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Abstract

One proposed mechanism to improve exploration in reinforcement learning is
through the use of macro-actions. Paradoxically though, in many scenarios the
naive addition of macro-actions does not lead to better exploration, but rather the
opposite. It has been argued that this was caused by adding non-useful macros and
multiple works have focused on mechanisms to discover effectively environment-
specific useful macros. In this work, we take a slightly different perspective. We
argue that the difficulty stems from the trade-offs between reducing the average
number of decisions per episode versus increasing the size of the action space.
Namely, one typically treats each potential macro-action as independent and atomic,
hence strictly increasing the search space and making typical exploration strategies
inefficient. To address this problem we propose a novel regularization term that
exploits the relationship between actions and macro-actions to improve the credit
assignment mechanism by reducing the effective dimension of the action space
and, therefore, improving exploration. The term relies on a similarity matrix that
is meta-learned jointly with learning the desired policy. We empirically validate
our strategy looking at macro-actions in Atari games, and the StreetFighter II
environment. Our results show significant improvements over the RAINBOW-
DQN baseline in all environments. Additionally, we show that the macro-action
similarity is transferable to related environments. We believe this work is a small
but important step towards understanding how the similarity-imposed geometry
on the action space can be exploited to improve credit assignment and exploration,
therefore making learning more effective.

1 Introduction

While Reinforcement Learning (RL) lead to a plethora of successes [e.g. 1–5], being an integral
component of modern LLMs as well [e.g. 6], efficient exploration remains a significant challenge.
This is particularly so in environments with large or complex action spaces or sparse rewards that
require to do credit assignments over long episodes. One potential approach to simplify exploration
is the use of macro-actions [e.g. 7–10], fixed sequences of actions that are frequently used by the
policy. By expanding the action space with macro-actions, and using them efficiently, an agent can
reduce considerably the number of decisions that it needs to take during an episode, hence making
the exploration easier.
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Figure 1: Visual comparison between Rainbow-DQN, Rainbow-DQN + Macro-Actions and Macro-
Action Similarity Penalty

.

However it is often that even when one has access to a good proposal distribution for macro-actions,
using them leads to worse performance. This is due to the fact that even if the average length of an
episode might decrease, in many cases the exploration space actually becomes larger, as the number
of available choices at each step can increase considerably (see also Figure 1a).

In this work, we attempt to exploit the fact that some of these macro-actions are inherently related,
not only among themselves but also to the basic actions. By simply increasing the action space
with additional macro-actions we are implicitly assuming that each macro-action is atomic and
independent. But often, due to the sharing of basic actions between these sequences, the outcome of
different macro-actions in the environment can be somewhat similar. We propose to capitalize on
this similarity to distribute the credit received by a chosen macro-action to all other macro-actions
according to their similarity. This effectively reduces the intrinsic dimensionality of the action space,
therefore reducing the size of the search space and improving exploration.

The similarity between macro-actions acts as an inductive bias, which can be either handcrafted
given a good understanding of the available macro-actions, or, as we will show in Section 3, it can be
meta-learned from the data. For simplicity, in this work we assume that the similarity takes the form
of a fixed kernel, Σ, that is used to push Q values towards each other proportional to the similarity
strength. Note that we make no explicit distinction between actions and macro-actions. We refer to
this regularization term as the Macro-Action Similarity Penalty (MASP).

We apply this method in two scenarios. First, in Atari games, where macro-actions are extracted
using a simple frequency-based heuristic over recorded trajectories, capturing common sequences
of basic actions. The second scenario is the StreetFighter II environment, where each player has
specific sets of action combos that result in more powerful attacks. We use these combos as potential
macro-actions, incorporating all available combos regardless of the character used by the agent. Our
experimental results demonstrate that the proposed method significantly improves learning efficiency
on top of RAINBOW DQN [11], see Figure 1. Agents trained with our regularization approach
exhibit faster convergence and higher cumulative rewards. By bridging the gap between extended
action spaces and efficient exploration, this work contributes a novel approach that leverages the
inherent geometry of the action space, potentially benefiting a wide range of reinforcement learning
applications with structured action spaces.

2 Related work

Macro-actions, or temporally extended actions, have significantly contributed to improved exploration
efficiency within reinforcement learning (RL) frameworks. Initial studies by Randlov [12] introduced
systematic methods to construct macro-actions from primitive actions, accelerating learning in
tasks such as bicycle balancing and grid-world navigation. Similarly, McGovern and Sutton [13]
empirically confirmed their benefits, showing faster discovery of optimal solutions compared to
primitive-level exploration.

Macro-actions in Deep and Meta-RL. Recent work has extended macro-actions to deep reinforce-
ment learning settings. For example, Frans et al. [14] explored meta-learning strategies that enable
hierarchical agents to generalize by reusing temporally extended skills. More recently, Cho and
Sun [15] proposed a tri-level meta-RL framework that learns task-agnostic macro-actions across
environments. Our work draws inspiration from such architectures but focuses on meta-learning
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similarity structures among macro-actions to enhance credit assignment rather than hierarchical
decomposition alone.

Macro-actions in Multi-agent and Decentralized RL. In decentralized and multi-agent settings,
macro-actions have proven effective for improving exploration and coordination. Tan et al. [16]
proposed the Macro Action Decentralized Exploration Network (MADE-Net) to deal with com-
munication dropouts in cooperative multi-agent environments. Similarly, Xiao [17] introduced
both decentralized and centralized macro-action value learning approaches, showing scalability and
coordination gains.

Intrinsic Motivation and Macro-actions. Macro-actions have also been combined with intrinsic
motivation to promote deeper exploration. Panda et al. [18] presented a framework blending intrinsic
and extrinsic rewards across timescales, enabling agents to develop strategic behaviors involving
macro-action.

Transferability and Reusability. Macro-actions are particularly valuable for transfer learning.
Chang et al. [19] demonstrated that macro-actions are reusable across tasks and algorithms and
transferable to new environments with different reward functions. Such findings suggest that macro-
actions can encode abstract behaviors robust to minor environment changes.

Planning with Macro-actions. Outside RL, macro-actions have been leveraged in classical planning.
Allen et al. [20] proposed focused-effect macro-actions to improve heuristic accuracy in black-box
planning, while Newton et al. [21] integrated macro-actions into planning heuristics, showing better
performance in relaxed planning graph search. These results emphasize the role of macro-actions not
only in learning but also in accelerating symbolic planning through structured action abstractions.

Macro-actions for POMDPs. To deal with partial observability, Amato et al. [22] studied macro-
actions in decentralized POMDPs, proposing solutions that integrate temporally abstracted behaviors
into tree-based planners. Lee et al. [23] introduced MAGIC, which uses learned macro-actions to
improve online planning in POMDPs by tailoring the action space to situation-aware behavior.

Hierarchical and Object-Oriented Macro-Actions. In the context of spatial reasoning, Hakenes and
Glasmachers [24] proposed object-oriented macro-actions based on topological maps, which provide
inductive structure for learning in visually complex and sparse environments. These topological
abstractions act as priors for exploration and planning.

Our Contribution. Despite these advances, integrating macro-actions in a scalable and flexible way
remains challenging, particularly when they are treated as independent and the relationships among
them are ignored. Our approach fills this gap by introducing a meta-learned similarity matrix for
macro-actions, encouraging credit sharing across related actions through a regularization mechanism.
This not only improves exploration in large action spaces but also adapts the agent’s inductive biases
during training, aligning with the broader goals of structure-aware learning in RL.

3 Methods

3.1 Background

We assume the standard MDP formulation, where M = (S,A, P, r, ρinit, γ) consisting of state
space S, the set of all possible actions A, a transition distribution P (s′|s, a) and a reward function
r : S × A → R. The goal of an agent is to find a policy π that maximises the expected sum of
discounted rewards: Qπ(s, a) = Es0∼ρinit,at ∼π(st) [

∑
t=0 γ

tr(st, at)]. In our work we focus on
value based methods, which minimize the temporal difference (TD) error in order to learn the Q-
function and define π greedily with respect to it. We are specifically assuming that Q is approximated
by a neural network. The prototypical algorithm is DQN [25], where Q is learned by minimising:

L(θ) = E
(s,a,r,s′)∼D

(
Qθ(s, a)−

(
r + γmax

a′
Qθ′(s′, a′)

))2

(1)

Multiple works, after the seminal DQN paper [25] had improved this algorithms, as for example agent
C51 [26] who instead of modeling the return directly, predicts a categorical distribution of expected
returns. RAINBOW [27] includes several improvements on top of C51, ranging from prioritised
experience replay [28] to n-step returns for lower variance bootstrap targets, double Q-learning
[29], disambiguation of state-action value estimates [30], and noisy nets [31]. In our work we use
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RAINBOW as our baseline and build on top of it by augmenting the action space with Macro-Actions
and explore our proposed regularization term MASP.

3.2 MASP: Macro-Actions Similarity Penalty

One specific intuition behind extended actions, shared with concepts like macro-actions or options, is
that they reduce the number of decisions that we need to take within the episode, and hence make
learning easier (from a credit assignment point of view). Simply put, having fewer decisions in an
episode means that it is easier to see which of them contributed to the observed return.

Another important element of learning in RL, however, is that of exploration. And while shorter
episodes should make exploration easier, when we consider an extended action space, the outcome
can be that exploration becomes considerably harder, given that the number of choices per step
increases. One intuitive way of understanding this behavior is to consider the size of the search space
that the RL algorithm has to explore. If we make the assumption that for any given state, any of
the actions leads to a unique outcome (i.e. different state), then the search space size should have
the form fN , where f is the branching factor, or number of actions per step, and N is the number
of decisions the agent needs to take. One can now easily see that N ′ < N does not guarantee that
f ′N ′

< fN if reducing N ′ requires increasing the branching factor, i.e. f ′ > f which the usual
situation when adding macro-actions to the action space. Indeed, it is more likely that increasing the
branching factor will increase the search space faster then decreasing the number of decisions taken
per episode.

The main assumption in the above reasoning is that each new action added to the action space is
unique or leads to a unique outcome — assumption typically made by standard exploration strategies
like ϵ-greedy. However for typical environments this is not the case. The search space is highly
structured, which is the main reason we can learn reasonable policies over extremely-large search
spaces. This structure is typically exploited in deep RL through the use of neural networks as function
approximators. In this work we exploit this further, specifically looking at the structure of the action
space. We make the assumption that certain actions lead, on average, to similar outcomes. This will
naturally impose a clustering of actions, and allow learning and exploration to first identify the correct
cluster for a given state and then the fine-grained differences between actions within each cluster.

We propose to codify this intuition into a regularization term we refer to as the Macro-Action
Similarity Penalty (MASP). The penalty enforces that any cluster of similar actions can not disperse
too much in their Q-values, and, more importantly, learning has to move the entire cluster together,
allowing Q-values to learn from each other. Crucially, the term allows for some dispersion which can
capture some degree of differentiation between actions, which is needed to learn a reliable policy.

3.3 Detailed Formulation

Formally, we assume the existence of a similarity matrix, Σ ∈ R|A|×|A|, where each element Σij

represents the similarity between actions ai and aj , marginalized over all possible states. Specifically,
high Σij encodes the inductive bias that Qi and Qj should not differ substantially, regardless of state.
The similarity matrix is symmetric (Σij = Σji) and non-negative.

To operationalize MASP, we incorporate it into the standard Temporal Difference (TD) loss as an
additive term weighted by a hyper-parameter η which decides how much we restrict the Q-values to
respect Σ. Given a sampled batch of transitions (si, ai, ri, si+1)

n
i=1, we have:

LMASP = η · ∥Q(si, ·; θ)− ΣQ(si, ·; θ)∥22 (2)

Intuitively, this loss penalizes large differences between the Q-values of similar actions, promoting a
smoother and more structured Q-function landscape.

3.4 Meta-learning Σ

The efficacy of our approach depends on choosing an adequate similarity matrix Σ. For example,
setting Σ to the identity matrix, I, will reduce MASP to not have any effect. This is true if we also
set Σij = 1 for all i and j. While in principle one can use domain knowledge to define clusters
of similar actions, in this work we rely on meta-learning approaches to learn directly from data a
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relevant clustering during exploration. Note that Σ is learned jointly with θ, therefore being able to
track the current policy πθ, rather than being forced to marginalize over policies.

Specifically, we apply a meta-gradient framework inspired by Xu et al. [32] to automatically infer the
entries of Σ. Following the meta-gradient methodology, we alternate between two phases:

• In the first phase, we apply a standard RL update to the agent parameters θ using a sampled
trajectory τ , under the current similarity metric Σ. This yields updated parameters θ′.

• In the second phase, we evaluate the quality of the new θ′ on a held-out trajectory τ ′, using
a differentiable meta-objective J ′(τ ′, θ′), where J ′ is just the TD-error term. Note that
J ′ is a function of Σ only through θ′ due to the update done on the augmented objective
J containing our MASP regularization term (see Algorithm 1 for details). (We clone the
network parameters to obtain θ′ after a simulated update step, as required for meta-gradient
computation [32].)

The meta-gradient∇ΣJ
′ is computed using the chain rule as follows:

∂J ′(τ ′, θ′)

∂Σ
=

∂J ′

∂θ′
· dθ

′

dΣ
,

and the trace-based approximation [32] allows for efficient online accumulation of dθ′

dΣ . This gradient
is then used to update Σ using stochastic gradient descent, thereby enabling the agent to dynamically
learn which macro-actions should be treated as functionally similar. The precise implementation,
including hyperparameter settings and gradient handling, will be made publicly available with our
code. Additional details about the proposed MASP regularization and its implementation can be
found in Appendix A.

Algorithm 1 Meta-learning Credit Assignment with MASP

Require: Replay buffer D, macro-actions set Amacro, initial network parameters θ, target network
parameters θ−, similarity matrix Σ (meta-parameters), learning rates α and β, regularization
coefficient η

1: Initialize Q-network Q(s, a; θ) and target network Q−(s, a; θ−)
2: for each environment step t = 1 to T do
3: Select action at using ϵ-greedy over Q(st, a; θ)
4: Execute at, observe rt, st+1

5: Store transition (st, at, rt, st+1) in buffer D
6: if time to update then
7: Sample trajectory τ = {(si, ai, ri, si+1)}ni=1 from buffer D
8: Compute similarity embedding eΣ from Σ via a learned projection
9: Compute target: yi = ri + γmaxa′ Q−(si+1, a

′; θ−)
10: Compute standard TD loss: LTD = 1

n

∑
i(Q(si, ai; θ)− yi)

2

11: Compute MASP regularization: LMASP = η · ∥Q(si, ·; θ)− ΣQ(si, ·; θ)∥22
12: Update network parameters: θ ← θ − α∇θ(LTD + LMASP)
13: // Meta-gradient phase
14: Clone network parameters: θ′ ← θ
15: Sample second trajectory τ ′ from buffer D
16: Compute meta-objective Lmeta = LTD(θ

′) on τ ′

17: Compute meta-gradient: ∇ΣLmeta via chain rule
18: Update Σ← Σ− β∇ΣLmeta
19: end if
20: if time to update target network then
21: θ− ← θ
22: end if
23: end for

To cope with the non-stationarity introduced by the evolving similarity metric, we condition the value
function and policy on Σ using a low-dimensional embedding eΣ, akin to Universal Value Function
Approximators (UVFA) [33]. This enables the network to generalize across changes in the structure
of Σ and adapt smoothly during learning.
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Figure 2: Visual comparison between Rainbow-DQN (dark blue), Rainbow-DQN + Macro-Actions
(light blue), and Macro-Action Similarity Penalty (red).

Learning the Similarity Embedding eΣ. A common and effective approach for representing the
similarity matrix Σ is to learn a low-dimensional embedding eΣ jointly with the main network
parameters. Instead of using the full (potentially large) matrix Σ directly as network input, we first
flatten Σ and map it to a compact vector via a trainable linear transformation:

eΣ = Wemb · vec(Σ),

where Wemb is a learned weight matrix and vec(Σ) denotes the flattened version of Σ. In our setup,
Wemb is only updated via gradients from the main loss J , and not directly from the meta-objective
J ′. See Appendix A for more implementation details.

The resulting embedding eΣ is then concatenated with other input features (such as the state repre-
sentation) and fed into the network as additional context. During training, eΣ is learned end-to-end
via backpropagation, so the agent can flexibly adapt its notion of action similarity as Σ evolves.
This approach allows the network to capture the most relevant information about action similarities,
supporting both efficient exploration and generalization, and is preferable to static or randomly
projected embeddings when Σ contains task-relevant structure.

This meta-learning mechanism improves credit assignment by promoting shared learning signals
among semantically related actions – especially macro-actions, and leads to a more efficient explo-
ration of the macro-action space. It also enables the agent to adapt its notion of action similarity as
the environment dynamics and learning context evolve.

4 Experiments

Game Rainbow-DQN +Macro-Actions +MASP
Breakout 379.5 ± 25.1 252.9 ± 22.2 884.4 ± 74.0
Frostbite 4,141.1 ± 175.4 3,361.2 ± 356.4 5,566.7 ± 317.3
Ms Pacman 2,570.2 ± 204.6 1,471.5 ± 185.3 2,966.5 ± 360.5
Seaquest 19,176.0 ± 1,428.9 13,917.1 ± 641.1 23,768.8 ± 1,476.9
Space Invaders 12,629.0 ± 1,413.2 7,496.4 ± 532.9 16,668.2 ± 2,050.5

Table 1: Comparison between RAINBOW DQN [11], RAINBOW-DQN with macro-actions (+Macro-
Actions), and RAINBOW DQN with macro-actions similarity penalty (+MASP). Bold indicates
maximal raw performance between RAINBOW DQN and MASP. Human-normalized (HN) scores are
shown in parentheses. Cells highlighted in pink denote HN ≥ 100. This table is a cropped version
for readability; the full results across all games are provided in the Appendix.
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Game # of macro-actions +Macro-Actions +MASP
64 248.1 ± 13.9 772.9 ± 54.9

128 211.7 ± 9.6 727.0 ± 17.0
Breakout 256 147.6 ± 9.6 564.9 ± 26.1

512 87.2 ± 3.9 482.9 ± 27.8
1024 13.2 ± 0.5 379.5 ± 30.1

64 3,142.2 ± 142.7 5,204.2 ± 401.7
128 2,853.5 ± 40.0 5,174.9 ± 246.7

Frostbite 256 1,492.1 ± 100.3 4,446.6 ± 314.7
512 893.7 ± 67.5 3,869.5 ± 297.9

1024 470.1 ± 26.8 2,477.4 ± 188.7
64 1,752.1 ± 52.2 2,445.5 ± 35.9

128 1,569.4 ± 58.3 2,144.3 ± 38.4
Ms Pacman 256 1,129.6 ± 71.6 1,977.3 ± 140.9

512 814.8 ± 56.4 1,278.5 ± 110.3
1024 246.0 ± 18.8 933.4 ± 75.4

64 13,043.7 ± 576.0 21,966.7 ± 1065.0
128 13,164.1 ± 599.8 18,766.7 ± 1550.6

Seaquest 256 12,453.5 ± 734.7 16,897.4 ± 802.5
512 8,332.6 ± 709.0 13,854.9 ± 315.4

1024 4,333.8 ± 198.9 9,144.7 ± 723.1
64 7,217.1 ± 451.9 15,566.9 ± 846.2

128 8,325.0 ± 389.1 15,196.3 ± 1167.8
Space Invaders 256 6,913 ± 583.7 13,778.0 ± 683.1

512 4,759.3 ± 170.8 9,769.3 ± 130.4
1024 1,468.4 ± 49.5 6,793.5 ± 314.3

Table 2: Ablation study showing the effect of varying the number of macro-actions (k ∈
64, 128, 256, 512, 1024) on performance across five representative Atari games. While the base-
line with macro-actions suffers from severe performance degradation as the action space grows,
MASP maintains strong and stable performance, demonstrating its robustness to action space size
and ability to leverage structural similarity.

Task Rainbow DQN +Macro-Actions +MASP
Macro-actions I 187,556 ± 3713.3 184,789 ± 7628.2 236,943 ± 13676.0
Macro-actions II 537,388.8 ± 23829.9 565,319.2 ± 9441.2 593,784 ± 18262.9

Table 3: Performance comparison in the StreetFighter II environment across two macro-action sets of
increasing complexity. MASP consistently outperforms both the RAINBOW-DQN baseline and its
macro-action-augmented variant. Notably, gains are amplified in the more complex Macro-Actions II
setting, highlighting MASP’s ability to scale with the size of the extended action spaces.

Game P (replace) +Macro-Actions +MASP
0 252.9 ± 22.2 884.4 ± 74.0

0.25 208.3.3 ± 22.6 814.3 ± 37.7
Breakout 0.5 186.5 ± 12.9 663.9 ± 28.2

0.75 76.4 ± 4.8 503.7 ± 39.6
0 3,361.2 ± 356.4 5566.7 ± 317.3

0.25 3,071.9 ± 188.7 4,855.2 ± 353.7
Frostbite 0.5 2,173.4 ± 83.7 4,194.0 ± 343.3

0.75 1,366.3 ± 60.4 3,472.9 ± 272.9
0 1,471.5 ± 185.3 2966.5 ± 360.5

0.25 1,145.9 ± 108.4 2,454.2 ± 255.9
Ms Pacman 0.5 893.3 ± 87.9 2,144.2 ± 212.6

0.75 666.5 ± 65.8 1,884.5 ± 153.8
0 13,917.1 ± 641.1 23768.8 ± 1476.9

0.25 12,593.0 ± 250.4 21,619.8 ± 1586.2
Seaquest 0.5 9,194.8 ± 562.5 19,913.5 ± 1296.9

0.75 3,732.0 ± 172.1 17,581.0 ± 234.9
0 7,496.4 ± 532.9 16,668.2 ± 2050.5

0.25 6,692.6 ± 865.0 15,014.1 ± 1271.0
Space Invaders 0.5 3,836.2 ± 727.3 13,021.7 ± 238.1

0.75 2,784.8 ± 116.0 10,481.9 ± 702.6

Table 4: Performance under macro-action noise. Each macro-action is replaced with a random se-
quence of the same length with probability P (replace) ∈ 0.25, 0.5, 0.75. MASP remains consistently
effective across all noise levels, while RAINBOW-DQN + Macro-Actions degrades sharply, indicating
MASP’s robustness to imperfect or corrupted macro-action sets.
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Source of Σ

Target Env. Breakout Montezuma’s Revenge Private Eye Space Invaders RAINBOW DQN

Breakout 884.4 ± 74.0 613.2 ± 57.1 884.4 ± 74.0 815.3 ± 66.2 379.5 ± 25.1
Montezuma’s Revenge 162.1 ± 12.5 400.0 ± 18.1 376.8 ± 19.2 213.6 ± 11.4 154.0 ± 16.9
Private Eye 1,432 ± 117.4 2,074 ± 216.8 2244.3 ± 150.9 1,311.2 ± 138.5 1,704.4 ± 41.7
Space Invaders 15,294 ± 2,169.3 7,869.4 ± 614.5 7,483.7 ± 544.8 16668.2 ± 2050.5 12,629.0 ± 1,413.2

Table 5: Transfer learning results. Each column denotes the environment used to train (source) Σ,
and each row is the evaluation (target) environment. Diagonal elements represent transfer of Σ from
the same game to itself; off-diagonals are transferred Σ from different games. Last column is original
RAINBOW performance for reference. Note that RAINBOW DQN with macro-actions and without
MASP underperforms, hence why it was not added to the table.

Experimental Setup. We rigorously evaluate our proposed Macro-Action Similarity Penalty (MASP)
across a diverse and challenging set of environments, including a suite of Atari 2600 games from
the Arcade Learning Environment (ALE) [34] and the complex, structured action environment of
StreetFighter II from Gym Retro [35]. These benchmarks represent scenarios with varied complexity
and exploration demands, making them ideal for assessing the benefits of our approach.

All agents are trained for a substantial 2B frames in Atari and 500 million frames in StreetFighter
II, using standard preprocessing steps and hyperparameters tuned per game via validation sweeps.
Crucially, all agent variants share identical architectures and optimization hyperparameters, differing
only in the application of macro-actions and the MASP regularization.

Implementation Details. For the Atari experiments, we build upon the RAINBOW-DQN [11]
baseline, a robust and widely recognized reinforcement learning algorithm. Macro-actions were
identified via a simple frequency-based heuristic, capturing frequently repeated sequences of primitive
actions within successful trajectories. To thoroughly demonstrate MASP’s effectiveness, we compare
three agent variants: (1) standard RAINBOW-DQN, (2) RAINBOW-DQN augmented with independent
macro-actions, and (3) RAINBOW-DQN enhanced with our proposed MASP method, which leverages
the meta-learned similarity matrix. In Appendix B we provide all training hyperparameters and
additional details for reproducibility.

Atari Macro-Actions. To construct meaningful macro-actions in Atari, we leverage the Atari
Grand Challenge Dataset [36], which provides human expert trajectories. We extract the top-k most
frequent action subsequences of length 3 to 8, where k = 32 for the main results reported in Table8.
These action subsequences serve as candidate macro-actions and are appended to the base primitive
action set to form the augmented action space.

Results and Analysis. Table 8 provides compelling evidence for MASP’s advantage over both
baselines. Notably, MASP consistently achieves higher cumulative rewards and demonstrates faster
convergence across almost all Atari games tested. In many games, MASP dramatically improves
upon RAINBOW-DQN, achieving performance that exceeds human-level benchmarks (a human-
normalized score of at least 100). This improvement confirms our hypothesis: explicitly leveraging
macro-action similarity significantly enhances credit assignment and exploration efficiency. For
detailed experimental results see Appendix C.

Ablation on Macro-Action Size. We explore how MASP and baselines behave as the number of
macro-actions increases. As shown in Table 2, we sweep k ∈ 64, 128, 256, 512, 1024 and observe
that while RAINBOW + macro-actions suffer catastrophically as k increases - presumably due to
increased action space complexity - MASP maintains strong performance throughout. This highlights
MASP’s robustness and effectiveness in managing large action spaces.

Robustness to macro-action reordering. Another important clarification has to do with macro-
action reordering. If the macro-actions are reordered, and the same permutation is applied to the
rows and columns of Σ, the MASP regularization remains mathematically identical. This is because
MASP only enforces that Q-values for actions with high similarity (as specified in Σ) are close — it
does not rely on any fixed semantic meaning being attached to a particular index. In practice, we
may choose to order macro-actions consistently (e.g., grouped by length or composition) solely to
aid human interpretability and visualization, but this ordering is not required for the algorithm and
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does not influence performance. The learned structure in Σ generalizes across environments due to
behavioral similarity between macro-actions, not index alignment.

Noisy Macro-Actions. To test MASP’s robustness to imperfect macro-action sets, we conduct
controlled noise ablation experiments. Specifically, for a fixed k = 32 macro-action set, we ran-
domly replace each macro-action with a random sequence of the same length with a probability
P (replace) ∈ {0.25, 0.5, 0.75}. This simulates conditions where the macro-action set is partially
or entirely corrupted. As shown in Table 4, while Rainbow + Macro-Actions degrades sharply as
noise increases, MASP remains remarkably stable and continues to provide substantial performance
benefits, even at high noise levels. This suggests that the similarity structure learned by MASP is
resilient and can cluster together non-informative macro-actions, learning easily to ignore them.

Dependency on the quality of Macro-actions. Another important point to note is that MASP
relies on the initial macro-action pool being at least partially meaningful. Automatic discovery of
high-quality macro-actions remains an open problem. That said, Table 4 shows that MASP remains
robust even when 75% of macro-actions are randomly corrupted — suggesting the meta-learned
similarity structure is resilient to noise and can learn to attenuate the influence of irrelevant macros.
Future work could combine MASP with recent macro-action discovery methods (e.g., trajectory
clustering, unsupervised option discovery), where MASP might serve as a regularizer to prune or
refine an evolving macro pool.

StreetFighter II Results. For StreetFighter II, we utilize domain knowledge to define macro-actions
explicitly as attack combinations (combos). Two distinct sets of macro-actions are considered: simpler
(Macro-Actions I) and more complex combos (Macro-Actions II), testing MASP’s adaptability
and scalability across varied levels of action complexity. Table 3 highlights MASP’s versatility.
In the Macro-actions II scenario (complex combos), MASP significantly outperforms both the
standard RAINBOW-DQN and Macro-Actions baselines, demonstrating clear benefits in structured,
combinatorially large action environments. Even in simpler scenarios (Macro-actions I), MASP at
least matches the best baseline, affirming its adaptability and broad utility.

Transfer Learning and Generalization. An additional exciting finding (see Table 5 and Appendix
C for more detailed results) indicates that the learned macro-action similarity matrix Σ generalizes
well to related tasks, suggesting that MASP not only improves individual task performance but
also facilitates knowledge transfer across related environments. Here we keep Σ frozen to the one
learned on the initial task (source domain), and relearn the policy with macro-actions under the frozen
similarity metric. This transferability has profound implications for practical applications, where
retraining from scratch for each new task is costly or infeasible. Notably, the results show strong
transferability of the similarity matrix Σ between games with similar structure and mechanics, such
as between Montezuma’s Revenge and Private Eye or between Breakout and Space Invaders, where
performance remains close to or above the in-domain baseline. In contrast, transferring Σ between
more distinct games leads to a pronounced drop in performance, indicating that the benefits of transfer
are greatest when the source and target environments share underlying dynamics or action semantics.

In Table 6, we show that Σ generalizes best across environments with similar transition dynamics and
interaction semantics (e.g., Breakout → Space Invaders, Montezuma → Private Eye). This supports
the view that Σ captures behavioral regularities across macros, rather than task-specific overfitting.

Our intuition is that although Σ is not conditioned on state, it meta-learns how Q-values should
co-vary across actions that yield similar trajectory-level effects. For example, in Breakout or Space
Invaders, many macros correspond to repeated fire-move patterns. Thus, Σ learns to group such
macros — and this grouping remains useful when transferred to related games where the macro-level
structure of agent-environment interactions is similar. This is analogous to how convolutional filters
in vision models can transfer even though they are not image- or task-specific: they encode generic
structure that is often reused.

Interpretability. Regarding interpretability, we visualize Σ (Figure 3 in the Appendix) and observe
clear block structures corresponding to groups of macros with similar behavioral outcomes. Still, we
agree that Σ is not trivially interpretable in semantic terms, and improving this is an exciting direction
— e.g., via structured priors, sparse constraints, or clustering-based analyses.
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Discussion. Collectively, these results robustly demonstrate MASP’s value as a general-purpose
technique that substantially improves learning efficiency, exploration, and final performance. Our
extensive experimental validation across diverse environments emphasizes MASP’s potential to
significantly advance reinforcement learning methods that utilize macro-actions, highlighting the
importance and effectiveness of intelligently structured credit assignment.

5 Limitations.

While our approach demonstrates significant empirical improvements in exploration and credit
assignment through the use of macro-action similarity regularization, several limitations remain. We
hope future research will address these limitations by exploring scalable approximations, improved
macro-action discovery, and broader algorithmic applicability.

Parametrization of Σ. Our choice of parametrization makes Σ independent of state, and of current
policy πθ (though there is a dependency on π through the meta-learning process, as Σ evolves jointly
and possibly tracks π). Conditioning Σ on state or θ could capture the structure of the action space
better, though might make the meta-learning task considerably harder.

Scalability to Very Large Action Spaces. Although MASP improves robustness to the number of
macro-actions, its computational cost grows quadratically with the size of the action space, as the
similarity matrix Σ must be maintained and projected at each update. Scaling to extremely large or
continuous action spaces may require approximate or structured representations of similarity. Storing
and projecting a full Σ ∈ R|A|×|A| can become expensive for extremely large action spaces. To
mitigate this, we already use a low-dimensional learned embedding of Σ (see Appendix A.3), which
is passed to the Q-network as a context vector. While the full matrix is still used during regularization,
it is only applied over the batch of Q-values at each update (not the entire action space per state).
This allows for practical efficiency even with 1024+ actions, as shown in Table 2. In future work, we
plan to investigate structured or sparse approximations (e.g., low-rank, kernel-based) to make MASP
scalable to continuous or combinatorial large action spaces.

Quality of Macro-Action Extraction. The success of MASP relies on having a set of meaningful
macro-actions. While we use a frequency-based heuristic on human trajectories, the performance may
degrade if the extracted macro-actions are not relevant or are poorly aligned with the task structure.
Automatic or adaptive discovery of optimal macro-actions remains an open problem.

Interpretability and Generalization of Similarity Structure. Although we observe some transfer-
ability of the learned similarity matrix across tasks, its interpretability and generalization properties
are not fully understood. Further work is needed to analyze when and why meta-learned similarities
capture useful domain knowledge.

Computational Overhead. Incorporating meta-learning and the additional regularization term
introduces extra computational cost per training iteration compared to standard DQN baselines. In
resource-constrained settings, this may limit applicability.

6 Conclusion

We regard our work as a small step towards improving the credit assignment problem when dealing
with augmented action space by better using the geometry or imposing structure on enlarged action
space. Given a similarity metric, MASP allows similar actions to move together, effectively one
learning from the other. We further demonstrate that the similarity metric can be learned efficiently
and simultaneously with the policy, exploiting the meta-gradient framework. The overall proposed
method MASP leads to effective and robust use of macro-actions, and improvements on Atari and
StreetFighter. We believe our framework can be expanded further either for improving interpretability
of action spaces or to exploit more state or policy dependent similarities.
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A MASP Regularization and Implementation Details

A.1 A.1 Detailed Formulation of MASP

The Macro-Action Similarity Penalty (MASP) is a regularization term designed to enforce smoothness
across the Q-values of similar actions (both primitive and macro-actions) in the augmented action
space. To achieve this, we define a similarity matrix Σ ∈ R|A|×|A|, where each entry Σij ≥ 0
represents the degree of similarity between actions ai and aj . In our implementation, Σ is constrained
to be symmetric and non-negative, but we do not require it to be positive-definite.

Given a batch of transitions {(si, ai, ri, si+1)}ni=1, MASP adds the following regularization to the
TD loss:

LMASP = η · 1
n

n∑
i=1

∥Q(si, ·; θ)− ΣQ(si, ·; θ)∥22 (3)

where Q(si, ·; θ) ∈ R|A| is the vector of Q-values for all actions at state si, and η is a tunable
regularization coefficient.

Intuition: This penalty encourages the Q-values of similar actions (according to Σ) to be close,
effectively sharing credit among macro-actions that are functionally related. Unlike options or
hierarchical RL, our penalty is “soft”—allowing some dispersion for exploration and differentiation.

—

A.2 A.2 Meta-learning Procedure for Σ

The similarity matrix Σ is meta-learned jointly with the agent’s main network parameters θ via
meta-gradients. This is achieved as follows:

1. Inner Update (Agent Step):

- Sample a trajectory τ from the replay buffer.

- Perform a standard TD update with the MASP penalty, updating θ → θ′ using Σ fixed.

2. Outer Update (Meta Step):

- Sample a new trajectory τ ′.

- Evaluate the performance of the updated θ′ using a meta-objective (the standard TD loss).

- Compute the meta-gradient of this meta-objective w.r.t. Σ (backpropagating through the inner update
step).

- Update Σ with a separate learning rate β.

This approach is similar to the meta-gradient method introduced by Xu et al. [32]. In practice, we use
automatic differentiation and checkpointing to efficiently compute dθ′

dΣ .

Algorithmic Details:

- See Algorithm 1 in the main text for the pseudocode.

- Σ is parameterized as a free matrix with symmetry enforced by averaging with its transpose after
each update.

- To prevent divergence, we clip the entries of Σ to the range [0, 1] after each update.

—

A.3 A.3 Practical Implementation Details

Embedding Σ: For large action spaces, representing Σ explicitly can be expensive. We instead
flatten Σ and use a learned projection:

eΣ = Wemb · vec(Σ)
where Wemb is a trainable matrix, and eΣ is a low-dimensional embedding vector. This is concatenated
with the state embedding and fed into the Q-network.
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Additional Training Details:

- Both Σ and Wemb are updated via backpropagation from the main loss.

- The meta-objective for Σ updates does not include gradients through Wemb.

- To prevent Σ from degenerating to the identity or to a rank-one matrix, we add a small entropy
penalty to its row-normalized version during meta-learning.

Computational Cost:

- The MASP regularization is vectorized using batched matrix multiplications.

- The additional overhead is roughly 20% over standard DQN (wallclock time), dominated by
meta-gradient computation and matrix operations.

B Experimental Details and Hyperparameters

We summarize Atari preprocessing settings in Table 6 and the main algorithm hyperparameters in
Table 7.

Hyperparameter Value
Max frames per episode 108,000
Observation down-sampling (84, 84)
Num. action repeats 4
Num. stacked frames 1
Terminal state on loss of life true
Random noops range 30
Sticky actions true
Frames max pooled 3 and 4
Grayscaled/RGB Grayscaled
Action set Full

Table 6: Atari pre-processing hyperparameters.

Reproducibility and Code Availability

To facilitate reproducibility, all code used for the experiments and MASP implementation is available
at: https://github.com/rl-submissions/macro-credit-masp.

B.1 Compute Resources and Training Time

Our experiments were conducted on a compute cluster equipped with 192GB RAM and a combination
of NVIDIA GPUs: 1x RTX 5090, 2x RTX 4090, and 4x RTX 3090 cards. All Atari experiments
typically required approximately one week to complete per full experimental run (including all
seeds, ablations, and sweeps). Training runs for StreetFighter environments generally completed in
approximately two days.

C Additional Experimental Results

C.1 Atari Results

Full Atari performance for all methods and human-normalized scores are reported in Table 8.

C.2 Streetfighter II Experimental Details

Streetfighter II experiments were conducted with domain-specific preprocessing and macro-action
settings, including a reduced action set and macro-actions corresponding to common combos. All
environment and training hyperparameters are detailed in Table 9.
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Hyperparameter Value
Optimizer Adam
Learning rate 6.25× 10−5

Batch size 32
Discount factor γ 0.99
Replay buffer size 1× 106

Target network update period 10,000 steps
Gradient clipping 10
Exploration ϵ (initial / final) 1.0 / 0.01
Exploration decay schedule 1M steps
Multi-step returns (n) 3
Noisy nets true
Distributional atoms 51
Distributional min/max values -10 / 10
Dueling network true
Prioritized replay α 0.5
Prioritized replay β 0.4→ 1.0
Macro-action set size (k) 32 (see ablations)
Macro-action length 3–8
MASP penalty weight η 0.1, 0.3, 0.5, 0.7, 1 (swept)
Meta-learning rate β 0.001, 0.005, 0.01 (swept)
Σ embedding dim (eΣ) 32

Table 7: Main hyperparameters used for Rainbow-DQN, macro-action augmentation, and MASP
regularization in all experiments.

A visualization of the learned similarity matrix Σ for macro-actions in Street Fighter II can be found
in Figure 3 in this appendix, which illustrates the clustering of related macro-actions discovered by
the agent during training.

C.3 MiniGrid Experiments

Experimental Setup. We also tested MASP on MiniGrid [37] environments designed to require
planning and structured exploration. We selected tasks such as DoorKey, FourRooms, LockedRoom,
and ObstructedMaze-Full.

Implementation Details. Macro-actions consist of fixed sequences derived from typical interaction
patterns (e.g., forward-forward-turn). We compare RAINBOW DQN, RAINBOW with macro-actions,
and RAINBOW with MASP. Each agent is trained for 500,000 steps. Hyperparameter tuning for η
was done per environment.

Results and Analysis. As shown in Table 10, MASP improves success rates over both baselines across
all tasks. In simpler settings, the improvements are significant, and in more complex environments
like ObstructedMaze-Full, MASP is critical to achieving high success.

C.4 Transferability

Another key motivation for the Macro-Action Similarity Penalty (MASP) framework is to improve
transferability across tasks and environments. In principle, MASP regularization encourages the agent
to learn more robust and generalizable representations by smoothing the Q-values among similar
macro-actions, potentially facilitating adaptation to new tasks where action semantics overlap.

Transfer Protocol: In our experiments, we evaluated transferability by taking agents trained with
MASP on a subset of tasks and fine-tuning them (with or without additional MASP updates) on
related environments. In practice, the learned similarity matrix Σ and macro-action set can be reused
or adapted for downstream tasks, reducing the need for retraining from scratch.
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Game Rainbow-DQN +Macro-Actions +MASP
Score HN Score

Alien 6,022.9 ± 718.2 3,714.8 ± 246.0 7614.4 ± 388.5 (121.4)
Amidar 202.8 ± 23.4 185.8 ± 8.0 272.5 ± 7.0 (48.7)
Assault 14,491.7 ± 759.0 11,368.2 ± 1174.3 15665.7 ± 1682.2 (540.4)
Asterix 280,114.0 ± 23760.7 225,501.1 ± 25686.6 356834.2 ± 22386.9 (2102.2)
Asteroids 2,249.4 ± 191.5 2,093.2 ± 148.5 3544.9 ± 362.3 (52.3)
Atlantis 814,684.0 ± 42022.1 766,181.5 ± 52739.2 933826.3 ± 48727.3 (6721.3)
Bank Heist 826.0 ± 60.3 708.5 ± 20.8 1159.4 ± 70.6 (219.2)
Battle Zone 52,040.0 ± 4502.2 30,290.9 ± 2185.3 67537.1 ± 5791.1 (398.2)
Beam Rider 21,768.5 ± 1356.5 16,221.3 ± 1208.4 29374.2 ± 3309.8 (232.5)
Berzerk 1,793.4 ± 96.1 1,026.2 ± 36.7 2635.8 ± 122.0 (180.3)
Bowling 39.4 ± 4.2 35.1 ± 2.6 66.6 ± 6.0 (34.2)
Boxing 54.9 ± 2.7 50.6 ± 1.5 100.0 ± 10.3 (1000.0)
Breakout 379.5 ± 25.1 252.9 ± 22.2 884.4 ± 74.0 (1011.2)
Centipede 7,160.9 ± 211.7 4,487.6 ± 125.5 7489.6 ± 445.0 (72.4)
Chopper Command 10,916.0 ± 1034.1 7,464.7 ± 392.6 11592.2 ± 876.8 (73.3)
Crazy Climber 143,962.0 ± 13254.7 80,474.4 ± 7541.7 158672.8 ± 7774.1 (207.5)
Defender 47,671.3 ± 4264.2 30,844.1 ± 943.5 58679.4 ± 7205.4 (346.3)
Demon Attack 109,670.7 ± 2672.4 72,716.0 ± 5913.2 117663.3 ± 11120.4 (1014.3)
Double Dunk -0.6 ± 0.0 -0.7 ± 0.1 -0.2 ± 0.0 (53.7)
Enduro 2,061.1 ± 83.3 1,324.7 ± 148.7 2266.6 ± 58.3 (67.6)
Fishing Derby 22.6 ± 2.8 22.6 ± 0.6 36.9.6 ± 1.0 (75.3)
Freeway 29.1 ± 2.7 25.2 ± 1.3 30.3 ± 3.7 (101.0)
Frostbite 4,141.1 ± 175.4 3,361.2 ± 356.4 5566.7 ± 317.3 (65.5)
Gopher 72,595.7 ± 6706.9 45,801.3 ± 5387.9 78992.5 ± 3703.2 (803.5)
Gravitar 567.5 ± 20.5 367.6 ± 42.6 645.5 ± 31.8 (60.5)
Hero 50,496.8 ± 3850.7 42,269.0 ± 1228.2 62730.1 ± 3469.7 (261.0)
Ice Hockey -0.7 ± 0.1 -0.8 ± 0.0 -0.1 ± 0.0 (53.6)
Kangaroo 10,841.0 ± 1247.0 8,271.9 ± 1008.4 11225.7 ± 1304.9 (132.6)
Krull 6,715.5 ± 823.5 4,597.9 ± 342.5 8251.1 ± 858.9 (65.1)
Kung Fu Master 28,999.8 ± 2080.4 18,165.9 ± 1865.3 36837.2 ± 1430.2 (151.2)
Montezuma’s Revenge 154.0 ± 16.9 124.0 ± 5.3 400.0 ± 18.1 (3.5)
Ms Pacman 2,570.2 ± 204.6 1,471.5 ± 185.3 2966.5 ± 360.5 (67.6)
Name This Game 11,686.5 ± 315.2 7,252.3 ± 180.3 12745.8 ± 685.4 (131.5)
Phoenix 103,061.6 ± 10294.9 89,925.5 ± 10494.5 116444.7 ± 5868.9 (231.2)
Pitfall -37.6 ± 2.0 -49.8 ± 4.8 -12.8 ± 1.1 (3.3)
Pong 19.0 ± 1.4 19.0 ± 1.0 19.0 ± 0.3 (104.2)
Private Eye 1,704.4 ± 41.7 1,358.2 ± 94.9 2244.3 ± 150.9 (13.2)
Q Bert 18,397.6 ± 637.1 12,276.2 ± 854.1 22774.8 ± 1373.3 (417.0)
Road Runner 54,261.0 ± 2330.3 45,952.7 ± 1687.5 62633.7 ± 3796.5 (220.4)
Robotank 55.2 ± 6.4 50.5 ± 6.3 64.5 ± 7.6 (75.1)
Seaquest 19,176.0 ± 1428.9 13,917.1 ± 641.1 23768.8 ± 1476.9 (240.0)
Skiing -11,685.8 ± 787.3 -15,069.0 ± 566.2 -10114.6 ± 575.5 (42.6)
Solaris 2,860.7 ± 153.5 1,764.4 ± 217.6 4488.9 ± 267.5 (75.3)
Space Invaders 12,629.0 ± 1413.2 7,496.4 ± 532.9 16668.2 ± 2050.5 (197.6)
Star Gunner 123,853.0 ± 4413.1 112,043.0 ± 12667.8 169778.8 ± 11049.3 (533.5)
Surround 7.0 ± 0.3 6.3 ± 0.3 8.72 ± 0.72 (69.8)
Tennis -2.2 ± 0.2 -3.0 ± 0.4 12.6 ± 0.6 (60.6)
Time Pilot 11,190.5 ± 410.0 8,331.4 ± 931.3 15583.3 ± 707.4 (209.7)
Tutankham 126.9 ± 5.0 70.5 ± 7.9 179.6 ± 14.9 (48.2)
Venture 45.0 ± 3.4 25.0 ± 3.1 133.7 ± 8.4 (20.5)
Video Pinball 506,817.2 ± 16888.8 290,039.4 ± 11557.8 577339.3 ± 20750.9 (327.4)
Wizard of Wor 14,631.5 ± 948.6 10,125.1 ± 891.3 18866.5 ± 1771.3 (259.5)
Yarr’s Revenge 93,007.9 ± 5494.8 55,584.7 ± 3232.2 103544.9 ± 3201.0 (134.8)
Zaxxon 19,658.0 ± 2229.6 17,553.0 ± 1147.8 26566.7 ± 2208.2 (103.3)

Table 8: Comparison between RAINBOW DQN [11], RAINBOW-DQN with macro-actions (+Macro-
Actions), and RAINBOW DQN with macro-actions similarity penalty (+MASP). Bold indicates
maximal raw performance between RAINBOW DQN and MASP. Human-normalized (HN) scores are
shown in parentheses. Cells highlighted in pink denote HN ≥ 100.
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Hyperparameter Value
Observation shape (128, 128, 3)
Frame skip / Action repeat 2
Num. stacked frames 4
Reward clipping [-1, 1]
Opponent Random / AI Level 3
Max episode steps 18,000
Terminal on round loss true
No-op start range 0–10
Sticky actions false
Action set Reduced (15 discrete moves)
Combo macro-actions true
Macro-action set size (k) 24
Macro-action length 2–6
MASP penalty weight η 0.3, 0.5 (swept)
Meta-learning rate β 0.001, 0.003 (swept)
Σ embedding dim (eΣ) 16
Optimizer Adam
Learning rate 1× 10−4

Batch size 32
Replay buffer size 5× 105

Discount factor γ 0.99
Target network update period 5,000 steps
Exploration ϵ (initial/final) 1.0 / 0.05
Exploration decay schedule 200k steps
Dueling network true
Distributional RL true

Table 9: Hyperparameters for Streetfighter II experiments. Settings reflect domain-specific differences,
including observation size, combo macro-actions, and action set.

Task Rainbow DQN Macro-Actions MASP
Door Key 0.83 0.88 1
Four Rooms 0.69 0.87 1
Locked Room 0.58 0.77 0.97
Obstructed Maze Full 0.57 0.84 0.91

Table 10: Comparison between the success rate of RAINBOW DQN, RAINBOW DQN with macro-
actions and MASP for MiniGrid environments.

Observations: We found that MASP-trained agents generally adapted more quickly and achieved
higher initial performance on transfer tasks compared to standard Rainbow DQN baselines. This sug-
gests that MASP helps encode transferable structure in the Q-function and macro-action embeddings.

Limitations: The degree of transfer benefit depends on the similarity between source and target task
action spaces. Large discrepancies may require re-learning or adaptation of Σ.
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Hyperparameter Value
Max frames per episode 2,000
Num. action repeats 1
Num. stacked frames 1
Terminal state on loss of life N/A
Random noops range 0
Sticky actions false
Replay buffer size 5× 104

Batch size 64
Learning rate 1× 10−4

Discount factor γ 0.99
Target network update period 1,000 steps
Exploration ϵ (initial / final) 0.2 / 0.01
Exploration decay schedule 50k steps
Multi-step returns (n) 1
Noisy nets false
Dueling network false
Macro-action set size (k) 8
Macro-action length 2–4
MASP penalty weight η 0.05, 0.1, 0.3 (swept)
Meta-learning rate β 0.001
Σ embedding dim (eΣ) 8

Table 11: MiniGrid-specific hyperparameters. Only hyperparameters that differ from Atari are shown.

Figure 3: Sample Σ matrix from Street Fighter II experiments, illustrating the learned similarities
between different macro-actions. Distinct clusters with higher values indicate groups of macro-actions
that are functionally related or often co-activated. In contrast, the regions of the matrix with the lowest
values and lacking visible structure correspond to primitive actions, which are entirely independent
and dissimilar to each other.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: 3 4
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: 4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The appendix contains all hyperparameters used, and we will release code that
can be used to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the code and the environments we use (Atari and Streetfighter)
are already available for research.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Due to space limits, all of this details are in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide most of these details in the appendix due to page limit.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work is mostly theoretical, and answers how RL can learn more effi-
ciently with macro-actions. As the method applies to any RL system in can have indirect
implications by making the systems more powerful. But it does not have any direct etichal
implication in the form it is in the paper, and the model sit had been applied to have no
ethical implications (small scale and applied to games).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As the work does not have any direct ethical implications, such a discussion
does not seem necessary. The paper is theoretical and just improve exploration in RL in
general. While cutting edge RL system have societal impact, this work has not been run at
that scale or those kind of systems, but rather on toy RL setups like Atari.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not necessary as the paper does not have any direct ethical implcations.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We only use environemtns that have been opensourced for research and are
widely used in the community (Atari and StreetFighter)
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:We use opensourced widely used RL environments by previous works.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human data used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human data used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM have been used to develop the proposed method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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