gong et al.,
2023). These embeddings have enabled various applica-
tions, including zero-shot recognition (Radford et al., 2021;
Girdhar et al., 2023) open-world object detection (Zhou
et al., 2022), and even image generation (Ramesh et al.,
2022). We leverage them to compute a similarity score
across modalities, which helps guide the optimization, im-

buing multimodal capabilities into an otherwise blind and
deaf LLM.

Generative models have recently gained popularity due
to their ability to generalize to new tasks, often zero-shot.
LLMs (Dubey et al., 2024; Jiang et al., 2023; Team et al.,
2024) have emerged as the model of choice for discrete
input, such as text. Owing to their large size and training on
massive corpuses, followed by instruction tuning on high
quality data often involving human feedback, such models
are powerful tools for a variety of tasks. Approaches such
as chain-of-thought prompting (Wei et al., 2022; Kojima
et al., 2022; Menon et al., 2024), and more recently, train-
ing the LLM for better reasoning (OpenAl), have further
improved their performance on complex math and coding
tasks. However, instruction tuning involves training or fine-
tuning LLMs for the target task and modality. In contrast,
MILS is an inference-time method that does not require any
training and optimizes for the solution at runtime. Recent
work has even leveraged LLM’s reasoning ability iteratively,
to solve optimization (Yang et al., 2023), prompt refine-
ment (Liu et al., 2024), and generation (Mafias et al., 2024)
tasks. However, they are either not evaluated on visual
tasks (Yang et al., 2023), or shown to have emergent zero-
shot capabilities (Manas et al., 2024). Another class of
generative models involve diffusion (Nichol & Dhariwal,
2021) or flow-matching (Lipman et al., 2022), popular for
continuous domains such as images (Rombach et al., 2022;
Betker et al., 2023; Dai et al., 2023; Saharia et al., 2022)
and videos (Polyak et al., 2024; Girdhar et al., 2024; Ho
et al., 2022; Blattmann et al., 2023). Such models have
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dramatically improved in media generation capability, often
leveraging LLMs too, for better training data captioning, and
inference-time prompt rewrites (Betker et al., 2023; Polyak
et al., 2024). Finally, gradient-free approaches (Prasad et al.,
2022; Guo et al., 2024; Yang et al., 2023) use the reason-
ing ability of LLMs to iteratively improve the optimization
process.

Zero-shot multimodal understanding is studied in two
forms: zero-shot across data distributions, and emergent
zero-shot (Girdhar et al., 2023), where a model generalizes
to completely new tasks and not just new data. Multimodal
variants of popular LLMs (Dubey et al., 2024; Agrawal
et al., 2024; Li et al., 2023b) fall in the former bucket, as
they are typically trained or tuned on the kind of data seen
at test time. Our focus in this work is the latter, as we show
MILS generalizes to completely new tasks at test time. Prior
work (Tewel et al., 2022; Zeng et al., 2023; 2024; Salewski
et al., 2023; Shaharabany et al., 2023) has attempted this
setting, however for specific modalities using specialized
techniques. MILS, on the other hand, seamlessly general-
izes to many different modalities, across understanding and
generation tasks.

3. MILS

We now describe our simple approach for solving multi-
modal tasks using MILS. Since it is training-free, MILS
only takes the test sample as input. It relies on two key
modules, referred to as the GENERATOR and the SCORER.
As the names suggest, GENERATOR generates candidate
solutions for the task, while the SCORER scores each of
those candidates, and sends them back to the GENERATOR
to generate an improved candidate set. For certain tasks,
this process may be bootstrapped with scores on an initial
candidate set. This optimization is run until convergence or
a fixed number of iterations, and produces the final solution
to the task. Figure 2 illustrates the overall approach.

GENERATOR. The goal of the GENERATOR is to produce
candidate outputs C, that solve a given task. It takes as input
some text, 7, which contains a description of the task, along
with scores S (if any) from the SCORER for the previous
optimization step. It leverages this signal to produce the next
set of candidate generations. The GENERATOR is typically
modeled using an LLM, given its ability to take text as
input and reason over it. The output, however, is not limited
to text. The candidate generations can be used to prompt
a subsequent model to generate other modalities, such as
using a text-to-image (T2I) model like Emu (Dai et al., 2023)
to generate images. Some GENERATORS could also use the
test sample as input, e.g. for tasks like image editing or
stylization.

Test sample

Generated
Candidate Set

Final Output

Scored
Candidate Set
[ C—)

Until convergence,
or for N steps

Figure 2: MILS leverages two key modules, GENERATOR
and SCORER, to solve multimodal tasks. The GENERATOR
will generate a number of text candidates, e.g. captions
for image captioning and prompts for T2I, each of which
will be scored by the SCORER, and passed back into the
GENERATOR as feedback to generate the next batch of text
candidates, eventually producing the final output for the
input test sample.

SCORER. The goal of the SCORER is to compute a scalar
score S € R, for the candidates C from the GENERATOR. It
takes as input the test sample, along with C, and compares
them. A SCORER could be implemented in various different
ways. For instance, it could be a low-level image processing
function comparing textures in two images, or it could be
a learned machine learning model, such as CLIP (Radford
et al., 2021; Ilharco et al., 2021). The SCORER sorts all the
candidates based on their score, and returns the top-K can-
didates along with scores. Depending on the GENERATOR’S
capacity (context length), the scorer may return the full list
of scores, or use an e-greedy strategy to include some low-
scoring candidates. In initial experiments, we found greedy
top- K to perform the best, hence use that in this work. The
output is formatted into the text 7, and passed back to the
GENERATOR.

Optimization process. MILS searches for the optimal
generation C under the SCORER’s cost function. The opti-
mization process is run for NV steps, or until convergence.
Convergence can be defined by the similarity of the can-
didate set C over successive steps. Depending on the task,
the optimization process can be bootstrapped by an initial
candidate set of generations and scoring them. For instance,
in case of image captioning, it could simply be a large set of
possible image captions from the GENERATOR. For other
tasks like T2I, one does not need such an initial set.

4. Experiments

We now empirically evaluate MILS and compare it to exist-
ing approaches on some of the multimodal understanding
and generation tasks enabled by it. For each of the down-
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Figure 3: Image Captioning using MILS, compared to
existing state-of-the-art zero-shot approach, MeaCap (Zeng
et al., 2024). MILS, while being a much simpler approach,
produces more accurate and syntactically correct captions
to the image.

Method ‘ BLEU; CIDEr METEOR SPICE
ZeroCap (Tewel et al., 2022) 2.6 14.6 11.5 5.5
ConZIC (Zeng et al., 2023) 1.3 13.3 11.2 5.0
CLIPRe (Li et al., 2023c) 4.6 25.6 13.3 9.2
MeaCapry (Zeng et al., 2024) 7.1 42.5 16.6 11.8
MeaCapp (Zeng et al., 2024) 4.5 26.0 14.1 9.4
MILS \ 8.0 333 15.0 9.6

Table 1: Zero-shot image captioning on MSCOCO (Karpa-
thy & Fei-Fei, 2015). Despite being far simpler than existing
approaches, MILS performs competitively on all automatic
metrics, and especially METEOR and SPICE which take
into account the semantic similarity. *refers to results we
obtained by running the provided code.

stream applications, we describe the GENERATOR, SCORER,
benchmarks and evaluation setup, followed by the key re-
sults. Finally in Section 4.7 we ablate the various design
choices in MILS.

Note that MILS is a test-time optimization method and ex-
hibits emergent zero-shot behavior (Girdhar et al., 2023),
generalizing not only to a new test data distribution, but to
the new task and modality itself. This is contrast to most
existing zero-shot work that typically needs task/modality-
specific data curation or training. Since most prior work is of
the latter type, it is hard to perform fair comparisons. Never-
theless, we compare to the closest zero-shot approaches and
show that MILS is competitive or better, even compared to
methods tuned for that specific task or modality.

4.1. Image Captioning

We start with the fundamental image understanding task of
producing a textual caption for a given image.

Method | Training Data | CIDEr METEOR
Nagrani e al. (Nagrani et al., 2022) | HowTol0OM (Miech et al., 2019) 0.5 8.23
Nagrani e al. (Nagrani et al., 2022) | VideoCC3M (Nagrani et al., 2022) 8.2 11.3
MILS | - | 23 14.4

Table 2: Zero-shot video captioning on MSR-VTT (Xu
et al., 2016). MILS outperforms (Nagrani et al., 2022)
when trained on HowTo100M, and is competitive to it when
trained on the much cleaner VideoCC3M dataset, outper-
forming it on METEOR. We grayed (Nagrani et al., 2022)
since it is trained for video captioning, while MILS is not.

GENERATOR. We use the Llama 3.1 8B (Dubey et al.,
2024) LLM as the core generation module. We generate an
initial list of 30K prompts that we use to bootstrap the opti-
mization process. To ensure diversity in this initial set, we
prompt the LLM with different object categories to generate
a list of prompts, and combine them, similar to (Gandels-
man et al., 2024). Then for each optimization step, we keep
the top-50 highest scoring generations from the SCORER,
and convert them into a textual prompt. The prompt used is
described in Section B. We run the optimization process for
10 steps.

SCORER. We score the candidate captions against the test
image using an image-text similarity model, SigL.IP (Zhai
et al., 2023). Note that unlike image captioning models
that leverage curated image-text pairs (Karpathy & Fei-Fei,
2015), SigLIP, by itself is not capable of captioning (Shen
et al., 2022). Nevertheless, combined with MILS, it can
serve as an effective captioner, as shown next.

Benchmarks and Metrics. We evaluate MILS on the
MSCOCO captioning test set (Karpathy & Fei-Fei, 2015).
It consists of 5,000 images sampled from the MSCOCO
dataset (Lin et al., 2014). We use the standard suite of cap-
tioning evaluation metrics, including BLEU (Papineni et al.,
2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedan-
tam et al., 2015) and SPICE (Anderson et al., 2016). We
focus our attention on the METEOR and SPICE metrics, as
those take into account semantic similarity rather than exact
word match, and are better correlated with human prefer-
ence (Anderson et al., 2016). This is particularly important
for emergent zero-shot approaches like MILS, which are not
trained to learn the vocabulary used in a given benchmark
or modality.

Results. We compare MILS to existing baselines in Ta-
ble 1. Some of the baselines, such as ZeroCap (Tewel et al.,
2022), also leverage language models in conjunction with a
CLIP-like model. However, they propose a gradient based
optimization process to search for the optimal next token
given a current generation. Other approaches like Mea-
Cap (Zeng et al., 2024) filter key concepts from a memory
module, and leverage a number of text and multimodal en-
coders in a multi-step process to produce the caption. In
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Method ‘ BLEU; ROUGE;, METEOR SPICE
ZerAuCap (Salewski et al., 2023) 29 254 9.4 5.3
MILS 2.7 23.1 124 7.6

Table 3: Zero-shot audio captioning on Clotho (Drossos
et al., 2020) dataset. MILS performs competitively to the
existing zero-shot audio captioning approach ZerAuCap,
even outperforming it on semantics-aware metrics like ME-
TEOR and SPICE, while being simpler and applicable to
many other modalities and tasks.

contrast, MILS is simpler conceptually and to implement,
while obtaining better results. We also show examples of
the captions generated using MILS, and compare them to
MeaCap in Figure 3. MILS, without ever having seen any
captioning data or having captioning-specific training is able
to generate faithful and syntactically correct captions. This
result also showcases the strong reasoning capabilities of the
GENERATOR, which is able to correctly modify the captions
for future iterations.

4.2. Video Captioning

Owing to its simplicity and versatility, MILS seamlessly
transfers to videos without major changes. We use the same
GENERATOR as described for image captioning in Sec-
tion 4.1, along with the same initial prompt set. For
SCORER, we use a ViCLIP (Wang et al., 2023) ViT-L/14
model that operates on 8 frames from the video, and re-
turns a similarity score between the video and the caption.
We experiment on the MSR-VTT (Xu et al., 2016) test set,
which contains 2,990 videos, each between 10 to 30 seconds
long. We report our results in Table 2. Since most prior
work in video captioning leverages video-caption training
data, we compare MILS to (Nagrani et al., 2022), which
learns a vision-language model on the HowTo100M (Miech
et al., 2019) or the VideoCC3M (Nagrani et al., 2022)
datasets, and reports performance on MSR-VTT. We use the
CIDEr (Vedantam et al., 2015) and METEOR (Banerjee &
Lavie, 2005) metrics as reported in the prior work. We find
that MILS, in spite of never having been trained for video
captioning, outperforms (Nagrani et al., 2022) trained on
HowTo100M on both metrics. Even when compared to the
same model trained on the much cleaner VideoCC3M data,
MILS outperforms it on the semantics-aware METEOR
metric. This difference in performance of the baseline in
the two settings shows the importance of training data for
video captioning models. MILS, being competitive with
these without needing any video captioning training, is very
promising. We show qualitative results in the Section C.

B Quality Text Faithfulness
LDM + MILS - LDM
FLUX + MILS r FLUX
0 25 50 75 100

MILS Win Rate Percentage

Figure 4: Improved text-to-image (T2I) generation using
MILS. We apply MILS to two of the latest, state-of-the-art
T2I models, a latent diffusion model (LDM), and FLUX.1
[schnell] (FLUX). We compare MILS’s outputs to the gen-
erations from the initial models using human annotators.
Evaluated over the 200 prompt DrawBench dataset, the
annotators clearly preferred MILS’s generations on both
overall quality and text faithfulness, across both models.

4.3. Audio Captioning

Similar to videos, MILS transfers seamlessly to audio cap-
tioning as well. We use the same GENERATOR as in Sec-
tion 4.1, along with 50K initial audio prompts generated
using an LLM (cf. Section B). As the SCORER, we use the
ImageBind (Girdhar et al., 2023) model, that maps multiple
modalities, including audio and text, to a shared embed-
ding space. We evaluate our approach on a popular audio
captioning dataset, Clotho (Drossos et al., 2020). We use
automatic captioning metrics as used in prior work, and
described in Section 4.1. We report our performance in Ta-
ble 3. MILS obtains strong performance vs. a comparable
zero-shot approach, ZerAuCaps (Salewski et al., 2023), out-
performing it especially on semantics-aware metrics like
METEOR and SPICE. While other approaches for audio
captioning have been proposed, they require training on
audio-caption data (Kong et al., 2024). See Section C for
qualitative results.

4.4. High-Quality Image Generation

As mentioned earlier, MILS is not limited to multimodal
understanding tasks discussed so far. We now describe how
MILS can be used for multimodal generation tasks, starting
with improving text-to-image (T2I) generation models.

GENERATOR. To generate high quality images, we chain
an LLM to a T2I model. Specifically, we experiment
with two state-of-the-art models, a Latent Diffusion Model
(LDM) (Rombach et al., 2022) and FLUX.1 [schnell] (Labs).
The goal of the LLM is to “rewrite” the prompt passed into
the T2I model, such that the final generated image improves
in quality, while maintaining or improving the faithfulness
to the original text prompt. Note that this GENERATOR does
not need an initial prompt set to bootstrap from.

SCORER. We score the
PickScore (Kirstain et al., 2023).

generations  using
PickScore is a
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Figure 5: Improving image generation using MILS. Ap-
plying MILS to a GENERATOR using the same base model,
a Latent Diffusion Model (LDM) in this case, leads to much
higher quality images. We show the original input prompt,
the generation from the base model, and from MILS.

Style Image

Figure 6: Style Transfer. Using Gram Matrix dis-
tance (Gatys, 2015) as the SCORER, MILS can discover the
edit prompt required to apply a given style to an image.

CLIP-style model takes as input an image and a text prompt,
and predicts the likelihood of that image to be preferred by
humans for that prompt. We score each of the GENERATOR
outputs using PickScore along with the input prompt, and
return the scores for each of the generations. Rest of the
process proceeds the same as before.

Benchmarks and Metrics. We use the DrawBench prompt
set from Imagen (Saharia et al., 2022), that contains 200
textual prompts, to evaluate our generations. Due to the
noisiness of automatic metrics for media generation (Gird-
har et al., 2024; Ge et al., 2024; Jayasumana et al., 2024),
we perform our evaluations using human annotators from
Amazon Mechanical Turk. We follow the JUICE frame-
work (Girdhar et al., 2024). In-keeping with the standard
practice in media generation (Dai et al., 2023; Girdhar et al.,

1+4)  Birds =
| chirping

+4) People = v}"'
talking =

Figure 7: MILS enables cross-modal arithmetic by in-
verting modalities into text, combining them, and mapping
them back to an image.

2024), we evaluate the generations on two axes: quality or
visual appeal, and the faithfulness to the input text. For each
axis, we set up a web interface where an annotator is shown
two images, generated either by a baseline model, or en-
hanced using MILS. When evaluating for text faithfulness,
the annotator is also shown the original text prompt. The
annotator has to pick which image they prefer. Each image
is annotated by three annotators and we use the majority
vote over the annotators to compute a win% for each model.
See Section A for full human evaluation details.

Results. We summarize the results of our human study
in Figure 4. As seen by the win-rates, human annotators
clearly prefer generations enhanced by MILS over the gen-
erations from the base model itself. We also show qualitative
comparisons in Figure 5, where the improvement in aes-
thetic quality using MILS is clearly apparent. We find that
MILS is able to simplify complex prompts and add aesthetic
details, that improve the overall quality and faithfulness of
the generations. Recent work has shown that LLM-based
prompt rewrites (Betker et al., 2023; Polyak et al., 2024)
can improve media generation performance. However, they
require a laborious process of manually trying various differ-
ent rewrite prompts, until one finds a rewrite that works well
with that model, across all test cases. MILS can automate
and complement that process, either by prompt-engineering
each generation, or proposing candidate rewrites for an ex-
pert prompt engineer to improve upon.

Note that this capability is not easily afforded by prior work
we compared to on earlier tasks (Tewel et al., 2022; Salewski
et al., 2023). Those methods would require computing
gradients through a multi-step diffusion process to estimate
which tokens the LLM should produce next. MILS, being
a gradient-free optimization approach, easily enables such
diverse applications within a simple framework.
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Figure 8: Image captioning over steps. This shows the
captions generated by MILS at different steps (#) of opti-
mization process, getting progressively more accurate.

4.5. Style Transfer

Going beyond image generation, MILS can also be applied
to image editing tasks. Here we specifically consider the
task of style transfer, where given a test image and a style
image, the goal is to generate an image that contains the
content from the test image, in the style of the style image.

GENERATOR. Similar to Section 4.4, we implement the
GENERATOR by chaining the output of an LLM to an image
generation model. Different from Section 4.4, since we
want to generate the same content as in the test sample, the
GENERATOR also takes the test sample as an input. Hence,
we use an image editing model (Sheynin et al., 2024) as the
image generation module. It produces the stylized image
given the test sample and the edit prompt from the LLM.

SCORER. To measure the quality of the style transfer, we
use a simple approach to estimate the similarity of colors
and textures in the generated image compared to the style
image. We use the distance between Gram matrices of the
image features, as proposed in (Gatys, 2015). We com-
pute this distance over features from different layers of a
VGG19 (Simonyan & Zisserman, 2015) CNN, where the
lower layers ensure stylistic faithfulness, and the higher lay-
ers ensure content faithfulness. We use MILS to minimize
both the style and content losses.

Results. Figure 6 shows some sample style transfer re-
sults. MILS generalizes to this novel task completely zero-
shot and produces accurately stylized images. Note that it
achieves such edits not only without any training, but also
without the LLM actually seeing any features from either

the test sample, or the style image!

4.6. Cross-Modal Arithmetic

Finally, we explore an interesting application enabled by
MILS. Unlike prior work (Kazemi et al., 2024) that maps
embeddings to continuous image space, our gradient-free
approach in MILS enables inverting such embeddings into
the discrete text space instead. This is also exemplified by
our results in Sections 4.1 to 4.3. This enables an interesting
application of cross-modal arithmetic. We take inspiration
from ImageBind (Girdhar et al., 2023), which mapped mul-
tiple different modalities into the image embedding space.
Using this shared embedding, authors were able to combine
modalities, and generate or retrieve images given that com-
bination. MILS, in fact, is even more flexible, as inversion
to text enables interfacing with many more models. For
instance, ImageBind showed results on audio to image gen-
eration by leveraging a DALLE-2-like T2I model (Ramesh
et al., 2022). This was possible as ImageBind happened to
be aligned to the CLIP embedding space, same as what was
used in DALLE-2. As such, ImageBind was not compat-
ible with any other T2I model, such as a latent diffusion
model (Rombach et al., 2022). A textual representation, on
the other hand, would work with any T2I model, includ-
ing those that do not represent textual input as a point on
an embedding space. In Figure 7, we show examples of
combining image and audio modalities. We first invert both
image and audio into text using Section 4.1 and Section 4.3
respectively, combine the two outputs using an LLM (details
in the Section B), and finally convert the prompt into a high
quality image as described in Section 4.4. The resulting
generated image combines the semantic concepts from both
those modalities.

4.7. Ablations

‘We now ablate some key design choices in MILS. We pri-
marily focus on the image captioning task for most of the
analysis, and improved image generation for some of the
ablations. For computational ease, we randomly sample
1000 images from MSCOCO for captioning, and use the
200 prompt DrawBench set for image generation, as the test
set for this analysis. We report all metrics including CLIP
similarity and PickScore averaged over these sets.

Performance over optimization steps. We evaluate this for
both the tasks in Figure 9. We report both the SCORER out-
put, which can be thought of as a “training loss” in our setup,
as well as a downstream metric. We report SPICE (Ander-
son et al., 2016) for image captioning, and human evaluation
against the original prompt’s generation for T2I. For the lat-
ter, we also show £4 point error bars, which we found to be
the typical random variance margins in human evaluations.
As Figure 9 shows, both the SCORER outputs and the down-



LLMs can see and hear without any training

s &l
5 Ee=g—a—E—1) - Aeg.eeef)
o 7 9 £ 0.23 e TBoTT™ 80
S 5] 70
—— “ 0.22 -
CLIP Similarity 7 S5 PickScore 60
SPICE 6 o 0.22(",/ Human Eval 50

0123456780910
Steps

Figure 9: Performance with number of optimization steps for captioning (left)
and generation (right). We show the optimization metric, i.e. SCORER’s output

(CLIP Similarity and PickScore), and the downstream metric (SPICE (Anderson
et al., 2016) and human evaluation win% for quality), respectively. Both tend to
improve over optimization steps, and correlate with each other.
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Figure 11: Improved image generation over optimization steps. The quality of the output improves over the optimization
steps (#). We also show the prompt being produced by the LLM in the GENERATOR, which is passed to the T2I model.
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Figure 12: Impact of GENERATOR (left) and SCORER
(right) size. We report the downstream metric SPICE
for both these ablations since CLIP similarity may not be
comparable across model sizes. For the GENERATOR and
SCORER we use different sized Llama or MetaCLIP models.
As evident from the graphs, larger models perform better.

stream metrics improve over optimization steps, converging
after 10 to 20 steps. We also note that the optimization
objective (SCORER output) correlates well with downstream
performance. Lastly, we visualize this result qualitatively
in Figures 8 and 11 for captioning and generation respec-
tively. In both cases, the quality of the output improves over
the steps, showing the effectiveness of MILS.

Impact of the initial candidate set. We evaluate this in Fig-
ure 10. We subsample the initial set to different sizes, and
see a strong positive correlation between that and the final

performance. This suggests that the initial bootstrapping
set is critical to ensure the GENERATOR can produce suffi-
ciently diverse candidates and avoid local minimas.

Size of the GENERATOR and SCORER. We evaluate the
effect of the size (in parameters) of the GENERATOR (Llama
3) and SCORER (MetaCLIP (Xu et al., 2024)) in Figure 12,
for image captioning. We find larger models generally
performed better, with LLM scaling exhibiting the most
promising gains. We also experiment with different kinds
of GENERATORs and SCORERS in the Section C.

5. Conclusion and Future Work

We have presented MILS, a simple approach for solving
multimodal tasks without requiring any task specific data
curation or training. MILS exhitbits emergent zero-shot
generalization to various different tasks and modalities. No-
tably, we show MILS obtains strong performance on cap-
tioning across three modalities: images, videos and audio,
showing that LLMs can see and hear without any training!
This further leads to improving and enabling various media
generation tasks, such as image generation, image editing
(style transfer) and cross-modal arithmetic.
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While promising, MILS has some limitations that future
work can attempt to address. Its performance is bounded
by the ability of the GENERATOR to generate diverse candi-
dates, and the SCORER to provide accurate feedback to the
GENERATOR. For instance, style transfer performance is
limited by the resolution of Gram matrix distance in detect-
ing fine-grained texture similarities, and the LLM’s ability
to describe potential styles. As the LLMs and the multi-
modal models continue to improve (OpenAl; Fang et al.,
2024), MILS would improve with it. Another limitation is
the speed of the optimization process. This would improve
as the core LLMs become faster and more efficient, and as
their context length (Munkhdalai et al., 2024) and reasoning
abilities (OpenAl) improve, requiring fewer optimization
steps. It would also be interesting to apply MILS to other
modalities and tasks, such as for spatial and 3D tasks.

Impact Statement

Our work builds on top of LLMs and other multimodal
models, and as such, the strengths and weaknesses of such
models would be reflected when used with MILS. This in-
cludes the biases present in such models. However, MILS
being a training-free approach, does not learn any new bi-
ases, and can easily be upgraded with better and less-biased
LLMs or multimodal models as they become available, with-
out needing any re-training. While we do not foresee any
negative societal impact directly enabled by MILS, any
real-world applications should consider additional safety
evaluations before deployment.

Acknowledgements: Authors would like to thank Xi Yin,
Saketh Rambhatla, and the entire Meta Al team for many
helpful discussions.
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A. Human evaluation Setup

We use Amazon Mechanical Turk (AMT) for human eval-
uation, with a setup similar to (Girdhar et al., 2024). As
discussed in Section 4.4, we evaluate the enhanced image
generation on two axes: quality and faithfulness to the text
prompt. Screenshots of the evaluation interface are shown
in Figure 13. The annotators are also given elaborate in-
structions with examples, as shown in Figures 14 and 15
for the faithfulness and quality evaluations respectively. We
give each sample to three annotators and use majority vote
to choose the winning model.

B. LLM prompts
B.1. Generating the initial candidate set

We bootstrap captioning tasks with an initial candidate set.
We use the following strategies to create this initial candidate
set.

Image and video captioning: We use the initial candidate
set as generated in (Gandelsman et al., 2024). See Table 7
in their Appendix for the exact prompt. The overall idea is
to take class labels from ImageNet (Deng et al., 2009) and
prompt the LLM to generate 40 candidate captions based
on the concept of the chosen class label. This process yields
a set of around 30, 000 captions. This same set is used for
the video captioning task.

Audio captioning. Since audio captions typically describe
audible information, as opposed to visual information, we
recreate the candidate set based on the above protocol
with small modifications. We use class labels from Au-
dioSet (Gemmeke et al., 2017) and generate 50 captions per
audio label. We use Llama 3.1 and provide the following
prompt:

Generate 50 diverse descriptive captions for an audio
clip that features the sound of {class_label}. Write a
concise and vivid description of what can be heard
in the clip, using complete sentences. For example:
1. A car drives by with its horn honking.

2. Children are playing and laughing in a park.

3. Heavy rain falls on pavement and roofs.

4. A crowd cheers and applauds at a sports event.
Write the generation as if a person would write that
after listening to the audio clip. Do not mention
concepts that cannot be heard, like sunshine, star,
any color or taste. Try to capture the main sounds
and any background or accompanying noises in your
caption, without referencing the fact that you’re lis-
tening to an audio clip. Simply describe what can be
heard. Put each description in a different line, with a
counter at the beginning (e.g. ‘1. ...”), don’t explain

why, and don’t combine two different concepts (with
‘or’ or ‘and’), and keep it short 15-20 words.

where {class_label} is the AudioSet class name. The above
prompt is similar to the prompt used in image and video
captioning, adapted to mention the need for focus on audio.
This process yields a candidate set of about 50, 000 captions.

B.2. GENERATOR prompts

We use the following prompts in the GENERATOR. Here,
{descriptions} denote the list of previous generations, along
with the score for each of the generation from the SCORER.
The scores are sorted, and we provide one score and text
per row. In high-quality image generation, we also provide
an additional {init_description} which is the original text
prompt. {requested_number} is the number of new genera-
tions that we ask from the GENERATOR.

Image Captioning:

You need to provide a short image description. I
am providing to you a list of short image descrip-
tions and scores. Higher score means that the image
description characterizes the image better:
{descriptions}

Generate additional {requested_number} short im-
age descriptions that you think that will maximize
the score and fully capture the image. Be concrete
and try to find elements that are unique to this image.
You can introduce new elements to the descriptions,
combine unique elements and objects from provided
descriptions to form new descriptions, rephrase in-
dividual descriptions, drop elements, or simplify de-
scriptions. Be creative and don’t be afraid to come
up with erroneous descriptions. Put each description
in a different line, with a counter at the beginning
(e.g. “1...), and try to keep them very short (up to
10 words).

C J

Video captioning:

You need to provide a short video description. I
am providing to you a list of short video descrip-
tions and scores. Higher score means that the video
description characterizes the video better:
{descriptions}

Generate additional {requested_number} short video
descriptions that you think that will maximize the
score and fully capture the video. Be concrete and
try to find elements that are unique to this video.
You can introduce new elements to the descriptions,
combine unique elements and objects from provided
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PLEASE ANSWER BOTH QUESTIONS BELOW. PLEASE ANSWER BOTH QUESTIONS BELOW.

Watch the following two images and select the one that you think ALIGNS more with the given text e submit button is disabled for the first ten seconds of each assignment. Please answer both questions and see both images!
Watch the following two images and select the one that you prefer according to the 3 factors (pixel
sharpness, object/scene consistency and visual concepts):

Image 2:

NIV Ul

prompt according to text faithfulness:
Text: An illustration of a small green elephant standing behind a

large red mouse. Image 1:

Image 1: Image 2:

™.

Text to Imége

» ey

: CWhih 5
Question 1. - Which image do you prefer? Question 1. - Which image do you prefer?

O Image1 O Image2 O Image1 O Image 2

Question 2. - Can you tell us why you think this image is better? Please select factors that you

Question 2. - Can you tell us why you think this image is better? Please select factors that you
considered in making your decision.

considered in making your decision.

[0 Incorrect object feature (color, shape, etc.) [] Scene Layout (missing or incorrect combinations) [0 Pixel Sharpness [ Object / Scene Consistency [ Recognizable Objects, Concepts and Scenes

Figure 13: Human evaluation question form for faithfulness (left) and quality (right). We ask two questions. The first
question asks which of the two images the rater prefers. The next question elaborates on the first response by asking the
rater to list the reason for their preference, based on JUICE (Girdhar et al., 2024) evaluation protocol.

Audio captioning:

Aspect Explanation Good Example Poor Example

text: A bear driving a car. text: A bear driving a car.
The image shows a bear The bear is on the road and

driving. (good text not driving a car. (bad scene
faithfulness ).

You need to provide a short audio description. I
am providing to you a list of audio descriptions and
scores. Higher score means that the audio descrip-
tion characterizes the audio better:

{descriptions}

Generate additional {requested_number} short au-
dio descriptions that you think that will maximize
the score and fully capture the audio. Be concrete
and try to find elements that are unique to this audio.
You can introduce new elements to the descriptions,
combine unique elements and objects from provided
descriptions to form new descriptions, rephrase in-
dividual descriptions, drop elements, or simplify de-
scriptions. Be creative and don’t be afraid to come
up with erroneous descriptions. Put each description

faithfulness ).

Objects, their color or
Text texture, and scene layout in
Faithfulness the image match with the
text description.

text: A fancy red car. The text: A fancy red car. It's a
image shows a fancy red green car and not a red car
car( good object faithfulness ) (bad object faithfulness )

Figure 14: High-quality image generation faithfulness
examples. We provide these examples to the annotators to in a different line, with a counter at the beginning
judge the faithfulness. The generated image should have the (e.g. “1. ..”), and try to keep them short (under 20
correct object, color, texture or scene layout. words).

High-quality image generation:

descriptions to form new descriptions, rephrase in-

dividual descriptions, drop elements, or simplify de-
scriptions. Be creative and don’t be afraid to come
up with erroneous descriptions. Put each description
in a different line, with a counter at the beginning
(e.g.“1. .., and try to keep them short up to 20-25
words.

You need to expand and rephrase the provided de-
scription for image generation to make the best im-
age, by maximizing the image score: The description
is: {init_description}

Here are some example rephrases and the corre-
sponding image scores:
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Aspect Explanation Good Example Poor Example
An example where pixel
sharpness is higher compared
to the image on the right:

C]

<

The pixel sharpness is bad
compared to the other
example:

Pixel sharpness can be
defined by the level of detail
within an image.

Pixel
Sharpness

The chair is imbalanced with
uneven legs:
F

The chair is correct as per the
expected shape:

For objects and scenes in
Object / the image, good consistency
Scene means that they are true to
Consistency their natural appearance,

texture, identity or color.

An example where the visual
An example where the visual <oncept Is harder to
concept is easier o understand
(a horse)
Recognizapid " 1S foctor pay attention
%o the visual concepts in

Objects,
Coneapts  DOth image and select the

and
Scenes

one which you could grasp
easier when compared to
the other image.

Figure 15: High-quality image generation quality exam-
ples. We provide these examples to the annotators to judge
the quality. The resulting image should have high pixel
sharpness, object and scene consistency, and the concepts
should be recognizable.

Model Training data SPICE
CLIP WIT (Radford et al., 2021) 8.5
SigLIP WebLlI (Zhai et al., 2023) 9.7
MetaCLIP | MetaCLIP 400M (Xu et al., 2024) 9.2
DFN DFN2B (Fang et al., 2024) 9.3

Table 4: Type of SCORER. All the models are based on
ViT-L/14 with different training data.

{descriptions}

Generate additional {requested_number} descrip-
tions that will maximize the score. Be concrete and
come up with different descriptions with various
guesses for the possible way to rephrase and expand
it, in a way that will maximize the score. You can
introduce new elements to the descriptions, combine
unique elements and phrasings from provided de-
scriptions to form new ones, drop description parts,
or simplify them. Be creative and don’t be afraid
to come up with erroneous descriptions. Put each
instruction in a different line, with a counter at the
beginning (e.g. “l. ...”), and keep them short (less
than 77 words).

Style transfer:

You need to generate instructions for image editing
that minimize a pair of scores: I am providing you a
list of example editing instructions and their pairs of
scores.

{descriptions}

Generate additional {requested_number} editing in-
structions. Be concrete and come up with different
instructions with various guesses for the possible
edits that will minimize both of the scores. You can
introduce new styles to the instructions, combine
unique styles and textures from provided instruc-
tions to form new instructions, rephrase individual
instructions, drop instruction parts, or simplify them.
Be creative and don’t be afraid to come up with er-
roneous editing instructions. Put each instruction in
a different line, with a counter at the beginning (e.g.
“1. ...”), and keep them short (less than 50 words).

. J

Cross-modal arithmetic:

I have an image description and an audio description
that I want to combine together into a text descrip-
tion that will help an Al imagine that scene. As an
example, if the caption says “Crane on a grass” and
the audio says “An ocean with the waves crashing on
shore” then you need to generate a text description
like “Crane beside the shore with waves coming”.
The combinations can be imaginative and not neces-
sarily true in real world. Here are the captions and
the audio description:

Image caption: {image_caption}

Audio caption: {audio_caption}

Generate the combined caption in a single sentence.

C. Additional Results and Ablations
C.1. Image Captioning

In Fig. 17, we show examples of image captioning on fantas-
tical images from an image generation model. We see that
the MILS model is able to generate captions that are more
descriptive and accurate than the baseline model, even for
images that are not realistic. This example also showcases
the rigidity of memory-based models like MeaCap (Zeng
etal., 2024).

C.2. Video Captioning

Please see the attached supplementary video for video cap-
tioning results.
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Figure 16: Performance comparison with various LLMs as GENERATOR- Gemma2 9B, Mistral 8B, and Llama 3.1
8B, on CLIP similarity (left) and SPICE (right). This trend shows that the performance improves over optimization steps,
regardless of the choice of the LLM. In particular, Llama 3.1 8B gives the best performance, and is used primarily as the

GENERATOR in our experiments.

Cosmic artwork featuring a space explorer’s dreamy,
ethereal, surreal, otherwor ldly journey.

The image depicts that space in a vibrant poster using
raster or digital imag es, film and graphics software.

eaCap [MILS

Figure 17: Image Captioning using MILS, compared to
existing state-of-the-art zero-shot approach, MeaCap (Zeng
et al., 2024) in captioning fantastical image. We see MeaCap
is not able to generate the correct caption since it uses a
memory that only contains captions for real-images.

C.3. Audio Captioning

Please see the attached supplementary video for audio cap-
tioning results.

C.4. Cross-Modal Arithmetic

Please see the attached supplementary video for cross-modal
arithmetic results.

C.5. Inference-time analysis

MILS’ inference time is proportional to the number of iter-
ations. As shown in Fig. 9, MILS performs well even with a
few iterations, and the runtime will continue to decrease as
more efficient and higher quality LLMs become available,
that can reason in fewer steps. Moreover, the initial set size
does not affect compute time much, as we can compute
dot product similarity with the media features very fast on
modern GPUs.

C.6. Ablations

Different types of GENERATOR and SCORER We exper-
iment with different open source LLMs, and CLIP models.
We present our results in Figure 16 and Table 4.

First, we observe that while we see the same trend of perfor-
mance improvement over steps for all LLMs we considered,
the Llama model performed the best, with Mistral a close
second. This shows that MILS generalizes to various dif-
ferent LL.Ms, and can expect to improve as LLMs advance
further.

Second, we see in Table 4 that SigLIP is the strongest scorer
for this task, when compared with models of the same pa-
rameter size. Again, the performance remains high for all
scorers, showcasing the flexibility of MILS.

Investigating convergence to the global maximum As
discussed in Section 3, we explore an e-greedy strategy to
encourage exploration. This process includes low-score
generations, to account for noise in the scoring process.
However, we do not observe any gain using this idea. Re-
gardless, MILS’ overall use of a stable score is similar to
other applications of optimization in machine learning.



