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Abstract. In this paper, we study higher-order-accurate-in-time minimizing movements schemes
for Wasserstein gradient flows. We introduce a novel accelerated second-order scheme, leveraging
the differential structure of the Wasserstein space in both Eulerian and Lagrangian coordinates.
For sufficiently smooth energy functionals, we show that our scheme provably achieves an optimal
quadratic convergence rate. Under the weaker assumptions of Wasserstein differentiability and
λ-displacement convexity (for any λ ∈ R), we show that our scheme still achieves a first-order
convergence rate and has strong numerical stability. In particular, we show that the energy is nearly
monotone in general, while when the energy is L-smooth and λ-displacement convex (with λ > 0),
we prove the energy is non-increasing and the norm of the Wasserstein gradient is exponentially
decreasing along the iterates. Taken together, our work provides the first fully rigorous proof
of accelerated second-order convergence rates for smooth functionals and shows that the scheme
performs no worse than the classical scheme JKO scheme for functionals that are λ-displacement
convex and Wasserstein differentiable.
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1. Introduction

Given an energy functional ϕ : P2(Rd) → R ∪ {+∞}, the continuity equation

(1.1)

∂tρ(t, x)−∇ ·
(
ρ(t, x)∇

(
δϕ
δµ

(
ρ(t, ·), x

)))
= 0 on (0,∞)× Rd,

ρ(0, ·) = ρ0(·) on Rd,

can be interpreted formally as the gradient flow of ϕ on the Wasserstein space (P2(Rd),W2). This
class of equations models various important physical phenomena such as fluid flow, heat transfer,
aggregation-diffusion, and crowd motion [Váz07, San15] to name a few. In general, these equations
are both stiff and non-linear making them challenging to solve numerically. Perhaps the most well-
known stable numerical method for solving these equations is the celebrated JKO scheme [JKO98], an
unconditionally energy stable variational scheme, well-known to be first-order-accurate-in-time with
respect to the time step τ > 0 [AGS05]. Recently, there has been a great deal of interest in formulating
new versions of the JKO scheme, which achieve higher order accuracy in time, while maintaining
favorable stability properties [LT17, MP19, Ash20, ZEG21, CCWW22, HEG23, GNT24, CMN24].
However, to the best of our knowledge, none of these methods to date have been able to rigorously
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prove a second (or higher) order convergence rate in any metric, even for smooth functionals, despite
promising numerical evidence. Indeed, the only rigorous rates that have appeared in the literature
for these accelerated methods are O(

√
τ), worse than the O(τ) rate of the simpler JKO scheme.

The goal of this manuscript is to remedy this situation. We provide a new energy stable scheme
that we rigorously demonstrate is second-order-in-time for smooth energy functionals and at worst
first-order-accurate-in-time for λ-displacement convex and Wasserstein differentiable functionals (see
Section 2 for the precise definition of Wasserstein differentiability and (1.10) for the main model
functionals that we consider).

To construct our scheme, we exploit both the Eulerian (Wasserstein) and Lagrangian L2 gradient
flow structures of the equation to construct a novel second-order-accurate-in-time numerical scheme
for solving (1.1). To motivate this Lagrangian L2 perspective, let us assume that the velocity field
v = −∇

( δϕ
δµ

)
is sufficiently regular, so that the solution ρ(t, x) can be expressed as the push-forward

of the initial data ρ0 ∈ P2(Rd) by the Lagrangian flow X(t, x), i.e.

(1.2) ρt(x) = (X(t, ·)#ρ0)(x).
where

(1.3)


d

dt
X(t, x) = −∇

[
δϕ

δµ
(X(t, ·)#ρ0, x)

]
on [0,∞),

X(0, x) = x,

As we will see below, the Lagrangian flow (1.3) is a gradient flow of the lifted energy functional
X 7→ ϕ#

ρ0(X) over the Hilbert space L2(Rd; ρ0) where

(1.4) ϕ#
ρ0(X) := ϕ(X#ρ0).

That is, if ∇ϕ#
ρ0(X) denotes the L2(Rd; ρ0) Fréchet derivative of the map X 7→ ϕ#

ρ0(X), then

(1.5)


d

dt
X(t, x) = −∇ϕ#

ρ0(X(t, x)) on [0,∞),

X(0, ·) = Id.
.

Although the lifted energy X 7→ ϕ#
ρ0(X) is a good deal more complicated than the original energy

ρ 7→ ϕ(ρ), the advantage of this perspective is that we can much more readily generalize high-order-
accurate numerical discretizations of Euclidean differential equations to the Hilbert space L2(Rd, ρ0),
rather than needing to search for their correct analogue over the Wasserstein space. From a theoretical
standpoint, it is often preferable to work with the lifted functional because its higher order derivatives
encode higher order geometric information such as geodesic convexity (see [GT19, Lemma 3.6] and
Theorem 2.13). In contrast, naively taking the Wasserstein gradient of an energy functional twice
yields only a partial Wasserstein Hessian. This partial Hessian does not capture the full geometric
information: for instance, the potential energy is linear, so its partial Hessian vanishes identically.
Indeed, as we will see in Remark 2.12, the second time derivative of the energy functional along
geodesics depend on both the partial Wasserstein Hessian and the spatial gradient of the Wasserstein
gradient.

To obtain a second-order-in-time discretization of (1.1), we apply the second order trapezoidal
finite difference scheme to (1.5). In particular, we consider

(1.6)

{
Xτ

n+1 ∈ argminξ∈L2(Rd;ρ0)

[
1
2

(
ϕ#
ρ0(ξ) + ⟨∇ϕ#

ρ0(X
τ
n), ξ⟩L2(Rd;ρ0)

)
+ 1

2τ ∥ξ −Xτ
n∥2L2(Rd;ρ0)

]
,

ρτn+1 := (Xτ
n+1)#ρ0,

where the initial condition Xτ
0 is prescribed. The optimizers Xτ

n+1 of (1.6) admits the following
trapezoidal finite difference scheme:

(1.7) Xτ
n+1 = Xτ

n − τ

2

(
∇ϕ#

ρ0(X
τ
n+1) +∇ϕ#

ρ0(X
τ
n)
)
.

We note that, unlike the JKO scheme, the trapezoidal update maps T τ
n+1 := Xτ

n+1 ◦ (Xτ
n)

−1 are not,
in general, optimal transport maps between ρτn and ρτn+1, since they need not be gradients of convex
functions.
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1.1. Background and previous results. We mentioned earlier, the Lagrangian flow (1.3) can also
be realized as a gradient flow in the Hilbert space L2(Rd; ρ0) of the lifted energy functional (1.4), which
was introduced in mean-field games. As shown in mean-field games [GT19, GM22, CD+18, CDLL19],
the convexity and differentiability properties of the lift ϕ#

ρ0 on L2 are closely related to notions of
convexity and differentiability of ϕ over W2. In particular, for a large class of probability measures
ρ0, the differentiability of ϕ in the Wasserstein sense at the measure ξ#ρ0 is equivalent to the Fréchet
differentiability of ϕ#

ρ0 at the function ξ (see [GT19, Corollary 3.22]). In this case, we have

∇ϕ#
ρ0(ξ) = ∇Wϕ(ξ#ρ0, ξ),

where ∇W denotes the Wasserstein gradient, which when ϕ and ρ are sufficiently smooth (see [AS07,
Lemma 4.12]), can be characterized as

∇Wϕ(ρ)(x) = ∇δϕ

δµ
(ρ, x).

Thus, formally, the Lagrangian flow (1.3) can be viewed as the gradient flow in the Hilbert space
L2(Rd; ρ0) described by (1.5). The implicit Euler discretization of (1.5) and its connection to
Wasserstein gradient flows (1.1) has been studied in [JMO17, CMW21, ESG05, ALS06]. However,
to obtain quantatitive error rates, [JMO17] had to assume uniform C5 bounds on the iterates.

Gradient flows on Hilbert spaces, such as (1.5), are well understood when ϕ#
ρ0 is λ-convex. The

general theory of gradient flows for λ-convex functionals in Hilbert spaces (see [ABS+21, Chapters
11 and 12]) ensures existence and uniqueness of strong Hilbert-Space-valued solutions to (1.5). In
this setting, solutions can be constructed via the implicit Euler scheme,

(1.8)

{
Xτ

n+1 = Xτ
n − τ ∇ϕ#

ρ0

(
Xτ

n+1

)
,

ρτn+1 :=
(
Xτ

n+1

)
#
ρ0,

which achieves the optimal convergence rate of O(τ), where τ is the time step size, when the initial
data lies in the subdifferential of ϕ#

ρ0 [AGS05]. The convexity of ϕ#
ρ0 over L2(Rd; ρ0) is closely related

to the (displacement) convexity of ϕ over W2. In particular, for the class of continuous energy
functionals ϕ, [GM22, Lemma 3.6] shows that λ-displacement convexity of ϕ in W2 is equivalent to
λ-convexity of its lift ϕ#

ρ0 in L2(Rd; ρ0). When one further assumes that ϕ is differentiable in the sense
of [GT19], this λ-convexity of the lifted functional ϕ#

ρ0 is also equivalent to ϕ being λ-convex along
generalized geodesics in W2(Rd), as shown in [Par24, Theorem 1.1]. In more general settings, where
ϕ may be discontinuous, one can still obtain poly-convexity of ϕ#

ρ0 from the displacement convexity
of ϕ [CMW21].

By the theory described above, one can construct solutions to (1.5) for continuous and λ-displacement
convex energy functionals using the implicit Euler scheme. We now examine its connection to the
JKO scheme. In [ALS06], under suitable conditions, it was shown that the iterates defined by (1.8)
coincide with those of the JKO scheme. Moreover, under some assumptions, the update map

T τ
n+1 := Xτ

n+1 ◦
(
Xτ

n

)−1

is the optimal transport map from ρτn to ρτn+1. In particular, composing both sides of the Lagrangian
coordinates of (1.8) with

(
Xτ

n

)−1 yields

T τ
n+1 = Id − τ∇ϕ#

ρτn
(T τ

n+1),

showing that the optimal transport map corresponds to a single implicit Euler step for the L2-gradient
flow

d

dt
X̃(t, x) = −∇ϕ#

ρτn
(X̃(t, x)),

with initial condition X̃(0, ·) = Id.
We now focus on higher-order schemes, i.e., schemes that formally converge faster than O(τ). A

key difficulty in extending higher-order schemes to dimensions d > 1 is that in Eulerian coordinates it
can be difficult to correctly approximate the Wasserstein space by a Hilbert space to greater than first
order accuracy, while in Lagrangian coordinates, the composition of flow map iterates Xτ

n+1 ◦ (Xτ
n)

−1
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is in general not an optimal transport map between ρτn and ρτn+1, creating new difficulties. Note
that the failure of Xτ

n+1 ◦ (Xτ
n)

−1 to be an optimal transport map is due to Brenier’s theorem,
which states that optimal transport maps must be gradients of convex functions, a structure not
naturally preserved by higher-order Lagrangian schemes in dimensions d > 1. Nonetheless, many
higher-order stable schemes for Wasserstein gradient flows have been proposed for (1.1) (see, e.g.,
[LT17, MP19, Ash20, ZEG21, CCWW22, HEG23, GNT24, CMN24]). However, as we noted earlier,
these approaches have so far only established convergence without quantitative rates, or at best, have
achieved a suboptimal O(

√
τ) convergence rate by extending the methods in [AGS05].

Our scheme (1.6) appears to be the first to identify smoothness conditions on the energy functional
that guarantee an O(τ2) convergence rate for both the Lagrangian coordinates and the probability
measure iterates. Moreover, to our knowledge, it is the first to leverage the differential structure of
W2 to derive error estimates for Wasserstein gradient flows. We expect this calculus-based framework
to extend naturally to higher-order schemes including explicit schemes. Although we only verify the
case p = 2 below, we expect that an O(τp) accurate (explicit or implicit) scheme for (1.1) can be
obtained by applying an O(τp) accurate finite difference scheme to (1.5). In addition, even for less
regular functionals, where such calculus based techniques do not apply, we prove our scheme (1.6)
still achieves the O(τ) convergence rate of the JKO scheme.

1.2. Main results. Our first result establishes an O(τ2) error rate for the scheme (1.6) under suitable
smoothness conditions on the lifted energy functional. Our strategy is to extend the classical finite-
dimensional proof of the O(τ2) convergence of the trapezoid scheme for ODEs on Rd to the infinite-
dimensional Hilbert space L2(Rd; ρ0). Consequently, our assumptions on convergence mirror those
in the finite-dimensional setting.

Assumption 1 (Smoothness Assumption). Let ρ0 ∈ P2(Rd) be given, and define the Hilbert space
H := L2(Rd; ρ0). We assume that the lifted energy functional

X 7→ ϕ#
ρ0(X)

belongs to C1,1(H;H). In addition, we assume that the unique strong solution X : [0,∞) → H of
(1.5) with X0 = Id satisfies

X ∈ C2,1
loc ([0,∞);H).

As our numerical Lagrangian flow, Xτ
n+1 arises from a finite difference scheme, we are able to

extend the classical finite-dimensional analysis of such schemes to our infinite-dimensional setting,
thereby obtaining:

Theorem 1.1 (O(τ2) Convergence: Theorem 4.4, Theorem 5.14, Theorem 5.15). Fix a terminal
time T > 0, ρ0 ∈ P2(Rd), and assume that the smoothness Assumption 1 holds. Define the Lipschitz
constants

L(ϕ) := sup
ξ1 ̸=ξ2∈H

∥∇ϕ#
ρ0(ξ1)−∇ϕ#

ρ0(ξ2)∥H
∥ξ1 − ξ2∥H

, L(T, Ẍ) := sup
t̸=s∈[0,T ]

∥Ẋt − Ẋs − (t− s)Ẍs∥H
|t− s|

.

Then, for any time step τ ≤ 1/L(ϕ) and integer n ∈ N such that nτ ≤ T , one has

W2(ρnτ , ρ
τ
n) ≤ ∥X(nτ)−Xτ

n∥H ≤ e2L(ϕ)T ∥Xτ
0 − Id∥H + 2

L(T, Ẍ)

L(ϕ)
(e2L(ϕ)T − 1) · τ2,

where ρτn and Xτ
n are defined by (1.6). Here, ρt := (X(t))#ρ0 is a weak solution of

(1.9)

{
∂tρ−∇ · (ρ∇Wϕ(ρ, x)) = 0 on (0,∞)× Rd

ρ(0, ·) = ρ0(·) on Rd
.

If instead one has X ∈ C2,α
loc ([0,∞);H) the convergence rates becomes O(τ1+α).

We now provide an example of an energy functional satisfying our assumptions. Consider the
functional (see Example 2.8, Example 2.16 , and Example 4.6)

(1.10) U(ρ) :=

ˆ
Rd

f
(
(ρ ⋆ χ)(x)

)
dρ(x) +

ˆ
Rd

V (x) dρ(x) +
1

2

ˆ
Rd

ˆ
Rd

W (x− y) dρ(x) dρ(y),
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where V,W ∈ C2,1
b (Rd), f ∈ C2,1

b (R), and χ ∈ C2,1
c (Rd), with W and η being even functions. Here, ⋆

denotes convolution. This functional satisfies the assumptions of Theorem 1.1 when ρ0 has no atoms
or when ρ = 1

N

∑N
j=1 δXj . The latter case is useful for numerical simulations as the energy and its

gradient will be fully discrete. Numerical simulations of this scheme for this energy functional can be
found in Section 7. These discretizations have proven very useful for blob-type methods for simulating
Wasserstein gradient flows c.f. [CCP19, DRR22, DRR23, BE23, CEHT23, CJT25, CEW24].

Even under weaker regularity assumptions on ϕ, namely, that ϕ is Wasserstein differentiable and
λ-displacement convex, we obtain an intermediate O(τ) convergence rate by adapting the Discrete
Evolution Variational Inequality (EVI) method from [AGS05]. For this convergence, we will need the
following weaker assumptions:

Assumption 2. We fix a measure ρ0 ∈ P2(Rd) and let H := L2(Rd; ρ0).

Given a functional ϕ : P2(Rd) → R, we assume that its lifted functional ϕ#
ρ0 : H → R, defined by (1.4)

is Fréchet differentiable over H and is λ-convex over H for some λ ∈ R Additionally, we assume that
the lifted energy functional is proper, i.e.,

inf
ξ∈L2(Rd;ρ0)

ϕ#
ρ0(ξ) > −∞.

We further assume that in (1.6) the time step parameter satisfies

λ/2 + 1/τ > 0.

Finally, we suppose that the initial iterates satisfy

lim
τ↓0

∥Xτ
0 − Id∥H = 0, sup

τ>0
∥∇ϕ#

ρ0(X
τ
0 )∥H < ∞.

Remark 1.2. We expect that the Fréchet differentiablity assumption can be weakened to just lower
semi-continuity of the lift, but we impose this condition to simplify some of our arguments.

Remark 1.3. Note that the condition of the lift being λ-convex is rather strong and different from a
functional being λ-displacement convex in the Wasserstein sense. In particular, the λ-convexity of the
lift does not hold for the internal energy functional ρ 7→

´
f(ρ) even when f is convex. Nonetheless, if

the energy is continuous with respect to the Wasserstein metric, then λ-convexity of the lifted energy
is equivalent to λ-convexity in the Wasserstein sense (see the next remark).

Remark 1.4 (Convexity and Differentiability Assumptions). Let ρ0 ∈ P2(Rd) be atomless and ϕ :
P2(Rd) → R be continuous. Then λ-displacement convexity (see Definition 2.11) is equivalent to the
λ-convexity of the lifted functional ϕ#

ρ0 (see Theorem 2.13 and [GM22]).
Furthermore, if ϕ ∈ C1(W2(Rd);R) (see Section 2 for a precise definition) satisfies suitable gradient
growth conditions (see Proposition 2.14), then the lifted functional ϕ#

ρ0 is Fréchet differentiable. In
this case, the gradient of the lifted functional is given by

∇ϕ#
ρ0(ξ)(x) = ∇Wϕ

(
ξ#ρ0, ξ(x)

)
.

These results can be useful for verifying the convexity and smoothness assumptions we require.

We will also frequently use the quantity

(1.11) λτ :=
1

2τ
log

(
1 + λτ

1− λτ

)
,

which satisfies λτ → λ as τ ↓ 0.

Theorem 1.5 (O(τ) Convergence: Theorem 5.12, Theorem 6.5, Theorem 5.14, Theorem 5.15).
Under the notation and assumptions of Assumption 2 one has
(1.12)

W2(ρ
τ
t , ρt) ≤ ∥X(t)−Xτ

t ∥H ≤


√
3∥Xτ

0 − Id∥H +
√
33
2 τ∥∇ϕ#

ρ0(X
τ
0 )∥H, if λ ≥ 0,

√
3e|λτ |t∥Xτ

0 − Id∥H +
√
3C(λτ , t, τ) · τe|λτ |t∥∇ϕ#

ρ0(X
τ
0 )∥2H, if λ < 0.
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Here, the lower-order term C(λτ , t, τ) is defined in (5.23), λτ is from (1.11), and Xτ
t := Xτ

n for
t ∈ [nτ, (n+ 1)τ) and ρτt := (Xτ

t )#ρ0 and ρt := (X(t))#ρ0, where X(t) is the unique strong solution
of (1.5).

Furthermore, if ∇ϕ#
ρ0 is L-smooth on H, i.e.,

sup
ξ1 ̸=ξ2∈H

∥∇ϕ#
ρ0(ξ1)−∇ϕ#

ρ0(ξ2)∥H
∥ξ1 − ξ2∥H

≤ L,

and if τ ≤ 1/L, then the error decays exponentially in time whenever λ > 0:

(1.13) W2(ρ
τ
t , ρt) ≤ ∥X(t)−Xτ

t ∥H ≤
√
3e−|λτ,L|t

(
∥Id −Xτ

0 ∥H + C̃(λ, t, τ) · τ∥∇ϕ#
ρ0(X

τ
0 )∥H

)
,

where C̃(λ, t, τ) is defined in Theorem 6.5 and λτ,L is given in Lemma 6.2.

Observe that both λτ and λτ,L converge to the optimal rate λ as τ → 0.
Our approach to Theorem 1.5 is based on the EVI characterization of λ-convex gradient flows. For

example, in Hilbert spaces [ABS+21], a curve x(t) solves the gradient flow of a λ-convex functional
f if and only if it satisfies the evolution variational inequality

d

dt

(
1

2
∥x(t)− y∥2

)
+

λ

2
∥x(t)− y∥2 + f(x(t)) ≤ f(y) for a.e. t ∈ (0,∞),

for all y in the domain of f . The key idea is to show that suitable interpolations of the numerical
Lagrangian flow Xτ

n satisfy an approximate EVI with an error term of order O(τ2). Then the O(τ)
convergence rate is obtained by using a version of Grönwall’s inequality from [AGS05].

The approximate EVI we derived for our trapezoid-rule method is in Theorem 5.5 and follows from
our Discrete EVI derived in Lemma 5.2. Deriving this discrete EVI with the correct O(τ2) error term
was a key technical challenge in our analysis. Compared to the implicit Euler and JKO schemes in
[AGS05], our scheme’s variational problem (1.6) included the termˆ

Rd

⟨∇ϕ#
ρτ0
(Xτ

n), ξ⟩dρ0(x).

To control this term we had to carefully use both the convexity properties of ϕ#
ρ0 and the trapezoid

scheme (1.7) (see Lemma 5.1).
Another difficulty in the trapezoidal rule setting, compared to the implicit Euler scheme, is the

lower bounds of ∥Xτ
n+1 − Xτ

n∥2H in terms of the gradient. In the implicit Euler case, this quantity
simplifies to τ2∥∇ϕ#

ρ0(X
τ
n+1)∥2H. However, in the trapezoidal rule case, it becomes

τ2

4

∥∥∥∇ϕ#
ρ0(X

τ
n+1) +∇ϕ#

ρ0(X
τ
n)
∥∥∥2
H
,

which prevents us from establishing a lower bound of the form ∥Xτ
n+1−Xτ

n∥2H ≥ Cτ2∥∇ϕ#
ρ0(X

τ
n+1)∥2H

without assuming that ∇ϕ#
ρ0 is sufficiently smooth. As a result, we were unable to recover exponentially

decaying constants in the error estimate (1.12) when λ > 0 without a smoothness assumption.
Beyond convergence rates, our scheme exhibits the following numerical stability properties:

Theorem 1.6 (Numerical Stability: Lemma 3.5, Lemma 3.6, Lemma 6.2). Under the notation and
assumptions of Assumption 2. Then the energy is almost decreasing, in the sense that

ϕ#
ρ0(X

τ
n+1)− ϕ#

ρ0(X
τ
n) ≤

τ

4

(
∥∇ϕ#

ρ0(X
τ
n)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H

)
.

Moreover, the gradient norm satisfies:

∥∇ϕ#
ρ0(X

τ
n+1)∥2H ≤ C(λ) · ∥∇ϕ#

ρ0(X
τ
n)∥2H,

where

C(λ) :=

{
1, if λ ≥ 0,

e2|λτ |τ , if λ < 0,
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and λτ is defined in (1.11). In particular, when λ ≥ 0, the gradient norm is non-increasing across
iterations.

Furthermore, if λ ≥ 0 and ∇ϕ#
ρ0 is L-Lipschitz, then for τ ≤ 1/L, the energy is non-increasing:

ϕ#
ρ0(X

τ
n+1) +

λ

2
||Xτ

n+1 −Xτ
n||H + τ

(
1− Lτ

2

)
∥∇ϕ#

ρ0(X
τ
n+1)∥2H ≤ ϕ#

ρ0(X
τ
n),

and the gradient norm decays exponentially:

∥∇ϕ#
ρ0(X

τ
n+1)∥2H ≤ e−2λτ,Lτ∥∇ϕ#

ρ0(X
τ
n)∥2H,

where λτ,L is defined in Lemma 6.2.

We also have obtained a classical stability result of our scheme in Lemma 3.7 and refined it in the
L-Lipschitz setting in Lemma 6.3.

The rest of the paper is structured as follows. In Section 2, we review the differential structure of
W2(Rd) and the differential and convexity properties of the lifted energy. In Section 3, we introduce
our second-order scheme and derive its stability properties. Section 4 uses calculus-based arguments
to show that the scheme converges at a second-order rate when the energy functional is sufficiently
smooth. In Section 5, we prove that for less regular energy functionals, the scheme still converges
at least linearly using the discrete EVI method introduced in [AGS05]. Then, in Section 6, we
show that when the energy is λ-displacement convex with λ > 0 and L-smooth, the scheme achieves
asymptotically sharp exponential decay rates in time for the gradient norm and the error derived
in Section 5. Finally in Section 7 we present numerical experiments of our scheme (1.6) using the
energy functional (1.10).
Acknowledgements. R.C. was partially supported by NSF grant DMS-2153254, DMS-2342349,
and the Dissertation Year Fellowship from the University of California, Los Angeles during this
research project. M.J. is partially supported supported by NSF grant DMS-2400641. R.C. would
also like to thank Professors Inwon Kim and Wilfrid Gangbo for helpful discussions, and also Professor
Dejan Slepčev for insightful conversations that led to Section 7. The authors thank Alpár Mészáros
for helpful discussions concerning the Wasserstein Hessian. A preliminary version of some of these
results appeared in the Ph.D. thesis of the first author [Chu25].

2. Preliminaries on the Differential Structure of W2

2.1. Notation. Given any measure µ, we define the Hilbert space

L2(Rd;µ) :=

{
ξ : Rd → Rd :

ˆ
Rd

|ξ(x)|2dµ(x) < ∞
}
,

where the inner product is given by

⟨ξ1, ξ2⟩L2(Rd;µ) :=

ˆ
Rd

⟨ξ1, ξ2⟩dµ(x),

where ⟨x, y⟩ denotes the dot product in Rd, and we let ||ξ||L2(Rd;µ) represent the norm on L2(Rd;µ)

induced by the L2(Rd;µ) inner product.

Let P2(Rd) be the space of probability measures on Rd with finite second moments.
We frequently consider the push-forward of probability measures under (Borel) measurable maps.

Given a measurable map ξ : Rd → Rd and a probability measure µ, the push-forward of µ by ξ is
defined as

ξ#µ(A) := µ(ξ−1(A)) for all Borel sets A ⊂ Rd.

If µ ∈ P2(Rd) and ξ ∈ L2(Rd;µ), thenˆ
Rd

|x|2d(ξ⃗#µ) =
ˆ
Rd

|ξ(x)|2dµ(x) < ∞.

Thus, we conclude that ξ#µ ∈ P2(Rd) whenever ξ ∈ L2(Rd;µ) and µ ∈ P2(Rd).
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We also frequently use the following composition rule for push-forwards: given any Borel measurable
maps ξ1, ξ2 : Rd → Rd,

(ξ1 ◦ ξ2)#µ = (ξ1)#
(
(ξ2)#µ

)
.

The Wasserstein-2 metric space W2(Rd) is given by (P2(Rd),W2), where the Wasserstein-2 metric
is

(2.1) W2(µ, ν) := inf
π∈Π[µ,ν]

¨
Rd×Rd

|x− y|2dπ(x, y),

where Π[µ, ν] denotes the set of probability measures on Rd × Rd with left marginal µ and right
marginal ν (see [Vil21, San15]).

We now establish some useful and well-known inequalities for this metric.

Lemma 2.1. Let ξ : Rd → Rd be L-Lipschitz, meaning that

|ξ(x)− ξ(y)| ≤ L|x− y|, ∀x, y ∈ Rd.

Then, for any (µ, ν) ∈ (P2(Rd))2, we have

W2(ξ#µ, ξ#ν) ≤ LW2(µ, ν).

Proof. This follows from the observation that if π ∈ Π[µ, ν], then (ξ, ξ)#π ∈ Π[ξ#µ, ξ#ν]. □

Lemma 2.2. Fix µ ∈ P2(Rd) and let ξ1, ξ2 ∈ L2(Rd;µ). Then,

W 2
2 ((ξ1)#µ, (ξ2)#µ) ≤

ˆ
Rd

|ξ1(x)− ξ2(x)|2 dµ(x) = ∥ξ1 − ξ2∥2L2(Rd;µ).

Proof. By assumption, both measures ξ1#µ and ξ2#µ belong to P2(Rd). The result then follows by
observing that the coupling (ξ1, ξ2)#µ belongs to Π[ξ1#µ, ξ2#µ], and applying the definition of the
Wasserstein-2 distance via (2.1). □

2.2. Derivatives on Wasserstein Space. We present two notions of derivatives for ϕ, following
the definitions in [CDLL19, Section 2]. The concept of the Wasserstein derivative used here coincides
with their notion of the intrinsic derivative.

Definition 2.3 (First Variation). Let ϕ : P2(Rd) → R. We say that ϕ ∈ C1(P2(Rd);R) if there exists
a function

δϕ

δµ
: P2(Rd)× Rd → R

satisfying the following conditions:
(1) The function δϕ

δµ is jointly continuous on W2(Rd)× Rd

(2) For any ν ∈ P2(Rd), the function x 7→ δϕ
δµ(ν, x) has at most quadratic growth.

(3) For any ρ, ρ′ ∈ P2(Rd), we have

(2.2) lim
ε→0

ϕ((1− ε)ρ+ ερ′)− ϕ(ρ)

ε
=

ˆ
Rd

δϕ

δµ
(ρ, x) d(ρ′ − ρ)(x).

The function δϕ
δµ is called the first variation of ϕ.

Since the first variation is defined only up to an additive constant, we impose the normalizationˆ
Rd

δϕ

δµ
(ρ, y)dρ(y) = 0, ∀ρ ∈ P2(Rd).

The first variation also satisfies the fundamental theorem of calculus property (see [CDLL19]):

(2.3) ϕ(ρ′)− ϕ(ρ) =

ˆ 1

0

ˆ
Rd

δϕ

δµ
((1− s)ρ+ sρ′, x)d(ρ′ − ρ)(x)ds.

Next, we define the Wasserstein gradient, which extends the classical gradient notion to the metric
space W2(Rd).

Definition 2.4 (Wasserstein gradient). We say that ϕ ∈ C1(W2(Rd);R) if:
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(1) ϕ ∈ C1(P2(Rd);R).
(2) The first variation δϕ

δµ(ρ, x) is differentiable in x for all ρ ∈ P2(Rd).
(3) The gradient ∇x

δϕ
δµ(ρ, x) is jointly continuous on W2(Rd)× Rd.

(4) For any ρ ∈ P2(Rd), the mapping y 7→ ∇x
δϕ
δµ(ρ, y) has at most quadratic growth.

The Wasserstein gradient of ϕ is defined as

∇Wϕ(ρ, x) := ∇x
δϕ

δµ
(ρ, x).

Bounds on the Wasserstein gradient provide Lipschitz control for ϕ. Indeed, in [CDLL19, Section
2], the dual formulation of the W1 metric was used to establish the following Lipschitz property.

Lemma 2.5 ([CDLL19]). Let ϕ ∈ C1(W2(Rd);Rd) and assume that

L := sup
(ρ,x)∈P2(Rd)×Rd

|∇Wϕ(ρ, x)| < ∞.

Then, for any µ, ν ∈ P2(Rd) and p ≥ 1, we have

(2.4) |ϕ(µ)− ϕ(ν)| ≤ LWp(µ, ν).

The definition of Wasserstein differentiability at a point µ ∈ P2(Rd) can be found in [GT19,
Definition 3.11]. When ϕ ∈ C1(W2(Rd);R) and its Wasserstein gradient ∇Wϕ satisfies certain mild
growth conditions, then ϕ is Wasserstein differentiable on P2(Rd) (see Proposition 2.14 and [GT19,
Corollary 3.22]). The growth condition bounds on ∇Wϕ are used to control the associated error
terms arising in the differentiation.

Next, we introduce the notion of partial Hessians in Wasserstein space that correspond to taking
the Wasserstein gradient twice:

Definition 2.6 (Partial Wasserstein Hessian). We say that ϕ ∈ C2(W2;R) if ϕ ∈ C1(W2;R) and,
for all x ∈ Rd, the mapping

ρ 7→ ∇Wϕ(ρ, x)

belongs to C1(W2;Rd), componentwise. Moreover, we assume that the partial Wasserstein Hessian

∇2
Wϕ : P2(Rd)× Rd × Rd → Rd×d,

defined as the Wasserstein gradient of ∇Wϕ(ρ, x) with respect to ρ, is jointly continuous on P2(Rd)×
Rd × Rd.

In particular, one has that

∇2
Wϕ(ρ, x, x′) =

[
∇x′

δ

δµ
∇x

δ

δµ
(ϕ)

]
(ρ, x, x′)

By Lemma 2.5, if ϕ ∈ C2(W2(Rd);R) and ∇2
Wϕ is uniformly bounded in P2(Rd)×Rd ×Rd, then

the Wasserstein gradient satisfies the Lipschitz property

(2.5) sup
µ,ν∈P2(Rd)

|∇Wϕ(µ, x)−∇Wϕ(ν, x)|
Wp(µ, ν)

≤ C,

for all p ≥ 1 where C > 0 is independent of x and p. We will see later that the partial Wasserstein
Hessian and spatial gradient of the Wasserstein gradient will allow us to control the gradient of the
lifted energy functional. See in particular Example 2.16.

Remark 2.7. A positive semidefinite partial Wasserstein Hessian does not guarantee displacement
convexity of an energy functional. The partial Hessian is obtained by applying the Wasserstein
gradient twice, and therefore does not coincide with the (full) Wasserstein Hessian considered in
[CG19, Definition 3.1]. By contrast, a positive semidefinite full Wasserstein Hessian does imply
displacement convexity (see [Par24, Lemma 4.1]). More concretely, the second time derivative of
the energy along Wasserstein geodesics depends not only on the partial Hessian ∇2

Wϕ, but also on
∇x∇Wϕ, as shown in (2.8).
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Now we show an energy example functional that is of class C2(W2(Rd);R). The functional is well
suited for numerical approximation, since both the energy and its gradients can be computed in a
fully discrete form when the probability measure is a finite sum of Dirac masses.

Example 2.8. Fix f ∈ C2
b (R), V ∈ C2

b (Rd), W ∈ C2
b (Rd), and χ ∈ C2

c (Rd). Further assume that W
and η are even. Define U : P2(Rd) → R by

U(ρ) :=

ˆ
Rd

f((ρ ⋆ χ)(x)) dρ(x) +

ˆ
Rd

V (x) dρ(x) +
1

2

ˆ
Rd

ˆ
Rd

W (x− y) dρ(x) dρ(y),

where ⋆ denotes convolution. Then, the following properties hold:
(1) U ∈ C2(W2(Rd);R).
(2) The Wasserstein gradient ∇WU(ρ, x) is uniformly Lipschitz in x, i.e.,

sup
ρ∈P2(Rd)

sup
x̸=y

|∇WU(ρ, x)−∇WU(ρ, y)|
|x− y|

< ∞.

(3) The partial Wasserstein Hessian ∇2
WU is uniformly bounded, i.e.,

sup
(ρ,x)∈P2(Rd)×Rd

|∇2
WU(ρ, x)| < ∞.

Proof. We first establish that U ∈ C1
(
W2(Rd);R

)
by computing its Wasserstein gradient. First we

compute its first variation. For the convolved internal energy, we let

F(ρ) :=

ˆ
Rd

f((ρ ⋆ χ)(x))dρ(x).

Fix ρ, ρ′ ∈ P2(Rd), and define σ := ρ′ − ρ. For ε ̸= 0, set ρε := ρ+ εσ. Then

lim
ε→0

F(ρε)−F(ρ)

ε
=

ˆ
Rd

f((ρ ⋆ χ)(x))dσ(x) +

ˆ
Rd

(
f ′(ρ ⋆ χ)ρ ⋆ χ

)
dσ(x)

Here we are using the notation for any g ∈ L∞(Rd)

((gρ) ⋆ χ) (x) :=

ˆ
Rd

χ(x− y)g(y)dρ(y)

Hence, by standard identities of the first variations in Wasserstein space for the potential and
interaction energy (see, e.g., [San17]), we conclude that

δU

δρ
(ρ, x) = f((ρ ⋆ χ)(x)) +

[
f ′ (ρ ⋆ χ) ρ ⋆ χ

]
(x) + V (x) + (W ⋆ ρ)(x).

Now to obtain the Wasserstein gradient, we differentiate in x to see that

(2.6) ∇WU(ρ, x) =

ˆ
Rd

[
f ′((ρ ∗ χ)(x))+ f ′((ρ ∗ χ)(z))]∇χ(x− z) dρ(z) +∇V (x) + (∇W ⋆ ρ)(x).

The joint continuity of ∇WU follows from the smoothness of f ′, ∇χ, ∇V , and ∇W along with the
observation that ρ 7→ (χ ⋆ ρ) and ρ 7→ (∇χ ⋆ ρ) are Lipschitz continuous on the W1(Rd) metric
uniformly in x due the dual problem formulation of the W1 metric.

Property (2) follows from the assumptions ∇2V,∇2W,∇2χ ∈ L∞(Rd), f ′ ∈ L∞(R), and the
compact support of χ.
For the partial Wasserstein Hessian, we first compute the first variation of (2.6) with x fixed. For
the internal energy term, we set ρχ := ρ ⋆ χ. Then

lim
ε→0

∇WF(ρε, x)−∇WF(ρ, x)

ε
=

ˆ
Rd

[
f ′(ρχ(x)) + f ′(ρχ(z))

]
∇χ(x− z) dσ(z)

+

¨
Rd×Rd

[
f ′′(ρχ(x))χ(x− v) + f ′′(ρχ(z))χ(z − v)

]
∇χ(x− z) dρ(z) dσ(v).

For the interaction energy term,

lim
ε→0

(∇W ⋆ ρε)(x)− (∇W ⋆ ρ)(x)

ε
=

ˆ
Rd

∇W (x− x′) dσ(x′).
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Hence, the first variation of the Wasserstein gradient is

δ∇WU

δµ
(ρ;x, x′) = ∇W (x− x′) +

[
f ′(ρχ(x)) + f ′(ρχ(x

′))
]
∇χ(x− x′)

+

ˆ
Rd

[
f ′′(ρχ(x))χ(x− x′) + f ′′(ρχ(z))χ(z − x′)

]
∇χ(x− z) dρ(z).

Differentiating in x′ gives the (i, j)-th entry of the partial Wasserstein Hessian:

−[∇2
WU ]i,j(ρ, x, x

′) = [∇2W (x− x′)]i,j

+

ˆ
Rd

[
f ′′(ρχ(z)) ∂jχ(z − x′) + f ′′(ρχ(x)) ∂jχ(x− x′)

]
∂iχ(x− z) dρ(z)

+
[
f ′(ρχ(x)) + f ′(ρχ(x

′))
]
∂2
i,jχ(x− x′)− f ′′(ρχ(x

′)) ∂iχ(x− x′) (ρ ∗ ∂jχ)(x′).

So to check Property (2), it suffices to check joint continuity of ∇2
WU . This follows from the

smoothness of χ, W , and f ′′ Property (3) follows from the boundedness of all the first and second
derivative terms. □

2.3. Convexity and Differentiability of the Lifted Functional. In this section, we study the
differential and convexity properties of the lifted functionals ϕ#

µ : L2(Rd;µ) → R arising in Mean
Field Games. The results of [GM22, GT19, CD+18] establish that the convexity and differentiability
of ϕ in the Wasserstein space W2 are closely linked to the convexity and differentiability of ϕ#

µ on
L2(Rd;µ).

Definition 2.9 (Lifted Energy Functional). Let ϕ : P2(Rd) → R and µ ∈ P2(Rd). The lift of ϕ by
µ is the functional ϕ#

µ : L2(Rd;µ) → R defined by

ϕ#
µ (ξ) := ϕ(ξ#µ).

Furthermore, if ϕ#
µ is Fréchet differentiable at ξ ∈ L2(Rd;µ), we denote its Fréchet derivative in

L2(Rd;µ) by ∇ϕ#
µ .

We begin by stating the connection between convexity ϕ#
µ and ϕ. We first recall the standard

definition of λ-convexity for functions over Hilbert spaces.

Definition 2.10 (Flat Convexity). Given any µ ∈ P2(Rd), we say that ϕ#
µ : L2(Rd;µ) → R, as

defined in Definition 2.9, is λ-convex if

ϕ#
µ ((1− t)ξ1 + tξ2) ≤ (1− t)ϕ#

µ (ξ1) + tϕ#
µ (ξ2)−

λ

2
t(1− t)∥ξ1 − ξ2∥2L2(Rd;µ)

for all ξ1, ξ2 ∈ L2(Rd;µ) and t ∈ [0, 1].

Let us also recall the notion of displacement convexity.

Definition 2.11 (Displacement Convexity). A functional ϕ : P2(Rd) → R is said to be λ-displacement
convex if, for any µ, ν ∈ P2(Rd) and any constant-speed geodesic (γt)t∈[0,1] with γ0 = µ and γ1 = ν,
we have

ϕ(γt) ≤ (1− t)ϕ(µ) + tϕ(ν)− λ

2
t(1− t)W 2

2 (µ, ν), ∀t ∈ [0, 1].

Now we formally derive the connection between the partial Wasserstein Hessian and displacement
convexity:

Remark 2.12 (Displacement Convexity and Wasserstein Derivatives). Let µ ∈ P2(Rd) be absolutely
continuous with respect to the Lebesgue measure. Fix ν ∈ P2(Rd), and let T denote the optimal
transport map from µ to ν. Then the constant-speed geodesic (γt)t∈[0,1] from µ to ν is given by

γt :=
(
(1− t)Id + tT

)
#
µ.
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Assume the energy functional ϕ : P2(Rd) → R is sufficiently smooth. Then, denoting the velocity
field by v(x) := T (x)−x and Tt(x) = (1− t)x+ tT (x), we have the following expressions for the first
and second derivatives of ϕ along the geodesic:

(2.7)
d

dt
ϕ(γt) =

ˆ
Rd

⟨∇Wϕ(γt, Tt(x)), v(x)⟩ dµ(x),

d2

dt2
ϕ(γt) =

ˆ
Rd

〈
∇x∇Wϕ(γt, Tt(x)) v(x), v(x)

〉
dµ(x)

+

¨
Rd×Rd

〈
∇2

Wϕ(γt, Tt(x), Tt(z)) v(z), v(x)
〉
dµ(z) dµ(x).(2.8)

Observe from (2.8) that if the operator norm of ∇x∇Wϕ(ρ, x, z) and ∇2
Wϕ(ρ, x, z) are uniformly

bounded by C, then ϕ is −2C displacement convex and 2C displacement concave when the initial
measure is absolutely continuous. Indeed, by Cauchy-Schwarz∣∣∣∣ d2dt2ϕ(γt)

∣∣∣∣ ≤ C

ˆ
Rd

|v(x)|2dµ(x) + C

¨
Rd×Rd

|v(z)| · |v(x)|dµ(z)dµ(x).

So as W2(µ, ν) = ||v(x)||L2(Rd;µ), we conclude from Jensen’s inequality that∣∣∣∣ d2dt2ϕ(γt)
∣∣∣∣ ≤ CW 2

2 (µ, ν) + C||v(x)||2L1(Rd;µ) ≤ 2CW 2
2 (µ, ν).

We now focus on formally computing these derivatives. To compute the first time derivative, we use
(2.3) to see that

ϕ(γt+h)− ϕ(γt) ≈
ˆ
Rd

δϕ

δµ
(γt, x)d(γt+h − γt)(x) =

ˆ
Rd

(
δϕ

δµ
(γt, Tt+h)−

δϕ

δµ
(γt, Tt)

)
dµ.

Then by Taylor expanding in the spatial coordinate, we obtain that

≈ h

ˆ
Rd

⟨∇Wϕ(γt, Tt(x)), v(x)⟩dµ(x),

which shows the equality of the first time derivative.
To see the second time derivative equality, let F (γt) :=

d
dtϕ(γt), then by (2.7)

F (γt+h)− F (γt) = (I) + (II)

=

ˆ
Rd

⟨∇Wϕ(γt+h, Tt+h(x))−∇Wϕ(γt+h, Tt(x)), v(x)⟩dµ(x)+
ˆ
Rd

⟨∇Wϕ(γt+h, Tt(x))−∇Wϕ(γt, Tt(x)), v(x)⟩dµ(x).

Then observe that by Taylor expanding in the spatial coordinate

(I) ≈ h

ˆ
Rd

⟨∇x∇Wϕ(γt, Tt(x))v(x), v(x)⟩dµ(x)

and by using (2.3)

(II) ≈
¨

Rd×Rd

⟨δ∇Wϕ

δµ
(γt, Tt(x), z), v(x)⟩d(γt+h − γt)(z)dµ(x)

=

¨
Rd×Rd

⟨δ∇Wϕ

δµ
(γt, Tt(x), Tt+h(z))−

δ∇Wϕ

δµ
(γt, Tt(x), Tt(z)), v(x)⟩dµ(z)dµ(x),

so by Taylor expanding in the last spatial argument, we see that

≈ h

¨
Rd×Rd

⟨∇2
Wϕ(γt, Tt(x), Tt(z))v(z), v(x)⟩dµ(z)dµ(x).

This implies the formula for the second time derivative.

The notion of geodesic convexity of ϕ and convexity of the lift ϕ#
µ are equivalent when ϕ is

continuous, as established in [GM22].

Theorem 2.13. [GM22, Lemma 3.6] Let ϕ : P2(Rd) → R be continuous and assume that µ ∈ P2(Rd)
has no atoms. Then the following statements are equivalent:

(1) ϕ is λ-displacement convex on P2(Rd).
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(2) ϕ#
µ is λ-convex on L2(Rd;µ).

Proof. Let m be the uniform probability measure on [0, 1]d. The result was proven in [GM22, Lemma
3.6] for m. To extend this to a general µ ∈ P2(Rd) with no atoms, we claim that ϕ#

m is λ-convex on
L2(Rd;m) if and only if ϕ#

µ is λ-convex on L2(Rd;µ).

We first show that λ-convexity of ϕ#
µ implies λ-convexity of ϕ#

m. Since µ ∈ P2(Rd) is atomless and
Rd is a Polish space, there exists a measurable map T such that T#µ = m (see [CD+18, Page 379]).
Because m ∈ P2(Rd), we have that T ∈ L2(Rd;µ). For i ∈ {1, 2}, fix ξi ∈ L2(Rd;m) and note that
ξi ◦ T ∈ L2(Rd;µ). Since ϕ#

µ is λ-convex, we obtain

ϕ#
µ

(
(1− t)ξ1 ◦ T + tξ2 ◦ T

)
≤ (1− t)ϕ#

µ (ξ1 ◦ T ) + tϕ#
µ (ξ2 ◦ T )−

λ

2
t(1− t)∥ξ1 ◦ T − ξ2 ◦ T∥2L2(Rd;µ).

Since T#µ = m, this simplifies to

ϕ#
m

(
(1− t)ξ1 + tξ2

)
≤ (1− t)ϕ#

m(ξ1) + tϕ#
m(ξ2)−

λ

2
t(1− t)∥ξ1 − ξ2∥2L2(Rd;m),

which is precisely the definition of λ-convexity for ϕ#
m.

The reverse implication follows by the same argument with the roles of µ and m interchanged. □

Now we focus on derivatives of ϕ#
µ . Under mild growth conditions on ∇Wϕ, the lift is differentiable

on L2(Rd;µ):

Proposition 2.14. [CD+18, Proposition 5.48] Assume that µ ∈ P2(Rd) have no atoms. Suppose
ϕ ∈ C1(W2(Rd);R) is such that for any bounded K ⊂ P2(Rd)

(1) x 7→ ∇Wϕ(ρ, x) has at most linear growth, uniformly for ρ ∈ K.
(2) x 7→ δϕ

δµ(ρ, x) has at most quadratic growth, uniformly for ρ ∈ K.

Then the lift ϕ#
µ is Fréchet differentiable on L2(Rd;µ), with

∇ϕ#
µ (ξ)(x) = ∇Wϕ(ξ#µ, ξ(x)) µ almost everywhere.

Proof. We apply [CD+18, Proposition 5.48] to the atom-less probability space (Rd,B(Rd), µ), using
the fact that for this probability space, the law of a random variable X is given by X#µ. □

In [GT19, Corollary 3.22] the Fréchet differentiability of the lift at ξ is shown to be equivalent to
the Wasserstein differentiability of ϕ at ξ#µ. In this case, we have that

∇ϕ#
µ (ξ)(x) = ∇Wϕ(ξ#µ, ξ(x)) µ almost everywhere.

We refer to [GT19] for the general definition of the Wasserstein gradient in terms of the sub and
super differential of ϕ.

Now we link notions of C1,1 of ϕ with its lift.

Definition 2.15 (C1,α(X;X) Functions). Let X be a Hilbert space and α ∈ (0, 1]. A functional
u : X → R is said to belong to the class C1,α(X;X) if it is Fréchet differentiable everywhere, and
there exists a constant C > 0 such that for all x, y ∈ X,∥∥∇u(x)−∇u(y)

∥∥
X

≤ C
∥∥x− y

∥∥α
X
.

We will say u ∈ C1,α
b (X;X) if u ∈ C1,α(X;X) and

sup
x∈X

|u(x)|+ |∇u(x)| < ∞.

Example 2.16. Under the notation and assumptions of Example 2.8, if µ ∈ P2(Rd) is atomless,
then the lifted functional U#

µ belongs to C1,1(Hµ;Hµ) for Hµ := L2(Rd;µ).
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Proof. By Proposition 2.14, we have that

∇U#
µ (ξ) = ∇WU(ξ#µ, ξ).

Hence, for ξi ∈ Hµ, the triangle inequality implies

||∇U#
µ (ξ1)−∇U#

µ (ξ2)||Hµ ≤
||∇WU((ξ1)#µ, ξ1)−∇WU((ξ1)#µ, ξ2)||Hµ + ||∇WU((ξ1)#µ, ξ2)−∇WU((ξ2)#µ, ξ2)||Hµ .

Now by properties (2) and (3) of Example 2.8, there exists a C > 0 such that

≤ C(||ξ1 − ξ2||Hµ +W2((ξ1)#µ, (ξ2)#µ)) ≤ 2C||ξ1 − ξ2||Hµ .

□

3. The Lagrangian Trapezoidal Scheme: Definition and Numerical Stability

In this section, we define a higher-order implicit method for the gradient flow of ϕ and establish
stability properties of the energy functional and its Wasserstein gradient. Our scheme corresponds
to the implicit trapezoidal rule applied to the Lagrangian Flow (1.5). We begin by defining the
variational problem associated with the scheme and then prove its well-posedness.

Definition 3.1 (Lagrangian Trapezoidal Scheme). Fix a reference measure ρ0 ∈ P2(Rd) and assume
that ϕ#

ρ0 is Fréchet differentiable on L2(Rd; ρ0). Fix a time step τ > 0 and an initial condition
Xτ

0 ∈ L2(Rd; ρ0). Then, for n ≥ 0, define the discrete Lagrangian flows Xτ
n+1 via:

(3.1) Xτ
n+1 ∈ argmin

ξ∈L2(Rd;ρ0)

{
1

2
ϕ#
ρ0(ξ) +

1

2

ˆ
Rd

⟨∇ϕ#
ρ0(X

τ
n)(x), ξ(x)⟩ dρ0(x) +

1

2τ
∥ξ −Xτ

n∥2L2(Rd;ρ0)

}
.

Finally, define the discrete trapezoidal rule solutions as the measures

ρτn := (Xτ
n)#ρ0.

Now, under appropriate assumptions on ϕ, we show that the scheme is well-defined for sufficiently
small τ .

Lemma 3.2 (Existence and Uniqueness of the Minimizer). Given a µ ∈ P2(Rd), we assume that ϕ#
µ

is Fréchet differentiable on L2(Rd;µ). We further assume that ϕ#
µ is λ-convex on L2(Rd;µ) for some

λ ∈ R. Further, let τ > 0 satisfy (λ/2 + 1/τ) > 0 and fix an v ∈ L2(Rd;µ). Define the operator
Φτ,µ,v : L2(Rd;µ) → R as

Φτ,µ,v(ξ) :=
1

2

(
ϕ#
µ (ξ) +

ˆ
Rd

⟨∇ϕ#
µ (v(x)), ξ(x)⟩ dµ(x)

)
+

1

2τ
∥ξ − v∥2L2(Rd;µ).

Additionally, assume that

(3.2) ∥∇ϕ#
µ (v)(x)∥2L2(Rd;µ) < ∞,

and that the energy functional ϕ is proper, i.e., infµ∈P2(Rd) ϕ(µ) > −∞. Then, there exists a unique
minimizer of Φτ,µ,η in L2(Rd;µ).

Proof. From our assumptions it follows that Φτ,µ,v(ξ) is (λ/2+1/τ)-convex in L2(Rd;µ), ensuring at
most one minimizer.

The existence of a minimizer follows from the continuity and convexity of Φτ,µ,v(ξ). Define the
constant

β := inf
ξ∈L2(Rd;µ)

Φτ,µ,v(ξ) > −∞,

where the lower bound holds due to (3.2) and the properness of ϕ.
Now, consider a minimizing sequence {ξn} for Φτ,µ,v. We claim that the (λ/2 + 1/τ)-convexity of

Φτ,µ,v implies that {ξn} is a Cauchy sequence in L2(Rd;µ). Defining the geodesic γ(t) := (1−t)ξn+tξm
implies from convexity that

β ≤ Φτ,µ,v

(
γ

(
1

2

))
≤ 1

2
Φτ,µ,v(ξn) +

1

2
Φτ,µ,v(ξm)− 1

8
(λ/2 + 1/τ)︸ ︷︷ ︸

>0

∥ξn − ξm∥2L2(Rd;µ).



ACCELERATED WASSERSTEIN GRADIENT FLOWS 15

Since {ξn} is a minimizing sequence, we have Φτ,µ,v(ξn) → β. This implies {ξn} is a Cauchy sequence,
as ∥ξn − ξm∥2

L2(Rd;µ)
must tend to 0 as n,m → ∞. The continuity of Φτ,µ,v ensures that the limit of

ξn in L2(Rd;µ) is the unique minimizer of Φτ,µ,v. □

Now, we characterize the minimizer of Φτ,µ,v.

Lemma 3.3. Under the same notation and assumptions as Lemma 3.2, the unique minimizer ξ∗ of
Φτ,µ,v is the unique solution over L2(Rd;µ) to the implicit equation:

ξ∗(x) = η(x)− τ

2

(
∇ϕ#

µ (ξ
∗)(x) +∇ϕ#

µ (v)(x)
)
.

Proof. Since Φτ,µ,v is strictly convex and Fréchet differentiable, its unique minimizer is also its unique
critical point. The implicit equation relationship then follows from

∇Φτ,µ,v(ξ) =
1

2

(
∇ϕ#

µ (ξ) +∇ϕ#
µ (v)

)
+

1

τ
(ξ − v).

□

Next, we will derive a useful estimate on the gradient of the minimizer of Φτ,µ,η that ensures the
gradient norm is bounded along our trapezoid iterates.

Lemma 3.4 (Gradient Estimate). Under the assumptions and notation of Lemma 3.2, define

C(λ, τ) :=

{
1, λ ≥ 0,

e2|λτ |τ , λ < 0,
where λτ :=

1

2τ
log

(
1 + λτ

1− λτ

)
.

Then the unique minimizer ξ∗ ∈ L2(Rd;µ) of Φτ,µ,v satisfies

∥∇ϕ#
µ (ξ

∗)∥2L2(Rd;µ) ≤ C(λ, τ)∥∇ϕ#
µ (v)∥2L2(Rd;µ).

Proof. By λ-convexity, we have that for any η ∈ L2(Rd;µ)

⟨∇ϕ#
µ (ξ

∗)−∇ϕ#
µ (v), ξ

∗ − v⟩L2(Rd;µ) ≥ λ∥ξ∗ − v∥2L2(Rd;µ).

Using Lemma 3.3, we have that the above expression is

(3.3)
τ

2

(
∥∇ϕ#

µ (v)∥2L2(Rd;µ) − ∥∇ϕ#
µ (ξ

∗)∥2L2(Rd;µ)

)
≥ λ∥ξ∗ − v∥2L2(Rd;µ).

This implies the claim for λ ≥ 0.
Now, consider the case when λ < 0. Applying Lemma 3.3 to (3.3), we express λ∥ξ∗ − v∥2

L2(Rd;µ)
as

(3.4) λ
τ2

4

(
∥∇ϕ#

µ (v)∥2L2(Rd;µ) + ∥∇ϕ#
µ (ξ

∗)∥2L2(Rd;µ) + 2⟨∇ϕ#
µ (v),∇ϕ#

µ (ξ
∗)⟩L2(Rd;µ)

)
.

Since λ < 0, we apply Cauchy-Schwarz and the inequality ab ≤ a2

2 + b2

2 to obtain

(3.5) λ∥ξ∗ − v∥2L2(Rd;µ) ≥ λ
τ2

2

(
∥∇ϕ#

µ (v)∥2L2(Rd;µ) + ∥∇ϕ#
µ (ξ)∥2L2(Rd;µ)

)
.

Thus, from (3.3), we obtain the desired inequality of

∥∇ϕ#
µ (v)∥2L2(Rd;µ) ≥

(1 + λτ)

(1− λτ)
∥∇ϕ#

µ (ξ
∗)∥2L2(Rd;µ).

□

Now we focus on properties of our scheme (Definition 3.1). We recall the following quantity, which
will be frequently used

(3.6) C(λ, τ) :=

{
1, λ ≥ 0,

e2|λτ |τ , λ < 0,
= max{1, e2λτ τ} where λτ :=

1

2τ
log

(
1 + λτ

1− λτ

)
.

Now Assumption 2, Lemmas 3.2, 3.3, and 3.4 implies the following for our trapezoid scheme:
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Theorem 3.5 (Trapezoid Rule and gradient Estimate). Under Assumption 2 and using its notation,
there exists a unique minimizer in H of (3.1) satisfying, for ρ0-a.e. x,

(3.7) Xτ
n+1(x) = Xτ

n(x)−
τ

2

(
∇ϕ#

ρ0(X
τ
n+1)(x) +∇ϕ#

ρ0(X
τ
n)(x)

)
.

Additionally, the lifted gradient along the iterates satisfies the estimate:

(3.8) ∥∇ϕ#
ρ0(X

τ
n+1)∥2H ≤ C(λ, τ) · ∥∇ϕ#

ρ0(X
τ
n)∥2H.

Beyond the gradient estimate (3.8), we establish additional stability properties.

Lemma 3.6 (Energy is Almost Decreasing). Under Assumption 2 and using its notation, with Xτ
n

and ρτn defined as in Definition 3.1, we have the following estimate:

(3.9) ϕ#
ρ0(X

τ
n+1)− ϕ#

ρ0(X
τ
n) ≤

τ

4

(
∥∇ϕ#

ρ0(X
τ
n)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H

)
.

Proof. Using the competitor Xτ
n in (3.1), we obtain:

(3.10) ϕ#
ρ0(X

τ
n+1)− ϕ#

ρ0(X
τ
n) ≤ ⟨∇ϕ#

ρ0(X
τ
n), X

τ
n −Xτ

n+1⟩H − 1

τ
∥Xτ

n+1 −Xτ
n∥2H.

Applying equation (3.7), the right-hand side simplifies to:

⟨∇ϕ#
ρ0
(Xτ

n), X
τ
n−Xτ

n+1⟩H−
1

τ
∥Xτ

n+1−Xτ
n∥2H =

τ

2

(
∥∇ϕ#

ρ0
(Xτ

n)∥2H + ⟨∇ϕ#
ρ0
(Xτ

n),∇ϕ#
ρ0
(Xτ

n+1)⟩H
)
−1

τ
∥Xτ

n+1−Xτ
n∥2H.

Using Theorem 3.5 on the last term, we find that the above expression further simplifies to:

⟨∇ϕ#
ρ0(X

τ
n), X

τ
n −Xτ

n+1⟩H − 1

τ
∥Xτ

n+1 −Xτ
n∥2H =

τ

4

(
∥∇ϕ#

ρ0(X
τ
n)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H

)
.

Using the above display in (3.10) implies (3.9). □

To conclude this section, we establish a stability estimate similar to the classical one for the JKO
scheme, along with a uniform Lipschitz time estimate for the numerical solutions.

Lemma 3.7 (Stability Estimate). Under Assumption 2 and using its notation, with Xτ
n and ρτn

defined as in Definition 3.1, we have the following estimate for any N with Nτ ≤ T :

(3.11)
N∑
j=0

W 2
2 (ρ

τ
j , ρ

τ
j+1)

τ
≤

N∑
j=0

∥Xτ
j+1 −Xτ

j ∥2H
τ

≤ T · C̃(λ, τ, T ) · ∥∇ϕ#
ρ0(X

τ
0 )∥2H.

Also for any n,m ∈ N with n,m ≤ N , we have the Lipschitz in time estimate:

(3.12) W2(ρ
τ
n, ρ

τ
m) ≤ ∥Xτ

n −Xτ
m∥H ≤ τ · |n−m| ·

√
C̃(λ, τ, T ) · ∥∇ϕ#

ρ0(X
τ
0 )∥H.

where
C̃(λ, τ, T ) = max{1, e−2λτT }.

Proof. First, observe that for any n,m ∈ N:

W 2
2 (ρ

τ
n, ρ

τ
m) = W 2

2 ((X
τ
n)#ρ0, (X

τ
m)#ρ0) ≤ ∥Xτ

n −Xτ
m∥2H,

where the final inequality follows from Lemma 2.2. Thus, it suffices to show the bound on Xτ
n.

For (3.11), we apply Theorem 3.5 to obtain:

∥Xτ
j+1 −Xτ

j ∥2H =
τ2

4
∥∇ϕ#

ρ0(X
τ
j+1) +∇ϕ#

ρ0(X
τ
j )∥2H.

By expanding out the square and applying Cauchy-Schwarz, we see that

∥Xτ
j+1 −Xτ

j ∥2H ≤ τ2

2

(
∥∇ϕ#

ρ0(X
τ
j+1)∥2H + ∥∇ϕ#

ρ0(X
τ
j )∥2H

)
.

Then, applying the gradient estimate in Theorem 3.5, we obtain:

∥Xτ
j+1 −Xτ

j ∥2H ≤ τ2C̃(λ, τ, T )∥∇ϕ#
ρ0(X

τ
0 )∥2H.

By summing, we obtain the bound (3.11).
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To obtain (3.12), observe that for n ≥ m the implicit equation in Theorem 3.5 implies:

Xτ
n −Xτ

m =

n−1∑
j=m

(Xτ
j+1 −Xτ

j ) = −τ

2

n−1∑
j=m

(
∇ϕ#

ρ0(X
τ
j+1) +∇ϕ#

ρ0(X
τ
j )
)
.

Using Theorem 3.5, we conclude:

∥Xτ
n −Xτ

m∥H ≤ |n−m| · τ ·
√
C̃(λ, τ, T ) · ∥∇ϕ#

ρ0(X
τ
0 )∥H.

□

4. O(τ2) Convergence via Differential Methods

We now establish the higher-order convergence of the Lagrangian Trapezoidal Scheme under the
assumption that both ϕ and the limiting velocity field are sufficiently smooth by extending the finite
dimensional proofs to H. First we begin by establishing existence of (1.5).

Lemma 4.1. Assume that ϕ#
ρ0 ∈ C1,1

b (H;H). Then for any η ∈ H, there exists a unique map
X ∈ L2

loc([0,∞)× Rd; ρ0) such that{
Ẋ(t) = −∇ϕ#

ρ0(X(t)) on [0,∞),

X(0) = η.

Proof. This follows from a Banach’s Fixed Point theorem argument because ϕ#
ρ0 ∈ C1,1

b (H;H). □

To ensure the initial measure is ρ0, we will often take as initial data η = Id ∈ H. In addition, to
ensure higher order convergence of our trapezoid scheme, we will also need to make a C2,α([0, T ];H)
assumption on the Lagrangian flow.

Definition 4.2. Let T > 0, α ∈ (0, 1], and X be a Hilbert space. A function u : [0, T ] → X belongs
to C1,α([0, T ];X) if it is Fréchet differentiable and there exists a constant C > 0 such that its Fréchet
derivative u̇ : [0, T ] → X satisfies

(4.1) ∥u(t+ h)− u(t)− hu̇(t)∥X ≤ C|h|1+α, ∀ 0 ≤ t, t+ h ≤ T.

We say u ∈ C1,α
loc ([0,∞);X) if u ∈ C1,α([0, T ];X) for every T > 0.

Assumption 3 (Higher-Order Convergence). Fix ρ0 ∈ P2(Rd) and define H := L2(Rd; ρ0). Assume
ϕ#
ρ0 ∈ C1,1

b (H;H), and define the Lipschitz constant of its gradient by

L(ϕ) := sup
ξ1 ̸=ξ2∈H

∥∇ϕ#
ρ0(ξ1)−∇ϕ#

ρ0(ξ2)∥H
∥ξ1 − ξ2∥H

< ∞.

Let X ∈ L2
loc([0,∞) × Rd; ρ0) be the unique solution to (1.5). We further assume there exists an

α ∈ (0, 1] such that Ẋ(t, ·) ∈ C1,α
loc ([0,∞);H). For each T > 0, define

(4.2) Lα(T, Ẍ) := sup
t̸=s∈[0,T ]

∥Ẋt − Ẋs − (t− s)Ẍs∥H
|t− s|α

< ∞.

We begin by extending the trapezoidal quadrature rule to the Hilbert space H.

Lemma 4.3. Fix T > 0, ρ0 ∈ P2(Rd), and suppose u ∈ C1,α([0, T ];H) for some α ∈ (0, 1]. Let L be
the smallest constant for which u satisfies (4.1). Then, for any 0 ≤ a ≤ b ≤ T , we have

(4.3)
∥∥∥∥b− a

2
(u(b, x) + u(a, x))−

ˆ b

a
u(s, x) ds

∥∥∥∥
H
≤ 2L|b− a|2+α.

Proof. We first observe that Jensen’s inequality and Fubini’s theorem imply for any f

(4.4)
∥∥∥∥ˆ b

a
f(t, x) dt

∥∥∥∥2
H
≤ (b− a)

ˆ b

a
∥f(t, x)∥2H dt.
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We begin by decomposing the integrand in (4.3). Observe that the integrand decomposes as

ˆ b

a

1

2
[u(s, x)− u(b, x)] +

1

2
[u(s, x)− u(a, x)] ds =

1

2

ˆ b

a
(s− b)u̇(b, x) ds+

1

2

ˆ b

a
(s− a)u̇(a, x) ds+R,

(4.5)

where the remainder term is

R =
1

2

ˆ b

a
[u(s, x)− u(b, x)− (s− b)u̇(b, x)] ds︸ ︷︷ ︸

R1

+
1

2

ˆ b

a
[u(s, x)− u(a, x)− (s− a)u̇(a, x)] ds︸ ︷︷ ︸

R2

.

We first bound the H norm of the remainder term. Specifically, we will show that

∥Ri∥H ≤ L√
2α+ 3

(b− a)2+α, for i ∈ {1, 2}.

Since the argument is analogous for R2, we only provide the proof for R1. Using (4.4) and Definition
4.2, we have

∥R1∥2H ≤ (b−a)

ˆ b

a
∥u(s, x)−u(b, x)−(s−b)u̇(b, x)∥2H ds ≤ L2(b−a)

ˆ b

a
|s−b|2(1+α) ds =

L2

2α+ 3
(b−a)2α+4.

This gives the desired bound on R1.
Next, we control the remaining terms in (4.5). Notice that

ˆ b

a
(s− b)u̇(b, x) + (s− a)u̇(a, x) ds =

(a− b)2

2
(u̇(a, x)− u̇(b, x)).

Thus, ∥∥∥∥ˆ b

a
(s− b)u̇(b, x) + (s− a)u̇(a, x) ds

∥∥∥∥
H
=

(b− a)2

2
∥u̇(a, x)− u̇(b, x)∥H.

Since u̇(t, x) is α-Hölder continuous on H with Hölder constant 2L, we have∥∥∥∥ˆ b

a
(s− b)u̇(b, x) + (s− a)u̇(a, x) ds

∥∥∥∥
H
≤ L(b− a)2+α.

Combining this with our bound on R, we conclude from (4.5):∥∥∥∥ˆ b

a

1

2
[u(s, x)− u(b, x)] +

1

2
[u(s, x)− u(a, x)] ds

∥∥∥∥
H
≤ 2L|b− a|2+α.

□

We now have the tools needed to establish the higher-order convergence of our scheme.

Theorem 4.4 (Higher Order Convergence). Suppose Assumption 3 holds and the time step satisfies
0 < τ ≤ 1

L(ϕ) . Given a terminal time T > 0, let n ∈ N be such that (n+ 1)τ ≤ T . Then, the iterates
Xτ

n of the Lagrangian trapezoid scheme (Definition 3.1) satisfy

W2(ρnτ , ρ
τ
n) ≤ ∥Xτ

n −X(nτ)∥H ≤ e2L(ϕ)T ∥Xτ
0 − Id∥H + 2

L(T, Ẍ)

L(ϕ)
(e2L(ϕ)T − 1) τ1+α,

where X(t) is the unique solution to (1.5) in L2
loc([0,∞)× Rd; ρ0), and we define ρt := (Xt)#ρ0 and

ρτj := (Xτ
j )#ρ0.

Proof. For each n ∈ N, define the error iterates

en+1 := ∥Xτ
n+1 −X((n+ 1)τ)∥H,

along with the trapezoid approximation of X((n+ 1)τ):

Y τ
n+1 := X(nτ)− τ

2

(
∇ϕ#

ρ0(X(nτ)) +∇ϕ#
ρ0(X((n+ 1)τ))

)
.
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The triangle inequality yields

en+1 ≤ ∥Y τ
n+1 −X((n+ 1)τ)∥H︸ ︷︷ ︸

I(1)
n+1

+ ∥Y τ
n+1 −Xτ

n+1∥H︸ ︷︷ ︸
I(2)
n+1

.

To control I(1)
n+1, recall from (1.5) that for any s < t,

(4.6) X(t) = X(s)−
ˆ t

s
∇ϕ#

ρ0(X(a)) da, ρ0-a.e.

Then by choosing s = nτ and t = (n+ 1)τ , we see by Lemma 4.3 and Assumption 3 that

I(1)
n+1 ≤ 2Lα(T, Ẍ) τ2+α.

Next, to control I(2)
n+1, use (4.6) to write

Y τ
n+1−Xτ

n+1 = (X(nτ)−Xτ
n)−

τ

2

(
∇ϕ#

ρ0(X(nτ))−∇ϕ#
ρ0(X

τ
n)
)
−τ

2

(
∇ϕ#

ρ0(X((n+ 1)τ))−∇ϕ#
ρ0(X

τ
n+1)

)
.

Thus, the triangle inequality and Assumption 3 yield

I(2)
n+1 ≤ en + τ

L(ϕ)

2
(en + en+1).

Combining these estimates, we have

en+1 ≤
2Lα(T, Ẍ)τ2+α

1− L(ϕ)τ
2

+
(1 + L(ϕ)τ

2 )en

1− L(ϕ)τ
2

.

Since we assumed τ ≤ 1
L(ϕ) , it follows that L(ϕ)τ ≤ 1. Hence, we have that 1− L(ϕ)τ

2 ≥ 1
2 . Hence,

en+1 ≤ 4Lα(T, Ẍ)τ2+α +
(1 + L(ϕ)τ

2 )en

1− L(ϕ)τ
2

.

Now by using the inequality 1+x
1−x ≤ 1 + 4x for x ∈ [0, 12 ] with x = L(ϕ)τ/2 we obtain

(4.7) en+1 ≤ 4Lα(T, Ẍ)τ2+α + (1 + 2L(ϕ)τ)en.

By iterating (4.7), we arrive at

en ≤ (1 + 2L(ϕ)τ)ne0 + 4Lα(T, Ẍ)τ2+α
n−1∑
j=0

(1 + 2L(ϕ)τ)j .

Thus, for (n+ 1)τ ≤ T , we have

en ≤ e2L(ϕ)T e0 + 2
Lα(T, Ẍ)

L(ϕ)
(e2L(ϕ)T − 1)τ1+α.

□

In particular, if Ẋ ∈ C1,1
loc ([0, T ];H), we obtain an O(τ2) convergence rate.

4.1. Examples of Functionals Satisfying Higher-Order Convergence. Now we focus on deriving
examples that satisfy our higher order convergence theorem.

Theorem 4.5. Assume that ρ0 is a non-atomic measure such that ϕ#
ρ0 ∈ C1,1([0,∞);Rd) with ∇Wϕ

satisfying the growth conditions in Proposition 2.14. In addition, suppose there exists a constants
α ∈ (0, 1] and C > 0 such that for all ρ ∈ P2(Rd) and x, y ∈ Rd

|∇Wϕ(ρ, x)|+ |∇x∇Wϕ(ρ, x)|+ |∇2
Wϕ(ρ, x, y)| ≤ C,

[∇x∇Wϕ(ρ, ·)]Cα(Rd) + [∇2
Wϕ(ρ, ·, ·)]Cα(Rd×Rd) ≤ C

Moreover, assume that the partial Wasserstein Hessian of ϕ satisfies the Hölder-condition:

(4.8) sup
µ̸=ν∈P2(Rd)

∥∇2
Wϕ(µ, x, y)−∇2

Wϕ(ν, x, y)∥
Wα

1 (µ, ν)
≤ C.
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Then, Ẋ ∈ C1,α([0,∞);H), and its Fréchet derivative is given by:

Ẍ(t, x) =
[
∇x∇Wϕ

(
(X(t))#ρ0, X(t, x)

)]
Ẋ(t, x) +

´
Rd

(
∇2

Wϕ
(
(X(t))#ρ0, X(t, x), X(t, z)

))
Ẋ(t, z) dρ0(z).

Proof. Because of our assumptions, we have that ∇ϕ#
ρ0(ξ)(x) = ∇Wϕ(ξ#ρ0, ξ(x)) for ρ0-a.e. x.

Step 1: X(t) ∈ C1,1([0,∞);H) and Lipschitz Regularity in Time

Because ∇Wϕ(ρ, x) is uniformly bounded on spt(ρ0), we immediately obtain that ∇ϕ#
ρ0(ξ) is

uniformly bounded on H. This implies from (1.5) that X(t) is Lipschitz continuous on H. Then as
∇ϕ#

ρ0(ξ) is Lipschitz on H, (1.5) then implies X(t) ∈ C1,1([0,∞);H).
Now using (1.5), we have that for a.e. x ∈ spt(ρ0)

X(t+ h, x)−X(t, x) = −
ˆ t+h

t
∇Wϕ(X(s)#ρ0, X(s, x))ds.

From our assumption that the Wasserstein gradient is uniformly bounded, we obtain for a.e. x ∈
spt(ρ0)

(4.9) |X(t+ h, x)−X(t, x)| ≤ C|h|

Step 2 : Ẋt ∈ C1,α([0,∞);H)

For notational simplicity, we will let F (ρ, x) := ∇Wϕ(ρ, x) and ρt := (Xt)#ρ0.
Using (1.5), we obtain for ρ0-a.e. x:

Ẋ(t, x)− Ẋ(t+ h, x) = F (ρt, X(t, x))− F (ρt+h, X(t+ h, x)).

= [F (ρt, X(t, x))− F (ρt, X(t+ h, x))]︸ ︷︷ ︸
(I)

+ [F (ρt, X(t+ h, x))− F (ρt+h, X(t+ h, x))]︸ ︷︷ ︸
(II)

Bounding Term (I). As x 7→ ∇xF (ρ, x) is Hölder continuous, we obtain from Taylor’s Theorem

(I) = −h∇xF (ρt, X(t, x)) · (X(t+ h, x)−X(t, x)

h
) + R̃

where |R̃(t, x)| ≤ C ′|X(t+ h, x)−X(t, x)|1+α, which implies from (4.9) that ||R̃(t, ·)||H ≤ C ′′|h|1+α.

Simplifying further, we have that

(I) = − (∇xF (ρt, X(t, x))) Ẋ(t, x) +R1,

where

R1 = R̃ − h (∇xF (ρt, X(t, x)) ·
(
X(t+ h, x)−X(t, x)

h
− Ẋ(t, x)

)
︸ ︷︷ ︸

R̃2

.

From X(t) ∈ C1,1(H;H) and ∇xF being uniformly bounded, we see that ||R̃2||H = O(|h|2). In
particular, we have that ||R1||H = O(|h|1+α).

Bounding Term (II). Applying (2.3), we obtain:

(II) = −
ˆ 1

0

ˆ
Rd

δF

δµ

(
(1− s)ρt + sρt+h, X(t+ h, x), z

)
d(ρt+h − ρt)(z)ds.

Using Taylor’s Theorem with y 7→ ∇2
Wϕ(ρ, x, y) is uniformly Cα

= −h

ˆ 1

0

ˆ
Rd

∇WF ((1− s)ρt + sρt+h, X(t+ h, x), X(t, z)) · (X(t, z)−X(t+ h, z))

h
dρ0(z)ds+R2,

where ||R2(t, ·)||H = O(h1+α).
Because X ∈ C1,1(H;H) and the boundedness of ∇WF , we obtain:

(II) = h

ˆ 1

0

ˆ
Rd

∇WF ((1− s)ρt + sρt+h, X(t+ h, x), X(t, z)) · Ẋ(t, z)dρ0(z)ds+R3,

where R3 = R2 + R̃3, where ∥R̃3∥H = O(h2).
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Now we use that x 7→ ∇WF (ρ, x, y) is uniformly Cα and (4.9), to see that

(II) = h

ˆ 1

0

ˆ
Rd

∇WF ((1− s)ρt + sρt+h, X(t, x), X(t, z)) · Ẋ(t, z)dρ0(z)ds+R4,

where R4 = R3 + R̃4, where ||R̃4||H = O(h1+α)

Finally, using the Hölder condition on the measure position of ∇WF and the dual formula for the
W1 metric,

||∇Wϕ((1− s)ρt + sρt+h, X(t, x), X(t, z))−∇Wϕ(ρt, X(t, x), X(t, z))||H
≤ CWα

1 (ρt, (1− s)ρt + sρt+h) ≤ CsαWα
1 (ρt, ρt+h) ≤ C̃sαhα,

where in the final inequality we used Lemma 2.2. Thus, we obtain:

(II) = h

ˆ
Rd

∇WF (ρt, X(t, x), X(t, z)) · Ẋ(t, z)dρ0(z) +R5,

where ∥R5∥H = O(h1+α), completing the proof. □

Example 4.6. Suppose U(ρ) is the functional from Example 2.8, and additionally assume that V,W ∈
C2,1
b (Rd), χ ∈ C2,1

c (Rd), and f ∈ C2,1
b (Rd). Then, U(ρ) satisfies the assumptions of Theorem 4.5

with parameter α = 1.

Proof. By the gradient formulas in Example 2.8, it suffices to verify (4.8). We now check this term
by term for the partial Wasserstein Hessian formula in Example 2.8. Throughout the proof, we set
µχ := µ ⋆ χ and write f ≲ g if f ≤ Cg for some constant C > 0.

The difference in first term of the partial Wasserstein Hessian formula at the (i, j)th component isˆ
Rd

f ′′(µχ(z))∂jχ(z − x′)∂iχ(x− z)dµ(z)−
ˆ
Rd

f ′′(νχ(z))∂jχ(z − x′)∂iχ(x− z)dν(z)

=

ˆ
Rd

[
f ′′(µχ(z))− f ′′(νχ(z))

]
∂jχ(z − x′) ∂iχ(x− z) dµ(z)

+

ˆ
Rd

f ′′(νχ(z)) ∂jχ(z − x′) ∂iχ(x− z) d(µ− ν)(z) =: (I) + (II).

To control (I), we use that f ′′ is Lipschitz, ∇η ∈ L∞, the dual representation of the W1 metric,
and µ is a probability measure to obtain that

|(I)| ≲
ˆ
Rd

|µχ(z)−νχ(z)|dµ(z) =
ˆ
Rd

∣∣∣∣ˆ
Rd

χ(z − x)d(µ− ν)(x)

∣∣∣∣ dµ(z) ≲ ˆ
Rd

W1(µ, ν)dµ(z) = W1(µ, ν).

Now we use that the integrand for (II) is uniformly Lipschitz due to our assumptions to obtain from
the dual representation of the W1 metric that

|(II)| ≲ W1(µ, ν).

The difference in the second term of the partial Wasserstein Hessian at the (i, j)th component is
(III), which is defined asˆ
Rd

[
f ′′(µχ(x))− f ′′(νχ(x)

]
∂jχ(x−x′)∂iχ(x−z)dµ(z)+

ˆ
Rd

f ′′(νχ(x))∂jχ(x−x′)∂iχ(x−z)d(µ−ν)(z)

can be similarly bounded to show that

|(III)| ≲ W1(µ, ν).

The difference in the third term of the partial Wasserstein Hessian at the (i, j)th component is

(IV ) := (f ′(µχ(x))− f ′(νχ(x)) + f ′(µχ(x
′))− f ′(νχ(x

′)))∂2
i,jχ(x− x′).

Observe for any z ∈ Rd one has from f ′ and χ being Lipschitz that

|f ′(µχ(z))− f ′(νχ(z))| ≲
∣∣∣∣ˆ

Rd

χ(z − x)d(µ− ν)(x)

∣∣∣∣ ≲ W1(µ, ν).
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Hence, one sees that
|(IV )| ≲ W1(µ, ν).

The difference in the fourth and final term of the partial Wasserstein Hessian at the (i, j)th
component is

(f ′′(νχ(x
′))−f ′′(µχ(x

′)))·∂iχ(x−x′)(ν⋆∂jχ)(x
′)+f ′′(µχ(x

′))·∂iχ(x−x′)·((ν−µ)⋆∂jχ)(x
′) = (V )+(V I)

Now because ∇χ ∈ L∞ and f ′′ is Lipschitz, we have from the dual formula of the W1 metric

|(V )| ≲ |νχ(x′)− µχ(x
′)| =

∣∣∣∣ˆ
Rd

χ(x′ − z)d(ν − µ)(z)

∣∣∣∣ ≲ W1(µ, ν).

Finally, one has that from f ′′,∇χ ∈ L∞ and ∂jχ is Lipschitz that from the dual formula of the W1

metric.

|(V I)| ≲ |(ν − µ) ⋆ ∂jχ(x
′)| =

∣∣∣∣ˆ
Rd

∂jχ(x
′ − z)d(ν − µ)(z)

∣∣∣∣ ≲ W1(µ, ν).

Therefore, one has that

|∇WU(µ, x, x′)−∇WU(ν, x, x′)| ≲ W1(µ, ν),

which is (4.8). □

5. O(τ) convergence via Discrete EVI

5.1. Discrete EVI. In this section, we show that the maps Xτ
n for less regular functionals converge

in H at a rate of O(τ) and characterize the limit in terms of an Evolution Variational Inequality
(EVI). To achieve these goals, we utilize the discrete evolution variational inequality. Our approach
is inspired by the methods in [AS07]. Before deriving the discrete EVI, we first present a useful
inequality.

Lemma 5.1. Under the same notation and assumptions as in Theorem 3.5, we have for any ξ ∈ H:

⟨∇ϕ#
ρ0
(Xτ

n), ξ−Xτ
n+1⟩H ≤

(
ϕ#
ρ0
(ξ)− ϕ#

ρ0
(Xτ

n+1)
)
+
τ

2

(
∥∇ϕ#

ρ0
(Xτ

n)∥2H−∥∇ϕ#
ρ0
(Xτ

n+1)∥2H
)
−λ

2
∥Xτ

n−Xτ
n+1∥2H−

λ

2
∥ξ−Xτ

n∥2H.

Proof. We first decompose the inner product as follows:

(5.1) ⟨∇ϕ#
ρ0(X

τ
n), ξ −Xτ

n+1⟩H = ⟨∇ϕ#
ρ0(X

τ
n), ξ −Xτ

n⟩H + ⟨∇ϕ#
ρ0(X

τ
n), X

τ
n −Xτ

n+1⟩H = (I) + (II).

To bound (I), we use the tangent line inequality:

(I) ≤ ϕ#
ρ0(ξ)− ϕ#

ρ0(X
τ
n)−

λ

2
∥ξ −Xτ

n∥2H.

To bound (II), we use the implicit equation in Theorem 3.5 to obtain:

(II) =
τ

2

(
∥∇ϕ#

ρ0(X
τ
n)∥2H + ⟨∇ϕ#

ρ0(X
τ
n),∇ϕ#

ρ0(X
τ
n+1)⟩H

)
.

The implicit equation in Theorem 3.5 also implies that

⟨∇ϕ#
ρ0(X

τ
n),∇ϕ#

ρ0(X
τ
n+1)⟩H = −∥∇ϕ#

ρ0(X
τ
n+1)∥2H +

2

τ
⟨∇ϕ#

ρ0(X
τ
n+1), X

τ
n −Xτ

n+1⟩H.

Using the tangent line inequality on the inner product term implies

(II) ≤ τ

2

(
∥∇ϕ#

ρ0(X
τ
n)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H

)
+ ϕ#

ρ0(X
τ
n)− ϕ#

ρ0(X
τ
n+1)−

λ

2
||Xτ

n −Xτ
n+1||2H.

Combining the bounds on (I) and (II) allows us to conclude. □

Lemma 5.2 (Discrete EVI). Under Assumption 2, for any ξ ∈ H and n ∈ N, we have:
1

2τ

(
∥ξ −Xτ

n+1∥2H − ∥ξ −Xτ
n∥2H

)
+

λ

4

(
∥ξ −Xτ

n∥2H + ∥ξ −Xτ
n+1∥2H

)
≤ ϕ#

ρ0(ξ)− ϕ#
ρ0(X

τ
n+1) +

τ

4

(
∥∇ϕ#

ρ0(X
τ
n)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H

)
−
(

1

2τ
+

λ

4

)
∥Xτ

n −Xτ
n+1∥2H.
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Proof. Following the arguments of [AGS05] for the JKO scheme, for n ∈ N, we define the functional

Φ(ξ) :=
1

2

(
ϕ#
ρ0(ξ) + ⟨∇ϕ#

ρ0(X
τ
n), ξ⟩H

)
+

1

2τ
∥ξ −Xτ

n∥2H.

By Assumption 2, Φ is (λ/2+1/τ)-convex. Since Xτ
n+1 minimizes Φ due to Definition 3.1, we obtain,

for the linear interpolation γ(t) := (1− t)Xτ
n+1 + tξ that

Φ(Xτ
n+1) ≤ Φ(γ(t)) ≤ (1− t)Φ(Xτ

n+1) + tΦ(ξ)− t(1− t)

2

(
λ

2
+

1

τ

)
∥ξ −Xτ

n+1∥2H ∀t ∈ (0, 1].

In particular, this implies by dividing by t and then letting t → 0 gives

(5.2) 0 ≤ Φ(ξ)− Φ(Xτ
n+1)−

1

2

(
λ

2
+

1

τ

)
∥ξ −Xτ

n+1∥2H.

Applying Lemma 5.1 to (5.2) implies the claim. □

5.2. Interpolations and Differential Inequalities. We recall that gradient flows of λ-convex
functionals are uniquely characterized by the Evolution Variational Inequality (EVI) (see [AGS05]).
Our approach to obtaining an O(τ) error rate is to consider linear interpolations of the discrete
streamline and energy functional, and to show that the discrete EVI (Lemma 5.2) implies that
these interpolations satisfy an approximate EVI with a controlled error term. This combined with
Grönwall’s inequality will allow us to obtain our error rate. Our methods are similar to those in
[AGS05] with adaptations to handle our more complicated case.

Definition 5.3 (Interpolations). Fix a time step size τ > 0. Then we define

ℓτ (t) :=
t− nτ

τ
, X

τ
t := Xτ

n+1, and Xτ
t := Xτ

n, for t ∈ [nτ, (n+ 1)τ).

The linearly interpolated numerical Lagrangian flow and energy functional are given by

X̃τ
t := (1− ℓτ (t))X

τ
t + ℓτ (t)X

τ
t , ϕτ (t) := (1− ℓτ (t))ϕ

#
ρ0(X

τ
t ) + ℓτ (t)ϕ

#
ρ0(X

τ
t ).

For ξ1, ξ2 ∈ H, we define the metric

d(ξ1, ξ2) := ∥ξ1 − ξ2∥H,
and for any ξ ∈ H, the linearly interpolated distance functional is

d2τ (t; ξ) := (1− ℓτ (t))d
2(ξ,Xτ

t ) + ℓτ (t)d
2(ξ,X

τ
t ).

Define the constant interpolation gradient error term as

Gτ
t := ∥∇ϕ#

ρ0(X
τ
n)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H, t ∈ [nτ, (n+ 1)τ).

and the distance between iterates as
Dτ

t := d(Xτ
t , X

τ
t ).

Now with the notation of Definition 5.3, we see that the discrete EVI (Lemma 5.2) implies the
following differential inequality for a.e. t ≥ 0

(5.3)
1

2

d

dt
d2τ (t; ξ) +

λ

4

(
d2(ξ,Xτ

t ) + d2(ξ,X
τ
t ))
)
≤ ϕ#

ρ0(ξ)− ϕτ (t) +
τ

4
Gτ

t −
λ

4
(Dτ

t )
2 +Rτ

t .

Here, the remainder term Rτ
t is given by:

Rτ
t :=

(
ϕτ (t)− ϕ#

ρ0(X
τ
t )−

1

2τ
(Dτ

t )
2

)
.

Expanding this term, we obtain:

(5.4) Rτ
t = (1− ℓτ (t))

(
ϕ#
ρ0(X

τ
t )− ϕ#

ρ0(X
τ
t )−

1

τ
(Dτ

t )
2

)
− 1

τ

(
ℓτ (t)−

1

2

)
(Dτ

t )
2.

When λ ̸= 0, as in [AGS05], it is more convenient to modify the differential inequality (5.3) so that
the left-hand side contains terms of the form d2τ (t; ξ) instead of d2(ξ,Xτ

t ) and d2(ξ,Xτ
t ). To achieve

this, we use the following inequality:
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Lemma 5.4. With the notation of Definition 5.3, we have the bounds

(5.5) d2(ξ,Xτ
t ) + d2(ξ,X

τ
t ) ≤ 2d2τ (t; ξ) + (Dτ

t )
2 + 2(Dτ

t ) · dτ (t; , ξ).
and

(5.6) 2d2τ (t; ξ)− 2(Dτ
t )dτ (t; ξ) ≤ d2(ξ,Xτ

t ) + d2(ξ,X
τ
t ) + 3(Dτ

t )
2.

Proof. First observe that the concavity of the square root function implies that

(5.7) (1− ℓτ (t)) · d(Xτ
t , ξ) + ℓτ (t) · d(X

τ
t , ξ) ≤ dτ (t; ξ).

Using triangle inequality and (5.7) we see that

(5.8) d(Xτ
t , ξ) = (1− ℓτ (t))d(X

τ
t , ξ) + ℓτ (t)d(X

τ
t , ξ) ≤ dτ (t; ξ) + ℓτ (t)(Dτ

t ).

Similarly, we also have that

(5.9) d(X
τ
t , ξ) ≤ dτ (t; ξ) + (1− ℓτ (t))(Dτ

t ).

Squaring these two inequalities and adding them imply (5.5).
Now for (5.6), observe that from the triangle inequality

d2τ (t; ξ) = d2(Xτ
t , ξ) + ℓτ (t)

(
d2(X

τ
t , ξ)− d2(Xτ

t , ξ)
)
≤ d2(Xτ

t , ξ) + ℓτ (t)((Dτ
t )

2 + 2d(Xτ
t , ξ)(Dτ

t )).

So now using (5.8), we obtain that

d2τ (t; ξ) ≤ d2(Xτ
t , ξ) + 2ℓτ (t)(dτ (t; ξ)(Dτ

t )) + ℓτ (t)(1 + 2ℓτ (t))(Dτ
t )

2.

Similarly, we have the bound

d2τ (t; ξ) ≤ d2(X
τ
t , ξ) + 2(1− ℓτ (t))(dτ (t; ξ)(Dτ

t )) + (1− ℓτ (t))(1 + 2(1− ℓτ (t)))(Dτ
t )

2.

Adding these two bounds and maximizing over t, gives (5.6). □

By combining (5.3) with Lemma 5.4, we obtain the following differential inequality:

Theorem 5.5 (Approximate EVI). Under Assumption 2 and the notation introduced therein, as well
as the notation from Definition 5.3, the following differential inequalities holds:

(5.10)
d

dt
d2τ (t; ξ) + λd2τ (t; ξ) ≤ 2(ϕ#

ρ0(ξ)− ϕτ (t)) +
τ

2
Gτ

t + 2Rτ
t + |λ|(Dτ

t ) · ((Dτ
t ) + dτ (t; ξ)).

Now we want to use Theorem 5.5 to obtain a differential inequality for d2(Xτ
t , X

η
t ) with two different

time steps τ, η > 0. To do so, we follow [AGS05] and introduce another interpolation function

Definition 5.6. Using the notation from Definition 5.3, let τ, η > 0 be two time steps. We define
the further interpolated distance functional as

d2τ,η(t; s) := (1−ℓτ (t))[(1−ℓη(s))·d2(Xη
s , X

τ
t )+ℓη(s)·d2(X

η

s , X
τ
t )]+ℓτ (t)

(
(1− ℓη(s))d

2(Xη
s , X

τ

t ) + ℓη(s)d
2(X

η

s , X
τ

t )
)

= (1− ℓη(s)) · d2τ (t;X
η
s) + ℓη(s) · d2τ (t;X

η

s).

Theorem 5.7 (Differential Inequality). Fix two time steps τ, η > 0 satisfying

λ

2
+ min

{
1

τ
,
1

η

}
> 0.

Using the assumptions and notation from Theorem 5.5 and from Definition 5.6, we have
d

dt
d2τ,η(t; t) + 2λd2τ,η(t; t) ≤

τ

2
Gτ

t +
η

2
Gη

t + 2(Rτ
t +Rη

t ) + |λ|
(
(Dτ

t )
2 + (Dη

t )
2
)
+ |λ|(Dτ

t +Dη
t )dτ,η(t; t).

Proof. First, we note the symmetry property of d2τ,η(t; s):

(5.11) d2τ,η(t; s) = d2η,τ (s; t).

Next, by Definition 5.6, Theorem 5.5, and (5.7), we obtain

1

2

∂

∂t
d2τ,η(t; s) + λd2τ,η(t; s) ≤ ϕη(s)− ϕτ (t) +

τ

4
Gτ

t +Rτ
t +

|λ|
2
Dτ

t (Dτ
t + dτ,η(t; s)) .
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By symmetry (5.11), we have ∂
∂sd

2
τ,η(t; s) =

∂
∂td

2
η,τ (s; t), which gives

1

2

∂

∂s
d2τ,η(t; s) + λd2τ,η(t; s) ≤ ϕτ (t)− ϕη(s) +

η

4
Gη

s +Rη
s +

|λ|
2
Dη

s (Dη
s + dτ,η(t; s)) .

Summing these two inequalities at s = t implies the desired bound. □

5.3. O(τ + η) Convergence of dτ,η(t; t) for λ ≥ 0. The next step for obtaining convergence rates
is to obtain bounds for the remainder terms Dτ

t and Rτ
t in Theorem 5.7.

Lemma 5.8 (Bounds on Rτ
t ). Under Assumption 2 and the notation of Theorem 5.5, the following

bound holds:

Rτ
t ≤ (1− ℓτ (t))

(
τ

4
Gτ

t −
λ

2
(Dτ

t )
2

)
− 1

τ

(
ℓτ (t)−

1

2

)
(Dτ

t )
2.

Proof. By (5.4), it suffices to show that for any n ∈ N,

ϕ#
ρ0(X

τ
n)− ϕ#

ρ0(X
τ
n+1)−

1

τ
∥Xτ

n+1 −Xτ
n∥2H ≤ τ

4
Gτ

nτ −
λ

2
∥Xτ

n −Xτ
n+1∥2H.

Because ϕ#
ρ0 is λ-convex on H, the tangent line inequality implies

ϕ#
ρ0(X

τ
n)−ϕ#

ρ0(X
τ
n+1)−

1

τ
∥Xτ

n+1−Xτ
n∥2H ≤ ⟨∇ϕ#

ρ0(X
τ
n), X

τ
n−Xτ

n+1⟩H−
1

τ
∥Xτ

n+1−Xτ
n∥2H−

λ

2
∥Xτ

n−Xτ
n+1∥2H.

Using (3.7), we obtain

⟨∇ϕ#
ρ0(X

τ
n), X

τ
n −Xτ

n+1⟩H − 1

τ
∥Xτ

n+1 −Xτ
n∥2H =

τ

4
Gτ

nτ .

This completes the proof. □

Now we have enough to obtain an error estimate on dτ,η(t; t) when λ ≥ 0.

Corollary 5.9 (Error Bound on dτ,η(t; t) for λ ≥ 0). Under the assumptions and notation of Theorem
5.7, the following bound holds for λ ≥ 0:

d2τ,η(t; t) ≤ ∥Xτ
0 −Xη

0 ∥
2
H +

7

4

(
τ2∥∇ϕ#

ρ0(X
τ
0 )∥2H + η2∥∇ϕ#

ρ0(X
η
0 )∥

2
H

)
.

Proof. Because ϕ is λ-convex with λ ≥ 0, we can use Theorem 5.7 with λ = 0 to obtain:

(5.12)
1

2

d

dt
d2τ,η(t; ξ) ≤

τ

4
(Gτ

t +Gη
t ) +Rτ

t +Rη
t .

For any t ≥ 0, let N ∈ N be the smallest integer such that t ≤ Nτ . Since λ ≥ 0, it follows from
(3.8) that Gτ

t ≥ 0. Hence, by integrating in time, we obtain:

(5.13)
ˆ t

0
Gτ

sds ≤
ˆ Nτ

0
Gτ

sds = τ
N∑
j=0

(
∥∇ϕ#

ρ0(X
τ
j )∥2H − ∥∇ϕ#

ρ0(X
τ
j+1)∥2H

)
≤ τ∥∇ϕ#

ρ0(X
τ
0 )∥2H.

Similarly,

(5.14)
ˆ t

0
Gη

sds ≤ η∥∇ϕ#
ρ0(X

η
0 )∥

2
H.

Next, we handle the term Rτ
t . Observe that for any j ∈ N:ˆ (j+1)τ

jτ

(
ℓτ (s)−

1

2

)
ds = 0,

ˆ (j+1)τ

jτ
(1− ℓτ (s))ds =

τ

2
.

Applying Lemma 5.8 with λ ≥ 0 gives:
ˆ t

0
Rτ

sds ≤
τ2

8

N∑
j=0

(
∥∇ϕ#

ρ0(X
τ
j )∥2H − ∥∇ϕ#

ρ0(X
τ
j+1)∥2H

)
−

∥Xτ
t −Xτ

t ∥2H
τ

ˆ t

(N−1)τ

(
ℓτ (s)−

1

2

)
ds.

≤ τ2

8
∥∇ϕ#

ρ0(X
τ
0 )∥2H +

1

2
∥Xτ

t −Xτ
t ∥2H.
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By applying Lemma 3.7 along with the above display, we see that

(5.15)
ˆ t

0
Rτ

sds ≤
5τ2

8
∥∇ϕ#

ρ0(X
τ
0 )∥2H.

Applying the same argument for η, we obtain:ˆ t

0
Rη

sds ≤
5η2

8
∥∇ϕ#

ρ0(X
η
0 )∥

2
H.

Finally, integrating (5.12) in time and applying the estimates (5.13) and (5.15), we conclude. □

5.4. O(τ + η) Convergence of dτ,η(t; t) for λ < 0. We now derive convergence rates for λ < 0.
Since λτ ≤ λ (see Assumption 2), any λ-convex function ϕ is also λτ -convex. Applying Theorem 5.7
with λτ and using Gronwall’s Inequality [AGS05, Lemma 4.1.8], we obtain the bound for any T > 0:

(5.16) dτ,η(T ;T ) ≤ e−λτT

(
d2τ,η(0; 0) + sup

t∈[0,T ]

ˆ T

0
e2λτ sa(s)ds

)1/2

+ e−λτT

ˆ T

0
eλτ sb(s)ds.

Here, the functions a(t) and b(t) are given by

a(t) :=
τ

2
Gτ

t +
η

2
Gη

t + 2(Rτ
t +Rη

t ) + |λτ |
(
(Dτ

t )
2 + (Dη

t )
2
)
, b(t) := |λτ | · (Dτ

t +Dη
t ).

To estimate the integrals in (5.16), we will estimate each individual term in a(t).

Lemma 5.10. Under the notation and assumptions of Theorem 5.7, and with the additional assumptions
that λ < 0, we have the following estimates for any T ≥ 0:

(5.17)

ˆ T

0
e2λτ t(Dτ

t )
2 dt ≤ τ2(T + τ)e−2λτ τ∥∇ϕ#

ρ0(X
τ
0 )∥2H,

ˆ T

0
e2λτ tGτ

t dt ≤ τ∥∇ϕ#
ρ0(X

τ
0 )∥2H,

ˆ T

0
e2λτ tRτ

t dt ≤ τ2
(
1

8
+ e−2λτ τ

(
1

2
− 2

3
λτ (T + τ)

))
∥∇ϕ#

ρ0(X
τ
0 )∥2H,

ˆ T

0
eλτ t(Dτ

t ) dt ≤ τ(T + τ)e−λτ τ∥∇ϕ#
ρ0(X

τ
0 )∥H.

Proof. Choose the smallest integer N such that T ≤ Nτ .

Step 1: Bounding
ˆ T

0
e2λτ t(Dτ

t )
2 dt.

We first observe that

(5.18)
ˆ T

0
e2λτ td2(Xτ

t , X
τ
t ) dt ≤

ˆ Nτ

0
e2λτ td2(Xτ

t , X
τ
t ) dt =

e2λτ τ − 1

2λτ︸ ︷︷ ︸
≥0

N−1∑
j=0

e2λτ jτd2(Xτ
j , X

τ
j+1).

By applying (3.12), we obtain

(5.19) d2(Xτ
j , X

τ
j+1) ≤ e−2λτ (j+1)ττ2∥∇ϕ#

ρ0(X
τ
0 )∥2H.

Substituting this into (5.18) and using the inequalities (e2λτ τ − 1) ≥ 2λττ and λτ ≤ 0, we obtain the
desired bound.
Step 2: Bounding

´ T
0 e2λτ tGτ

t dt

Because Gτ
t is piecewise constant on [nτ, (n+ 1)τ), we obtain:

ˆ T

0
e2λτ tGτ

sds ≤ max

{ˆ Nτ

0
e2λτ tGτ

sds,

ˆ (N−1)τ

0
e2λτ tGτ

sds

}

= max


N∑
j=0

Gτ
jτ

ˆ (j+1)τ

jτ
e2λτ tds,

N−1∑
j=0

Gτ
jτ

ˆ (j+1)τ

jτ
e2λτ tds

 =
e2λτ τ − 1

2λτ

N−1∑
j=0

Gτ
jτe

2λτ jτ + e2λτNτ (Gτ
Nτ )+

 .
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Where (x)+ := max{x, 0}. To simplify our notations for this proof, we define for n ∈ N

(5.20) αn := ||∇ϕ#
ρ0(X

τ
n)||2H,

so that from Definition 5.3 Gτ
jτ = αj − αj+1. Since λτ < 0, we obtain for any m ∈ N

m∑
j=0

Gτ
jτe

2jλτ τ =
m∑
j=0

(αj − αj+1)e
2jλτ τ = α0 +

m∑
j=1

(e2jλτ τ − e2(j−1)λτ τ )︸ ︷︷ ︸
≤0

αj − e2mλτ ταm+1 ≤ α0.

Thus, we conclude from (e2λτ τ − 1)/(2λτ ) > 0 that we have the bound

e2λτ τ − 1

2λτ

N−1∑
j=0

Gτ
jτe

2λτ jτ + e2λτNτ (Gτ
Nτ )+

 ≤ e2λτ τ − 1

2λτ
||∇ϕ#

ρ0(X
τ
0 )||2H ≤ τ ||∇ϕ#

ρ0(X
τ
0 )||2H.

Step 3: Bounding
´ t
0 e

2λτ tRτ
t dt

By Lemma 5.8, we have thatˆ t

0
e2λτ tRτ

t dt ≤
τ

4

ˆ t

0
e2λτ t(1− ℓτ (t)) ·Gτ

t dt+

ˆ t

0
e2λτ t

(
−λτ

2
(1− ℓτ (t))−

1

τ
(ℓτ (t)−

1

2
)

)
(Dτ

t )
2)dt.

= (I) + (II).

We first focus on bounding (II). First observe that because λτ < 0 and j ∈ N,
ˆ (j+1)τ

jτ

e2λτ t

τ
(
1

2
− ℓτ (t))dt = −(λττ + e2λτ τ (λττ − 1) + 1)e2λτ jτ

4λ2
ττ

2
≤ −λττ

6
e2λτ jτ .

In the above inequality, we used −(x+ e2x(x− 1) + 1) ≤ −2x3/3. Hence, we have from (5.19)
ˆ (N−1)τ

0

e2λτ t

τ
(
1

2
−ℓτ (t))·d2(X

τ
t , X

τ
t )dt ≤ −λττ

6

N−1∑
j=0

e2λτ jτ ·d2(Xτ
j , X

τ
j+1) ≤ −λττ

2

6
e−2λτ τ ·T ·||∇ϕ#

ρ0(X
τ
0 )||2H.

We also have from (3.12)
ˆ t

(N−1)τ

e2λτ t

τ
(
1

2
− ℓτ (t)) · (Dτ

t )
2dt ≤ 1

2
e2λτ (N−1)τd2(Xτ

N−1, X
τ
N ) ≤ τ2

2
e−2λτ τ · ||∇ϕ#

ρ0(X
τ
0 )||2H.

Now for the first integral term in (II), we have from Step 1ˆ t

0
e2λτ t

(
−λτ

2
(1− ℓτ (t))

)
d2(X

τ
t , X

τ
t ) ≤ −λτ

2

ˆ t

0
e2λτ td2(Xτ

t , X
τ
t )dt ≤ −λτ

2
τ2(T+τ)e−2λτ τ ||∇ϕ#

ρ0(X
τ
0 )||2H,

where the final inequality is due to our Step 1 bound.
Combining these bounds gives us

(II) ≤ τ2e−2λτ τ

(
1

2
− 2

3
λτ (T + τ)

)
· ||∇ϕ#

ρ0(X
τ
0 )||2H.

Now we focus on (I). First recall the notation αn from (5.20). By using that Gτ
t is piece-wise

constant on [nτ, (n+ 1)τ) and (1− ℓτ (t)) ≥ 0 the arguments of Step 1 imply
(5.21)

(I) ≤ τ

4

N−1∑
j=0

(αn − αn−1) ·
ˆ (j+1)τ

jτ
e2λτ s(1− ℓτ (s))ds+ (Gτ

Nτ )+ ·
ˆ Nτ

(N−1)τ
e2λτ s(1− ℓτ (s))ds

 .

By integrating the term e2λτ s(1− ℓτ (s)), we see that for any m ∈ N
m∑
j=1

(αn − αn−1) ·
ˆ (j+1)τ

jτ
e2λτ s(1− ℓτ (s))ds =

e2λτ τ − (1 + 2λττ)

4λ2
ττ︸ ︷︷ ︸

≥0

m∑
j=1

(αj − αj−1)e
2λτ jτ .
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By a similar argument as in summation by parts step of Step 2, we have that

e2λτ τ − (1 + 2λττ)

4λ2
ττ

m∑
j=1

(αj − αj−1)e
2λτ jτ ≤ e2λτ τ − (1 + 2λττ)

4λ2
ττ

· ||∇ϕ#
ρ0(X

τ
0 )||2H.

Because λττ < 0, we have that e2λτ τ − (1 + 2λττ) ≤ 2λ2
ττ

2, so we have for any m ∈ N
m∑
j=0

(αj − αj+1)

ˆ (j+1)τ

jτ
e2λs(1− ℓτ (s))ds ≤

τ

2
· ||∇Wϕ(ρτ0 , X

τ
0 )||2H.

Therefore, we obtain from (5.21) that

(I) ≤ τ2

8
· ||∇Wϕ(ρτ0 , X

τ
0 )||2H.

Therefore, by combining our bounds on (I) and (II), we conclude the third step.

Step 4: Bounding
´ t
0 e

λτ t(Dτ
t )dt The desired bound follows from Step 1 and Holder’s inequality. □

Now by Lemma 5.10 and Theorem 5.7 along with (5.16), we obtain the following Theorem.

Theorem 5.11 (Bounds on dτ,η(t; t) for λ < 0). Under the assumptions and notation of Theorem
5.7, if λ < 0, then we have for any T ≥ 0

dτ,η(T ;T ) ≤ e−λτTd(Xτ
0 , X

η
0 ) + e−λτT

(
τK(λτ , T, τ)∥∇ϕ#

ρ0(X
τ
0 )∥H + ηK(λ, T, η)∥∇ϕ#

ρ0(X
η
0 )∥H

)
,

where for any τ ′ > 0,

(5.22) K(λτ , T, τ
′) =

√
3

4
+ (1− 7

3
λτ ′(T + τ ′))e−2λτ τ ′ + |λτ |(T + τ ′)e−λτ τ ′ .

5.5. O(τ) Convergence of Xτ
t and Characterization of the Limit. We now establish convergence:

Theorem 5.12 (O(τ) convergence rate). Under the assumptions and notation of Theorem 5.7, for
any T > 0, the sequence Xτ

t converges uniformly on [0, T ] in H to a limiting locally Lipschitz curve
X(t) : [0,∞) → H.
Furthermore, defining ρt := (X(t))#ρ0 and ρτt := (Xτ

t )#ρ0, we have the bound

W2(ρt, ρ
τ
t ) ≤ ∥X(t)−Xτ

t ∥H,

and the following estimate holds:

∥X(t)−Xτ
t ∥H ≤


√
3∥Xτ

0 − Id∥H +
√
33
2 τ∥∇ϕ#

ρ0(X
τ
0 )∥H, if λ ≥ 0,

√
3e−λτ t∥Xτ

0 − Id∥H +
√
3C(λ, t, τ) · τe−λτ t · ∥∇ϕ#

ρ0(X
τ
0 )∥H, if λ < 0.

where the lower order term

(5.23) C(λτ , t, τ) := (1 + |λτ |(t+ τ))e−λτ τ +

√
3

4
+ (1 +

7

3
|λτ |(t+ τ)e−2λτ τ .

Proof. By the arguments of [AGS05, Theorem 4.2.2], we have the bound

(5.24) ∥Xτ
t −Xη

t ∥2H ≤ 3
(
d2τ,η(t; t) + ∥Xτ

t −X
τ
t ∥2H + ∥Xη

t −X
η
t ∥2H
)
.

Since Assumption 2 ensures that Xη
0 → Id in H as η → 0, applying Theorems 5.11 and 5.9 along

with Lemma 3.7 implies that Xτ
t converges locally uniformly to a locally Lipschitz curve Xt ∈ H.

The O(τ) error estimates follow from (5.24), Theorems 5.11 and 5.9, Lemma 3.7, and letting η ↓ 0. □

Now we will use this convergence and the discrete EVI to characterize the limits Xt and ρt.
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Theorem 5.13 (Evolution Variational Inequality Characterization). Under the assumptions and
notations of Theorem 5.12, if X(t) denotes the H-limit of Xτ

t , then X(t) satisfies the Evolution
Variational Inequality (EVI):

(5.25)
1

2

(
∥X(t)− ξ∥2H − ∥X(s)− ξ∥2H

)
+

λ

2

ˆ t

s
∥X(a)− ξ∥2H da+

ˆ t

s
ϕ#
ρ0(X(a)) da ≤ (t− s)ϕ#

ρ0(ξ),

for all 0 ≤ s ≤ t and ξ ∈ H.

Proof. Given 0 ≤ s < t, choose integers n,m ∈ N such that t ∈ [(n + 1)τ, (n + 2)τ) and s ∈
[mτ, (m+ 1)τ). Summing the discrete EVI from Lemma 5.2 and multiplying by τ gives
(5.26)
1

2

(
∥ξ −Xτ

t ∥2H − ∥ξ −Xτ
s∥2H

)
+
λτ

4

n∑
j=m

(
∥ξ −Xτ

j ∥2H + ∥ξ −Xτ
j+1∥2H

)
≤ τ

n∑
j=m

(
ϕ#
ρ0(ξ)− ϕ#

ρ0(X
τ
j+1)

)
+R̃(τ).

Here, the remainder term is given by

R̃(τ) =
τ2

4

(
∥∇ϕ#

ρ0(X
τ
m)∥2H − ∥∇ϕ#

ρ0(X
τ
n+1)∥2H

)
−
(
1

2
+

λτ

4

) n∑
j=m

∥Xτ
j −Xτ

j+1∥2H.

Observe that R̃(τ) → 0 as τ → 0 by (3.8) and Lemma 3.11.
By Theorem 5.12 and Assumption 2, we also have for any T > 0:

(5.27) lim
τ→0

sup
t∈[0,T ]

∥Xt −Xτ
t ∥H = 0.

Hence, using the continuity of ϕ#
ρ0 from Assumption 2, along with Fatou’s Lemma and (5.27), taking

the limit in (5.26) yields the claim. □

Because H is a Hilbert Space, we have an equivalent formulation of the EVI.

Theorem 5.14 (Strong gradient Flow Solution). Under the assumptions of Theorem 5.13, the limit
curve X(t) satisfies the solves gradient flow equation in the strong sense:

(5.28)

{
Ẋ(t) = −∇ϕ#

ρ0(X(t)), for a.e. t ∈ (0,∞),

X(0) = Id

where Ẋ(t) is the Fréchet derivative of X : [0,∞) → H.

Proof. By Theorem 5.13, X(t) satisfies the Evolution Variational Inequality (5.25), which characterizes
its gradient flow. Assumption 2 ensures that ϕ#

ρ0 is Fréchet differentiable, so its subdifferential reduces
to the singleton {∇ϕ#

ρ0(X(t))}. Moreover, Theorem 5.12 guarantees that X(t) is locally absolutely
continuous in H. The conclusion follows by applying [ABS+21, Theorem 11.14]. □

Theorem 5.15 (Weak Solution to the Continuity Equation). Under the assumptions and notation
of Theorem 5.14, the limiting measure

ρt := (X(t))#ρ0

is a weak solution to the continuity equation (1.9) with initial data ρ0.

Proof. By [GT19, Corollary 3.22], we have that ϕ is Wasserstein differentiable and

∇ϕ#
ρ0(ξ) = ∇Wϕ(ξ#ρ0, ξ).

Let vt(x) := ∇Wϕ(ρt, x). Then applying Theorem 5.14, for any φ ∈ C1
c (Rd), we obtain:

d

dt

ˆ
Rd

φ(x)dρt(x) =
d

dt

ˆ
Rd

φ(Xt)dρ0(x) = −
ˆ
Rd

⟨∇φ(Xt), vt(Xt)⟩dρ0(x) = −
ˆ
Rd

⟨∇φ(x), vt(x)⟩dρt(x).

Since Xt → Id in H as t → 0, we also have

lim sup
t→0

W2(ρ0, ρt) ≤ lim
t→0

∥Xt − Id∥H = 0.

Thus, ρt is a weak solution to (1.9) with initial data ρ0 (see for instance [San15, Proposition 4.2]). □
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6. Monotonicity and Exponential Decay under L-Smoothness and λ > 0

In this section, we show that when λ ≥ 0 and under an additional smoothness assumption on ϕ#
ρ0 ,

the decay properties of ϕ and its gradient established in Section 3 can be further refined. Moreover,
we improve the error estimate in Theorem 5.12 by proving that the error vanishes exponentially in
time when λ > 0.

The key to upgrading our previous result is that when λ ≥ 0 and ∇ϕ#
ρ0 is L-Lipschitz, we can

obtain a lower bound for ||Xτ
n −Xτ

n+1||2H in terms of ||∇ϕ#
ρ0(X

τ
n+1)||2H.

Lemma 6.1. Under Assumption 2 and its notation, suppose λ ≥ 0 and there exists a constant L ≥ 0
such that

sup
ξ1 ̸=ξ2∈H

∥∇ϕ#
ρ0(ξ1)−∇ϕ#

ρ0(ξ2)∥H
∥ξ1 − ξ2∥H

≤ L.

Then if τ ≤ 1
L , we have the following estimate for any n ∈ N:

(6.1)

⟨∇ϕ#
ρ0(X

τ
n),∇ϕ#

ρ0(X
τ
n+1)⟩H ≥ (1−Lτ)||∇ϕ#

ρ0(X
τ
n+1)||2H and ∥Xτ

n−Xτ
n+1∥2H ≥ τ2(1−Lτ

2
)∥∇ϕ#

ρ0(X
τ
n+1)∥2H.

Proof. We observe that the inner product inequality implies the other inequality because it along
with using Lemma 3.5 with λ ≥ 0 implies

||Xτ
n−Xτ

n+1||2H =
τ2

4

(
||∇ϕ#

ρ0
(Xτ

n)||H + ||∇ϕ#
ρ0
(Xτ

n+1)||H + 2⟨∇ϕ#
ρ0
(Xτ

n),∇ϕ#
ρ0
(Xτ

n+1)⟩H
)
≥ τ2(1−Lτ

2
)||∇ϕ#

ρ0
(Xτ

n+1)||H,

Therefore, it suffices to show ⟨∇ϕ#
ρ0(X

τ
n),∇ϕ#

ρ0(X
τ
n+1)⟩H ≥ (1−Lτ) · ||∇ϕ#

ρ0(X
τ
n+1)||H. We now prove

this bound. First observe that

⟨∇ϕ#
ρ0(X

τ
n+1),∇ϕ#

ρ0(X
τ
n)⟩H = ∥∇ϕ#

ρ0(X
τ
n)∥2H + ⟨∇ϕ#

ρ0(X
τ
n+1)−∇ϕ#

ρ0(X
τ
n),∇ϕ#

ρ0(X
τ
n)⟩H.

Applying Cauchy-Schwarz, we obtain

(6.2) ≥ ∥∇ϕ#
ρ0(X

τ
n)∥2H − L∥Xτ

n+1 −Xτ
n∥H · ∥∇ϕ#

ρ0(X
τ
n)∥H ≥ (1− Lτ)∥∇ϕ#

ρ0(X
τ
n)∥2H.

In the second last inequality, we used λ ≥ 0 along with (3.8) to obtain that

∥Xτ
n+1 −Xτ

n∥2H ≤ τ2∥∇ϕ#
ρ0(X

τ
n)∥2H.

Then the inner product inequality follows from (6.2), (1−Lτ) ≥ 0, and using the gradient norms are
non-increasing in n (see (3.8)) because λ ≥ 0. □

Now we will use the Discrete EVI along with our above bounds to refine our stability properties:

Lemma 6.2 (Refined Decay). Under the notation and assumptions of Lemma 6.1, if τ ≤ 1
L , then

the following hold:
1. The energy is non-increasing:

ϕ#
ρ0(X

τ
n+1) +

λ

2
||Xτ

n −Xτ
n+1||2H + τ

(
1− Lτ

2

)
· ||∇ϕ#

ρ0(X
τ
n+1)||2H ≤ ϕ#

ρ0(X
τ
n).

2. The gradient norm decays exponentially:

∥∇ϕ#
ρ0(X

τ
n)∥2H ≥ e2λτ,Lτ∥∇ϕ#

ρ0(X
τ
n+1)∥2H.

where

(6.3) λτ,L :=
log(1 + λτ(2− Lτ))

2τ
≥ 0

Proof. Let us first show that the energy is non-increasing along the iterates. From (5.2) with λ ≥ 0,
we obtain (

λ

2
+

2

τ

)
∥Xτ

n −Xτ
n+1∥2H + ϕ#

ρ0(X
τ
n+1) ≤ ϕ#

ρ0(X
τ
n) + ⟨∇ϕ#

ρ0(X
τ
n), X

τ
n −Xτ

n+1⟩H.

Applying (3.7), this simplifies to

ϕ#
ρ0(X

τ
n+1) +

λ

2
||Xτ

n −Xτ
n+1||2H +

τ

2

(
∥∇ϕ#

ρ0(X
τ
n+1)∥2H + ⟨∇ϕ#

ρ0(X
τ
n+1),∇ϕ#

ρ0(X
τ
n)⟩H

)
≤ ϕ#

ρ0(X
τ
n).
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The result then follows from Lemma 6.1.
For the exponential decay of the gradient, we use λ-convexity to see

⟨∇ϕ#
ρ0(X

τ
n)−∇ϕ#

ρ0(X
τ
n+1), X

τ
n −Xτ

n+1⟩H ≥ λ∥Xτ
n −Xτ

n+1∥2H.
Applying (3.7), it follows that

∥∇ϕ#
ρ0(X

τ
n)∥2H ≥ ∥∇ϕ#

ρ0(X
τ
n+1)∥2H +

2λ

τ
∥Xτ

n −Xτ
n+1∥2H.

Then, using Lemma 6.1, along with λ ≥ 0 and the above display, we conclude. □

Lemma 6.3 (Refined Stability). Under the assumptions and notation of Lemma 6.2, we have

(6.4) ||Xτ
j+1 −Xτ

j ||H ≤ τe−jλτ,L·τ ||∇ϕ#
ρ0(X

τ
0 )||H.

In addition, if Nτ ≤ T , we have the stability bound

(6.5)
N∑
j=0

e2jλτ,L·τ
W 2

2 (ρ
τ
j+1, ρ

τ
j )

τ
≤

N∑
j=0

e2jλτ,L·τ
∥Xτ

j+1 −Xτ
j ∥2H

τ
≤ T∥∇ϕ#

ρ0(X
τ
0 )∥2H

Proof. Applying (3.7) along with Lemma 6.2, we obtain (6.4). To derive (6.5), we square (6.4) and
sum over all terms and use Lemma 2.2. □

To conclude this section, we refine the constants in Theorem 5.12 for λ ≥ 0. Since λτ,L ≤ λ, ϕ
remains λτ,L-convex. Applying Theorem 5.7 with λτ,L ≥ 0, we can estimate dτ,η(t; t) using Gronwall’s
Inequality [AGS05, Lemma 4.1.8]. Indeed, we have the bound

(6.6) dτ,η(T ;T ) ≤ e−λτT

(
d2τ,η(0; 0) + sup

t∈[0,T ]

ˆ T

0
e2λτ,Lsã(s)ds

)1/2

+ e−λτT

ˆ T

0
eλτ sb̃(s)ds,

where

ã(t) :=
τ

2
Gτ

t +
η

2
Gη

t + 2(Rτ
t +Rη

t ) + λτ,L((Dτ
t )

2 + (Dη
t )

2), and b̃(t) := λτ,L(Dτ
t +Dη

t ).

Now let us estimate the integral terms:

Lemma 6.4. Under the notation and assumptions of Lemma 6.3, then the following estimates hold
for any T ≥ 0:ˆ T

0
e2λτ,LtGτ

t dt ≤ τ · λ

λτ,L
· (1 + 2λ(T + τ)) · ||∇ϕ#

ρ0(X
τ
0 )||2H,

ˆ T

0
e2λτ,LtRτ

t dt ≤ τ2
(

λ

λτ,L
·
[
1

4
+

λ

2
(T + τ)

]
+

1

2
e2λτ,Lτ

)
· ||∇ϕ#

ρ0(X
τ
0 )||2H.

ˆ T

0
e2λτ,Lt(Dτ

t )
2 dt ≤ λ

λτ,L
τ2(T + τ)||∇ϕ#

ρ0(X
τ
0 )||2H,

ˆ T

0
eλτ,Lt(Dτ

t ) dt ≤ (T + τ)τ

√
λ

λτ,L
||∇ϕ#

ρ0(X
τ
0 )||H.

Proof. Choose N ∈ N to be the smallest integer such that T ≤ Nτ .
Step 1:

´ T
0 e2λτ,Lt(Dτ

t )
2dt.

Observe thatˆ T

0
e2λτ,Lt(Dτ

t )
2dt ≤

ˆ Nτ

0
e2λτ,Ltd2(X

τ
tX

τ
t )dt =

e2λτ,Lτ − 1

2λτ,L

N−1∑
j=0

||Xτ
j −Xτ

j+1||2H · e2jλτ,Lτ .

In addition, the definition λτ,L implies that e2λτ,Lτ − 1 ≤ 2λτ , so using the above bound with (6.5)
implies the desired bound.
Step 2:

´ T
0 eλτ,Lt(Dτ

t )dt.
The bound follows directly from Holder’s inequality and the bound from Step 1.
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Step 3:
´ T
0 e2λτ,LtGτ

t dt

We will use the notation αj from (5.20). Then as Gτ
t ≥ 0 because λ ≥ 0 from (3.8), we see that

(6.7)
ˆ T

0
e2λτ,LtGτ

t dt ≤
N−1∑
j=0

(αj − αj+1)

ˆ (j+1)τ

jτ
e2λτ,Ltdt =

e2λτ,Lτ − 1

2λτ,L

N−1∑
j=0

(αj − αj+1)e
2jλτ,Lτ .

To control the sum, we observe that
N−1∑
j=0

(αj−αj+1)e
2jλτ,Lτ =

(
α0 − αNe2Nλτ,Lτ

)
+

N−1∑
j=0

αj+1(e
2(j+1)λτ,Lτ−e2jλτ,Lτ ) ≤ α0+α0(e

2λτ,Lτ−1)N.

In the last inequality we used Lemma 6.2. Then again the definition of λτ,L implies that e2λτ,Lτ −1 ≤
2λτ , so we see that from (6.7)ˆ T

0
e2λτ,LtGτ

t dt ≤ τ · λ

λτ,L
· (1 + 2λ(T + τ)) · ||∇ϕ#

ρ0(X
τ
0 )||2H.

Step 4:
´ t
0 e

λtRτ
t dt

By using Lemma 5.8 and that λ ≥ 0, we have thatˆ T

0
e2λτ,LtRτ

t ≤ τ

4

ˆ T

0
e2λτ,LtGτ

t dt−
1

τ

ˆ T

0
e2λτ,Lt(ℓτ (t)−

1

2
)(Dτ

t )
2dt = (I) + (II).

We can control (I) by using the error bound derived in Step 3. To control (II), observe that
ˆ (j+1)τ

jτ

(
1

2
− ℓτ (t)

)
e2λτ,Ltdt ≤ 0.

Hence, we see from Lemma 6.3

(II) ≤ 1

2τ
· d2(Xτ

N−1, X
τ
N ) ·
ˆ T

(N−1)τ
e2λτ,Lt ≤ τ2

2
||∇ϕ(Xτ

N )||2H · e2λτ,L(N+1)τ

≤ τ2

2
e2λτ,Lτ · ||∇ϕ(Xτ

0 )||2H.

The bounds on (I) and (II) allows us to conclude.
□

By using (6.6), Lemma 6.3, and Lemma 6.4 along with a similar argument as in Theorem 5.12, we
obtain

Theorem 6.5 (Refined Error Estimates). Under the notation and assumptions of Lemma 6.2 and
Theorem 5.12, if λ ≥ 0 and τ ≤ 1/L, we have that

W2(ρt, ρ
τ
t ) ≤ ||X(t)−Xτ

t ||H ≤
√
3e−λτ,Lt(||Id −Xτ

0 ||H + C̃(λ, t, τ) · τ ||∇ϕ#
ρ0(X

τ
0 )||H),

where we have

C̃(λ, t, τ) := eλτ,L·τ +

√
λ

λτ,L
· (t+ τ) +

√
λ

λτ,L
(1 + 2λ(t+ τ)) + λ(t+ τ) + e2λτ,Lτ

7. Numerical Experiments

In this section, we present numerical experiments for our trapezoidal time discretization scheme
applied to the the energy functional U from Example 2.8. We will take χσ to be the density of a
N (0, σ2Id) random variable. When ρ = 1

N

∑N
j=1 δXj is an empirical measure, the computations from

Example 2.8 implies

(7.1) ∇WU(ρ,Xi) = ∇WF(ρ,Xi) +∇V (Xi) +
1

N

N∑
j=1

∇W (Xi −Xj).
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where

∇WF(ρ,Xi) =
1

N

N∑
j=1

(
f ′((ρ ∗ χσ)(Xi)

)
+ f ′((ρ ∗ χσ)(Xj)

))
∇χσ(Xi −Xj).

This formulation is particularly convenient for numerical implementation, as both the energy U(ρ)
and its Wasserstein gradient ∇WE(ρ) can be evaluated explicitly from the particle positions {Xi}Ni=1.
In practice, this allows for efficient computation of the energy and its gradients without any need for
grid-based interpolation or density estimation.

Moreover, push-forwards are especially simple in this particle representation: if ρ = 1
N

∑N
i=1 δXi

and T : Rd → Rd is a map, then

T#ρ =
1

N

N∑
i=1

δT (Xi).

Hence both the evaluation of E and the application of transport maps can be implemented directly
at the level of the particle positions.

(a) Initial empirical measure ρ0 (b) Final particle locations at
t = 2

(c) Energy E and ∥∇WE∥L2(ρ0)
versus time (d) L2(ρ0) particle error

Figure 1. Numerical results for the trapezoidal scheme with potentials (f, V,W ) =
(0, |x|2,− 1

4π log(ε2 + |x|2)), where ε = 10−2, N = 64, and τ = 1/25. (a)–(b) show the
particle configurations at the beginning and end of the simulation; (c) displays the energy
and Wasserstein gradient norm over time; (d) reports the estimated time–step convergence
rate where τRef = 1/4096, while the other τ ∈ [1/1024, 1/64].

Numerically, to obtain Xτ
n+1 we employed the variational formulation from (3.1). The minimization

of (3.1) was carried out via gradient descent in the particle positions, using the explicit expression
for the gradient given in (7.1). In practice, the descent was initialized by an explicit Euler step
Xτ

n − τ∇WE(ρτn, Xτ
n) and the gradient descent was iterated until the L2(Rd; ρ0) norm of successive

iterates fell below a prescribed tolerance.
To estimate the numerical convergence rate, we compared the discrete particle configurations

obtained with time steps τ and τRef at the same final time T > 0, satisfying Nτ = MτRef = T . The
corresponding error is given by ∥Xτ

N − Xτref
M ∥L2(Rd;ρ0). These experiments also numerically confirm

Theorem 4.4, exhibiting the predicted O(τ2) convergence rate.
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(a) Initial empirical measure ρ0 (b) Final particle locations at
t = 0.1

(c) Energy E and ∥∇WE∥L2(ρ0)
versus time

(d) L2(ρ0) particle error

Figure 2. Numerical results for the trapezoidal scheme with potentials (f, V,W ) =
( 12 log(x + ε), |x|2, 0), where ε = 10−2, σ = 1/10, N = 64, and τ = 1/100. (a)–(b) show
the particle configurations at the beginning and end of the simulation; (c) displays the energy
and Wasserstein gradient norm over time; (d) reports the estimated time–step convergence
rate where τRef = 0.5/4096, while the other τ ∈ [0.5/1024, 0.5/64].
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