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GUARANTEEING HIGHER ORDER CONVERGENCE RATES FOR
ACCELERATED WASSERSTEIN GRADIENT FLOW SCHEMES

RAYMOND CHU AND MATT JACOBS

ABSTRACT. In this paper, we study higher-order-accurate-in-time minimizing movements schemes
for Wasserstein gradient flows. We introduce a novel accelerated second-order scheme, leveraging
the differential structure of the Wasserstein space in both Eulerian and Lagrangian coordinates.
For sufficiently smooth energy functionals, we show that our scheme provably achieves an optimal
quadratic convergence rate. Under the weaker assumptions of Wasserstein differentiability and
A-displacement convexity (for any A € R), we show that our scheme still achieves a first-order
convergence rate and has strong numerical stability. In particular, we show that the energy is nearly
monotone in general, while when the energy is L-smooth and A-displacement convex (with A > 0),
we prove the energy is non-increasing and the norm of the Wasserstein gradient is exponentially
decreasing along the iterates. Taken together, our work provides the first fully rigorous proof
of accelerated second-order convergence rates for smooth functionals and shows that the scheme
performs no worse than the classical scheme JKO scheme for functionals that are A-displacement
convex and Wasserstein differentiable.
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1. INTRODUCTION

Given an energy functional ¢ : Po(RY) — R U {400}, the continuity equation
duplt,) = V - (p(t,2)V (32 (p(t,).2) ) ) =0 on (0,00) x RY,
p(0,-) = po(-) onR?,

can be interpreted formally as the gradient flow of ¢ on the Wasserstein space (Po(R?), W). This
class of equations models various important physical phenomena such as fluid flow, heat transfer,
aggregation-diffusion, and crowd motion [Vaz07, Sanl5| to name a few. In general, these equations
are both stiff and non-linear making them challenging to solve numerically. Perhaps the most well-
known stable numerical method for solving these equations is the celebrated JKO scheme [JKO98], an
unconditionally energy stable variational scheme, well-known to be first-order-accurate-in-time with
respect to the time step 7 > 0 [AGS05|. Recently, there has been a great deal of interest in formulating
new versions of the JKO scheme, which achieve higher order accuracy in time, while maintaining
favorable stability properties [LT17, MP19, Ash20, ZEG21, CCWW22, HEG23, GNT24, CMN24]|.
However, to the best of our knowledge, none of these methods to date have been able to rigorously
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prove a second (or higher) order convergence rate in any metric, even for smooth functionals, despite
promising numerical evidence. Indeed, the only rigorous rates that have appeared in the literature
for these accelerated methods are O(y/7), worse than the O(7) rate of the simpler JKO scheme.
The goal of this manuscript is to remedy this situation. We provide a new energy stable scheme
that we rigorously demonstrate is second-order-in-time for smooth energy functionals and at worst
first-order-accurate-in-time for A-displacement convex and Wasserstein differentiable functionals (see
Section 2 for the precise definition of Wasserstein differentiability and (1.10) for the main model
functionals that we consider).

To construct our scheme, we exploit both the Eulerian (Wasserstein) and Lagrangian L? gradient
flow structures of the equation to construct a novel second-order-accurate-in-time numerical scheme
for solving (1.1). To motivate this Lagrangian L? perspective, let us assume that the velocity field

v = —V(g—z) is sufficiently regular, so that the solution p(t,z) can be expressed as the push-forward
of the initial data pg € P2(RY) by the Lagrangian flow X (¢,z), i.e.
(1.2) pe(x) = (X(t,-)xpo)(x).
where
d op
—X(t,x) =-V | —(X(¢,- ) 0, 00),
w3 X (02) = =9 | LX) gp0.x)| o [0.00)
X(0,z) ==

As we will see below, the Lagrangian flow (1.3) is a gradient flow of the lifted energy functional
X — qbﬁz (X) over the Hilbert space L*(R% pg) where

(1.4) S (X) = p(Xupo).

That is, if Vﬁbff; (X) denotes the LQ(Rd; po) Fréchet derivative of the map X +— gzbff; (X), then
d
- - _ #

(15) th(t,.’E) v¢p0(X(t7 1")) on [07 00)7
X(0,-) =1d.

Although the lifted energy X +— dﬁpﬁ (X) is a good deal more complicated than the original energy
p — ¢(p), the advantage of this perspective is that we can much more readily generalize high-order-
accurate numerical discretizations of Euclidean differential equations to the Hilbert space L? (]Rd, 00),
rather than needing to search for their correct analogue over the Wasserstein space. From a theoretical
standpoint, it is often preferable to work with the lifted functional because its higher order derivatives
encode higher order geometric information such as geodesic convexity (see [GT19, Lemma 3.6] and
Theorem 2.13). In contrast, naively taking the Wasserstein gradient of an energy functional twice
yields only a partial Wasserstein Hessian. This partial Hessian does not capture the full geometric
information: for instance, the potential energy is linear, so its partial Hessian vanishes identically.
Indeed, as we will see in Remark 2.12; the second time derivative of the energy functional along
geodesics depend on both the partial Wasserstein Hessian and the spatial gradient of the Wasserstein
gradient.

To obtain a second-order-in-time discretization of (1.1), we apply the second order trapezoidal
finite difference scheme to (1.5). In particular, we consider

(1 6) {Xn—l-l € arg m1n§€L2 R4;p0) [ (¢P0 (f) + <v¢,ﬁ) (X:L—)7£>L2(Rd;p0 ) Hg XT||L2(Rd o) |
pn—l—l = (Xn—i-l)#p(]v

where the initial condition X{ is prescribed. The optimizers X ; of (1.6) admits the following
trapezoidal finite difference scheme:

(L.7) Ta1 = X0 = SV (X7 10) + Ve (X))

We note that, unlike the JKO scheme, the trapezoidal update maps 7,7,y := X ;o (X7)~! are not,
in general, optimal transport maps between p;, and pj, , ;, since they need not be gradients of convex
functions.
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1.1. Background and previous results. We mentioned earlier, the Lagrangian flow (1.3) can also
be realized as a gradient flow in the Hilbert space L?(R%; pg) of the lifted energy functional (1.4), which
was introduced in mean-field games. As shown in mean-field games [GT19, GM22, CD*18, CDLL19],
the convexity and differentiability properties of the lift <Z>2§E on L? are closely related to notions of
convexity and differentiability of ¢ over Ws. In particular, for a large class of probability measures
po, the differentiability of ¢ in the Wasserstein sense at the measure {4 pg is equivalent to the Fréchet

differentiability of ¢ﬁ) at the function £ (see [GT19, Corollary 3.22]). In this case, we have

Yok (&) = Vwo(Expo,€),

where Vw denotes the Wasserstein gradient, which when ¢ and p are sufficiently smooth (see [AS07,
Lemma 4.12]), can be characterized as
o¢

Vwa(p)(x) = V@(Pvﬂﬂ)

Thus, formally, the Lagrangian flow (1.3) can be viewed as the gradient flow in the Hilbert space
L?(R% pg) described by (1.5). The implicit Euler discretization of (1.5) and its connection to
Wasserstein gradient flows (1.1) has been studied in [JMO17, CMW21, ESG05, ALS06|. However,
to obtain quantatitive error rates, [JMO17] had to assume uniform C® bounds on the iterates.

Gradient flows on Hilbert spaces, such as (1.5), are well understood when Qﬁ) is A-convex. The
general theory of gradient flows for A-convex functionals in Hilbert spaces (see [ABST21, Chapters
11 and 12]) ensures existence and uniqueness of strong Hilbert-Space-valued solutions to (1.5). In
this setting, solutions can be constructed via the implicit Euler scheme,

X = X7 =7Vl (X7.0),
Prs1 = (Xngl)# Po;
which achieves the optimal convergence rate of O(7), where 7 is the time step size, when the initial

data lies in the subdifferential of gbjz [AGS05]. The convexity of qﬁﬁ) over L2(R%; po) is closely related
to the (displacement) convexity of ¢ over Wy. In particular, for the class of continuous energy
functionals ¢, [GM22, Lemma 3.6] shows that A-displacement convexity of ¢ in Wy is equivalent to
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A-convexity of its lift @3%) in L2(R%; pp). When one further assumes that ¢ is differentiable in the sense
of [GT19], this A-convexity of the lifted functional qf)ﬁ) is also equivalent to ¢ being A-convex along
generalized geodesics in W (R?), as shown in [Par24, Theorem 1.1]. In more general settings, where
¢ may be discontinuous, one can still obtain poly-convexity of gf)ﬁz from the displacement convexity
of ¢ [CMW21].

By the theory described above, one can construct solutions to (1.5) for continuous and A-displacement
convex energy functionals using the implicit Euler scheme. We now examine its connection to the
JKO scheme. In [ALS06]|, under suitable conditions, it was shown that the iterates defined by (1.8)
coincide with those of the JKO scheme. Moreover, under some assumptions, the update map

T7.q = X7, 0 (X7)™

n n
is the optimal transport map from pj, to p;,, ;. In particular, composing both sides of the Lagrangian
coordinates of (1.8) with (Xg)_1 yields

T =1d— 7TVl (T7,)),

showing that the optimal transport map corresponds to a single implicit Euler step for the L?-gradient
flow

iX(t z) = —Vor (X (t,z))

dt U P T
with initial condition X (0,-) = Id.

We now focus on higher-order schemes, i.e., schemes that formally converge faster than O(7). A
key difficulty in extending higher-order schemes to dimensions d > 1 is that in Eulerian coordinates it
can be difficult to correctly approximate the Wasserstein space by a Hilbert space to greater than first
order accuracy, while in Lagrangian coordinates, the composition of flow map iterates X ; o (X} )t
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is in general not an optimal transport map between pj, and p] ., creating new difficulties. Note
that the failure of X7 ,; o (X7)~! to be an optimal transport map is due to Brenier’s theorem,
which states that optimal transport maps must be gradients of convex functions, a structure not
naturally preserved by higher-order Lagrangian schemes in dimensions d > 1. Nonetheless, many
higher-order stable schemes for Wasserstein gradient flows have been proposed for (1.1) (see, e.g.,
[LT17, MP19, Ash20, ZEG21, CCWW22, HEG23, GNT24, CMN24]). However, as we noted earlier,
these approaches have so far only established convergence without quantitative rates, or at best, have
achieved a suboptimal O(y/7) convergence rate by extending the methods in [AGS05].

Our scheme (1.6) appears to be the first to identify smoothness conditions on the energy functional
that guarantee an O(72) convergence rate for both the Lagrangian coordinates and the probability
measure iterates. Moreover, to our knowledge, it is the first to leverage the differential structure of
W, to derive error estimates for Wasserstein gradient flows. We expect this calculus-based framework
to extend naturally to higher-order schemes including explicit schemes. Although we only verify the
case p = 2 below, we expect that an O(7P) accurate (explicit or implicit) scheme for (1.1) can be
obtained by applying an O(7P) accurate finite difference scheme to (1.5). In addition, even for less
regular functionals, where such calculus based techniques do not apply, we prove our scheme (1.6)
still achieves the O(7) convergence rate of the JKO scheme.

1.2. Main results. Our first result establishes an O(72) error rate for the scheme (1.6) under suitable
smoothness conditions on the lifted energy functional. Our strategy is to extend the classical finite-
dimensional proof of the O(72) convergence of the trapezoid scheme for ODEs on R? to the infinite-
dimensional Hilbert space L2(Rd; po). Consequently, our assumptions on convergence mirror those
in the finite-dimensional setting.

Assumption 1 (Smoothness Assumption). Let pg € P2(RY) be given, and define the Hilbert space
H := L?(R%; py). We assume that the lifted energy functional

X — ¢% (X)
belongs to CYY(H;H). In addition, we assume that the unique strong solution X : [0,00) — H of
(1.5) with Xo =1d satisfies
X € C>1(]0, 00); H).

loc
As our numerical Lagrangian flow, X, arises from a finite difference scheme, we are able to
extend the classical finite-dimensional analysis of such schemes to our infinite-dimensional setting,
thereby obtaining:

Theorem 1.1 (O(7?) Convergence: Theorem 4.4, Theorem 5.14, Theorem 5.15). Fiz a terminal
time T > 0, po € Po(RY), and assume that the smoothness Assumption 1 holds. Define the Lipschitz
constants

IV (€1) — Vi (&)l | Xe = X, — (t =) Kill

L(¢) :== sup , L(T,X):= sup
€176 €H 161 — &2llm t£5€[0,T] |t — s
Then, for any time step T < 1/L(¢) and integer n € N such that nt < T, one has
L(T, X)

Wa(purs pr) < |1 X (n7) = Xyl < 27| X5 — 1d | + 2 (T —1). 72

I

L(¢)
where p], and X7 are defined by (1.6). Here, p; := (X (t))xpo is a weak solution of
op —V - (pVwo(p,x)) =0 on (0,00) x RY
p(0,-) = po(-) on R

If instead one has X € CIQO’?([O, o0); H) the convergence rates becomes O(T17%).

(1.9)

We now provide an example of an energy functional satisfying our assumptions. Consider the
functional (see Example 2.8, Example 2.16 , and Example 4.6)

(110 V)= [ (s 0@) dole)+ [ Vo5 [ [ W= ) o) dota)



ACCELERATED WASSERSTEIN GRADIENT FLOWS 5

where V,W € Cf’l(Rd), fe C’g’l(R), and y € C2'(R%), with W and 7 being even functions. Here, x
denotes convolution. This functional satisfies the assumptions of Theorem 1.1 when pg has no atoms
or when p = % Zjvzl dx;. The latter case is useful for numerical simulations as the energy and its
gradient will be fully discrete. Numerical simulations of this scheme for this energy functional can be
found in Section 7. These discretizations have proven very useful for blob-type methods for simulating
Wasserstein gradient flows c.f. [CCP19, DRR22, DRR23, BE23, CEHT23, CJT25, CEW24].

Even under weaker regularity assumptions on ¢, namely, that ¢ is Wasserstein differentiable and
A-displacement convex, we obtain an intermediate O(7) convergence rate by adapting the Discrete
FEvolution Variational Inequality (EVI) method from [AGS05]. For this convergence, we will need the
following weaker assumptions:

Assumption 2. We fir a measure py € Po(RY) and let H := L*(R%; po).

Given a functional ¢ : Po(R?) — R, we assume that its lifted functional gbﬁ) :H — R, defined by (1.4)
is Fréchet differentiable over H and is A-convex over H for some A € R Additionally, we assume that
the lifted energy functional is proper, i.e.,

5eL213%fd-po)¢ﬁ’(€) -

We further assume that in (1.6) the time step parameter satisfies
A2+ 1/ > 0.
Finally, we suppose that the initial iterates satisfy

lim || X — Id||g = 0, sup || Vo7 (X§)|la < oo.
710 7>0

Remark 1.2. We expect that the Fréchet differentiablity assumption can be weakened to just lower
semi-continuity of the lift, but we impose this condition to simplify some of our arguments.

Remark 1.3. Note that the condition of the lift being \-converx is rather strong and different from a
functional being \-displacement convex in the Wasserstein sense. In particular, the A-convezity of the
lift does not hold for the internal energy functional p — [ f(p) even when f is conver. Nonetheless, if
the energy is continuous with respect to the Wasserstein metric, then A-convexity of the lifted energy
is equivalent to A-convezity in the Wasserstein sense (see the next remark).

Remark 1.4 (Convexity and Differentiability Assumptions). Let pg € P2(R%) be atomless and ¢ :
Pa(RY) — R be continuous. Then A-displacement convexity (see Definition 2.11) is equivalent to the
A-convezity of the lifted functional gi)ﬁé (see Theorem 2.13 and [GM22]).

Furthermore, if ¢ € C1(Wo(R?);R) (see Section 2 for a precise definition) satisfies suitable gradient

growth conditions (see Proposition 2.14), then the lifted functional ¢ﬁ; is Fréchet differentiable. In
this case, the gradient of the lifted functional is given by

Ve, (€)(@) = Vwo(Expo, £(2)).
These results can be useful for verifying the convexity and smoothness assumptions we require.

We will also frequently use the quantity

1 14+ A7
1.11 =1 ’
( ) A 2T Og(l—)ﬂ')

which satisfies A, = A as 7 | 0.

Theorem 1.5 (O(7) Convergence: Theorem 5.12, Theorem 6.5, Theorem 5.14, Theorem 5.15).
Under the notation and assumptions of Assumption 2 one has
(1.12)

VAIIXG — 1]l + 27 VO (X) [, A= 0,
Walpt, pr) < | X (1) =X |lm <

VB[ XG —1d||s + VBC (A, t,7) - Tl VR (X0)|E, if A < 0.
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Here, the lower-order term C(\r,t,T) is defined in (5.23), A; is from (1.11), and X] = X for
t € nt,(n+1)7) and p] = (X])xpo and p; :== (X (t))xpo, where X (t) is the unique strong solution
of (1.5).

Furthermore, if V(bﬁf) is L-smooth on H, i.e.,

V67 (€1) — Vi (&) |m
€17E2€H 161 — &2llm

<L,

and if T < 1/L, then the error decays exponentially in time whenever \ > 0:
(113)  Walef.po) < X () — Xl < VB Prel ((l1d = X5 s + OO 7) - 7|V (X5 )
where C(\,t,7) is defined in Theorem 6.5 and Az is given in Lemma 6.2.

Observe that both A; and A 1 converge to the optimal rate A as 7 — 0.

Our approach to Theorem 1.5 is based on the EVI characterization of A-convex gradient flows. For
example, in Hilbert spaces [ABST21], a curve z(t) solves the gradient flow of a A-convex functional
f if and only if it satisfies the evolution variational inequality

d (1

& (1) 1?) + Slte) — ol + 7ol < 110) for ae . (0,0),

for all ¥ in the domain of f. The key idea is to show that suitable interpolations of the numerical
Lagrangian flow X satisfy an approximate EVI with an error term of order O(72). Then the O(7)
convergence rate is obtained by using a version of Gronwall’s inequality from [AGSO05].

The approximate EVI we derived for our trapezoid-rule method is in Theorem 5.5 and follows from
our Discrete EVI derived in Lemma 5.2. Deriving this discrete EVI with the correct O(72) error term
was a key technical challenge in our analysis. Compared to the implicit Euler and JKO schemes in
[AGS05], our scheme’s variational problem (1.6) included the term

/Rd <V¢j% (X7), &) dpo().

To control this term we had to carefully use both the convexity properties of gf)ﬁ) and the trapezoid
scheme (1.7) (see Lemma 5.1).

Another difficulty in the trapezoidal rule setting, compared to the implicit Euler scheme, is the
lower bounds of | X7, — X7 || in terms of the gradient. In the implicit Euler case, this quantity

simplifies to 72\|V¢§(XTTL +1)||%. However, in the trapezoidal rule case, it becomes

2

)

7_2
T |[vek (X + Vo (X)

which prevents us from establishing a lower bound of the form || X, — X7 ||Z > C72||V oL, (X7 )%

without assuming that Vgﬁﬁz is sufficiently smooth. As a result, we were unable to recover exponentially
decaying constants in the error estimate (1.12) when A > 0 without a smoothness assumption.

Beyond convergence rates, our scheme exhibits the following numerical stability properties:

Theorem 1.6 (Numerical Stability: Lemma 3.5, Lemma 3.6, Lemma 6.2). Under the notation and
assumptions of Assumption 2. Then the energy is almost decreasing, in the sense that

-
o (Xir) = o1 (X0 < % (998 (XDIE — Ve (XrenIIR) -
Moreover, the gradient norm satisfies:

IV (X7l < CON) - IV o7 (X[
where

1, if A >0,
C(\) =
W {e2|’\f|7, if A <0,



ACCELERATED WASSERSTEIN GRADIENT FLOWS 7

and A is defined in (1.11). In particular, when A\ > 0, the gradient norm is non-increasing across
tterations.

Furthermore, if A > 0 and ng)ﬁg is L-Lipschitz, then for 7 < 1/L, the energy is non-increasing:

T >\ T T LT T T
O X a) + 51X = Xl 7 (1 5 ) IV (XTI < 0 (XD,

and the gradient norm decays exponentially:
=2 T
IV eh (Xip)lf < e 27|V (X[
where \r 1 is defined in Lemma 6.2.

We also have obtained a classical stability result of our scheme in Lemma 3.7 and refined it in the
L-Lipschitz setting in Lemma 6.3.

The rest of the paper is structured as follows. In Section 2, we review the differential structure of

W5 (R%) and the differential and convexity properties of the lifted energy. In Section 3, we introduce
our second-order scheme and derive its stability properties. Section 4 uses calculus-based arguments
to show that the scheme converges at a second-order rate when the energy functional is sufficiently
smooth. In Section 5, we prove that for less regular energy functionals, the scheme still converges
at least linearly using the discrete EVI method introduced in [AGSO05]. Then, in Section 6, we
show that when the energy is A-displacement convex with A > 0 and L-smooth, the scheme achieves
asymptotically sharp exponential decay rates in time for the gradient norm and the error derived
in Section 5. Finally in Section 7 we present numerical experiments of our scheme (1.6) using the
energy functional (1.10).
Acknowledgements. R.C. was partially supported by NSF grant DMS-2153254, DMS-2342349,
and the Dissertation Year Fellowship from the University of California, Los Angeles during this
research project. M.J. is partially supported supported by NSF grant DMS-2400641. R.C. would
also like to thank Professors Inwon Kim and Wilfrid Gangbo for helpful discussions, and also Professor
Dejan Slepcev for insightful conversations that led to Section 7. The authors thank Alpar Mészaros
for helpful discussions concerning the Wasserstein Hessian. A preliminary version of some of these
results appeared in the Ph.D. thesis of the first author [Chu25].

2. PRELIMINARIES ON THE DIFFERENTIAL STRUCTURE OF Wy

2.1. Notation. Given any measure pu, we define the Hilbert space
L*(RY ) = {s :RY > R%: /]R Je(@)Pdu(z) < oo} :
where the inner product is given by
(€1, 82) L2(Rayp) = /Rd<§1,€2>du(x)a

where (z,7) denotes the dot product in R?, and we let ||¢]| [2(Rd;y) Tepresent the norm on L*(R%; 1)
induced by the L?(R% x) inner product.

Let Pg(Rd) be the space of probability measures on R? with finite second moments.

We frequently consider the push-forward of probability measures under (Borel) measurable maps.

Given a measurable map ¢ : R? — R¢ and a probability measure p, the push-forward of p by ¢ is
defined as

Eup(A) := p(€(A)) for all Borel sets A C R4
If 4 € Po(RY) and ¢ € L2(RY; 1), then

/ 22d(Es) = / £() () < oo.
R4 R4

Thus, we conclude that £4pu € P2(R?) whenever € € L2(R% p) and pu € Po(R?).
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We also frequently use the following composition rule for push-forwards: given any Borel measurable
maps &1, & : R — RY,
(610 &)pp = (61)#((&2)#h)-
The Wasserstein-2 metric space Wa(R?) is given by (Pa(RY), W), where the Wasserstein-2 metric
is

(2.1) Walur)i= int ] o yPn(a)
mell[p,v] J/RdxRE
where TI[y, ] denotes the set of probability measures on R? x R? with left marginal x and right
marginal v (see [Vil21, Sanl5]).
We now establish some useful and well-known inequalities for this metric.

Lemma 2.1. Let £ : R — R? be L-Lipschitz, meaning that

[€(x) — €Wl < Llz —yl, Y,y € RY
Then, for any (u,v) € (P2(R%))2, we have

WQ(&#M? 5#”) < LWQ(/JH V)'
Proof. This follows from the observation that if = € II[u, v], then (£, &)xm € I[Exp, Exv). O

Lemma 2.2. Fiz u € Po(RY) and let &,& € L2(RY ). Then,
WH(E) g €)) < [ 1610) = @) d(o) = 62 = €l usy:

Proof. By assumption, both measures {144 and {44 belong to P (RY). The result then follows by
observing that the coupling (&1, &2) 41 belongs to II[&14p, 2444], and applying the definition of the
Wasserstein-2 distance via (2.1). O

2.2. Derivatives on Wasserstein Space. We present two notions of derivatives for ¢, following
the definitions in [CDLL19, Section 2|. The concept of the Wasserstein derivative used here coincides
with their notion of the intrinsic derivative.

Definition 2.3 (First Variation). Let ¢ : Po(R?) — R. We say that ¢ € C(P2(R?);R) if there exists
a function
0. p (R x RY - R
op 2
satisfying the following conditions:

(1) The function % is jointly continuous on Wa(R?%) x R?
(2) For any v € Po(RY), the function x 2—2(1/,:6) has at most quadratic growth.

(3) For any p,p’ € Po(R?), we have

The function g—fj is called the first variation of ¢.
Since the first variation is defined only up to an additive constant, we impose the normalization
0¢
/ 5*(0, y)dp(y) =0, Vp e Py(RY).
Rd OH

The first variation also satisfies the fundamental theorem of calculus property (see [CDLL19]):

(2.3) o) — 6(p) = /0 /R d gﬁ«l 9o+ sp)d(el — p)(x)ds.

Next, we define the Wasserstein gradient, which extends the classical gradient notion to the metric
space Wo(R%).

Definition 2.4 (Wasserstein gradient). We say that ¢ € C1(Wo(R%); R) if:
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(1) ¢ € CH(P2(RY);R).

(2) The first variation g—i(p, ) is differentiable in x for all p € Po(R?).

(8) The gradient ng—z)(p,a:) is jointly continuous on Wa(R%) x RY.

(4) For any p € Po(RY), the mapping y — ng—f;(p, y) has at most quadratic growth.
The Wasserstein gradient of ¢ is defined as

1)
VW¢(p> $> = V:B(SZ(pv ZL‘)

Bounds on the Wasserstein gradient provide Lipschitz control for ¢. Indeed, in [CDLL19, Section
2|, the dual formulation of the W metric was used to establish the following Lipschitz property.

Lemma 2.5 ([CDLL19]). Let ¢ € C1(W3(R9); R?) and assume that

L= sup IVwo(p, x)| < oco.
(p,x)EP2(RY) xRE

Then, for any p,v € P2(R?) and p > 1, we have
(2.4) [o() — ¢(v)| < LWp(p, v).

The definition of Wasserstein differentiability at a point u € Po(RY) can be found in [GT19,
Definition 3.11]. When ¢ € C'(Wo(R?);R) and its Wasserstein gradient V¢ satisfies certain mild
growth conditions, then ¢ is Wasserstein differentiable on P5(R?) (see Proposition 2.14 and [GT19,
Corollary 3.22]). The growth condition bounds on Vw¢ are used to control the associated error
terms arising in the differentiation.

Next, we introduce the notion of partial Hessians in Wasserstein space that correspond to taking
the Wasserstein gradient twice:

Definition 2.6 (Partial Wasserstein Hessian). We say that ¢ € C?(Wq;R) if ¢ € C*(W2;R) and,
for all z € R?, the mapping
p = Vwo(p, )
belongs to C*(Wa; R?), componentwise. Moreover, we assume that the partial Wasserstein Hessian
Vivé : Po(RY) x RY x RY — RI*4,
defined as the Wasserstein gradient of Vwo(p, ) with respect to p, is jointly continuous on Pa(R?) x
R4 x RY,
In particular, one has that

, 55 ,
Vio(p,a, ') = [vx/wvw (¢>)] (pr, ')

By Lemma 2.5, if ¢ € C?(W3(R%);R) and V¢ is uniformly bounded in P2(R?) x R? x R?, then
the Wasserstein gradient satisfies the Lipschitz property
\Y ,x)—V ,
wu,vEP2(RY) Wp(:“: V)

<C,

for all p > 1 where C > 0 is independent of x and p. We will see later that the partial Wasserstein
Hessian and spatial gradient of the Wasserstein gradient will allow us to control the gradient of the
lifted energy functional. See in particular Example 2.16.

Remark 2.7. A positive semidefinite partial Wasserstein Hessian does not guarantee displacement
convezity of an energy functional. The partial Hessian is obtained by applying the Wasserstein
gradient twice, and therefore does not coincide with the (full) Wasserstein Hessian considered in
[CG19, Definition 3.1|. By contrast, a positive semidefinite full Wasserstein Hessian does imply
displacement convezxity (see |[Par24, Lemma 4.1]|). More concretely, the second time derivative of
the energy along Wasserstein geodesics depends not only on the partial Hessian V%V¢, but also on
V.Vwo, as shown in (2.8).
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Now we show an energy example functional that is of class C2(W3(R%); R). The functional is well
suited for numerical approximation, since both the energy and its gradients can be computed in a
fully discrete form when the probability measure is a finite sum of Dirac masses.

Example 2.8. Fiz f € CZ(R), V € CZ(RY), W € CZ(R?), and x € C3(RY). Further assume that W
and 1 are even. Define U : Po(RY) — R by

= [ @)@+ [ Vo) +g [ W= sdnte) o),

where x denotes convolution. Then, the following properties hold:
(1) U € C*(Wy(R%);R).
(2) The Wasserstein gradient VwU (p, x) is uniformly Lipschitz in x, i.e.,
VwU - VwU
sup sup VwU(p,z) = VwU(p.y)l _
peP2(RY) Ty |z~ ]

(8) The partial Wasserstein Hessian V%VU s uniformly bounded, i.e.,
sup |VivU(p, x)| < oo.
(p,z)EP2(RI) xR

Proof. We first establish that U € C* (Wg(Rd); R) by computing its Wasserstein gradient. First we
compute its first variation. For the convolved internal energy, we let

— / F((p% x)(@))dp(a).
]Rd

Fix p, o' € P2(R?), and define o := p' — p. For € # 0, set p. := p+ co. Then
PO =T [ (e @dota) + [ (7o xp) dote)
Rd Rd

Here we are using the notation for any g € L>(R?)

((gp) * x) (x) := /Rd x(z —y)g(y)dp(y)

Hence, by standard identities of the first variations in Wasserstein space for the potential and
interaction energy (see, e.g., [Sanl7]), we conclude that

g(pw) = fllpxX)(@) + [f' (pxx) pxX] (x) + V(x) + (W % p)().

Now to obtain the Wasserstein gradient, we differentiate in x to see that
26) Vwl(pa) = [ [1/((0x)(@) + 7' ((p* 0()] Txta = 2)dp(e) + TV (@) + (TW 5 ) (o).

The joint continuity of VwU follows from the smoothness of f/, Vy, VV, and VW along with the
observation that p — (x x p) and p — (Vx % p) are Lipschitz continuous on the W1 (R%) metric
uniformly in z due the dual problem formulation of the W1 metric.

Property (2) follows from the assumptions V2V, V2W,V2y € L>®(R%), f' € L>®(R), and the
compact support of x.

lim

e—0

For the partial Wasserstein Hessian, we first compute the first variation of (2.6) with x fixed. For
the internal energy term, we set p, := p* x. Then

ing T L) ZTWIRE) [ (10, ) + 7 ()] Ve - 2 o)

e—0 e
+ //Rdxkd[f”(px(fv)) x(@ =) + f"(px(2)) x(z — v)] V(2 — 2) dp(2) do(v).

For the interaction energy term,

e—0 g R4
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Hence, the first variation of the Wasserstein gradient is
0 VwU
g Pwa) = VW =) + [£(p(@) + [ (px(@'))] V(e = o)

+ /Rd[f"(Px(fC)) X(@ —a") + f(px(2)) x(z = 2) [ V(2 — 2) dp(2).
Differentiating in 2’ gives the (7, j)-th entry of the partial Wasserstein Hessian:

~[ViwUlij(p,z,2') = [V*W(x — a')]i;
+ [ £ 0x(e =)+ 1 (prl@) Dyl = )] Oix(a — 2) do)
R

+ [f'(px()) + f'(ox(2))]0Z jx (@ — 2") = f"(py(a") Dix(z — ') (p + Djx) (2').

So to check Property (2), it suffices to check joint continuity of Vi,U. This follows from the
smoothness of x, W, and f” Property (3) follows from the boundedness of all the first and second
derivative terms. (]

2.3. Convexity and Differentiability of the Lifted Functional. In this section, we study the

differential and convexity properties of the lifted functionals qﬁﬁ . L*(R% ) — R arising in Mean
Field Games. The results of [GM22, GT19, CD" 18] establish that the convexity and differentiability

of ¢ in the Wasserstein space Wy are closely linked to the convexity and differentiability of ¢ﬁ£ on
L2(RY; o).

Definition 2.9 (Lifted Energy Functional). Let ¢ : Po(R?) — R and pu € P2(R?). The lift of ¢ by
1 18 the functional qﬁﬁ : L2(R% 1) — R defined by
Of (€) == ¢(Epn)-
Furthermore, if ¢ﬁ is Fréchet differentiable at € € L?>(R%; ), we denote its Fréchet derivative in
LA(R% 1) by Vo .
We begin by stating the connection between convexity qﬁff and ¢. We first recall the standard

definition of A-convexity for functions over Hilbert spaces.

Definition 2.10 (Flat Convexity). Given any p € Po(R?), we say that qbf : L2(R% ) — R, as
defined in Definition 2.9, is \-convex if

S =16 +162) < (L= D0F (€0) + 167 (€2) — 211~ D61 — &gy

for all &,& € L*(R% ) and t € [0,1].
Let us also recall the notion of displacement convexity.

Definition 2.11 (Displacement Convexity). A functional ¢ : Po(R?) — R is said to be A-displacement
convex if, for any p,v € Po(RY) and any constant-speed geodesic ('Yt)te[o,l] with 9 = p and v1 = v,
we have

B0) < (1= 1)6() + 16(v) — S1(1 ~ WE (), Vi< [0,1].

Now we formally derive the connection between the partial Wasserstein Hessian and displacement
convexity:

Remark 2.12 (Displacement Convexity and Wasserstein Derivatives). Let p € P2(R%) be absolutely
continuous with respect to the Lebesgue measure. Fix v € Pg(Rd), and let T denote the optimal
transport map from u to v. Then the constant-speed geodesic ('Yt)te[o,l] from p to v is given by

Y= ((1—t)Id + tT)#,u.
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Assume the energy functional ¢ : Po(RY) — R is sufficiently smooth. Then, denoting the velocity
field by v(z) :==T(x) —x and Ty(z) = (1 —t)z +tT(x), we have the following expressions for the first
and second derivatives of ¢ along the geodesic:

(2.7 G000 = [ (Fwolu. D). o) du(z).
2
000 = [ (VaTwolon Ti(w)) (o). o)) )
(29 [, (Fheoon @) 1) wlo). v(o)) ) duo)

Observe from (2.8) that if the operator norm of VoVwao(p,x,z) and Viyé(p,,2) are uniformly
bounded by C, then ¢ is —2C displacement convex and 2C displacement concave when the initial
measure is absolutely continuous. Indeed, by Cauchy-Schwarz

2
‘iﬁw <[ p@Pdu@+C [ @] o@ldu(:)dno).

So as Wa(p,v) = |[v(@)||2(ra,), we conclude from Jensen’s inequality that

d2
]Mm < CWE () + ClJo(@)| o gy < 20WE(1,0)

We now focus on formally computing these derivatives. To compute the first time derivative, we use
(2.3) to see that

oen) = 00 ~ [ )it -0 = [ (§260Tin) - 00T ) du.

Then by Taylor expanding in the spatial coordinate, we obtain that

~ h / (Vwo(w, Ti(@)), v(x))du(z),
Rd

which shows the equality of the first time derivative.

To see the second time derivative equality, let F(y;) := %gﬁ(’yt), then by (2.7)
F(Yixn) = F(n) = (I) + (1)

= [ FWO Ot Te @) =T, T o)+ | (Twwrin. i) =T (o0, Toa)) o)) ).

Then observe that by Taylor expanding in the spatial coordinate

(D% [ (9.9woln Ti@)o(o). ole)du(o)

and by using (2.3)

a0~ [ (L T), 2, e~ ) (i)

Vwo oVwo

— [ o ) T2 — T (0, Tao), ), () 2,
Rd xR? K w

so by Taylor expanding in the last spatial argument, we see that

~ h//RdXRd<V%v¢(%,Tt(x),Tt(z))v(z),v(x)>du(z)du(x).

This implies the formula for the second time derivative.

The notion of geodesic convexity of ¢ and convexity of the lift gbf are equivalent when ¢ is
continuous, as established in [GM22].

Theorem 2.13. [GM22, Lemma 3.6] Let ¢ : Po(RY) — R be continuous and assume that i € Pa(R?)
has no atoms. Then the following statements are equivalent:

(1) ¢ is A\-displacement convex on Pa(R?).
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(2) gbf is A-convex on L?(R%; ).

Proof. Let m be the uniform probability measure on [0, 1]%. The result was proven in [GM22, Lemma,
3.6] for m. To extend this to a general p € P2(R?) with no atoms, we claim that ﬁﬁ is A-convex on
L?(R% m) if and only if ¢ﬁ is A-convex on L2(R%; ).

We first show that A-convexity of gbf implies A-convexity of gb#l Since u € Po(R?) is atomless and
R? is a Polish space, there exists a measurable map T such that Tyup =m (see [CDT18, Page 379]).
Because m € P2(R?), we have that T € L2(R%; ). For i € {1,2}, fix & € L?(R% m) and note that
&oT € L2(R% ). Since ¢f is A-convex, we obtain

A
GE((L=& 0T +160T) < (1 =H)gf(€10T) + 1] (&20T) = St —)[&10T — & 0 T|[72(gay,-

Since Ty p = m, this simplifies to

o (1 =16 +t&) < (1= )l (&) + tofh (&) — %t(l — )1 — &7 gagm)»

which is precisely the definition of A-convexity for gbﬁ.

The reverse implication follows by the same argument with the roles of y and m interchanged. [

Now we focus on derivatives of qﬁf. Under mild growth conditions on Vw ¢, the lift is differentiable
on L2(R%; p):

Proposition 2.14. [CD*18, Proposition 5.48] Assume that p € Po(R?) have no atoms. Suppose
¢ € CH(W3(R%);R) is such that for any bounded K C Po(R?)

(1) x = Vwao(p,x) has at most linear growth, uniformly for p € K.
(2) x — g—ﬁ(p,x) has at most quadratic growth, uniformly for p € K.

Then the lift d)ﬁ is Fréchet differentiable on L?(RY; 1), with

ngff(ﬁ)(m) = Vwo(Exp,&(x)) p almost everywhere.

Proof. We apply [CD*18, Proposition 5.48] to the atom-less probability space (R?, B(R?), 11), using
the fact that for this probability space, the law of a random variable X is given by Xy pu. O

In [GT19, Corollary 3.22| the Fréchet differentiability of the lift at & is shown to be equivalent to
the Wasserstein differentiability of ¢ at {4 . In this case, we have that

V(bﬁ(f)(x) = Vwo(Exn,&(z)) p almost everywhere.

We refer to [GT19] for the general definition of the Wasserstein gradient in terms of the sub and
super differential of ¢.

Now we link notions of C! of ¢ with its lift.

Definition 2.15 (C1%(X; X) Functions). Let X be a Hilbert space and o € (0,1]. A functional
u: X — R is said to belong to the class CY*(X; X) if it is Fréchet differentiable everywhere, and
there exists a constant C' > 0 such that for all z,y € X,

[Vu(z) = V()| x < Cllz —ylfk-
We will say u € C;’Q(X;X) if u € CY*(X; X) and

sup |u(z)| + |Vu(z)| < oo.
reX

Example 2.16. Under the notation and assumptions of Example 2.8, if i € P2(RY) is atomless,
then the lifted functional Ujé belongs to CV1(H,; Hy,) for H, == L2(R% p).
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Proof. By Proposition 2.14, we have that

VU (€) = VwU (E4u,6).
Hence, for §; € H,,, the triangle inequality implies

IVUF# (&) — VUF(&)][m, <

IVwU((€0) g €1) = VwU((€) g &), + VWU ((€1) 41 €2) — VWU ((§2) 4, &2) ||, -
Now by properties (2) and (3) of Example 2.8, there exists a C' > 0 such that

< O(|61 — Eallm, + Wal(€1)wp, (§2)p1)) < 2C|[&1 — &2l|m,, -

3. THE LAGRANGIAN TRAPEZOIDAL SCHEME: DEFINITION AND NUMERICAL STABILITY

In this section, we define a higher-order implicit method for the gradient flow of ¢ and establish
stability properties of the energy functional and its Wasserstein gradient. Our scheme corresponds
to the implicit trapezoidal rule applied to the Lagrangian Flow (1.5). We begin by defining the
variational problem associated with the scheme and then prove its well-posedness.

Definition 3.1 (Lagrangian Trapezoidal Scheme). Fiz a reference measure pg € P2(R?) and assume
that qbﬁf) is Fréchet differentiable on L?(R% pg). Fiz a time step T > 0 and an initial condition
Xi € L*(R% pg). Then, for n >0, define the discrete Lagrangian flows X1 via:

1 1

1
S0 + 3 [ (OO, ) don(a) + 16~ X e |-

(3.1) X;,, € argmin { 5

E£€L2(Re;p0)

Finally, define the discrete trapezoidal rule solutions as the measures
pr = (X7)#p0-

Now, under appropriate assumptions on ¢, we show that the scheme is well-defined for sufficiently
small 7.

Lemma 3.2 (Existence and Uniqueness of the Minimizer). Given a p € P2(R%), we assume that cbﬁ
is Fréchet differentiable on L?>(R%; ). We further assume that qﬁf is A-convex on L?>(R%; 1) for some

A € R. Further, let 7 > 0 satisfy (\/2+1/7) > 0 and fix an v € L*(R% ). Define the operator
@0 L2(REG ) - R as

1 1
Brn(€) = 5 (SO + [ (V600 60) o) ) + 516 = 01
Additionally, assume that
(3:2) IV ) (@)l gy < o0

and that the energy functional ¢ is proper, i.e., infue%(Rd) d(u) > —oo. Then, there exists a unique
minimizer of ®;,,, in L2(R%; ).

Proof. From our assumptions it follows that @, ,,,(€) is (A/2+ 1/7)-convex in L?(R%; 1), ensuring at
most one minimizer.

The existence of a minimizer follows from the continuity and convexity of ®, ,,(£). Define the
constant

B = geL;?ﬂgdw D p0(§) > —o0,

where the lower bound holds due to (3.2) and the properness of ¢.

Now, consider a minimizing sequence {&,} for ®, ,,. We claim that the (\/2 + 1/7)-convexity of
®, . » implies that {&,} is a Cauchy sequence in L?(R%; ). Defining the geodesic y(t) := (1—t)&,+t&m
implies from convexity that

1 1 1 1
B § (I)T,u,v <’Y <2>> § §(I>T,,u,,v(§n) + §(I)T,u,v(£m) - é ()\/2 + 1/7-) Hgn - me%Q(Rd%M)'

>0
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Since {&,} is a minimizing sequence, we have ®. , ,,(&,) — 8. This implies {, } is a Cauchy sequence,
as [|&n — é-mH%Q(Rd'u) must tend to 0 as n,m — oo. The continuity of ®, ,, ensures that the limit of

&, in L2(RY; 1) is the unique minimizer of ®, ;. O
Now, we characterize the minimizer of ®, ,, ,,.

Lemma 3.3. Under the same notation and assumptions as Lemma 3.2, the unique minimizer £* of
Q. v is the unique solution over LQ(Rd; w) to the implicit equation:

& (@) =) - 5 (VeF (€)(@) + Vo (0)(a))

Proof. Since ®; ,, , is strictly convex and Fréchet differentiable, its unique minimizer is also its unique
critical point. The implicit equation relationship then follows from

VOru0l€) = 5 (VOO + Vo) + (€~ v).
(]

Next, we will derive a useful estimate on the gradient of the minimizer of ®, , , that ensures the
gradient norm is bounded along our trapezoid iterates.

Lemma 3.4 (Gradient Estimate). Under the assumptions and notation of Lemma 3.2, define

1 A> 1 1+ A
C(\, ) ::{’ 20, where A\, ::log< + T>.

2T\ <0, o7 1— M\
Then the unique minimizer £ € L*(R% p) of O, satisfies
1962 (€ Eaggay < CONITEE s g

Proof. By A-convexity, we have that for any n € L?(R%; )

(VO (E) = Vo), € — 0) gty 2 AE = 0l2a(g
Using Lemma 3.3, we have that the above expression is

T * *

(3.3) e IV 2may — IV €Ny ) 2 AIE" = 0122 g

This implies the claim for A > 0.
Now, consider the case when A < 0. Applying Lemma 3.3 to (3.3), we express A||{* — UH%Z (R 3

2
B4 AT (IVGE OBy + V6 €N aggay + 2V 0), VO E D pamsy ) -

Since A < 0, we apply Cauchy-Schwarz and the inequality ab < "2—2 + % to obtain

2
. T
(35) M = 0l2aggagy > AT (1968 (0)2aqaagy + IVEE© 2z ) -
Thus, from (3.3), we obtain the desired inequality of

(1+ A7)

#0082 LTAT)
Ve (”)HLQ(Rd;u) = (1—X7)

IV &5 (€72 sy
O

Now we focus on properties of our scheme (Definition 3.1). We recall the following quantity, which
will be frequently used

1, A >0,

(3.6) C\T):= {62|>\T|T 1

A< O = max{l,ez)‘”} where A\, := o log <

1+ A7
1—X1/)°

Now Assumption 2, Lemmas 3.2, 3.3, and 3.4 implies the following for our trapezoid scheme:
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Theorem 3.5 (Trapezoid Rule and gradient Estimate). Under Assumption 2 and using its notation,
there exists a unique minimizer in H of (3.1) satisfying, for pp-a.e. z,

T T T T T
(3.7) X7 (@) = Xi(@) = 5 (Voh (X7,0) @) + Vol (XD (@) -
Additionally, the lifted gradient along the iterates satisfies the estimate:
(3.8) IV (X )l < COLT) - (Ve (X7 -

Beyond the gradient estimate (3.8), we establish additional stability properties.

Lemma 3.6 (Energy is Almost Decreasing). Under Assumption 2 and using its notation, with X
and p], defined as in Definition 3.1, we have the following estimate:

(3.9) o (Xnen) = 63 (X0) < 7 (1IN0 (X0 I = IV (Xia) 1)
Proof. Using the competitor X in (3.1), we obtain:

T T T T T 1 T T
(310) ¢Z§E( n—l—l) - qbﬁ)(Xn) S <v¢7p%o(Xn)7Xn - n+1>H - ;HXn—&-l - Xn||[2HI

Applying equation (3.7), the right-hand side simplifies to:
(Vo (X0), Xn =X 1)u— || =Xl =5 (||V¢Zfi,(XfL)||ﬁ + (Vi (X7), Vi (X7 1)m) — HX X7l

Using Theorem 3.5 on the last term, we ﬁnd that the above expression further simphﬁes to:

T T T 1 T T T T
(Vo (X7), X7 — X — 21 X7~ X0l = T (1968 X501 ~ 196 (X))
Using the above display in (3.10) implies (3.9). O

To conclude this section, we establish a stability estimate similar to the classical one for the JKO
scheme, along with a uniform Lipschitz time estimate for the numerical solutions.

Lemma 3.7 (Stability Estimate). Under Assumption 2 and using its notation, with X and p],
defined as in Definition 3.1, we have the following estimate for any N with N7 < T':

N 2( T T T2
Wz(ﬂ'ap' 1) H I_X‘HH 5 ’
(3.11) ) %”_E ”%ST-C(A,T,T)-HWﬁ,ﬁ(Xo)H%-
j=0 7=0

Also for any n,m € N with n,m < N, we have the Lipschitz in time estimate:

(3.12) Walpp, pr) < 11X = Xl < 7+ [n = m[-\/COL 7, T) - Vi (X§) [
where .
C(\,7,T) = max{1,e 27T},

Proof. First, observe that for any n,m € N:
W3 (prs o) = WE((XT)p0, (X7)4p0) < 1 X7 — X7 |1,

where the final inequality follows from Lemma 2.2. Thus, it suffices to show the bound on X .
For (3.11), we apply Theorem 3.5 to obtain:

2
-
X1 = X5l = IV, (XTa) + Vi, (X))l
By expanding out the square and applying Cauchy-Schwarz, we see that
151 = X1 < 2 (VORI + IV (K1)
Then, applying the gradient estimate in Theorem 3.5, we obtain:
1XT 1 — X7 IE < 72COn T, T Vo (XE) 1
By summing, we obtain the bound (3.11).
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To obtain (3.12), observe that for n > m the implicit equation in Theorem 3.5 implies:

n—1 n—1

Xp = X5 = D (X = X)) = =5 3 (VOR (X + Vi (X))

Jj=m

.

Using Theorem 3.5, we conclude:

IX7 = X7z < fn—ml -7 \JCO 7, T) - V67, (XE) -

4. O(7?) CONVERGENCE VIA DIFFERENTIAL METHODS

We now establish the higher-order convergence of the Lagrangian Trapezoidal Scheme under the
assumption that both ¢ and the limiting velocity field are sufficiently smooth by extending the finite
dimensional proofs to H. First we begin by establishing existence of (1.5).

Lemma 4.1. Assume that gbﬁ] € C;’I(H;H). Then for any n € H, there exists a unique map
X € L% (]0,00) x R%; pg) such that

X(t) =~V (X(t) on[0,00),
X(0) =n.

Proof. This follows from a Banach’s Fixed Point theorem argument because ¢ﬁ) € C; ’l(IHI; H). O

To ensure the initial measure is pg, we will often take as initial data n = Id € H. In addition, to
ensure higher order convergence of our trapezoid scheme, we will also need to make a C%%([0, T]; H)
assumption on the Lagrangian flow.

Definition 4.2. Let T > 0, a € (0,1], and X be a Hilbert space. A function u : [0,T] — X belongs
to C12([0,T]; X) if it is Fréchet differentiable and there exists a constant C > 0 such that its Fréchet
deriwative U : [0,T] — X satisfies

(4.1) u(t +h) —u(t) — ha(t)|x < Clh*T*, YO<tt+h<T.
We say u € Cllo’g([O, ); X) if u € CH%([0,T); X) for every T > 0.

Assumption 3 (Higher-Order Convergence). Fiz py € P2(R?) and define H := L?(R%; pg). Assume
¢#0 € C’;’I(H;H), and define the Lipschitz constant of its gradient by

if #
L($) = sup "V¢po<61>:V¢po<f2>||H
§17£&2€H ”51 SQHH

< o0

Let X € L} ([0,00) x R pg) be the unique solution to (1.5). We further assume there exists an
€ (0,1] such that X(t,-) € C-*([0,00); H). For each T > 0, define

loc
(4.2) Lo(T, X) = sup X = X5 = (=) Xsllw
. [0 ) T
t#s€[0,T] |t — s|*

We begin by extending the trapezoidal quadrature rule to the Hilbert space H.

Lemma 4.3. Fiz T > 0, pg € P2(R%), and suppose u € C1([0,T]; H) for some a € (0,1]. Let L be
the smallest constant for which u satisfies (4.1). Then, for any 0 < a < b <T, we have

(4.3) H b= b, 2) + ula, ) — /abu(s, ) ds

< 2L[b — a2
H

Proof. We first observe that Jensen’s inequality and Fubini’s theorem imply for any f

b 2
/ F(t2)dt
a H

b
(4.4) <(b-a) [ 5ol
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We begin by decomposing the integrand in (4.3). Observe that the integrand decomposes as
(4.5)

b b b
/a % [u(s, ) —u(b,z)] + % [u(s,z) —u(a,z)] ds = ;/a (s —b)u(b,x)ds + ;/a (s —a)u(a,x)ds + R,

where the remainder term is

b b
R = ;/a [u(s,z) —u(b,x) — (s — b)u(b, x)] ds +;/a [u(s,z) —u(a,z) — (s — a)u(a, z)| ds.

Rl RZ

We first bound the H norm of the remainder term. Specifically, we will show that
L
V2a+3

Since the argument is analogous for Ry, we only provide the proof for R;. Using (4.4) and Definition
4.2, we have

IRillx < (b—a)*™®, forie {1,2}.

b b L2
IRl < (b—a) / (s, ) —u(b, 2)—(s—bYa(b, )| ds < L*(b—a) / s g =

_ )20+
i at3l

This gives the desired bound on R;.

Next, we control the remaining terms in (4.5). Notice that

b
/ (s =b)u(b,x) + (s — a)u(a,x)ds = 5 (i(a,x) —u(b,x)).

Thus,

(b— a)?

b
[ s = byitbn) + s = ity ds| = O i) ~ (b, a)
a H

Since (¢, x) is a-Holder continuous on H with Holder constant 2L, we have

< L(b—a)**e.
H

b
/ (s = b)u(b,x) + (s — a)u(a,z)ds

Combining this with our bound on R, we conclude from (4.5):

We now have the tools needed to establish the higher-order convergence of our scheme.

< 2L[b — al*T.
H

b1 1
/a 3 [u(s, z) — u(b,z)] + 3 [u(s,z) — u(a,x)] ds

Theorem 4.4 (Higher Order Convergence). Suppose Assumption 3 holds and the time step satisfies

0<r< ﬁ Given a terminal time T > 0, let n € N be such that (n + 1)7 < T. Then, the iterates

X of the Lagrangian trapezoid scheme (Definition 3.1) satisfy

L(T, X
Walpors ) < 17 = X ()l < HOTXG 1+ 220 @HOT - 1) it

([0,00) x R%; pg), and we define py := (X¢)gpo and

where X (t) is the unique solution to (1.5) in L _
p; = (X7 )wpo-

Proof. For each n € N, define the error iterates
ent1 = [ Xp 1 — X((n+ 1)7)||m,
along with the trapezoid approximation of X ((n + 1)7):

Vi i= X(nr) = 2 (Ve (X (n7) + Ve (X (n+ D7)
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The triangle inequality yields

ent1 < [V, = X((n + D7)llg + 1V, — Xppalla -

7 @

To control 17(114217 recall from (1.5) that for any s < ¢,

¢
(4.6) X(t)=X(s)— / V(bfo (X(a))da, po-a.e.
Then by choosing s = n7 and t = (n + 1)1, we see by Lemma 4.3 and Assumption 3 that
T, < 2L,(T, X) r>+e.
Next, to control Iﬁgl, use (4.6) to write
T T T T T T T
Via=Xin = (X(nr)=X7) =2 (Vo (X(nr) = Vot (X0)) =5 (Ve (X (n+ 1)7) = Ve (X7,)) -
Thus, the triangle inequality and Assumption 3 yield
L(<Z>)(
2

2
Ifl_gl <e,+T en + ent1).

Combining these estimates, we have

En+1 < 2Lo(T, X)r2t  (1+ L(g)T)en,

e ] L@r

2 2
Since we assumed 7 < ( 7 1t follows that L(¢)T < 1. Hence, we have that 1 — @ > 1. Hence,

L(9)r
1+ LT
enit < ALy (T, ¥)r2+a ¢ L 72 Jen

Now by using the inequality =2 < 1+ 4z for z € [0, 1] with z = L(¢)7/2 we obtain
(4.7) ent1 < ALo(T, X)727 4+ (1 4 2L(¢)7)en
By iterating (4.7), we arrive at
n < (14 2L(¢)T)"eg + 4Lo (T, X )72t nzl(l + 2L(¢) 7).
j=0

Thus, for (n+ 1)7 < T, we have

Lo(T, X)
en < Q2LAT 4 glalls 2L(OT _ ) 1+a

In particular, if X € C 1([O T];H), we obtain an O(72) convergence rate.

loc

4.1. Examples of Functionals Satisfying Higher-Order Convergence. Now we focus on deriving
examples that satisfy our higher order convergence theorem.

Theorem 4.5. Assume that pg is a non-atomic measure such that gzﬁﬁ) € CH1([0, 00); RY) with Vwé
satisfying the growth conditions in Proposition 2.14. In addition, suppose there exists a constants
a € (0,1] and C > 0 such that for all p € P2(R?) and x,y € R?

IVwo(p,2)| + [VaVwolp, )| + [Viy(p, 2,y)| < C,
[VaVwo(p, )l camay + [Vivd(p, s oo @axray < C
Moreover, assume that the partial Wasserstein Hessian of ¢ satisfies the Hélder-condition:
v2
(48) sup Vo (u, 2,y) — Vg, 2,y)||

<C.
uFvePa(R4) Wl (u, )
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Then, X € CH([0,00); H), and its Fréchet derivative is given by:
X(t,z) = [vawqﬁ((X(t))#po,X(t,a:))]X(t,x) + Jga (V%Vqﬁ((X(t))#po,X(t,x),X(t,z)))X(t, z) dpo(z).

Proof. Because of our assumptions, we have that ng)ﬁ) (&)(x) = Vwo(Expo, &(x)) for po-a.e. .
Step 1: X(t) € CY1([0,00); H) and Lipschitz Regularity in Time

Because Vwo(p, z) is uniformly bounded on spt(pg), we immediately obtain that ngfo (&) is
uniformly bounded on H. This implies from (1.5) that X (¢) is Lipschitz continuous on H. Then as

Vo7, (€) is Lipschitz on H, (1.5) then implies X (t) € C11([0, 00); H).
Now using (1.5), we have that for a.e. = € spt(po)

t+h

X({t+hx)—X(tz)=— t Vwo(X(8)gpo, X(s,x))ds.

From our assumption that the Wasserstein gradient is uniformly bounded, we obtain for a.e. = €
spt(po)
(4.9) | X(t+ h,z) — X(t,z)] < Clh|

Step 2 : X; € CH([0, 00); H)

For notational simplicity, we will let F'(p, z) := Vwa(p,z) and py := (X¢)»po.

Using (1.5), we obtain for pp-a.e. x:

X(tv JE) - X(t +h, .’L') - F(pt7 X(tv IE)) - F(thrh? X(t + h, l’))
= [F(pt, X(t,2)) = Flpe, X(£ + h, 2))] + [F(pe, X(£ + h, ) = Fpign, X (¢ + h, 2))]
() (1)

Bounding Term (I). As 2 — V,F(p, x) is Holder continuous, we obtain from Taylor’s Theorem
X(t+hz)— Xtz
(1) = ~hV.F (e X(t,2) - (L) = X2

where |R(t,z)| < C'|X (t + h,z) — X (t, )|, which implies from (4.9) that ||R(t, )||m < C”|h|te.

)+ R

Simplifying further, we have that
(I) - - (VCCF(:Otv X(t7 .T}))) X(tv .T)) + Rla
where

Ry =R — h(VaF(p, X(t,2)) (X(t + h’m})L —Xtn) v x)) .

Ro
From X(t) € C(H;H) and V,F being uniformly bounded, we see that |[Ra||lm = O(|h|?). In
particular, we have that ||R1|lg = O(|h|}+®).
Bounding Term (II). Applying (2.3), we obtain:

/ / 30 (L= 8)p + spesn, X (¢ + D, 2), 2)d(pern — pe)(2)ds.
Rd M

Using Taylor’s Theorem with y — V2 wo(p, z,y) is uniformly C*

_ —h/ TwF((1— 8)p1 + sppams X (E+ hoa), X (2, 2)) - Stb2) = f(t +12) o (2)ds + Ra,
0 R4

where ||Ra(t, )|z = O(R}+®).
Because X € C™!(H;H) and the boundedness of Vw F, we obtain:

1
(II) = h/ VWF((I - S)pt + Spt+h7X<t + h, [E),X(t, Z)) ’ X(ta Z)dpo(Z)dS + Rs,
0 JR4

where R3 = Ry + R3, where |Rs|lz = O(h?).
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Now we use that x — VwF(p,z,y) is uniformly C* and (4.9), to see that
1
(D =h [ [ FwE( =)o+ spians X(t,2), X(0.2)) - X (1 2)dpofz)ds + R
0 JRd

where Ry = R3 + R4, where ||Ryl[z = O(h!T)
Finally, using the Holder condition on the measure position of Vw F' and the dual formula for the
W1 metric,

HVWQS((l - ‘9)pt + SPt+hs X(t) l’), X(tv Z)) - VW¢(pt7 X(tv x)v X(t’ Z))‘ |H
< CW(pr, (1= )pr + sprin) < Cs“Wi (pr, prin) < Csh,
where in the final inequality we used Lemma 2.2. Thus, we obtain:

(II) = h/]Rd VWF(pt,X(t,x),X(t,Z)) ' X(t7 Z)dPO(Z) + Rs,

where ||R5|lu = O(h'*®), completing the proof. O

Example 4.6. Suppose U(p) is the functional from Example 2.8, and additionally assume that V,W &€
Cg’l(Rd), X € C’g’l(Rd), and f € C’g’l(Rd). Then, U(p) satisfies the assumptions of Theorem 4.5
with parameter a = 1.

Proof. By the gradient formulas in Example 2.8, it suffices to verify (4.8). We now check this term
by term for the partial Wasserstein Hessian formula in Example 2.8. Throughout the proof, we set
py = p* x and write f S g if f < Cg for some constant C' > 0.

The difference in first term of the partial Wasserstein Hessian formula at the (7, j)th component is

/ F" (1 (2))05x (2 — 2")Oix(x — 2)dp(= / f"(x(2))95x (2 — 2")Oix(x — 2)dv(2)

= [ 1)) = £ )] 0z =) D = 2) d(2)
/ P ((2) B (= — 2') Bl — =) d(p — v)(2) = (D) + (I1).

To control (I), we use that f” is Lipschitz, Vi € L*, the dual representation of the W7 metric,
and p is a probability measure to obtain that

DI [ G- = [ | xte = ad(u=v)(a)| du(2)

Now we use that the integrand for (I7) is uniformly Lipschitz due to our assumptions to obtain from
the dual representation of the W; metric that

(I S Wi, v).

The difference in the second term of the partial Wasserstein Hessian at the (i, 7)th component is
(I1I), which is defined as

L 1 @) = " 0r(@)] 0= ix(o=2dun() |0 @)0yxla = )0ux(a—=2)du=1)(2)

can be similarly bounded to show that

S [ Walnw)dn() = W)

((TID)] S Wi(p,v).

The difference in the third term of the partial Wasserstein Hessian at the (4, j)th component is
(IV) == (f'(ux(@)) = f (e (@)) + F (@) = (i (@)))0F jx (@ — 2).
Observe for any z € R? one has from f’ and x being Lipschitz that

7002 = Fon ] | [ 3z == v)(a)| S Wiloa).
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Hence, one sees that
IV S Wi, v).

The difference in the fourth and final term of the partial Wasserstein Hessian at the (i,7)th
component is

(f" (i (@) = " (1x (27)))-Oix (@ —2") (%0 x) (&) + " (x (7)) - Oix (z—2)- (v = )0y x) () = (V) +(V )
Now because Vy € L™ and f” is Lipschitz, we have from the dual formula of the W} metric
V] S ) = )l = | [ 1t = )00 = (@)
Ra

Finally, one has that from f”, Vyx € L* and 0;x is Lipschitz that from the dual formula of the W;
metric.

5 WI(M, V)'

VDS 10 == (@) =| [ (e’ = 20 = (a)| < W)

Therefore, one has that

|VWU(:U7 xz, 33/) - VWU(Va €z, $,)| 5 Wl(,ua V)a
which is (4.8). O
5. O(T) CONVERGENCE VIA DISCRETE EVI

5.1. Discrete EVI. In this section, we show that the maps X, for less regular functionals converge
in H at a rate of O(7) and characterize the limit in terms of an Evolution Variational Inequality
(EVI). To achieve these goals, we utilize the discrete evolution variational inequality. Our approach
is inspired by the methods in [AS07|. Before deriving the discrete EVI, we first present a useful
inequality.

Lemma 5.1. Under the same notation and assumptions as in Theorem 3.5, we have for any & € H:
T T T T A T T A T
(Ve (X7), 6= X7)u < (65(8) — o7 (Xr)+5 (IVoh (XDIE—IVoh (X7 ) IB) ~ S IXT X7 B =5 =X R
Proof. We first decompose the inner product as follows:
(5.1) (Voh, (X0),6 = X7 )m = (Vi (X7), € = XT)a + (Vop, (X7), X7 — XT1)e = (I) + (ID).
To bound (I), we use the tangent line inequality:
(1) < o1 (&) — of (X)) — Hé - X7 &
To bound (II), we use the implicit equation in Theorem 3.5 to obtain:
T
(11) = 2 IV (XIE + (Vo (X0, Vot (Xr)s) -
The implicit equation in Theorem 3.5 also implies that
<V¢ﬁ)(X;)aV¢ﬁ)(XZ+1)> Hvﬁb# (Xl + = <V¢po(XrTz+1) X5 = Xo)m
Using the tangent line inequality on the inner product term implies
T
(1) < §(HV¢§(XZ)H%1 — IV (Xi)f) + ¢ (X7) — ol (X)) — I\Xﬁ — X7l

Combining the bounds on (I) and (I7) allows us to conclude. O

Lemma 5.2 (Discrete EVI). Under Assumption 2, for any § € H and n € N, we have:

1 T T >\ T T
5 (- Xralli = 1€ = XTNE) + 7 (e Xl +11€ = X7 l1f)

1 A
< 04~ O (XTu) +  (IVOROCDIE ~ IVR (XTIE) - (52 + 7 ) IXE - XLl
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Proof. Following the arguments of [AGS05] for the JKO scheme, for n € N, we define the functional

1 1
(€)= 5 (¢4 (©) + (Vol (XD O ) + 5= ll€ — XTIl
By Assumption 2, ® is (\/2+1/7)-convex. Since X, minimizes ® due to Definition 3.1, we obtain,
for the linear interpolation y(t) := (1 —¢) X7, | + t£ that
t1—t) (A 1
BT < 80 (0) < (- )87 +i0(© - D (4 D) le-xpal we o)
In particular, this implies by dividing by ¢ and then letting ¢t — 0 gives
T 1/x 1 .
(.2 05 0(6) - o(XT00) - 5 (5 + 7 ) I~ XLl
Applying Lemma 5.1 to (5.2) implies the claim. O
5.2. Interpolations and Differential Inequalities. We recall that gradient flows of A-convex
functionals are uniquely characterized by the Evolution Variational Inequality (EVI) (see [AGSO05]).
Our approach to obtaining an O(7) error rate is to consider linear interpolations of the discrete
streamline and energy functional, and to show that the discrete EVI (Lemma 5.2) implies that
these interpolations satisfy an approximate EVI with a controlled error term. This combined with
Gronwall’s inequality will allow us to obtain our error rate. Our methods are similar to those in
[AGS05] with adaptations to handle our more complicated case.
Definition 5.3 (Interpolations). Fiz a time step size T > 0. Then we define

t—
l(t) = %, X, = XI.q, and X7 := X7, fort € [nT,(n+1)7).

The linearly interpolated numerical Lagrangian flow and energy functional are given by
X7 = (1= GO)XT + 60Xy, orlt) = (1= Le(0) b (XT) + Lo (8) D (X).
For &1,& € H, we define the metric
(&1, &2) = [|&1 — &2lm,

and for any & € H, the linearly interpolated distance functional is
d2(t:€) = (1 = £(8))d* (€, XT) + L (D) d* (&, X 7).
Define the constant interpolation gradient error term as
G7 = Vi (XD — Vo (Xn)lf:  t € [nr, (n+1)7).
and the distance between iterates as
D] =d(X],X,;).

Now with the notation of Definition 5.3, we see that the discrete EVI (Lemma 5.2) implies the
following differential inequality for a.e. t >0

1d A . —r Tow A .
(5:3) ol (B + 5 (& X]) + d(E XT))) < Of () — dr (1) + GT — (D)) + R].
Here, the remainder term R} is given by:

. 1 .
R7 = (6:00) - 01 (X0) - 5-(00?).
Expanding this term, we obtain:
T T ~T 1 T 1 1 T

) RT= (- 60) (XD - oA (XD - 2OD?) - 1 (60) - 3 ) (P

When A # 0, as in [AGS05], it is more convenient to modify the differential inequality (5.3) so that
the left-hand side contains terms of the form d?(t; €) instead of d?(¢, X, ) and d?(¢, X7). To achieve
this, we use the following inequality:
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Lemma 5.4. With the notation of Definition 5.3, we have the bounds

(5.5) d*(§, X7) + d*(§, X7) < 2d3(t:€) + (D) + 2(D]) - dr (8., ).
and

(5.6) 2d7(t;€) — 2(D7)d- (£;€) < d°(&, X7) + d*(€,X7) + 3(D])%.
Proof. First observe that the concavity of the square root function implies that
(5.7) (L= £e(1)) - d(X],€) + (1) - d(X7,€) < dr(£:6).

Using triangle inequality and (5.7) we see that

(5.8) d(X7,8) = (1 —£-(t)d(X7, &) + L ()d(XT, ) < dr(t:€) + £ (1) (D).
Similarly, we also have that

(5.9) d(X7,€) < dr(t:€) + (1= £(8))(DF).

Squaring these two inequalities and adding them imply (5.5).

Now for (5.6), observe that from the triangle inequality

d7(t:€) = d*(XT, ) + (1) (A(X7, &) — (X7, €)) < d*(XT, &) + () ((DF)? +2d(XT,€)(DY)).
So now using (5.8), we obtain that

d7(t:€) < d*(X],€) + 20- (1) (d-(t:€)(DY)) + €-(£) (1 + 2-(£)) (D).
Similarly, we have the bound
d7(t:6) < d*(X,€) + 21 — £ (1)) (dr (5:€)(D])) + (1 — £ (£) (1 + 2(1 — £-(£)))(D])*.

Adding these two bounds and maximizing over ¢, gives (5.6). O

By combining (5.3) with Lemma 5.4, we obtain the following differential inequality:

Theorem 5.5 (Approximate EVI). Under Assumption 2 and the notation introduced therein, as well
as the notation from Definition 5.3, the following differential inequalities holds:

(510)  SR(E) + A1) < A5 (€) — 6:(1) + TG +2RF + (D)) - ((DF) + de(1:6)).

Now we want to use Theorem 5.5 to obtain a differential inequality for d?(X7, X}) with two different
time steps 7,1 > 0. To do so, we follow [AGS05] and introduce another interpolation function

Definition 5.6. Using the notation from Definition 5.3, let T,m > 0 be two time steps. We define
the further interpolated distance functional as

B (155) = (1= () (10 (3))- € (X, X7 )£, ()2 (X, XT)+£(8) (1= b () dP(X2,X7) + £ ()02 (X, X7))

— (1= 6y(5)) - 2(6XD) + £,(s) - 2(6X7).

Theorem 5.7 (Differential Inequality). Fiz two time steps 7,m > 0 satisfying

A . {1 1}
—4+ming—,—p» >0.
2 TN

Using the assumptions and notation from Theorem 5.5 and from Definition 5.6, we have

d
Zrdr(t1) +220d7, (1) < ng + gGZ +2(R7 +RY) + M ((D))? + (D])?) + |A(D] + DY )dry (£ 1)

Proof. First, we note the symmetry property of d%m(t; s):
(5.11) dz,n(t3 s) = dfm(s;t).
Next, by Definition 5.6, Theorem 5.5, and (5.7), we obtain
19 A

2 : 2 : T T T T .
§adr7n(tv s) 4+ Adz, (t;s) < dn(s) — ¢-(t) + ZGt +Ri + 7Dt (D + dry(t;5)) .-
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By symmetry (5.11), we have gsdzn( s) = gtd%T( t), which gives
10

20s
Summing these two inequalities at s = t implies the desired bound. O

A
O 2,(t:5) + M2 (1) < 6,(0) — () + 107+ RY + DIDY (D 4 t:9))

5.3. O(1 +n) Convergence of d.,(t;t) for A > 0. The next step for obtaining convergence rates
is to obtain bounds for the remainder terms D] and R} in Theorem 5.7.

Lemma 5.8 (Bounds on R}). Under Assumption 2 and the notation of Theorem 5.5, the following

bound holds:

R < (1= (o) (567 - 5007 ) - 1 (00 - 5 ) P

Proof. By (5.4), it suffices to show that for any n € N,
T T T2 T ~r A T T 2
QZ);%)(X ) ¢p0( n+1) ||Xn+1 - XnHH S ZGTLT - §||Xn - Xn—l—l”H‘
Because qﬁﬁz is A-convex on H, the tangent line inequality implies

S (X7) = (X7 i1)— *H 1= XnllE < (Vo (X7), X7 —X7 1 1)m— H =Xl IIXZ—XZHII?HI-

Using (3.7), we obtain

n

1 T
(Vi (X7), Xy = Xi1)m — “lI X — Xl = 5 G-
This completes the proof. O
Now we have enough to obtain an error estimate on dr,(t;t) when A > 0.

Corollary 5.9 (Error Bound on d(t;t) for A > 0). Under the assumptions and notation of Theorem
5.7, the following bound holds for A > 0:

&, (6:0) < 155~ X3+ (IR (DR + Vo (XDIR)

Proof. Because ¢ is A-convex with A > 0, we can use Theorem 5.7 with A = 0 to obtain:
1d 2
2dt dr 2

For any t > 0, let N € N be the smallest integer such that ¢t < N7. Since A > 0, it follows from
(3.8) that G] > 0. Hence, by integrating in time, we obtain:

(5.12) (t;6) < (G{ +G})+ R} + R

NT
(5.13) / Gids < GTdszfz(rw# (XD — IVeh (X7 )IIE) < 7IVef (X5) IR
Similarly,

t
(5.14) / Glds < ||Vt (XD)|2.

Next, we handle the term R]. Observe that for any j € N:

(G+1)T 1 G+1)7 -
/ <£T(s) - > ds =0, / (1 —4(s))ds = ~.
ir 2 jr 2

Applying Lemma 5.8 with A > 0 gives:

t - X7~ X713 [ 1
T < T -t -—thidg S .
| mias <% 3= (IVeA G- IVoR T ) - [, (et0=35)

T

1
< —[IVep, (XS)H%+§HXZ—XIH%-

s
8
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By applying Lemma 3.7 along with the above display, we see that
(5.15 [ Rzt < Syt i
Applying the same argument for 7, we obtain:
/ Rids < 9 (X2
, =g oo\ X0 ) Il H-
Finally, integrating (5.12) in time and applying the estimates (5.13) and (5.15), we conclude. [

5.4. O(t + n) Convergence of d,,(t;t) for A < 0. We now derive convergence rates for A < 0.
Since A; < A (see Assumption 2), any A-convex function ¢ is also A\;-convex. Applying Theorem 5.7
with A; and using Gronwall’s Inequality [AGS05, Lemma 4.1.8], we obtain the bound for any 7' > 0:

T 1/2 T
(5.16) dry(T;T) < e™T dzn(O;O)—F sup / e*sa(s)ds —1—6_’\TT/ e b(s)ds.
’ tef0,7] /o 0

Here, the functions a(t) and b(t) are given by
T T /’7 T T T
alt) = 5G7 + G+ 2R] + RY) + (D)) + (D))?), - b(t) := [Ao| - (D] + D).
To estimate the integrals in (5.16), we will estimate each individual term in a(t).

Lemma 5.10. Under the notation and assumptions of Theorem 5.7, and with the additional assumptions
that A < 0, we have the following estimates for any T > 0:

/0 "D at < 7T+ 1)e BV (X5
T

/ GT dt < 7|V (XT) A

(5.17) o

/0 62/\Tt'RZ dt < 7.2 (é + 672)\77 <; — %)\T(T + T))) ||V¢§(X6)H%_H,

T
/0 (D7) dt < 7(T + 7)e 7| Vi (X7) -

Proof. Choose the smallest integer NV such that T'< N.

T
Step 1: Bounding / e”‘*t(DZ)th.

0
We first observe that

T . Nt . e2her _ 1 Nl ‘
18 [ R X < [P = S 3 R X

By applying (3.12), we obtain
(5.19) d(XT, XT 1) < e UITE |V gE (XF) |-

Substituting this into (5.18) and using the inequalities (¢**™ — 1) > 2)\,7 and A, < 0, we obtain the
desired bound.

Step 2: Bounding fOT QT dt

Because G7 is piecewise constant on [n7, (n + 1)7), we obtain:

T Nt (N=-1)7
/ e MGTds < max / MG ds, / MG ds
0 0 0

N G+1)T N-1 G+1)7 27 _q (NZL ,
— max Z G;T/ 62>\Ttd8, Z G;’T‘/ eQATtds — T Z G;TGQ/\T]T + eQATNT(GTNT)Jr
=0 JT =0 aT T =0
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Where (2)4 := max{z,0}. To simplify our notations for this proof, we define for n € N
(5:20) an = ||V, (X7,
so that from Definition 5.3 G]T»T = aj — 1. Since A < 0, we obtain for any m € N

m m m
Z G;TeszTT _ Z(O‘j — j41)e¥NT = g + Z (e2AT — 2U=DAT) aj — 2™ a1 < ag.
j=1

Jj=0 J=0

<0

Thus, we conclude from (e?**™ —1)/(2);) > 0 that we have the bound

62)\TT —1 ey T 2ArJT 2\ NT T 62)\77- —1 # V(12 # (|12
o Z Gire +e (GNr)+ | < T||v¢p0(XO)HH < 7||Voi (Xo)li
T ]:O T

Step 3: Bounding f(f AR dt
By Lemma 5.8, we have that

/t MR AL < Z/t A1 — €, (1)) - GTdt + /Ot et (”(1 —0(t) — l(57(75) — ;)> (DI)?)dt.

0 0 2 T
=)+ (I1).
We first focus on bounding (I/I). First observe that because A; < 0 and j € N,
(j+1)7— 2X-t 1 2T -1 1 2ArjT )
/ (& (7—£T(t))dt:_()\7—7-+e ()\T; ; )+ )e S—EQZ)‘T]T‘
j T 2 AN2T

In the above inequality, we used —(z + e**(z — 1) + 1) < —223/3. Hence, we have from (5.19)

(N=1)7 22Xt 1 . AT A , Ar7?
/o (G5, Xyt < === 3 T (X, X]) < =

T J

e PMTT|| Vol (X))
j=0

We also have from (3.12)

! et 1 2 L o (N—1)r 2 ™ o 2
Jo, (G 0 (P G IR, XR) < e IV (XD

Now for the first integral term in (I7), we have from Step 1

! )‘T ~ T >‘7' ! T 37T )‘7' - T T
[ (-5 a- ) RETAD < -5 [ R K < e Ve (KD

where the final inequality is due to our Step 1 bound.

Combining these bounds gives us

— T 1 2 T
(1) < e (3 2004 m)) - IV R

Now we focus on (I). First recall the notation «, from (5.20). By using that G7 is piece-wise
constant on [n7, (n + 1)7) and (1 — £-(¢)) > 0 the arguments of Step 1 imply

(5.21)
[ A 2\ N
Ml Sl [ U@+ (Ghe [ - (s)ds
=0 T (N-1)7
By integrating the term e?*7%(1 — £,(s)), we see that for any m € N
= GO T — (1420, 7) & ;
jzlmn ) / P rlo))ds = S ey — )

>0
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By a similar argument as in summation by parts step of Step 2, we have that

2Mr T m 27T
e — (14 2A;7) oxnjr o €T — (14 2\;7)
XL SR

; < ST Ve ()

J=1

Because A\,7 < 0, we have that e?*™ — (14 2X,7) < 2A272, s0 we have for any m € N

m

(j+1)7'
Sl [ N (s <
J

J=0

NIVwa(ph, XO)||&-

N S

Therefore, we obtain from (5.21) that

7_2

<
Therefore, by combining our bounds on (I) and (1), we conclude the third step.
Step 4: Bounding f(f e* ! (D )dt The desired bound follows from Step 1 and Holder’s inequality. [

(1) < = - IVwo(ph, XO)|If-

Now by Lemma 5.10 and Theorem 5.7 along with (5.16), we obtain the following Theorem.

Theorem 5.11 (Bounds on d;,(t;t) for A < 0). Under the assumptions and notation of Theorem
5.7, if A <0, then we have for any T > 0

drn(T5T) < e TA(XG, X7) + T (7K (g, T, 7) IV (XD + nEK (O Tom) [V (X))

where for any 7 > 0,

(22 KT =[5 4 (0= Dam e er i+ e

5.5. O(7) Convergence of X] and Characterization of the Limit. We now establish convergence:

Theorem 5.12 (O(7) convergence rate). Under the assumptions and notation of Theorem 5.7, for
any T > 0, the sequence X converges uniformly on [0,T] in H to a limiting locally Lipschitz curve

X(t) : [0,00) — H.

Furthermore, defining py == (X (t))xpo and p] = (X])xpo, we have the bound
Walpr, pp) < [|1X(#) — X7 |[m,

and the following estimate holds:

o [VBIXE Tl + P VR (X) ifA=0,
1 X (t) — XT|lm <
V3e M XT —1d||m + V3O t,7) - re Mt ||V (X0 lm,  if A < 0.

where the lower order term

3 7
(5.23) Crt.7) 1= (L Al (E +7))e > + \/ S (L S+ et

Proof. By the arguments of [AGS05, Theorem 4.2.2], we have the bound
(5.24) I1XT — X7Nf < 3(d2,,(6:) + 1 X7 — X7 |f + 1 X7 — XVII%) -

Since Assumption 2 ensures that X — Id in H as n — 0, applying Theorems 5.11 and 5.9 along
with Lemma 3.7 implies that X converges locally uniformly to a locally Lipschitz curve X; € H.

The O(7) error estimates follow from (5.24), Theorems 5.11 and 5.9, Lemma 3.7, and letting n | 0. O

Now we will use this convergence and the discrete EVI to characterize the limits X; and p;.
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Theorem 5.13 (Evolution Variational Inequality Characterization). Under the assumptions and
notations of Theorem 5.12, if X(t) denotes the H-limit of X7, then X(t) satisfies the Fvolution
Variational Inequality (EVI):

1
(5-25) 5 (1X(t) = &llf — 1X(s) — €]l&) + / X (a £|!Hda+/ ¢ (X (a)) da < (t — s)¢7, (6),
forall0 < s <t and& e H.

Proof. Given 0 < s < t, choose integers n,m € N such that ¢ € [(n + 1)7,(n + 2)7) and s €
[m7, (m 4+ 1)7). Summing the discrete EVI from Lemma 5.2 and multiplying by T gives
(5.26)

1 A -
(1~ XTI~ - XTI S (1 - XTI + - XalR) <72(¢p0 — (X7 +R ().

J=m

Here, the remainder term is given by
- I AT w -
Rir) = I (IV6h X1~ 96,0 IR) - (3457 ) 3 167 = X7
j=m

Observe that R(7) — 0 as 7 — 0 by (3.8) and Lemma 3.11.
By Theorem 5.12 and Assumption 2, we also have for any T > 0:

(5.27) lim sup || X:— X7|lm=0.
™0¢el0,1)

Hence, using the continuity of qﬁﬁz from Assumption 2, along with Fatou’s Lemma and (5.27), taking
the limit in (5.26) yields the claim. O

Because H is a Hilbert Space, we have an equivalent formulation of the EVI.

Theorem 5.14 (Strong gradient Flow Solution). Under the assumptions of Theorem 5.13, the limit
curve X (t) satisfies the solves gradient flow equation in the strong sense:

(5.28) X(t) = =Vl (X(t), for ae. t € (0,00),
' X(0) =1d

where X (t) is the Fréchet derwative of X : [0, 00) — H.

Proof. By Theorem 5.13, X (t) satisfies the Evolution Variational Inequality (5.25), which characterizes
its gradient flow. Assumption 2 ensures that (bf.i is Fréchet differentiable, so its subdifferential reduces

to the singleton {ng)ﬁ) (X(t))}. Moreover, Theorem 5.12 guarantees that X (¢) is locally absolutely
continuous in H. The conclusion follows by applying [ABS™21, Theorem 11.14]. U

Theorem 5.15 (Weak Solution to the Continuity Equation). Under the assumptions and notation
of Theorem 5.1}, the limiting measure

pr = (X (8))po
is a weak solution to the continuity equation (1.9) with initial data py.
Proof. By [GT19, Corollary 3.22|, we have that ¢ is Wasserstein differentiable and
Vi, (€) = Vwo(Exp, £).

Let vi(z) := Vwa(pt, 7). Then applying Theorem 5.14, for any ¢ € C}(R?), we obtain:

G | e@n@) =5 [ eiamia) = - [ (0o @t = - [ (Tela),u@)dnla)

Since X; — Id in H as t — 0, we also have
lim sup Wa(po, pt) < lim || Xt — Id||g = 0.
t—0 t=0

Thus, p; is a weak solution to (1.9) with initial data pg (see for instance [Sanlb, Proposition 4.2]). O
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6. MONOTONICITY AND EXPONENTIAL DECAY UNDER L-SMOOTHNESS AND A > 0

In this section, we show that when A > 0 and under an additional smoothness assumption on qﬁﬁ),
the decay properties of ¢ and its gradient established in Section 3 can be further refined. Moreover,
we improve the error estimate in Theorem 5.12 by proving that the error vanishes exponentially in
time when A > 0.

The key to upgrading our previous result is that when A > 0 and ng)ﬁé is L-Lipschitz, we can
obtain a lower bound for || X7 — X7 ,||% in terms of ||V¢f0(Xg+1)H]%I.

Lemma 6.1. Under Assumption 2 and its notation, suppose X > 0 and there exists a constant L > 0
such that

VR (&) - Voh(Ela _

sup <
€1762€H 1€1 — &allm
Then if T < L, we have the following estimate for any n € N:
(6.1)
(Vo (X0), Vi (Xi))u > (1=Ln)|[V i (X7 [fr and [ X=X 1 > 72(1- )HV¢# (X7l

Proof. We observe that the inner product inequality implies the other inequality because it along
with using Lemma 3.5 with A > 0 implies

2
12X - X7l = Tz (v, (XDl + IV i, (X7 )l + 2V (X7), Vo (X7 1))e) = 7°(1— )IIV¢> o (X ) e,

Therefore, it suffices to show <V¢j§ (X7), ng)ﬁé (X7 1))m=>(1—LT)- HV(beE (X7 )|l We now prove
this bound. First observe that
(Vo (X 1), Vo (XD = Vi (XD + (Vop, (X)) — Ven (X7), Vo (X7))u.
Applying Cauchy-Schwarz, we obtain
(6.2) > ||Voi (XlE — LIX 71 — Xplla - [Voh (XDl = (1= L) ||V (X[
In the second last inequality, we used A > 0 along with (3.8) to obtain that
1X7 1 = X7 lf < 72V (XT) |-

Then the inner product inequality follows from (6.2), (1 — L7) > 0, and using the gradient norms are
non-increasing in n (see (3.8)) because A > 0. O

Now we will use the Discrete EVI along with our above bounds to refine our stability properties:
Lemma 6.2 (Refined Decay). Under the notation and assumptions of Lemma 6.1, if T < %, then
the following hold:
1. The energy is non-increasing:

A or Lt - -
O XE) + IXT - Xl 7 (1= 57 ) IVOA (KT < (XD,

2. The gradient norm decays exponentially:

IV, (XE = €27V (X )l
where
log(1+ A7(2 — L7)) >0
2T -
Proof. Let us first show that the energy is non-increasing along the iterates. From (5.2) with A > 0,
we obtain

(6.3) AL =

A2
(5 2) 17 = XEalle + 64, (X71) < 0 (X0) + (V08 (XD, X - X
Applying (3.7), this simplifies to

A
o (Xr) + 15 = Xo s + 2 (Ve (X I+ (Vo (X, Ve (X)) < o (X0).
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The result then follows from Lemma 6.1.
For the exponential decay of the gradient, we use A-convexity to see

(Vop (X7) = Vo (X7 1), X7 — X7 a)m = MXT — X7 |-
Applying (3.7), it follows that
T 2)\ T
IV, (XE = Vo (X7 )l + ZIXG = Xl
Then, using Lemma 6.1, along with A > 0 and the above display, we conclude. O
Lemma 6.3 (Refined Stability). Under the assumptions and notation of Lemma 6.2, we have
(6.4) 1X7 1 — X |l < e A7V (XT)| -
In addition, if N7 < T, we have the Stability bound

2
2 LT pj+1’pj) 2/\T THX]T"Fl_X;—HH T2
(65) Z s D) z% e TR < v (XD
J
Proof. Applying (3.7) along with Lemma 6.2, we obtain (6.4). To derive (6.5), we square (6.4) and
sum over all terms and use Lemma 2.2. O

To conclude this section, we refine the constants in Theorem 5.12 for A > 0. Since A, < A, ¢
remains A, p-convex. Applying Theorem 5.7 with A 1, > 0, we can estimate d,(t;t) using Gronwall’s
Inequality [AGS05, Lemma 4.1.8]. Indeed, we have the bound

1/2
(6.6) dry(T;T) < e™T <d2 (0;0) + sup /T eQATvLSd(s)ds> / +e AT /T e 5b(s)ds,
t€[0,T] 0
where
() i= 26T + 3G + 2(R] +RY) + Arn(D))? + (D)%), and  b(t) = A (D] + D).
Now let us estimate the integral terms:

Lemma 6.4. Under the notation and assumptions of Lemma 6.3, then the following estimates hold
for any T > 0:

T A
/ eQATthGtT dt <r-
0 )\T,L

(L 2M(T + 7)) - [V, (XTI,

4 2Ar Lt T 2 A 1 A 1 2A, LT # T\ (|2
; e mERIdEt < T S Z+§(T+T) +§€ " NIV ep, (Xo)l I

T,L

T2)\ A
e < ot 9o 5

/ Mrt(DTYdt < (T + 7)7 \W%o )l
0

Proof. Choose N € N to be the smallest integer such that 7' < N.
Step 1: fOT e Lt (DT)2dt.
Observe that

T Nt
/ ePAnLt(D7)2dt < / et (X, XT)dt =
0 0

2>\TLT*1 T T 2 2§ A LT
ZHX — Xillm et

In addition, the definition A, ;, implies that e?*nL7 — 1 < 2\7, so using the above bound with (6.5)
implies the desired bound.

Step 2: fOT ALt (DY dt.
The bound follows directly from Holder’s inequality and the bound from Step 1.
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Step 3: fOT e LtGT dt
We will use the notation a; from (5.20). Then as G7 > 0 because A > 0 from (3.8), we see that

T o N-1 (J+1)7 o 62)\7—,LT -1 N-1 i
(67) A e T’LtGZ—dt S Z (Oé] - Oé]+1) / e T’Ltdt - T Z (a‘] — OC]J,-I)@ J T,LT.
§=0 IJT T, =0

To control the sum, we observe that

N-1 N—1

Z(Oéj*ajJrl)er)\T’LT _ (ao _ aN€2NAT,LT>+Z aj+1(62(j+1))\7,L7’762j)\T,L7—) < agtag(eP ET—1)N.
Jj=0 J=0

In the last inequality we used Lemma 6.2. Then again the definition of A; ;, implies that AT 1 <
2A7, so we see that from (6.7)

r A
/ ALIGT AL < 7 -
0 A

" (14 20T + 7)) - V0 (55)

Step 4: fg MR dt
By using Lemma 5.8 and that A > 0, we have that

T T T 1 T 1
/ eZAT’LtRz < 4/ eQAT,LtGZ'dt o / 62)‘T’Lt(€7—(t) o 5)('])7;)2dt _ (I) + ([I).
0 0

T Jo

We can control (I) by using the error bound derived in Step 3. To control (IT), observe that

/ ( — ET(t)> ePnrtdr < 0.
ir 2

T

Hence, we see from Lemma 6.3

1 2
(D) < 5o PG XR) [ Pt < VR -
T

(N-1)T

2
< L v (x|

The bounds on (I) and (/1) allows us to conclude.
(]

By using (6.6), Lemma 6.3, and Lemma 6.4 along with a similar argument as in Theorem 5.12, we
obtain

Theorem 6.5 (Refined Error Estimates). Under the notation and assumptions of Lemma 6.2 and
Theorem 5.12, if A > 0 and 7 < 1/L, we have that

Wa(pr, p7) < [|X(1) = X[l < V3e 4 (|1d — XG |l + C(A t,7) - 7V (X)),

where we have

CN'()\,t’T) = 6>‘T*L‘T+ )\)\ '(t+7)_|_\/ A (1—}—2)\(t—|—7-))—}—)\(t—|—7')+€2)\T’LT
7,L

T,L

7. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments for our trapezoidal time discretization scheme
applied to the the energy functional U from Example 2.8. We will take x, to be the density of a
N(0,0%1d) random variable. When p = % Eé\le dx, is an empirical measure, the computations from
Example 2.8 implies

L N
(7.1) VwU(p, Xi) = VwF(p, Xi) + VV(Xi) + > VWX - X;).
j=1
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where

VwF(p, X;) =

N
1
N Z (f/((p * XU)(X’i)) + f/((p * XU)(Xj))> VXO'(Xi - Xj)'

j=1

This formulation is particularly convenient for numerical implementation, as both the energy U(p)
and its Wasserstein gradient Vw&(p) can be evaluated explicitly from the particle positions {X;} ;.
In practice, this allows for efficient computation of the energy and its gradients without any need for

grid-based interpolation or density estimation.

Moreover, push-forwards are especially simple in this particle representation: if p = % Zf\il ox;,
and T : RY — R? is a map, then

1 N
Ter = Zl O7(x;)-

Hence both the evaluation of £ and the application of transport maps can be implemented directly
at the level of the particle positions.
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FIGURE 1. Numerical results for the trapezoidal scheme with potentials (f,V,W) =
(0,]z|?, — 4 log(e? + |z[?)), where ¢ = 1072, N = 64, and 7 = 1/25. (a)—(b) show the
particle configurations at the beginning and end of the simulation; (c¢) displays the energy

and Wasserstein gradient norm over time; (d) reports the estimated time-step convergence
rate where Tref = 1/4096, while the other 7 € [1/1024,1/64].

Numerically, to obtain X, ; we employed the variational formulation from (3.1). The minimization
of (3.1) was carried out via gradient descent in the particle positions, using the explicit expression
for the gradient given in (7.1). In practice, the descent was initialized by an explicit Euler step
X7 — 7VwE(pl, XT) and the gradient descent was iterated until the L2(R% pg) norm of successive
iterates fell below a prescribed tolerance.

To estimate the numerical convergence rate, we compared the discrete particle configurations
obtained with time steps 7 and Trer at the same final time T" > 0, satisfying N7 = MTres = 1. The
corresponding error is given by || X7 — X" || f2(ra;y,)- These experiments also numerically confirm
Theorem 4.4, exhibiting the predicted O(72) convergence rate.
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FIGURE 2. Numerical results for the trapezoidal scheme with potentials (f,V, W)
(%1og(x + €),]z|?,0), where ¢ = 1072, ¢ = 1/10, N = 64, and 7
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1/100. (a)—(b) show

the particle configurations at the beginning and end of the simulation; (c) displays the energy
and Wasserstein gradient norm over time; (d) reports the estimated time—step convergence
rate where Trer = 0.5/4096, while the other 7 € [0.5/1024,0.5/64].
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