
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FREERIDE: HARVESTING BUBBLES IN PIPELINE
PARALLELISM

Anonymous authors
Paper under double-blind review

ABSTRACT

The occurrence of bubbles in pipeline parallelism is an inherent limitation that can
account for more than 40% of the large language model (LLM) training time and is
one of the main reasons for the underutilization of GPU resources in LLM training.
Harvesting these bubbles for GPU side tasks can increase resource utilization
and reduce training costs but comes with challenges. First, because bubbles are
discontinuous with various shapes, programming side tasks becomes difficult while
requiring excessive engineering effort. Second, a side task can compete with
pipeline training for GPU resources and incur significant overhead. To address
these challenges, we propose FreeRide, a system designed to harvest bubbles in
pipeline parallelism for side tasks. FreeRide provides programmers with interfaces
to implement side tasks easily, manages bubbles and side tasks during pipeline
training, and controls access to GPU resources by side tasks to reduce overhead.
We demonstrate that FreeRide achieves about 8% average cost savings with a
negligible overhead of about 1% for typical long training times of LLMs while
serving model training, graph analytics, and image processing side tasks.

1 INTRODUCTION

Large language models (LLMs) are usually trained on GPUs. As these models continue to increase in
size, their GPU memory requirements can easily outstrip the capacity of a single GPU (Zhang et al.,
2022). Consequently, to accommodate this increase in size and to boost training performance, it is a
common practice to parallelize LLM training across multiple GPUs distributed over several servers.

Pipeline parallelism is a prevalent training paradigm for LLMs using multiple GPUs. In this paradigm,
the model is divided into multiple stages which are distributed across different GPUs. During training,
the forward propagation (FP) and backward propagation (BP) of different input data are carried out
in parallel by the pipeline training system at each stage. The pipeline training system schedules these
operations in each epoch to train LLMs (Liu et al., 2023; Qi et al., 2024).

An inherent limitation of pipeline parallelism is bubbles — periods in pipeline training where the
GPU stays idle due to unsatisfied dependencies between FP and BP operations (Liu et al., 2023).
Experimentally, we observe that bubbles can constitute 42.4% of the pipeline execution time, which
results in significant under-utilization of GPU resources used to accelerate pipeline training. Similar
levels of under-utilization have also been reported in other studies (Zhang et al., 2022).

GPUs are crucial resources, especially those high-end models required for training LLMs (Zhang
et al., 2022). To enhance utilization, prior work has explored reducing bubbles by improving how FP
and BP operations are interleaved (Fan et al., 2021; Liu et al., 2023). These approaches are effective
for intra-epoch bubbles because they change how operations are interleaved within a pipeline epoch.
However, they do not remove the inter-epoch bubbles that occur before and after a pipeline epoch.
Prior work has also proposed to decouple the computation of gradients for the input and model weights
to mitigate inter-epoch bubbles (Qi et al., 2024). However, they increase the size of activations,
exacerbating GPU memory consumption, a common bottleneck in training LLMs.

Given the difficulty and overhead incurred in eliminating these bubbles, an alternative approach is
to acknowledge their existence and utilize them by running additional workloads on a GPU. For
example, Bamboo and PipeFisher implement procedures that enhance pipeline training and run them
during bubbles (Thorpe et al., 2023; Osawa et al., 2023). However, they only target specialized

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

procedures that are tightly coupled with pipeline training, requiring the training system and the
procedures to be highly customized. Consequently, they cannot be used for generic GPU workloads.

In this paper, we present FreeRide, a holistic system to harvest bubbles in pipeline parallelism to serve
extra GPU workloads as side tasks. There are two main challenges that FreeRide has to overcome.
First, customizing side tasks for bubbles of various shapes, i.e., their duration and available GPU
memory, requires enormous programming effort. Second, LLM training requires high-end GPUs that
are expensive and in high demand. If side tasks interfere with the main pipeline training workload,
e.g., accessing more GPU resources than bubbles can provide, they will slow down pipeline training
and significantly increase training costs.

Our approach to overcoming the programming complexity is based on the observation that many
GPU workloads naturally consist of small, repetitive steps, such as the epochs in model training
that repeatedly load data and update model weights. To reduce the programming effort, FreeRide
introduces a framework that abstracts away the implementation details of side tasks, allowing pro-
grammers to adapt various side tasks to fit into the bubbles. The key idea is to represent the life cycle
of a side task, from its process creation to termination, as states in a state machine. FreeRide provides
two sets of unified interfaces — the iterative interface that features lower performance overhead, and
the imperative interface that features better versatility. They facilitate the implementation of side
tasks as state transitions with little engineering effort. FreeRide manages side tasks through these
interfaces and serves them during bubbles.

FreeRide limits the GPU resource consumption of side tasks through the automated side task profiler
and the side task manager. The side task profiler first captures the key performance characteristics of
the newly implemented side tasks. The side task manager coordinates a group of side task workers,
one for each GPU in the platform, and assigns each of the side tasks to one of the workers based
on the characteristics. During pipeline training, bubbles are reported to the side task manager from
FreeRide-instrumented pipeline training system. The side task manager starts side tasks when the
bubble period begins and pauses them when the bubble ends. A side task worker deploys each
side task on top of CUDA MPS (Nvidia, 2024d) to limit its GPU memory consumption and uses
Docker (Bernstein, 2014) for isolation. These components work collaboratively to serve side tasks
during bubbles, achieving a low performance overhead on the primary pipeline training workload.

In summary, FreeRide is a holistic solution that manages and serves the side task by leveraging
bubbles in pipeline training, while maintaining minimal performance overhead and requiring low
programming effort. We evaluate FreeRide by deploying it to run side tasks alongside DeepSpeed
that runs pipeline training (Rasley et al., 2020). We measure the time increase of pipeline training
as the performance overhead caused by side tasks. As the throughput of different side tasks is not
directly comparable with the pipeline training workload, we use the cost of GPUs as a unified metric,
i.e., the cost of the extra execution time from co-locating side tasks with pipeline training vs. the cost
saved from running side tasks that otherwise would run on dedicated lower-tier GPUs.

The contributions of this paper are as follows:

• We study the bubbles in pipeline parallelism, present their various shapes in terms of duration and
available GPU memory, and demonstrate their potential for side tasks.

• We present the programming framework and interfaces of FreeRide based on a state machine
abstraction to implement generic side tasks with little engineering effort.

• We evaluate FreeRide with model training, graph analytics, and image processing side tasks to
demonstrate FreeRide’s effectiveness in harvesting bubbles in pipeline parallelism while reducing
performance overhead.

• By serving side tasks based on the iterative interface, FreeRide achieves an average cost savings
of 7.8% with a low performance overhead of 1.1%. This is significantly better than using CUDA
MPS (Nvidia, 2024d) directly to co-locate the tasks, which results in a 4.5% cost increase and
48.7% overhead. When handling a mix of these 3 types of side tasks, FreeRide achieves 10.1%
cost savings with a 1.1% overhead.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Op.
100%

0%St
ag

e
0

B C C C

GPU SM occupancy FP BP

Op.
100%

0%St
ag

e
1

A B C C A

Op.
100%

0%St
ag

e
2

A B C A

(a) Pipeline operations and GPU SM occupancy.
Shaded areas are bubbles.

t+0 t+1 t+2 t+3 t+4
Time (sec)

Op.
100%

0%St
ag

e
3

A A

(b) GPU memory utilization of each stage.

0 12 24 36 48
GPU memory (GB)

Stage 3
Stage 2
Stage 1
Stage 0

Utilized by pipeline training Unutilized

0 0.4 0.8 1.2 1.6
Duration (sec)

(c) Distribution of bubbles
under different model sizes.

0
10
20
30
40

Av
ai

la
bl

e
G

PU
m

em
or

y
(G

B
)

Model sizes
1.2B 3.6B 6B

1.2B 3.6B 6B
Model size (B)

(d) Durations and bubble rates
under different model sizes.

0

3

6

Ti
m

e
(s

ec
)

Epoch time
Bubble time

Bubble rate

35

40

45

B
ub

bl
e

ra
te

 %

Figure 1: A pipeline training epoch in DeepSpeed and statistics of bubbles for different model sizes.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the underutilization issues due to bubbles in pipeline parallelism
and then the motivation for utilizing the bubbles to execute generic workloads.

2.1 PIPELINE PARALLELISM AND BUBBLES

Pipeline parallelism is a commonly used scheme to train LLMs that exceed the memory capacity of a
single GPU (Rasley et al., 2020; Shoeybi et al., 2020). There are periods in pipeline training when the
GPU streaming multiprocessor (SM) occupancy is low, as depicted by the green curves in Figure 1(a).
We refer to these periods as bubbles in the pipeline, marked as shaded areas. Bubbles inherently
exist in pipeline parallelism and occur repetitively throughout training, as they are fundamentally
caused by unsatisfied dependencies between FP and BP operations (Liu et al., 2023). In the example
of Figure 1, Stage 1 must wait for input from Stage 0 before executing its first FP operation, creating
a bubble in Stage 1 that starts from t+ 0.

To study bubbles in pipeline parallelism, we train a 3.6B-parameter LLM adapted from GPT2-
XL (Radford et al., 2019; Choi et al., 2023; Karpathy, 2024) using DeepSpeed (Rasley et al., 2020)
on a 4-GPU server (detailed setup in Section 4.1). The training is deployed as a 4-stage pipeline, and
each stage takes one GPU as shown in Figure 1. Overall, we observe that bubbles exhibit different
characteristics across all 4 stages.

2.1.1 BUBBLE CATEGORIZATION

We categorize the bubbles into 3 types based on their positions in the training pipeline and causes.

• Type-A bubbles appear at the start and end of each epoch in all stages except for the first stage.
They are due to cascading dependencies between operations at the start and end of an epoch. When
an epoch starts, the FP operations start at Stage 0, while all other stages wait for input from preceding
stages to start their first FP operation. Likewise, at the end of an epoch, the last BP operation starts at
Stage 3 and all other stages wait for their succeeding stages to start their last BP operation.

• Type-B bubbles occur in the middle of each epoch on all stages except the last one. They are
caused by dependencies between interleaved FP and BP operations. Once the first FP operation
reaches the last stage, all previous stages must wait for the corresponding BP operation before they
can proceed with other operations, which causes Type-B bubbles.

• Type-C bubbles also occur in the middle of each epoch. Since BP operations typically take longer
than FP operations (Zheng et al., 2022), interleaved yet unaligned FP and BP operations create
bubbles in each stage except the last. For instance, in Figure 1(a), when Stage 2 finishes its third BP
operation, it must wait for input to its fourth BP operation, which is still being processed in Stage 3,
causing a type-C bubble.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Bubble Duration. In our training setup, the duration of a bubble ranges from 0.22 to 1.04 seconds,
depending on its type and stage. The duration increases for Type-A bubbles but decreases for Type-B
bubbles from Stage 0 to Stage 3. This is because of the cascading dependency from Stage 3 to Stage 0
for Type-A bubbles and from Stage 0 to Stage 3 for Type-B bubbles. For example, a Type-B bubble
at Stage 2 is due to an unfinished BP operation at Stage 3, with the same bubble at Stage 1 caused by
Stage 2. The accumulated time to satisfy dependencies elongates Type-A or Type-B bubbles at later
stages. However, Type-C bubbles are caused by unaligned FP and BP operations. Therefore, they
have a short duration and do not exhibit the same stage-dependent variations.

Available GPU Memory. Determined by the stage, the available GPU memory of a bubble ranges
from less than 3 GB to more than 20 GB in our setup. As shown by Figure 1(b), within a stage, the
GPU memory consumption of pipeline training remains the same. Thus, the bubbles within the same
stage have the same amount of available GPU memory. Because the later stages consume less GPU
memory to store activations used by BP operations (Liu et al., 2023), the available GPU memory
increases from Stage 0 to Stage 3.

We further study pipeline training of models of different sizes. As shown in Figure 1(c), bubble
shapes differ. Overall, bubbles in larger LLMs have less available memory and shorter duration, but
the distributions are similar as training follows the same pipeline schedule. Even larger models do
not eliminate bubbles as they inherently exist. Under the same configuration, the characteristics of
bubbles remain the same during training as epochs are repetitive and stable.

2.1.2 BUBBLE RATE

Besides the bubble shape, we evaluate the overall bubble rate, i.e., the total bubble time over pipeline
training time. When the model size increases from 1.2B to 6B parameters, as shown in Figure 1(d),
both the per-epoch time in pipeline training and the total per-stage bubble time decrease. Therefore,
the bubble rate drops only slightly from 42.4% to 40.4%. We also evaluate a larger micro-batch
number, i.e., an increase from 4 (used in Figures 1) to 8. The bubble rate drops to 26.2% as each
epoch takes longer.

Prior work has focused on reducing bubbles in pipeline parallelism. One approach is designing
different ways of interleaving FP and BP operations (Fan et al., 2021; Liu et al., 2023). This approach
optimizes the scheduling strategies and interleaves FP and BP operations within an epoch. Therefore,
they are effective for Type-B and Type-C bubbles that appear inside an epoch but not for Type-A
bubbles. Another approach is to reduce Type-A bubbles by decoupling the computation of gradients
for the input and the model weights (Qi et al., 2024). This comes at a cost of higher GPU memory
usage due to the extra activation storage, exacerbating the GPU memory bottleneck in LLM training.
Despite these efforts, none of the approaches fully eliminate bubbles in pipeline training.

2.2 UTILIZING BUBBLES

The difficulties in mitigating these bubbles motivate an alternative approach — acknowledging
their existence and leveraging their resources for benefits. GPUs used for training are generally
compute-rich, with sufficient GPU memory available during the bubbles to accommodate other GPU
workloads. Therefore, bubbles can be used to run workloads that otherwise require dedicated GPUs.

Previous work attempts to leverages such GPU resources in two ways, (1) by implementing dedicated
procedures, and (2) by transparent GPU sharing. Bamboo and PipeFisher implement procedures
that enhance pipeline training and run them during bubbles (Thorpe et al., 2023; Osawa et al., 2023).
However, they tightly couple the pipeline training system with the specialized procedures that involves
complicated implementation especially since such customization should consider various bubble
shapes — with durations ranging from 0.22 to 1.04 seconds, and available GPU memory from less
than 3 GB to more than 20 GB on each GPU (Section 2.1). Therefore, they cannot be used for generic
GPU workloads.

Transparent GPU sharing does not require complicated implementation to adapt GPU workloads to
bubbles (Nvidia, 2024c;d; Strati et al., 2024). However, they are oblivious of the patterns of pipeline
parallel training and bubbles, and can cause significant performance overhead on the high-priority
and high-cost pipeline training (Section 4). In addition, some GPU sharing work is tailored for certain
software toolchain, which significantly limits its versatility (Strati et al., 2024).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Adapt to FreeRide interface Submit side tasks and their profile

Add bubbles from
pipeline trainingOriginal side

task GPU
workload

Side task in
FreeRide

Stage 0
Stage 1
Stage 2
Stage 3

Time

Add side
tasks to
workers

Automated
profiling

FreeRide Side task manager
Manage

side tasks

D
oc

ke
r

Worker3
Task proc.

D
oc

ke
r

Worker2
Task proc.

D
oc

ke
r

Worker1
Task proc.

D
oc

ke
r

Worker0
Task proc.

M
PS

GPU 0

GPU 1

GPU 2

GPU 3

Access
GPUsProfile

Figure 2: Overview of FreeRide.

(b) Demonstration of side task states and pipeline operations
Time

Side task state

Pipeline step

(a) State machine abstraction of side tasks

PAUSED (P) RUNNING (R) P R P R P R P

FP BP Bubble

SUBMITTED CREATED PAUSED RUNNING

STOPPED

CreateSideTask() InitSideTask() StartSideTask()

PauseSideTask()

StopSideTask()

StopSideTask()

StopSideTask()

RunNextStep()

Figure 3: State transitions in a side task program.

In this work, we aim to make bubble resources available to generic workloads, allowing for a
programmable and efficient use of bubbles, while minimizing the overhead of side tasks on the
high-priority pipeline training. We identify two major challenges.

Challenge 1: programming effort required to support generic side tasks. Typically, GPU
workloads are implemented based on the assumption that they have access to the full GPU and can
run continuously until they finish execution. However, bubbles are intermittent and largely vary
in duration, as in Section 2.1. A side task should be tailored to bubble patterns — the side task
automatically pauses or resumes when a bubble ends or starts. Customizing the training framework
to embed side tasks is conceptually feasible but limits the flexibility of implementing and executing
generic GPU workloads, much like the limitations from prior work on co-running specialized
procedures (Osawa et al., 2023; Thorpe et al., 2023).

Challenge 2: limiting the impact of side tasks. LLM training can span months on expensive
high-end GPUs and cost millions of dollars (Zhang et al., 2022). Even with side tasks placed in the
under-utilized bubbles, they may still interfere with pipeline training, significantly increasing the cost
of LLM training and offsetting the benefit of running side tasks. However, limiting the impact of side
tasks is not trivial. As the shape of bubbles varies, naively implementing side tasks may consume
more resources than bubbles have — exceeding the duration of bubbles or even crashing the main
task due to excessive GPU memory allocation. Ideally, bubbles should be utilized without impacting
the more expensive and prioritized LLM training task.

3 DESIGN OF FREERIDE

FreeRide is our system that addresses the aforementioned challenges in utilizing bubbles in pipeline
training to serve generic GPU side tasks. It includes two programming interfaces, an automated
profiler, and FreeRide runtime consisting of a side task manager and multiple side task workers. The
programming interfaces reduce the engineering effort to implement side tasks that fit into bubbles,
and the automated profiler obtains the GPU resource consumption of side tasks, which is used by
FreeRide runtime to minimize the overhead of side tasks on pipeline training.

Figure 2 depicts the workflow of FreeRide. First, programmers adapt their side task implementation
using FreeRide’s programming interfaces (step ➊). FreeRide then automatically generates a profile of
the side task’s characteristics (step ➋), which is submitted with the side task to the side task manager
of FreeRide (step ➌). During pipeline training, the side task manager continuously adds bubbles from
the instrumented training framework to FreeRide (step ➍). The side task manager assigns side tasks
to workers that are deployed in Docker containers (Bernstein, 2014) based on memory allocation of
pipeline training and the characteristics of side tasks (step ➎), and starts/pauses side tasks based on
the available bubbles (step ➏). The side tasks access GPUs through MPS (Nvidia, 2024d) (step ➐).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In the remainder of this section, we introduce how FreeRide addresses the challenge to implement
side tasks in Section 3.1, and how FreeRide minimizes the impact on pipeline training in Section 3.2.

3.1 PROGRAMMING OF SIDE TASKS

To address the challenge in programming effort required to support generic side tasks, we first
make an important observation, that GPU workloads are not monolithic, and that they can be often
divided into smaller, repeated steps with largely predictable per-step duration, such as epochs in
model training, iterations in graph analytical workloads (Page et al., 1998), and steps to process each
image in image-processing workloads (Nvidia, 2019). On the other hand, bubbles also demonstrate
repeating and predictable patterns, as discussed in Section 2.1.

With these observations in mind, we abstract the life cycle of side tasks using a state machine model.
The execution of side tasks within bubbles can be implemented as state transition functions. We then
design programming interfaces based on this abstraction. They are discussed below.

As shown in Figure 3(a), we abstract a side task using a state machine model with five states and six
state transitions. The five states capture the life cycle of a side task, from process creation to process
termination, and correspond to different uses of hardware resources, e.g., GPU memory and GPU
execution time. The six state transitions are used by the programmer to implement the user-defined
logic of a side task, e.g., allocating or releasing hardware resources or performing computation on
GPU. Once the side task is implemented, FreeRide automatically handles the state transitions at
runtime. Next, using model training as an example, we discuss the states and state transitions.

• SUBMITTED. This state means that FreeRide has profiled a task and submitted it to the side
task manager, but the side task worker has not created the side task process yet. State transition
CreateSideTask() happens automatically after the side task manager assigns a side task to a
worker and the worker creates the side task process. For a model training side task, this is where the
process is first created.

• CREATED. In this state, the worker has created the side task process, and this process has loaded
its context to the main memory but not to the GPU memory. For model training, in this state, the side
task process has already created and initialized variables in CPU memory, e.g., the dataset, the data
loader, and the loss function. However, the side task process will not load them into GPU memory
until the side task manager initiates the state transition InitSideTask() which indicates the
completion of side task initialization.

• PAUSED. This state is where the side task starts to use GPU memory. For model training, the side
task process has loaded its context, e.g., model weights and optimizer states, in the GPU memory.
However, this process waits in the PAUSED state until the side task manager transitions its state to
RUNNING through StartSideTask().

• RUNNING. In this state, the side task executes the step-wise GPU workload. Referring to the
example above of the model training side task, this step involves reading the next batch, computing
the output and loss, updating the model weights, and resetting the optimizer states. The side task
iteratively enters the RunNextStep() state transition to execute these steps until the side task
manager transitions its state through PauseSideTask(). Therefore, in this state, the side task
process uses both the GPU memory and the GPU SMs.

• STOPPED. This state marks the end of the life cycle of a side task, where the side task process
releases all of its hardware resources and terminates. It can be transited from states CREATED,
PAUSED, and RUNNING through StopSideTask() initiated by the side task manager.

Figure 3(b) shows state transitions of a side task in Stage 0 of Figure 1. Initially, the side task is
in the PAUSED (P) state. After four FP operations in the main training workload have finished, a
bubble starts and the side task manager initiates StartSideTask() to transit the side task to
the RUNNING (R) state. After the first bubble ends, the side task manager pauses the side task via
PauseSideTask(). Then, the main training workload has BP operations and bubbles interleaved,
leading to back-and-forth transitions between PAUSED and RUNNING states of the side task.

Given the state machine abstraction, the next step is to implement side tasks, which have two
requirements. First, the programmer should be able to implement the side task in a way that can
pause at the end of a bubble and resume at the start of the next bubble. Second, the side task should

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

be able to communicate with the side task manager to receive state transition RPCs for pausing and
resuming. To lift programming burdens, FreeRide provides two programming interfaces, the iterative
interface, and the imperative interface. The iterative interface is the preferred one for side tasks
in FreeRide. It requires the side task to be step-wise, e.g., model training, and provides the lowest
performance overhead. For other side tasks that cannot be explicitly implemented step-wise, the
imperative interface is the fallback solution. It offers better versatility to support (almost) generic GPU
workloads at the cost of higher performance overhead. Both interfaces incorporate the communication
of side tasks with other components, and the programmer only has to apply a few lines of changes.
We leave the details of programming interfaces as well as examples in Appendix A.1.

3.2 MINIMIZING THE IMPACT ON PIPELINE PARALLEL TRAINING

To address the challenge of limiting the impact of side tasks on the main pipeline training workload
taking three approaches, FreeRide first leverages offline profiling to understand the shapes of bubbles
and characteristics of newly submitted side tasks (Section 3.2.1). Based on the profiling results,
FreeRide employs one side task manager and multiple side task workers, one for each GPU. The side
task manager assigns the newly submitted side task to one of the side task workers with enough GPU
memory, and initiates state transitions of side tasks through remote procedure calls (RPCs) at the
start and end of each bubble, which are reported by DeepSpeed that we instrument (Section 3.2.2).
FreeRide further employs CUDA MPS (Nvidia, 2024d) and a twofold mechanism to prevent side
tasks from excessively allocating GPU memory or not pausing correctly (Section 3.2.3).

3.2.1 PROFILING BUBBLES AND SIDE TASKS

Bubbles. To know the shapes of bubbles, FreeRide runs DeepSpeed, monitors its estimated SM occu-
pancy and GPU memory consumption through the PyTorch profiler (PyTorch, b), and automatically
measures each bubble’s duration and available GPU memory. Since the pipeline schedule determines
bubbles, this offline profiling is done only once for each model and pipeline scheduling on the same
hardware platform.

Side tasks. After the programmer implements the side task, FreeRide profiles it with the automated
profiling tool for its performance characteristics of GPU memory consumption and per-step duration,
which FreeRide uses for side task management and GPU resource limit. For side tasks implemented
using the iterative interface, this procedure is fully automated. The profiling tool runs the side
task, monitors its GPU memory consumption, and records the timestamps at the start and end
of RunNextStep() for the per-step duration. For side tasks implemented using the imperative
interface, the tool profiles GPU memory consumption in the same way. However, since the side task
is not implemented step-wise, the automated profiling tool does not measure the per-step duration.

3.2.2 SIDE TASK MANAGEMENT

FreeRide’s side task management has two main roles. First, upon receiving a new side task, the side
task manager assigns it to a suitable side task worker. Second, when the pipeline training system
adds bubbles to the side task manager, the side task manager initiates the state transitions of side
tasks (Figure 3(a)) through RPCs. This way, the side tasks are only served during bubbles and do not
compete for GPU resources with the main pipeline training workload.

To do so, when the side task manager receives a new side task, it first selects all workers whose
bubbles have enough available GPU memory for the side task. Then, it assigns the side task to
worker with the least side tasks waiting to be served. During pipeline training, the side task manager
periodically checks whether any bubble has just started or expired. If a bubble has just started, the
side task manager starts the execution of the corresponding side task, or adds a new side task to the
bubble’s worker. If a bubble has just expired, the side task manager pauses the corresponding side
task. We demonstrate the detailed side task management algorithms in Appendix A.2.

3.2.3 GPU RESOURCE LIMIT

GPU Memory. FreeRide leverages MPS to impose GPU memory limit on side tasks. I.e., when a
worker creates a side task, it sets GPU memory limits using MPS. The side task process triggers an
out-of-memory (OOM) error when its memory consumption exceeds the limit, but other processes

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

remain unaffected. However, FreeRide is also compatible with other mechanisms for limiting GPU
memory, e.g., multi-instance GPU (MIG) (Nvidia, 2024c) or manually implemented accounting
through intercepting CUDA kernel calls (Strati et al., 2024).

GPU Execution Time. FreeRide limits GPU execution time using two mechanisms. (1)
The program-directed mechanism is tailored for the iterative interface. When the side task man-
ager makes an RPC to initiate StartSideTask() state transition of a side task, it also sends the
end time of this bubble to the side task. After the state transition finishes, the side task enters the
RUNNING state. Before the side task automatically starts RunNextStep(), the program-directed
mechanism checks if the remaining time of the bubble is enough for the side task to execute the next
step. The side task will only execute the next step if the remaining time exceeds the per-step duration.
(2) The framework-enforced mechanism supports side tasks implemented using the imperative inter-
face and is also a fallback mechanism for the iterative interface. After the side task manager initiates
the PauseSideTask() state transition for a side task, it waits for a short grace period before
checking the last paused timestamp — a timestamp maintained by the interface that records the last
time the side task was paused. If this timestamp is not updated after the state transition begins, the
side task manager assumes that the interface failed to pause the side task correctly and subsequently
instructs the corresponding worker to terminate the side task process using SIGKILL. The side task
initialization, InitSideTask, which runs only once throughout the life cycle of a side task, is also
protected by this mechanism.

4 EVALUATION

In this section, we evaluate the benefits and overhead of using FreeRide to serve side tasks.

4.1 METHODOLOGY

We describe the experimental setup of our evaluation.

Server setup. We use a main server (Server-I) with four RTX 6000 Ada GPUs each with 48
GB of GPU memory to evaluate all pipeline training workloads and side tasks. We use a second
server (Server-II) with an RTX 3080 GPU with 10 GB of memory to run side tasks separately. Due
to the global shortage of cloud GPUs, we quote prices from a community cloud vendor RunPod
(2024) that has GPUs available. The prices of the two servers are PServer−I = $3.96/hour and
PServer−II = $0.18/hour, respectively (as of June, 2024). The price differences between higher- and
lower-tier GPUs in major cloud GPU platforms are similar (Lambda, 2024; Amazon, 2024a;b). We
deploy both pipeline training and side tasks in Docker 26.1.2 (Bernstein, 2014).

Comparison points. We evaluate FreeRide for side tasks developed with both the iterative and
imperative interfaces. For comparison, we evaluate MPS (Nvidia, 2024d), where we set pipeline
training with the highest priority and side tasks with a lower priority. We also evaluate a naive
co-location approach by directly co-running side tasks and the main pipeline training workload on
the same GPU.

Pipeline training setup. We train LLMs adapted from GPT2-XL (Radford et al., 2019; Karpathy,
2024; Choi et al., 2023) with model sizes 1.2B, 3.6B, and 6B with DeepSpeed 0.12.2 (DeepSpeed,
2023) in a 4-stage pipeline on Server-II (stages 0—3 in Figure 1). We always maximize the micro-
batch size (until just before OOM) to make full use of GPU memory during training.

Side task workloads. We implement 3 types of side tasks: model training, graph analytics, and
image processing using both the iterative and the imperative interfaces of FreeRide. Model training
side tasks include ResNet18, ResNet50, and VGG19. We use the out-of-the-box models from
PyTorch (PyTorch, a) and implement the training procedure ourselves. Graph analytics side tasks
are adapted from Gardenia (Xu et al., 2019). It includes PageRank (PR) based on the PageRank
algorithm (Page et al., 1998) and Graph SGD (SGD) which uses stochastic gradient descent to solve
matrix factorization (Koren et al., 2009), both using the Orkut dataset (Yang & Leskovec, 2012). The
image processing (Image) side task resizes an input image and adds a watermark, which we adapt
from Nvidia’s example (Nvidia, 2019).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Time increase I (lower the better) and cost savings S (positive=benefit, negative=loss, higher
the better) of running DeepSpeed with side tasks using RTX 3080 as the proxy.

FreeRide Iterative FreeRide Imperative MPS Naive
Side task I % S % I % S % I % S % I % S %

ResNet18 0.9 6.4 2.2 6.0 16.8 -1.5 49.8 -30.7
ResNet50 0.9 5.3 3.8 3.9 19.8 -5.1 61.9 -44.0
VGG19 0.9 3.9 5.0 1.4 21.4 -9.1 53.4 -39.7

PageRank 1.0 11.1 2.5 16.4 17.3 3.5 45.1 -16.0
Graph SGD 1.2 11.8 4.1 22.8 231.0 -26.7 62.4 -9.1

Image 1.4 5.7 2.7 6.1 9.5 7.2 46.0 -29.3
Mixed 1.1 10.1 4.3 11.0 24.8 0.2 64.3 -35.5

Metrics. We use the time increase I and cost savings S in Dollars due to side tasks as metrics.
Time increase describes the performance overhead of co-locating side tasks with the main pipeline
training workload. It is the ratio of extra time of pipeline training with side tasks, compared with the
original DeepSpeed without any side tasks, defined as

I =
TwithSideTasks − TnoSideTask

TnoSideTask
.

Cost savings describe the benefits of running side tasks. Since we cannot directly compare the
throughput of different side tasks and the main pipeline training workload, we use their cost (dollars
spent on GPUs) as a proxy. First, we define the cost of pipeline training without side tasks as
CnoSideTask, and that with side tasks as CwithSideTasks. Then, we define the cost of running the same
side tasks on dedicated GPUs as CsideTasks. Finally, we define cost savings S as

S =
CsideTasks − (CwithSideTasks − CnoSideTask)

CnoSideTask
.

We demonstrate the detailed definitions in Appendix A.3.

4.2 PERFORMANCE EVALUATION

We run DeepSpeed to train a 3.6B model for 128 epochs with side tasks from Section 4.1 and compare
the performance overhead, i.e., time increase (I) and cost savings (S) of using FreeRide with the two
interfaces and the two comparative methods (as in Section 4.1) using RTX 3080 as the proxy. For
model training side tasks, we set the batch size to 64. We run the same side task in all workers if they
have enough GPU memory. We also run a mixed workload with 4 side tasks: PageRank, ResNet18,
Image, and VGG19, each in one worker corresponding to the GPU of stages 0—3 in Section 4.1,
respectively.

The results are summarized in Table 1. FreeRide consistently exhibits lower overhead than the
comparative methods, showing only a 1.1% average time increase while achieving 7.8% average cost
savings through side tasks using the iterative interface. The imperative interface achieves comparable
cost savings but with a higher overhead as it relies on the less efficient framework-enforced mechanism
to limit the side task’s execution time (Section 3.2.3). In comparison, the average time increase and
cost savings for MPS are 48.7% and -4.5%, and for Naive are 54.7% and -29.2%. Their negative
cost savings indicate that these approaches can increase the total cost. Notably, the time increase of
Graph SGD with MPS is as high as 231.0%. This anomaly is due to Graph SGD’s high compute
intensity. We conclude that FreeRide effectively utilizes bubbles in pipeline training for serving side
tasks. While the comparative methods can utilize bubbles, unlike FreeRide, they are not designed for
this purpose. Thus, they are inefficient in using bubbles, leading to higher costs.

4.3 BUBBLE TIME BREAKDOWN

In Figure 4, we present a breakdown of bubble utilization in FreeRide under the iterative interface.
No side task: OOM means that some bubbles are unused due to their limited available GPU memory.
E.g., the GPU memory consumption of VGG19 or the Image side task is larger than the GPU memory
of bubbles in stages 0 and 1, so they cannot use half of the bubble time. No side task: insufficient
time refers to idle time because the remaining time of a bubble is not enough for the next step of the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ResNet18 ResNet50 VGG19 PR SGD Image Mixed
Side task

0%
25%
50%
75%

100%

Ti
m

e
ra

tio

No side task: OOM
FreeRide runtime

No side task: insufficient time
Running

Figure 4: Bubble time breakdown.

side task. FreeRide runtime is the time consumed by running FreeRide, including the interface code
and the side task manager. Most of the bubble time with enough available GPU memory size is used
by side tasks. For side tasks with shorter per-step durations, e.g., PageRank, the ratio of FreeRide
runtime is higher because more iterations of the iterative interface are executed. In contrast, side
tasks with longer per-step durations have lower bubble utilization because of insufficient time.

We also conducted sensitivity in Appendix A.4 to demonstrate the superiority of FreeRide in different
pipeline training settings, and studied the effectiveness of GPU resource limit mechanisms that keep
of FreeRide that keep the time increase low in Appendix A.5.

5 DISCUSSION AND RELATED WORK

Security. Prior GPU sharing solutions tend to prioritize efficiency and assume a safe environment.
E.g., Orion assumes that co-located GPU workloads are in the same trust domain (Strati et al., 2024).
FreeRide provides the same security and isolation guarantees as the lower-level system it is built upon.
It incorporates MPS to limit GPU memory which provides separate GPU address spaces (Nvidia,
2024b) for pipeline training and side tasks, and Docker for environment isolation (Docker, 2024).
Orthogonally, security for co-located GPU workloads is an active research area (Liu et al., 2019;
Zhang et al., 2024). We expect future work to co-design security with efficient GPU sharing.

Side task management. By implementing different strategies in its side task manager, FreeRide
can incorporate more sophisticated management, e.g., co-locating multiple side tasks with various
performance characteristics in the same worker to improve the utilization of bubbles (Liu et al.,
2022b) or serving side tasks with fairness or performance guarantees (Ghodsi et al., 2011).

Scalability. FreeRide can be extended for better scalability. As FreeRide implements communications
among its components using RPCs, it can be easily extended to distributed settings with side tasks on
multiple servers. FreeRide can also be extended for multi-GPU side tasks, e.g., distributed training
and big data processing (Liu et al., 2022a), by launching workers with access to multiple GPUs.

Other ML accelerators. This work targets GPUs due to their widespread accessibility. FreeRide’s
mitigation for bubbles fundamentally applies to other ML accelerators (Jouppi et al., 2017; Meta,
2023), provided that the platform has isolation and resource limit options for each process. We
anticipate future work to incorporate the approach of FreeRide with other ML platforms.

6 CONCLUSION

We propose FreeRide, a system to harvest the bubbles in pipeline parallelism to serve generic GPU
side tasks. It provides programming interfaces that abstract the life cycle of a side task as different
states of a state machine and allows programmers to implement side tasks with little engineering
effort. The side task manager and side task workers manage bubbles and side tasks and reduce the
performance overhead of side tasks on pipeline training. Our evaluation shows that, on average,
FreeRide achieves 8% cost savings for long-running and expensive pipeline training with a negligible
performance overhead of only about 1%.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amazon. Price of AWS G4 instances. https://aws.amazon.com/ec2/
instance-types/g4/, 2024a.

Amazon. Price of AWS P4 instances. https://aws.amazon.com/ec2/instance-types/
p4/, 2024b.

David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing,
2014. ISSN 2325-6095. doi: 10.1109/MCC.2014.51. URL https://ieeexplore.ieee.
org/document/7036275. https://doi.org/10.1109/MCC.2014.51.

Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and Youngjin Kwon. EnvPipe:
Performance-preserving DNN training framework for saving energy. In USENIX Annual
Technical Conference (ATC), 2023. ISBN 978-1-939133-35-9. URL https://www.
usenix.org/conference/atc23/presentation/choi. https://www.usenix.
org/conference/atc23/presentation/choi.

DeepSpeed. Deepspeed 0.12.2. https://github.com/microsoft/DeepSpeed/tree/
v0.12.2, 2023.

Docker. Docker security. https://docs.docker.com/engine/security/, 2024.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei Lin. DAPPLE: a pipelined data
parallel approach for training large models. In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2021. ISBN 9781450382946.
doi: 10.1145/3437801.3441593. URL https://doi.org/10.1145/3437801.3441593.
https://doi.org/10.1145/3437801.3441593.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource
types. In 8th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), 2011. URL https://www.usenix.org/conference/nsdi11/
dominant-resource-fairness-fair-allocation-multiple-resource-types.
https://dl.acm.org/doi/10.5555/1972457.1972490.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford
Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug
Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA), 2017. https://doi.org/10.
1145/3079856.3080246.

Andrej Karpathy. nanoGPT: The simplest, fastest repository for training/finetuning medium-sized
GPTs. https://github.com/karpathy/nanoGPT, 2024.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 2009. doi: 10.1109/MC.2009.263. https://doi.org/10.1109/MC.
2009.263.

Lambda. Pricing of Lambda. https://lambdalabs.com/service/gpu-cloud#
pricing, 2024.

11

https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://ieeexplore.ieee.org/document/7036275
https://ieeexplore.ieee.org/document/7036275
https://doi.org/10.1109/MCC.2014.51
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://github.com/microsoft/DeepSpeed/tree/v0.12.2
https://github.com/microsoft/DeepSpeed/tree/v0.12.2
https://docs.docker.com/engine/security/
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://dl.acm.org/doi/10.5555/1972457.1972490
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://github.com/karpathy/nanoGPT
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://lambdalabs.com/service/gpu-cloud#pricing
https://lambdalabs.com/service/gpu-cloud#pricing

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haotian Liu, Bo Tang, Jiashu Zhang, Yangshen Deng, Xiao Yan, Xinying Zheng, Qiaomu Shen,
Dan Zeng, Zunyao Mao, Chaozu Zhang, Zhengxin You, Zhihao Wang, Runzhe Jiang, Fang Wang,
Man Lung Yiu, Huan Li, Mingji Han, Qian Li, and Zhenghai Luo. GHive: Accelerating analytical
query processing in Apache Hive via CPU-GPU heterogeneous computing. In Proceedings of
the 13th Symposium on Cloud Computing (SoCC), 2022a. doi: 10.1145/3542929.3563503. URL
https://doi.org/10.1145/3542929.3563503. https://doi.org/10.1145/
3542929.3563503.

Sihang Liu, Yizhou Wei, Jianfeng Chi, Faysal Hossain Shezan, and Yuan Tian. Side channel attacks in
computation offloading systems with GPU virtualization. In IEEE Security and Privacy Workshops
(SPW), 2019. doi: 10.1109/SPW.2019.00037. https://doi.org/10.1109/SPW.2019.
00037.

Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo. VELTAIR: Towards
high-performance multi-tenant deep learning services via adaptive compilation and scheduling. In
Proceedings of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022b. ISBN 9781450392051. doi: 10.1145/
3503222.3507752. URL https://doi.org/10.1145/3503222.3507752. https://
doi.org/10.1145/3503222.3507752.

Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. Hanayo: Harnessing wave-like pipeline
parallelism for enhanced large model training efficiency. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2023.
ISBN 9798400701092. doi: 10.1145/3581784.3607073. URL https://doi.org/10.1145/
3581784.3607073. https://doi.org/10.1145/3581784.3607073.

Meta. MTIA v1: Meta’s first-generation AI inference accelerator. https://ai.meta.com/
blog/meta-training-inference-accelerator-AI-MTIA/, 2023.

Nvidia. Image resize and watermarking example using nvJPEG. https:
//github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/
Image-Resize-WaterMark, 2019. URL https://github.com/NVIDIA/
CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark.

Nvidia. CUDA C programming guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/, 2024a.

Nvidia. Nvidia multi-instance GPU memory protection. https://docs.nvidia.com/
deploy/mps/index.html#memory-protection, 2024b.

Nvidia. Nvidia multi-instance GPU user guide. http://docs.nvidia.com/datacenter/
tesla/mig-user-guide/index.html, 2024c. URL http://docs.nvidia.com/
datacenter/tesla/mig-user-guide/index.html.

Nvidia. Multi-process service. https://docs.nvidia.com/deploy/mps/index.html,
2024d. URL https://docs.nvidia.com/deploy/mps/index.html.

Kazuki Osawa, Shigang Li, and Torsten Hoefler. PipeFisher: Efficient training of large language
models using pipelining and fisher information matrices. In Proceedings of Machine Learning
and Systems (MLSys), 2023. URL https://proceedings.mlsys.org/paper_files/
paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.
pdf. https://doi.org/10.48550/arXiv.2211.14133.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation rank-
ing: Bring order to the web. https://www.cis.upenn.edu/˜mkearns/teaching/
NetworkedLife/pagerank.pdf, 1998.

PyTorch. Models and pre-trained weights — Torchvision main documentation. https:
//pytorch.org/vision/main/models.html, a. URL https://pytorch.org/
vision/main/models.html.

PyTorch. Pytorch profiler. https://pytorch.org/tutorials/recipes/recipes/
profiler_recipe.html, b.

12

https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1109/SPW.2019.00037
https://doi.org/10.1109/SPW.2019.00037
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/
https://ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/deploy/mps/index.html#memory-protection
https://docs.nvidia.com/deploy/mps/index.html#memory-protection
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://proceedings.mlsys.org/paper_files/paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.pdf
https://doi.org/10.48550/arXiv.2211.14133
https://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/pagerank.pdf
https://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/pagerank.pdf
https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble (almost) pipeline parallelism.
In The Twelfth International Conference on Learning Representations (ICLR), 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing (KDD), 2020. ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.3406703. URL https:
//dl.acm.org/doi/10.1145/3394486.3406703. https://doi.org/10.1145/
3394486.3406703.

RunPod. RunPod - The cloud built for AI. https://www.runpod.io/, 2024. URL https:
//www.runpod.io/.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2020. https://doi.org/10.48550/arXiv.
1909.08053.

Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion: Interference-aware, fine-grained GPU
sharing for ml applications. In Proceedings of the Nineteenth European Conference on Com-
puter Systems (EuroSys), 2024. ISBN 9798400704376. doi: 10.1145/3627703.3629578. URL
https://doi.org/10.1145/3627703.3629578. https://doi.org/10.1145/
3627703.3629578.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang, Ravi
Netravali, and Guoqing Harry Xu. Bamboo: Making preemptible instances resilient for
affordable training of large DNNs. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2023. ISBN 978-1-939133-33-5. URL https://
www.usenix.org/conference/nsdi23/presentation/thorpe. https://www.
usenix.org/conference/nsdi23/presentation/thorpe.

Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang. Gardenia: A
graph processing benchmark suite for next-generation accelerators. J. Emerg. Technol. Comput.
Syst., 2019. ISSN 1550-4832. doi: 10.1145/3283450. URL https://doi.org/10.1145/
3283450. https://doi.org/10.1145/3283450.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, 2012. ISBN
9781450315463. doi: 10.1145/2350190.2350193. URL https://doi.org/10.1145/
2350190.2350193. https://doi.org/10.1145/2350190.2350193.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
https://doi.org/10.48550/arXiv.2205.01068.

Yicheng Zhang, Ravan Nazaraliyev, Sankha Baran Dutta, Nael Abu-Ghazaleh, Andres Marquez, and
Kevin Barker. Beyond the bridge: Contention-based covert and side channel attacks on multi-GPU
interconnect. arXiv preprint arXiv:2404.03877, 2024. https://arxiv.org/abs/2404.
03877v2.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang,
Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and
Ion Stoica. Alpa: Automating inter- and intra-operator parallelism for distributed deep
learning. In 16th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2022. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/zheng-lianmin. https://www.usenix.
org/conference/osdi22/presentation/zheng-lianmin.

13

https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.runpod.io/
https://www.runpod.io/
https://www.runpod.io/
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.1145/3627703.3629578
https://doi.org/10.1145/3627703.3629578
https://doi.org/10.1145/3627703.3629578
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://doi.org/10.1145/3283450
https://doi.org/10.1145/3283450
https://doi.org/10.1145/3283450
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.48550/arXiv.2205.01068
https://arxiv.org/abs/2404.03877v2
https://arxiv.org/abs/2404.03877v2
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 USE OF SIDE TASKS INTERFACE

This section describes FreeRide’s iterative and imperative interface mentioned in Section 3.1 in detail.

import ...

def train(args):
batch_size = args.batch_size
device = args.device
transform = transforms.Compose([...])
dataset = Dataset()
dataloader = DataLoader(...)
model = models.resnet18(...)

model = model.to(device)
criterion = CrossEntropyLoss()
optimizer = Adam(...)

for data, target in dataloader:
data = data.to(device)
target = target.to(device)
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()

if __name__ == "__main__":
parser = ArgumentParser()
args = parser.parse_args()
train(args)

import ...
from FreeRide.task import IterativeTask

def train(args):
task = IterativeTask(args)

with task.create_side_task():
batch_size = args.batch_size
device = args.device
transform = transforms.Compose([...])
dataset = Dataset()
dataloader = DataLoader(...)
model = models.resnet18(...)

with task.init_side_task():
model = model.to(device)
criterion = CrossEntropyLoss()
optimizer = Adam(...)

for data, target in
task.run_next_step(dataloader):

data = data.to(device)
target = target.to(device)
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()

if __name__ == "__main__":
parser = ArgumentParser()
args = parser.parse_args()
train(args)

①

②

③

④

⑤

Original GPU workload Side task in FreeRide

①: Import dependencies and create task object
②, ③: Load model and data to main and GPU memory
④: Step-wise implementation
⑤: Parse arguments and start side task

Figure 5: Example of implementing ResNet18 training using the iterative interface of FreeRide.

An example of LLM inference side task in FreeRideOriginal LLM inference workload

①: Import dependencies and create task object
②, ③: Load model and data to main and GPU memory
④: Step-wise implementation
⑤: Parse arguments and start side task

③

④

⑤

import ...
from FreeRide.task import IterativeTask

def run(args):
task = IterativeTask(args)

with task.create_side_task():
tokenizer = from_pretrained(…)
model = from_pretrained(…)
inputs = input_loader(…)
msg_queue = MsgQueue()

with task.init_side_task():
model = model.to(device)

for input in task.run_next_step(inputs):
t = tokenizer(inputs).to(device)
outputs = model(inputs)
s = tokenizer.batch_decode(t)
msg_queue.write(s)

if __name__ == "__main__":
parser = ArgumentParser()
args = parser.parse_args()
run(args)

①

②

import ...

def run(args):
tokenizer = from_pretrained(…)
model = from_pretrained(…)
inputs = input_loader(…)
output_writer = MsgQueue()

model = from_pretrained(…).to(device)

for input in inputs:
t = tokenizer(inputs).to(device)
outputs = model(inputs)
s = tokenizer.batch_decode(t)
output_writer.write(s)

if __name__ == "__main__":
parser = ArgumentParser()
args = parser.parse_args()
run(args)

Figure 6: Example of LLM inference using the iterative interface of FreeRide.

Iterative programming interface. In Figure 5 and Figure 6, we present examples of implementing
side tasks to train ResNet18 and to do LLM inference using the iterative interface of FreeRide in

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Python. As demonstrated by these two examples, the flexibility and versatility of FreeRide enables
the user to implement various side tasks with little engineering effort. Less important lines such as
importing dependencies and parsing arguments are simplified. Porting this example involves mainly
five steps. Step ➀: import FreeRide dependencies and inherit the iterative interface class, which
includes an implementation for the state machine abstraction, communication with the side task
manager, and the program-directed mechanism to limit the GPU execution time. The programmer
only has to migrate the implementation of the original GPU workload to the interface. Steps ➁ and
➂: implement the side task initialization in 2 state transition functions, CreateSideTask() and
InitSideTask(), to load the context into main memory and GPU memory respectively. Step ➃:
wrap the original loop implementation with RunNextStep(). Step ➄: the main function handles
argument parsing and runs the side task interface.

Most of the modifications are trivial, e.g., wrapping implementations with side task state transition
functions in Step ➁, ➂, and ➃, which are required by Python. Aside from this, the programmer can
directly copy the important logic, e.g., loading the dataset and training the model, from the original
implementation. In addition, if the programmer customizes the model architecture instead of using
the publicly available ones, the model implementation also does not require modification.

Imperative programming interface. This interface does not require the programmer to implement
the side task in a step-wise way. Therefore, instead of implementing the side task in multiple functions
(steps ➁ — ➃), the programmer can merge them in RunGpuWorkload(). However, this approach
trades performance for less programming effort, as pausing side tasks through the framework-enforced
mechanism incurs more overheads. When the side task manager initiates PauseSideTask() state
transition via an RPC at the end of a bubble, even though the CPU process of the side task is paused
by the framework-enforced mechanism (Section 3.2.3) after the state transition, CUDA kernels that
have already started cannot be paused because they are asynchronous Nvidia (2024a). As a result,
these CUDA kernels will overlap with pipeline training, causing a higher performance overhead than
the iterative interface.

A.2 SIDE TASK MANAGEMENT ALGORITHMS

In this section, we present the side task management algorithms mentioned in Section 3.2.2. To keep
track of side tasks and workers, the side task manager maintains the following fields for each worker,
used by Algorithms 1 and 2 for side task management:

• GPUMem: the available GPU memory size.

• TaskQueue: the queue of side tasks ordered by submission timestamps.

• CurrentTask: the side task that is currently served.

• CurrentBubble: the bubble that is currently valid.

Algorithm 1: Procedure upon a new side task.
1: Input: new side task Task, workers’ metadata Workers
2: MinNumTasks←∞, SelectedWorker ← None
3: for all Worker in Workers do
4: if Worker.GPUMem > Task.GPUMem then
5: NumTasks←Worker.GetTaskNum()
6: if NumTasks < MinNumTasks then
7: MinNumTasks← NumTasks, SelectedWorker = Worker
8: if SelectedWorker ̸= None then
9: SelectedWorker.Add(Task)

10: else
11: RejectSideTask()

Algorithm 1 describes how the side task manager assigns side tasks to workers. When the side task
manager receives a new side task together with its GPU memory requirement (through profiling,
Section 3.2.1), it first filters out all workers with enough available GPU memory (lines 2—3). Then,
from these workers, it selects the one with the smallest number of tasks (lines 4—7). If the side task

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2: Managing bubbles and side tasks.
1: Input: workers’ metadata Workers
2: while SideTaskManagerIsRunning do
3: for all Worker in Workers do
4: if Worker.CurrentBubble ̸= None and Worker.CurrentBubble.HasEnded() then
5: if Worker.CurrentTask ̸= None then
6: Worker.CurrentTask.PauseSideTask()
7: Worker.CurrentBubble← None
8: if Worker.HasNewBubble() then
9: Worker.UpdateCurrentBubble()

10: if Worker.CurrentTask = None then
11: if Worker.TaskQueue.IsEmpty() then
12: continue
13: Worker.CurrentTask ←Worker.TaskQueue.Next()
14: if Worker.CurrentTask.IsCreated() then
15: Worker.CurrentTask.InitSideTask()
16: else if Worker.CurrentTask.IsPaused() then
17: Worker.CurrentTask.StartSideTask()

manager has selected a worker, it will assign the side task to that worker (lines 8—9). Otherwise, it
will reject the side task because of insufficient GPU memory (line 11).

Algorithm 2 describes how the side task manager manages bubbles and side tasks during pipeline
training. The side task manager iterates through all workers (line 2). If CurrentBubble has just ended
for a worker, the side task manager will pause CurrentTask of the worker and clear CurrentBubble
(lines 3—7). Upon a new bubble, the side task manager updates the CurrentBubble of this worker
(lines 8—9). It then checks if the worker has a CurrentTask. If not, it will select the one with the
smallest submission timestamp from TaskQueue as CurrentTask (lines 10–13). After that, the side task
manager initiates InitSideTask() if the newly added CurrentTask is in CREATED state (lines
14—15); otherwise, its state is PAUSED and the side task manager initiates StartSideTask()
(lines 16—17).

A.3 DETAILED DEFINITION OF METRICS

In this section, we describe the detailed definition of time increase I and cost savings S. Time
increase describes the performance overhead of co-locating side tasks with the main pipeline training
workload. It is defined as

I =
TwithSideTasks − TnoSideTask

TnoSideTask
.

For cost savings, we define the cost of pipeline training without side tasks as

CnoSideTask = PServer−I × TnoSideTask ,

the cost of pipeline training with side tasks as

CwithSideTasks = PServer−I × TwithSideTasks ,

and the cost of running the same side tasks on dedicated GPUs as

CsideTasks =
∑

Each sideTask
PServer−II ×

WsideTask,Server−I

ThsideTask,Server−II
.

where WsideTask,Server−I is the work done by a side task on Server-I, e.g., the number of epochs for
model training side tasks, the number of iterations for graph analytics side tasks, and the number of
images for the image processing side task. ThsideTask,Server−II is the throughput of running the same
side task on Server-II, which we measure by running side tasks individually on Server-II. Finally, we
define the cost savings S as

S =
CsideTasks − (CwithSideTasks − CnoSideTask)

CnoSideTask
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

16 32 64
ResNet18

96 128 16 32 64
ResNet50

96 128 16 32 64
VGG19

96 128

(a) Time increase under different batch sizes

0
10
20
30
40

%

Iterative MPS

16 32 64
ResNet18

96 128 16 32 64
ResNet50

96 128 16 32 64
VGG19

96 128

(b) Dollar saving under different batch sizes

Losing
-5
0
5

Saving

%

O
O

M

O
O

M

O
O

M

1.2 3.6
ResNet18

6 1.2 3.6
ResNet50

6 1.2 3.6
VGG19

6 1.2 3.6
PageRank

6 1.2 3.6
Graph SGD

6 1.2 3.6
Image

6

(c) Time increase under different model sizes (B)

0
10
20
30
40

% 104.4%

231.0%

417.0%

1.2 3.6
ResNet18

6 1.2 3.6
ResNet50

6 1.2 3.6
VGG19

6 1.2 3.6
PageRank

6 1.2 3.6
Graph SGD

6 1.2 3.6
Image

6

(d) Dollar saving under different model sizes (B)

Losing
-10

0
10

Saving

%

22.2%

-21.0%

-23.8%

45.2%

-26.7%

-71.1%

4 6
ResNet18

8 4 6
ResNet50

8 4 6
VGG19

8 4 6
PageRank

8 4 6
Graph SGD

8 4 6
Image

8

(e) Time increase under different micro-batch numbers

0
10
20
30
40

% 231.0%

236.8%

238.4%

4 6
ResNet18

8 4 6
ResNet50

8 4 6
VGG19

8 4 6
PageRank

8 4 6
Graph SGD

8 4 6
Image

8

(f) Dollar saving under different micro-batch numbers

Losing
-10

0
10

Saving

% -26.7%

-42.0%

-50.5%

Figure 7: Sensitivity studies of FreeRide.

t+0 t+1 t+2 t+3
Timestamp (sec)

(a) Time limit

0
25
50
75

100

G
PU

 S
M

 o
cc

. %

SM occupancy w/o limit
SM occupancy w/ limit

0
5
10
15
20

G
PU

 m
em

or
y

us
ag

e
(G

B
)

Mem. usage w/o limit
Mem. usage w/ limit

t+0 t+1 t+2 t+3 t+4
Timestamp (sec)

(b) GPU memory limit

0
25
50
75

100

G
PU

 S
M

 o
cc

. %
0
5
10
15
20

G
PU

 m
em

or
y

us
ag

e
(G

B
)

Figure 8: Demonstration of GPU resource limit in FreeRide.

A.4 SENSITIVITY STUDY

This section describes the sensitivity study which demonstrates that FreeRide can achieve superior
time increase and cost savings compared with MPS in different settings. We change the side task
batch size, DeepSpeed model size, and DeepSpeed micro-batch numbers of different side tasks, and
study the time increase and cost savings of FreeRide with the iterative interface.

(1) Varying batch sizes. Figure 7(a) and (b) include model training side tasks under variable batch
sizes. Other side tasks are not included as they do not run with batch sizes. OOM means that the GPU
in Server-II does not have enough GPU memory for the configuration, so the cost savings cannot be
calculated. FreeRide has low performance overheads, with around 1% increase in execution time,
and cost savings of 3.4% – 7.5%.

(2) Varying model sizes. In Figure 7(c) and (d), the performance overheads of FreeRide range from
-0.7% to 1.9%, and cost savings range from 1.8% to 22.2%. The main reason is the shorter bubble
durations when training larger models as the main workload, which was also shown in Figure 1.

(3) Varying micro-batch numbers. In Figure 7(e) and (f), the performance overhead of FreeRide
increases from -0.4% to 1.5%, and cost savings reduces from 2.1% to 11.8%. When the micro-batch
number increases, because of the lower bubble rate (Section 2.1), the cost savings decrease.

A.5 EFFECTIVENESS OF GPU RESOURCE LIMIT

This section demonstrates the effectiveness of GPU resource limit mechanisms of FreeRide. We use
training ResNet18 as an example.

Side task execution time limit. Figure 8(a) demonstrates a case where the side task does not pause
after the bubble that ends at t+2. With GPU resource limit, as shown by the green and purple curves,
the worker terminates the side task after a grace period via the framework-enforced mechanism.

Side task GPU memory limit. Figure 8(b) illustrates another case where the side task keeps
allocating GPU memory despite its 8 GB limit. Without FreeRide’s GPU resource limit mechanism,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the side task’s GPU memory allocation is only capped by the physical memory limit of the GPU,
potentially interfering with the main training workload. With GPU resource limit, after the side task
process exceeds its 8 GB GPU memory limit, it is terminated to release GPU memory.

18

	Introduction
	Background and Motivation
	Pipeline Parallelism and Bubbles
	Bubble Categorization
	Bubble Rate

	Utilizing Bubbles

	Design of FreeRide
	Programming of Side Tasks
	Minimizing the Impact on Pipeline Parallel Training
	Profiling Bubbles and Side Tasks
	Side Task Management
	GPU Resource Limit

	Evaluation
	Methodology
	Performance Evaluation
	Bubble Time Breakdown

	Discussion and Related Work
	Conclusion
	Appendix
	Use of Side Tasks Interface
	Side Task Management Algorithms
	Detailed Definition of Metrics
	Sensitivity Study
	Effectiveness of GPU Resource Limit

