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ABSTRACT

Large Language Models (LLMs) have shown strong reasoning capabilities, with
models like OpenAI’s O-series and DeepSeek R1 excelling at tasks such as math-
ematics, coding, logic, and puzzles through Reinforcement Learning with Veri-
fiable Rewards (RLVR). However, their ability to solve more complex optimiza-
tion problems—particularly NP-hard tasks—remains underexplored. To bridge
this gap, we propose NP-ENGINE, the first comprehensive framework for train-
ing and evaluating LLMs on NP-hard problems. NP-ENGINE covers 10 tasks
across five domains, each equipped with (i) a controllable instance generator, (ii)
a rule-based verifier, and (iii) a heuristic solver that provides approximate optimal
solutions as ground truth. This generator-verifier-heuristic pipeline enables scal-
able and verifiable RLVR training under hierarchical difficulties. We also intro-
duce NP-BENCH, a benchmark derived from NP-ENGINE-DATA, specifically de-
signed to evaluate LLMs’ ability to tackle NP-hard level reasoning problems, fo-
cusing not only on feasibility but also on solution quality. Additionally, we present
QWEN2.5-7B-NP, a model trained via zero-RLVR with curriculum learning on
Qwen2.5-7B-Instruct, which significantly outperforms GPT-40 on NP-BENCH
and achieves SOTA performance with the same model size. Beyond in-domain
tasks, we demonstrate that RLVR training on NP-ENGINE-DATA enables strong
out-of-domain (OOD) generalization to reasoning tasks (logic, puzzles, math, and
knowledge), as well as non-reasoning tasks such as instruction following. We also
observe a scaling trend: increasing task diversity improves OOD generalization.
These findings suggest that task-rich RLVR training is a promising direction for
advancing LLM’s reasoning ability, revealing new insights into the scaling laws
of RLVR.

1 INTRODUCTION

Large Language Models (LLMs) have made significant advancements in complex reasoning tasks
such as mathematics [He et al.| (2025), coding [Liu & Zhang| (2025)), logic Xie et al.| (2025), and
puzzles |Chen et al.| (2025); Ma et al.| (2024)), showcasing the effectiveness of the Reinforcement
Learning with Verifiable Rewards (RLVR) paradigm |Xu et al.| (2025b)); Albalak et al.| (2025). RLVR
leverages high-quality, verifiable reward signals to guide model optimization, thereby enhancing
LLMs’ reasoning abilities OpenAll (2024); (Guo et al.| (2025); |Google| (2025)); |Anthropic| (2025).

Despite significant advances, most existing research on reasoning in logic, mathematics, and puzzles
focuses primarily on producing the “correct” answer, emphasizing solution accuracy. This emphasis
overlooks solution quality, particularly in tasks that require not just feasible answers but optimal
solutions. This gap highlights a crucial aspect of reasoning ability, referred to as optimization
reasoning Li et al.| (2025b).

To comprehensively evaluate the optimization capabilities of LLMs, we focus on utilizing LLMs
to solve NP-hard problems, which involve complex combinatorial constraints and large problem
spaces, posing significant optimization challenges. Since obtaining the optimal solution is compu-
tationally intractable in polynomial time, achieving better solutions requires the model to engage in
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advanced reasoning, iterative trial-and-error, the generation of initial feasible solutions, and contin-
uous self-reflection and optimization.

Recent works, such as NPHardEval |Fan et al.| (2024) and NPPC Yang et al.| (2025b), have explored
LLMs’ performance on NP-hard problems. However, these studies are primarily focused on eval-
uation and suffer from limitations, such as insufficient control over difficulty levels and scalability
or reliance on coarse metrics, which restrict their applicability in RLVR. Specifically, they do not
offer the fine-grained optimal solutions necessary for generating high-quality reward signals, posing
a significant challenge for integrating LLMs with RLVR in NP-level optimization tasks.

To address this gap, we propose NP-ENGINE, a unified framework for training and evaluating LLMs
on NP-level optimization tasks using RLVR. NP-ENGINE includes 10 tasks across five domains,
each featuring: (i) a scalable generator that produces instances with tunable difficulty, (ii) a rule-
based verifier for automatic evaluation, and (iii) a heuristic algorithm that generates approximate
optimal solutions. This generator-verifier-heuristic pipeline facilitates scalable RLVR training and
allows for a fine-grained analysis of LLM performance.

To assess optimization capabilities, we introduce NP-BENCH, a benchmark that categorizes the
10 tasks into five primary categories, each containing 100 problems. Additionally, we design two
metrics—Success Rate (SR) and Average Ratio (AR)—to evaluate the feasibility and optimality
of the LLM’s solutions. We also develop QWEN2.5-7B-NP, trained on Qwen2.5-7B-Instruct us-
ing zero-shot RLVR with curriculum learning strategies. QWEN2.5-7B-NP significantly outper-
forms GPT-40 on NP-BENCH, achieving SOTA SR across all LLMs and the highest AR among
LLMs of the same size. Additionally, we evaluate the out-of-distribution (OOD) generalization of
QWEN2.5-7B-NP on diverse reasoning tasks (logic, math, puzzles, knowledge) as well as non-
reasoning tasks (instruction-following). Our results reveal that increasing task diversity enhances
OOD performance, offering new insights into the scaling laws of RLVR for complex reasoning
tasks. Our contributions are summarized as follows:

* We introduce NP-ENGINE, a scalable framework that generates near-infinite and hierar-
chically difficult NP-hard problems within the RLVR paradigm, empowering LLMs’ op-
timization reasoning abilities. NP-ENGINE enables Qwen2.5-7B-Instruct to significantly
outperform GPT-4o0 in optimization reasoning tasks using only 5K training examples.

* We propose NP-BENCH, a benchmark consisting of 10 NP-level tasks spanning five cate-
gories: Graph Clustering, Resource Scheduling, Graph Partitioning, Subset Selection, and
Path Planning. NP-BENCH provides instances with varying difficulty levels and evaluates
both the feasibility and quality of solutions.

* Through extensive experiments, we demonstrate that training on NP-ENGINE-DATA en-
ables QWEN2.5-7B-NP to generalize to both reasoning and non-reasoning OOD tasks.
We also observe a positive correlation between task diversity and cross-task generalization
performance, offering new insights into the scaling behavior of RLVR-based training.

2 NP-ENGINE-DATA: THE OPTIMIZATION REASONING DATASET

2.1 NP PROBLEM CATEGORIES

As shown in Figure[T] NP-ENGINE-DATA comprises ten NP tasks of five main categories, including:

Graph Clustering. Select vertex sets under strict adjacency constraints to optimize structural ob-
jectives, requiring graph structural understanding and reasoning ability. Canonical problems in-
clude Maximum Clique,Maximum Independent Set,and Graph Coloring, focusing
on dense-substructure clustering, mutual exclusivity, and chromatic feasibility.

Resource Scheduling. Assign activities to limited resources while avoiding conflicts and maximiz-
ing a global objective. The Meeting Scheduling task explores temporal feasibility, capacity
limits, attendance constraints, and multi-constraint optimization.

Graph Partitioning. Partition a graph into (near-)equal parts while minimizing cut cost.
Balanced Minimum Bisection balances partition constraints with inter-part edge weights,
emphasizing cut minimization under cardinality constraints.
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Figure 1: Overview of the NP-ENGINE-DATA: 10 NP-hard level tasks across five categories (graph
clustering, resource scheduling, graph partitioning, subset selection, and path planning), designed to
improve and evaluate optimization reasoning capabilities in LLMs.

Subset Selection. Choose subsets under combinatorial constraints to optimize coverage or
sum/weight limits. Representative tasks such as Subset Sum, Set Cover, and Knapsack
involve discrete feasibility checks and value-weight trade-offs.

Path Planning. Find short tours or feasible cycles visiting all nodes under specific distance metrics.
The Traveling Salesman Problem and Hamiltonian Cycle test global optimization
of permutations, path construction, and cycle feasibility.

2.2 NP-ENGINE-DATA CONSTRUCTION

We outline a four-stage data construction pipeline for NP-ENGINE-DATA: (I) Task Collection and
Design; (IT) Auto Task Generator and Verifier Development; (IIT) Heuristic Algorithm Construction;
(IV) Task Difficulty Definition.

Stage I: Task Collection and Design. We curate 10 NP-Hard tasks requiring complex reasoning
capabilities. Each task is scalable with custom generators to create additional NP-Hard instances,
featuring optimal reasoning that integrates various reasoning skills. For example, finding the longest
Hamiltonian circuit in a given graph.

Stage II: Auto Task Generator and Verifier Development. We equip the 10 tasks in NP-ENGINE-
DATA with custom auto-generators for NP-Hard instances, enabling automatic data scaling for train-
ing and evaluation. Each task has a corresponding rule-based verifier, manually validated to assess
the correctness of model outputs or provide rewards and penalties for the model’s responses.

Stage I1I: Heuristic Algorithm Construction. We develop heuristic algorithms for each task to
generate sub-optimal solutions, serving as an upper bound for evaluating LLM performance on NP-
Hard tasks. These algorithms are efficient and scalable, enabling solution generation for large task
instances. For example, for the Traveling Salesman Problem (TSP), we use the multi-start nearest
neighbor heuristic to generate an initial shortest circuit, then optimize it through local search until
no further improvement is made or a timeout occurs.

Stage IV: Task Difficulty. For each NP task, difficulty levels are determined by the size and com-
plexity of problem instances. These parameters are controlled in the auto-generator to create in-
stances across varying difficulty levels. For example, in TSP, we adjust the number of cities and path
density to generate different levels of difficulty. We define three difficulty levels—Easy, Medium,
and Hard—based on performance trends observed in the solution’s success rate and quality across
different parameter settings.



Under review as a conference paper at ICLR 2026

Table 1: Comparison of different reasoning benchmarks.

Benchmark Task Type Tasks Scalable Verifier Trainable
KOR-Bench [Ma et al.{(2024) Knowledge 125 X v X
NPR Wu et al.|[(2025) Knowledge 1 X X X
Logic-RL Xie et al.| (2025) Logic 1 v v v
Zebralogic|Lin et al.[(2025) Logic 1 v v v
SearchBench [Borazjanizadeh et al.| (2024) Puzzle 11 v 4 X
Enigmata|Chen et al.[(2025) Puzzle 36 v v v
NPHardEval [Fan et al.|(2024)) NP 9 X X X
NPPC Yang et al.[(2025b) NP 25 v X X
NP-BENCH NP 10 4 v v

2.3 NP-BENCH: THE OPTIMIZATION REASONING BENCHMARK

After constructing NP-ENGINE-DATA, we introduce NP-BENCH, a benchmark derived from NP-
ENGINE-DATA for evaluating LLMs on NP-hard optimization reasoning tasks. NP-BENCH spans
10 tasks across five optimization categories. Table[I|compares NP-ENGINE-DATA with prior bench-
marks. Unlike existing NP datasets, NP-ENGINE-DATA provides scalable instance generators and
verifiers for all 10 tasks, enabling large-scale training and evaluation under controlled difficulty lev-
els. Heuristic solvers are included to offer strong reference baselines and support automatic scoring.
For each task, NP-BENCH offers 100 instances with high complexity (e.g., TSP instances with 45
to 55 cities), generated by task-specific generators to ensure diverse structures and constraints. We
evaluate the solutions using two metrics: Success Rate (SR), which measures the rate of feasible
solutions, and Average Ratio (AR), the mean quality ratio of the model’s solution compared to a
task-specific heuristic baseline, with infeasible cases scored as 0. This unified approach captures
both feasibility and solution quality, providing a concise and comparable measure of LLMs’ ability
to solve NP-hard optimization problems.

3 NP-RL: THE TRAINING RECIPE

= Solutions |KL
Data ‘ o
Generator @D ss‘, Reference LLM Advantage 1
Easy [ Feasible
Generate Input
NP-Task ﬁ _— <|:Medium A= _nput ‘v, —_ g Validator Optimal Group . 5
Validator = =  Filter Hard . To v ﬁ Computation
Training o |cy 2 Saroren

data
Advantage 3

Heuristic F:-}Tg

Solver Curriculum Learning

Easy Medium Hard

Figure 2: Overview of NP-ENGINE. The suite comprises ten NP-hard tasks spanning five categories
(graph structure, scheduling, partitioning, subset selection, and tour planning). Each task is equipped
with scalable instance generators and verifiers and is stratified into Easy/Medium/Hard, enabling
RLVR curriculum training in LLMs.

Developing advanced optimization reasoning in large language models (LLMs) requires a well-
structured training strategy. These optimization tasks must not only enable the model to find feasi-
ble solutions but also emphasize solution quality. Furthermore, when addressing multiple tasks, the
model must exhibit versatile reasoning capabilities while avoiding overfitting to specific problem
types. To address these challenges, our training framework is structured into three stages: (1) defin-
ing verifiable rewards for each task, (2) designing strategies to enhance optimization reasoning, and
(3) applying multi-task learning to cultivate generalizable reasoning skills across diverse domains.

3.1 RL WITH VERIFIABLE REWARD

As shown in Figure [2] the reward serves as the guiding signal for the model to learn effective
optimization strategies during the reinforcement learning process. To ensure the model not only
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generates feasible solutions but also optimal solutions, our reward function consists of three main
components: (1) format reward, to encourage deep reasoning thinking, (2) feasibility reward, which
ensures that the generated solutions meet the problem constraints, and (3) optimality reward, which
motivates the model to find the optimal solutions.

Format Reward. The format reward ensures that the model generates solutions in the correct for-
mat, adhering to the structure: “Please think step by step and output the chain of thought, and your
response should end with: Answer: YOUR ANSWER”. The format reward Ry is defined as:
R 1, if format is correct
format = —1, if format is incorrect

Feasibility Reward. The feasibility reward ensures that the generated solutions satisfy problem
constraints, such as finding a Hamiltonian cycle in the graph, which requires avoiding repeated
nodes and invalid paths. The feasibility reward Ryeqsibility i defined as:

Roptimal,  if solution is valid

Rigeasivitiey = o .
feasibility {—1.5, if solution is not valid

Optimal Reward. The optimality reward encourages the model to find the best possible solution
depending on the optimization goal. The optimality reward Ropimar i defined as:

My,
Mp,
Mg

€ (0,1]

where M is the metric value of the solution calculated by NP-VALIDATOR, and Mj, is the metric
value of the optimal solution generated by NP-HEURISTIC. The optimality reward is designed to be
in the range (0, 1], with higher values indicating better solutions. The overall reward R is the sum
of these components:

R _ M. if task target is maximum optimization
optimal = if task target is minimum optimization

R = Rfoma + Rfeasibility

3.2 CURRICULUM LEARNING ENHANCING OPTIMIZATION CAPABILITIES.

Exposing models to overly complex tasks early in training can hinder the development of essen-
tial problem-solving skills, particularly in RLVR, where it leads to sparse reward signals. A key
challenge is ensuring mastery of foundational skills before progressing to harder problems. To ad-
dress this, we introduce Curriculum Learning, where the model first learns simpler concepts and
gradually progresses to more complex ones. Unlike random data shuffling, curriculum learning in-
crementally increases task difficulty, ensuring a more structured learning process. The difficulty
levels are hierarchically designed based on problem size, complexity, and constraints. Initially, the
model trains on easier tasks, establishing a strong foundation. As training progresses, the model
tackles more challenging tasks, building on prior knowledge and deepening its understanding of
optimization reasoning. This approach promotes better model convergence and performance, as the
model leverages previously learned knowledge to solve increasingly complex problems. By struc-
turing the learning process in this way, we ensure that the model develops a solid understanding of
basic reasoning, ultimately enhancing its ability to generalization across multiple NP tasks.

3.3 MULTI-STAGE RL FOSTERING GENERALIZABLE REASONING SKILLS.

After achieving stable optimization reasoning abilities on a single task, we extend our approach
to multi-task training, where the model is trained on all 10 tasks simultaneously during the RLVR
process. Multi-task RL exposes the model to a wide variety of NP problem types, but the distinct
reasoning approaches required for each task can create conflicts, hindering effective learning. To
address this, we employ a multi-stage RL approach. In the first stage, we start with a single epoch
of multi-task training to establish basic optimization reasoning abilities. Once these foundational
skills are established, additional epochs are introduced to further enhance the model’s capabilities,
progressing through up to three stages. This staged approach allows the model to gradually adapt
to the complexities of different tasks, ensuring effective learning and generalization across a broad
range of NP problems. As a result, the model’s optimization reasoning performance improves, while
its ability to perform “deep thinking” during RLVR training significantly enhances its generalization
to tackle other reasoning tasks.
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Table 2: Performance of reasoning LLMs, general LLMs, and our trained LLMs on NP-BENCH.

Model Graph Schedule Partition Selection Planning Overall
SR AR SR AR SR AR SR AR SR AR SR AR
Proprietary LLMs
DS-V3.1-Thinking 86.0 78.2 99.0 91.4 98.0 77.1 99.3 98.5 61.9 54.3 88.8 79.9
gpt-03 97.0 86.4 99.0 945 1000 514 87.4 87.3 74.0 65.1 91.5 76.9
Qwen3-235B-Thinking ~ 66.7 62.9 95.0 93.0 1000 558 98.0 97.1 52.0 44.8 82.3 70.7
gpt-40-2024-08-06 64.7 29.3 79.0 59.8 1000 53.0 14.7 9.3 52.0 29.6 62.1 36.2
Open-Source LLMs
Qwen3-32B 44.7 39.3 94.0 93.9 99.0 52.6 94.1 91.4 21.6 11.2 70.7 57.6
Qwen3-8B 22.7 16.8 78.0 75.3 98.0 51.0 86.0 82.6 3.0 1.2 57.5 454
DS-R1-Qwen-32B 23.3 18.1 49.0 45.1 96.0 48.6 85.7 79.7 154 79 53.9 39.9
DS-R1-Qwen-14B 18.0 13.4 52.0 51.7 32.0 16.2 67.3 63.4 4.5 1.4 34.8 29.2
Qwen2.5-72B 34.7 15.2 59.0 58.5 90.0 39.5 27.0 17.4 6.5 2.1 434 26.5
Qwen2.5-32B 353 15.2 15.0 12.8  100.0 51.7 32.0 224 23.5 6.7 41.2 21.8
Qwen2.5-14B 30.0 11.5 21.0 15.8 89.0 44.3 233 12.7 17.5 4.9 36.2 17.8
InternLM3-8b 15.0 3.6 20.0 9.5 86.0 433 413 23.7 16.0 4.1 35.7 16.8
LLama3.1-8B 23.0 8.0 9.0 7.8 0.0 0.0 28.7 11.4 15.0 1.8 15.1 5.8
Qwen2.5-3B 7.7 2.9 17.0 5.0 6.0 22 23.0 10.7 15.5 3.7 13.8 4.9
DS-R1-Qwen-7B 6.3 1.9 1.0 0.9 2.0 1.0 13.7 8.9 0.5 0.1 4.7 2.5
Qwen2.5-7B 11.0 3.1 40.0 19.8 67.0 34.0 26.7 15.2 35 1.0 29.6 14.6
QWEN2.5-7B-NP 89.7 27.8 85.0 435 99.0 53.8 93.7 79.1 98.2 28.9 93.1 46.6

+78.7 4247 +450 +23.7 4320 +198 +67.0 +639 +94.7 +27.9 +63.5 +32.0

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate the performance of our proposed method on a range of benchmark datasets span-
ning multiple domains, including NP-BENCH and five out-of-domain benchmarks. These bench-
marks are categorized as follows: four reasoning benchmarks—(I) Logic Reasoning: KOR-
Bench; (II) Math Reasoning: MATHS500 and OlympiadBench; (III) Knowledge Reasoning:
GPQA _Diamond—and one Non-Reasoning Task: IFEVAL, which includes factual and alignment-
based instruction-following questions. All experiments are conducted using the OpenCompass|Con-
tributors| (2023) framework.

Our QWEN2.5-7B-NP is directly trained from Qwen2.5-7B-Instruct-1M |Yang et al.|(2025a)), as we
found that applying RLVR to Qwen2.5-7B-Instruct often leads to poor instruction adherence and
formatting issues. The detailed training setup is provided in the Appendix.

4.2 EVALUATION RESULTS ON NP-BENCH

As shown in Table[2] we evaluate the performance of LLMs on NP-BENCH using Success Rate (SR)
and Average Ratio (AR) as metrics. Our model, QWEN2.5-7B-NP, shows significant improvements
over the baseline across all sub-tasks. Notably, the overall SR increases from 29.6 to 93.1, achieving
state-of-the-art performance on all models, and the AR rises from 14.6 to 46.6, maintaining state-
of-the-art performance for the same model size. The gains are especially pronounced in tasks with
complex structures and constraints, such as Graph and Selection, where both SR and AR improve
by several-fold. Scheduling tasks, which require balancing temporal feasibility and capacity con-
straints, also exhibit large relative gains. Even on Partition, where the baseline is already strong,
QWEN2.5-7B-NP delivers consistent gains, while in Planning it achieves near-perfect accuracy.

These results emphasize the significant impact of zero-RLVR on enhancing in-domain optimization
reasoning abilities, particularly for tasks like graph-structured search and discrete selection. Addi-
tionally, tasks involving scheduling and planning show considerable improvements, demonstrating
the model’s ability to handle complex constraints and optimization requirements with task-specific
reinforcement learning.

4.2.1 EVALUATION RESULTS ON OUT-OF-DOMAIN (OOD) BENCHMARKS

As shown in Table [3] we evaluate out-of-domain (OOD) tasks across five categories:
four reasoning tasks—Logic (KORBench), Math (Math500 and OlympiadBench), Knowledge
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Table 3: Performance on out-of-domain benchmarks, including both reasoning and non-reasoning
tasks, demonstrates that RLVR training on NP-ENGINE-DATA generalizes effectively.

Logic Math Knowledge Instruction

Model Average
KORBench  Math500 OlpBench  GPQA _diamond IFEval

LLama3.1-8b 44.5 48.6 17.7 22.7 69.3 40.6
Qwen2.5-3B 36.6 67.2 29.7 30.3 59.1 44.6
InternLM3-8B 40.7 78.2 25.1 36.9 72.5 50.7
Qwen2.5-14B 50.6 80.0 45.1 41.9 81.6 59.8
Qwen2.5-32B 56.2 82.8 48.8 439 79.5 62.3
Qwen2.5-72B 53.0 84.2 49.1 46.0 84.3 63.3
Qwen2.5-7B 42.9 724 30.0 333 73.5 50.4
QWEN2.5-7B-NP  44.1 (+1.2) 74.6 (+2.2) 32.1 (+2.1) 37.4 (+4.1) 79.6 (+6.1)  53.6 (+3.2)

Table 4: Comparison of different data proportions for easy (E), medium (M), and hard (H) from
NP-ENGINE-DATA during RLVR, as well as curriculum learning (CL) strategies.

CL In Domain Out of Domain

SR AR KB Math500 OB GPQA IF Avg

Data Proportion

Qwen2.5-7B (Base) X 40 19 429 724 300 333 735 504
Qwen2.5-7B (wlo GT) X 900 256 434 730 305 293 783 509
o X 990 281 429 738  3L1 354 779 522
E:M:H=1:4:3 /980 282 434 736 308 379 785 528
I X 970 209 423 742 296 323 788 515
‘M:H=1:1: /980 271 446 748 294 328 793 522
o X 1000 282 442 744 304 313 785 518
E:M:H=5:4:1 /1000 290 443 744 311 359 786 529

(GPQA _diamond)—and one non-reasoning task, Instruction Following (IFEval). Our QWEN2.5-
7B-NP demonstrates strong generalization capabilities compared to the baseline, with the overall
average score increasing from 50.4 to 53.6. Improvements are observed across all categories, with
reasoning benchmarks such as Logic, Math500, and OlympiadBench showing consistent gains of
around 2-3 points, and GPQA _diamond improving by over 12%. Even on non-reasoning tasks like
IFEval, performance rises by more than 8%.

Notably, the RLVR approach on NP-ENGINE-DATA leads to significant improvements in out-
of-domain reasoning tasks (logic, math, knowledge), demonstrating that zero-RLVR enhances
the model’s generalization ability by fostering deeper reasoning for complex NP-hard optimiza-
tion tasks, rather than overfitting to in-domain data. Additionally, our reward design improves
instruction-following performance, yielding enhancements in non-reasoning tasks. These results
highlight the effectiveness of the NP-ENGINE framework in enhancing both reasoning and non-
reasoning capabilities.

4.3 ABLATION STUDY

4.3.1 CURRICULUM LEARNING AND DATA PROPORTION

As shown in Table [4] we investigate the impact of different data proportions—easy (E), medium
(M), and hard (H)—on RLVR training, along with the role of curriculum learning (CL) strategies.
The experiments focus on the TSP problem to better summarize the rules. We compare several con-
figurations, including the baseline model and a variant without NP-HEURISTIC to provide accurate
ground-truth (GT) signals in the reward signal, as well as different data ratios (E:M:H). In terms
of in-domain performance, all RLVR configurations show improvements. Even the Qwen2.5-7B
(w/o GT) model achieves noticeable gains, with SR rising from 4.0 to 90.0 and AR from 1.9
to 25.6. The introduction of curriculum learning (CL) results in further gains across all data pro-
portions. The best performance is achieved with the E:M:H=5:4:1 configuration, which achieves
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Table 5: Performance on out-of-domain benchmarks, with increasing task scale from NP-ENGINE-
DATA during RLVR training.

Task Number Logic Math Knowledge Instruction Average
KORBench  Math500 OlpBench GPQA IFEval

Qwen2.5-7B 429 72.4 30.0 333 73.5 50.4

+3 Tasks 43.8 (+0.9) 748 (+2.4) 30.5(+0.5) 374 (+4.1) 785(+5.0) 53.0(+2.6)

+5 Tasks 442 (+1.3) 732 (+0.8) 31.9(+1.9) 374(+4.1) 78.0(+4.5) 529 (+2.5)

+7 Tasks 442 (+1.3)  76.2(+3.8) 304 (+0.4) 359(+2.6) 788 (+5.3) 53.1(+2.7)

+ALL Tasks 44.1 (+12)  74.6(+22) 321 (+2.1) 374(+4.1)  79.6 (+6.1)  53.6 (+3.2)

an average AR of 29.0, outperforming other configurations. For out-of-domain tasks, particularly
in the Math500 and GPQA benchmarks, the E:M:H=5:4:1 configuration demonstrates superior
generalization with an OOD average of 52.9. The inclusion of curriculum learning stabilizes perfor-
mance and enhances the model’s ability to generalize across both reasoning-heavy and instruction-
following tasks.

Overall, these experiments highlight the importance of data proportion in RLVR, particularly the
need for a larger proportion of easy tasks to build a strong foundation before tackling more complex
problems. Curriculum learning further enhances this process, improving both in-domain and out-of-
domain generalization capabilities.

4.3.2 MULTI-STAGE RL RECIPE

In-Domain ooD
\00.0
100 928 98.06.5

53.63.4

Graph Schedule Partition Selection Planning Overall
SR AR SR AR SR AR SR AR SR AR SR AR

EEA NP-MultiStage-RL [ NP-oneStage-RL

KORBench Math500 OlpBench GPQA IF-EVAL  Overall

Figure 3: Comparison of RL training strategies during multi-task training, with performance evalu-
ated on both in-domain and out-of-domain benchmarks.

As shown in Figure 3] compared to OneStage-RL, which uses NP-ENGINE-DATA in a single epoch,
MultiStage-RL divides NP-ENGINE-DATA into multiple epochs. The NP-MultiStage-RL strat-
egy consistently outperforms NP-OneStage-RL across all sub-tasks in both in-domain and out-of-
domain (OOD) settings. In the in-domain tasks, MultiStage RL demonstrates significant improve-
ments in Success Rate (SR) and Average Ratio (AR) across all tasks. For example, in Graph, SR
increases from 62.0 (OneStage) to 89.7 (MultiStage), and in Selection, SR rises from 56.6 to 93.7,
marking a substantial gain. The overall SR for MultiStage RL reaches 93.0, surpassing OneStage
RL’s 72.6, underscoring its effectiveness in enhancing in-domain performance. In the OOD tasks,
MultiStage RL also outperforms OneStage RL, with an overall SR of 53.6 compared to OneStage
RL’s 53.4. These results demonstrate that MultiStage RL significantly improves performance in
both in-domain and OOD settings. By multi-stage adapting to the complexities of different tasks,
MultiStage RL ensures effective learning and generalization across a broad range of NP problems.

4.3.3 SCALING UP TASKS ON NP-ENGINE-DATA

The results in Table|§]demonstrate the effect of task scaling on NP-ENGINE-DATA, with the model
trained with data from all tasks achieving the highest average score of 53.31 across all NP tasks.



Under review as a conference paper at ICLR 2026

This underscores the advantages of a more comprehensive training approach that spans a wider va-
riety of tasks. The Model trained with data from 7 tasks performs particularly well on tasks like
Math500 (76.2) and IFEval (78.84), excelling in mathematical and instruction-following tasks.
In comparison, fewer tasks as training data yield slightly lower scores in these areas. Models trained
on only 3 tasks show greater limitations on complex tasks, like KORBench (43.84) and Math500
(74.8). These results emphasize that training on diverse tasks is crucial for achieving optimal per-
formance across reasoning tasks. In conclusion, incorporating a broader task range enhances the
model’s generalization ability, providing valuable insights into the scaling laws of RLVR.

5 RELATED WORK

Reinforcement Learning with Verifiable Rewards (RLVR). As reinforcement learning (RL) be-
comes an increasingly important tool for enhancing the reasoning capabilities of LLMs, Reinforce-
ment Learning with Verifiable Rewards (RLVR) has emerged as a compelling alternative to Re-
inforcement Learning with Human Feedback (RLHF). Unlike RLHF, which relies on pretrained
reward models and subjective human annotations, RLVR utilizes objective, automatically verifiable
outcomes to provide reliable supervision [Seed et al.[ (2025)); |Guo et al.| (2025); [Team et al.| (2025)).
Recent models exemplify this paradigm shift: DeepSeek-R1 |Guo et al.|(2025) improves long-chain
reasoning and self-verification through RLVR, while Kimi K1.5 [Team et al.| (2025) achieves strong
performance with long-context training and streamlined policy optimization—without depending
on complex value models. The ecosystem supporting RLVR is rapidly maturing. High-quality math
corpora with verifiable solutions [He et al.| (2025); |/Albalak et al.| (2025)), structured coding corpora
with graded difficulty and reward pipelines |Liu & Zhang (2025); | Xu et al. (2025b)), and proce-
durally generated puzzle-style datasets with algorithmic verification [Xie et al.| (2025); [Chen et al.
(2025)); |Li et al.| (2025a) are now available. Notably, NP problems are inherently verifiable and offer
controllable difficulty settings |Fan et al.| (2024); |Yang et al.| (2025b)), making them well-suited for
RLVR-based training. However, most prior RLVR efforts have focused on math, coding, logic, or
puzzles, leaving the broader class of NP-hard problems underexplored.

Optimization Reasoning with LLMs. Various benchmarks have been proposed to evaluate LLMs’
reasoning capabilities across different domains, including mathematical (Glazer et al.| (2024)), log-
ical Xie et al. (2025), puzzle |Chen et al.| (2025)), and programming reasoning Xu et al. (2025a).
These tasks typically involve binary answer validation (e.g., True or False), which primarily assess
deductive or symbolic reasoning. In contrast, optimization reasoning presents a fundamentally dif-
ferent challenge: it requires models to generate not only feasible solutions but also solutions that
are as optimal as possible. Previous work on NP tasks has faced challenges in trainability Fan et al.
(2024); |Yang et al.| (2025b)). Despite its significance, optimization reasoning has been underexplored
in RLVR-based LLM training. Our work addresses this gap by focusing on NP-class problems. We
propose NP-ENGINE, a unified framework for data generation, optimal solution annotation, RLVR
training, and evaluation, which empowers LLMs with optimization reasoning capabilities.

6 CONCLUSION

In this work, we present NP-ENGINE, the first comprehensive framework for enabling LLMs to
solve NP-hard optimization reasoning problems. By combining scalable instance generation, verifi-
able rule-based evaluation, and heuristic solvers to provide precise reward signals, NP-ENGINE sup-
ports effective RLVR-based training on complex optimization tasks. We also introduce NP-BENCH,
a benchmark covering 10 diverse NP-level tasks across five primary optimization reasoning domains,
and propose QWEN2.5-7B-NP, an RLVR-trained model that significantly outperforms GPT-40 on
NP-BENCH. Our experiments demonstrate that curriculum learning strategies and multi-stage RL
training substantially enhance LLMs’ optimization reasoning capabilities. Furthermore, we observe
a strong correlation between task diversity and generalization performance, offering insights into
the scaling laws for RLVR-based training in complex reasoning domains. We hope this work lays a
foundation for future research on integrating LL.Ms with optimization reasoning and highlights task-
rich RLVR training as a promising direction for advancing LLM reasoning in complex optimization
tasks. Additionally, our findings reveal new insights into the scaling laws of RLVR.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

Large Language Models are used for grammar check and polishing in this paper.

A.2 LIMITATION

Due to computational resource constraints, we have conducted experiments using the Qwen2.5-7B-
Instruct model. Larger models, such as those with 14B or 32B parameters, have not been trained,
and the performance of these more powerful models, starting from a bigger model size, remains
unexplored. Additionally, designing individual NP tasks for RLVR training requires meticulous
attention to various aspects, including problem definition, validation script development, heuristic
algorithm design, and difficulty level calibration. As a result, we have currently designed 10 tasks.
Scaling to larger models and incorporating additional tasks remain avenues for future exploration.

A.3 DETAILED TRAINING SETTING

The training experiment utilizes the verl framework, employing the GRPO algorithm for fine-tuning
the Qwen2.5-7B-Instruct-1M model. Training is performed on 8 A800 GPUs with a batch size of
8 for both training and validation. The maximum prompt length is set to 20,000 tokens, and the
response length is capped at 4,096 tokens. Key hyperparameters include a learning rate of 4 x 10~7,
with a mini-batch size of 256 and a micro-batch size of 64 for PPO updates. KL loss regularization,
with a coefficient of 0.001 (KLf), is applied to stabilize training. The model is trained for 3 epochs
to ensure convergence.

A.4 NP-HARD TASKS
A.4.1 SET COVER

The task is to solve the classical Set Cover Problem. Given a universal set U and a collection of
subsets S C 2Y, the goal is to find the smallest possible sub-collection of S whose union equals
U. In other words, we aim to select the minimum number of subsets such that every element in U
is contained in at least one of the selected subsets. If no such selection exists, the answer should
be “Impossible”. The solution is represented as a list of subset indices corresponding to the chosen
sub-collection.

For example, given U = {0, 1,2, 3,4, 5} and
S={0:{0,1,2}, 1:{2,3}, 2:{0,4}, 3:4{3,4,5}, 4:{1,2,5} },
a valid minimum cover is [0, 3, 4], since the union of these subsets is equal to U.
The difficulty of the problem instances is categorized based on the size of the universe |U]|, the
number of subsets |.S|, and the relative subset size (controlled by the parameter subset_size_factor):
« Easy:

- |U] € [10,20], |S] € [5, 10], subset size factor = 0.4
— Small universe and relatively large subsets, making coverage straightforward.

* Medium:
- U] € [20,25],|S| € [10, 15], subset size factor = 0.4
— Moderate universe size and subset count, requiring careful selection.
* Hard:
- |U| € [25,30], |S| € [15, 25], subset size factor = 0.4
— Larger universe with more subsets, increasing combinatorial complexity.
* Benchmark:
- |U| € [30,40], |S| € [20, 30], subset size factor = 0.4
— The most challenging setting, with the largest universes and dense subset collections.

12



Under review as a conference paper at ICLR 2026

A.4.2 SUBSET SUM

The Subset Sum Problem asks whether a subset of integers sums up to a given target value 7. In
this variation, the objective is not only to reach the target sum, but also to maximize the number of
elements used in the subset.

Formally, given a set of integers {ag,a1,...,a,—1} and a target T, the task is to find an index set
I1C{0,1,...,n — 1} such that
Y-t

i€l
and among all valid solutions, the chosen I maximizes |I|. If multiple such subsets exist, any of them
is acceptable. The submission format requires returning the ordered list of indices, e.g., [0, 1, 4].

For example, given
T =10, numbers={0:2,1:3,2:7,3:8,4:5},

a valid solution is [0,1,4], since 2 + 3 + 5 = 10, and the subset uses three elements, which is
maximal.

The difficulty of generated problem instances is categorized according to the number of integers
available (J[numbers|), the typical size of the optimal solution (|I]), and the range of integer values:

* Easy:

— Total numbers € [5, 10], solution size € [4, 8], values in [1, 5].

— Small input with low values, ensuring frequent feasible solutions.
* Medium:

— Total numbers € [8, 12], solution size € [4, 8], values in [1, 10].
— Moderate instance size and range, requiring more careful subset selection.

e Hard:

— Total numbers € [12, 15], solution size € [8,12], values in [1, 15].
— Larger solution sizes and wider value ranges increase combinatorial difficulty.

¢ Benchmark:

— Total numbers € [15, 20], solution size € [10, 15], values in [1, 15].
— The most challenging setting, with large search space and dense feasible solutions.

A.4.3 KNAPSACK

The Knapsack Problem requires selecting a subset of items to maximize the total value without
exceeding a weight capacity. Formally, given a set of items {(w;,v;)}1—, each with weight w; and
value v;, and a knapsack capacity W, the goal is to find an index set I C {0,1,...,n — 1} such that

Zwi < VV, and Zvi
icl el

is maximized. The submission format requires returning the ordered list of chosen item IDs in square
brackets, e.g., [0, 2, 3].

For example, with
W =20, items={0:(3,4), 1:(4,5), 2:(7,10), 3:(8,11)},
a valid optimal solution is [0, 2, 3], achieving total weight 18 < 20 and total value 25.

The problem instances are categorized into four difficulty levels, determined by the number of items,
their weight/value ranges, and the relative knapsack capacity:

* Easy:
— 6 < |I*| < 10 (solution items), total items ~~ 15-25.
— Weights in [5, 25], value-to-weight ratio in [1.8, 2.5].

13
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— Capacity is 1.1-1.4 times the total weight of the solution items.
* Medium:

- 8 < |I*| £ 12, total items =~ 25-35.

— Weights in [20, 80], value-to-weight ratio in [1.5, 2.0].

— Capacity is 1.05-1.25 times the total solution weight.
* Hard:

- 15 < |I*| < 25, total items ~ 35-60.

— Weights in [50, 200], value-to-weight ratio in [1.2, 1.6].

— Capacity is 1.02-1.15 times the total solution weight.
* Benchmark:

- 25 < |I*| < 35, total items ~ 55-80.
Weights in [50, 200], value-to-weight ratio in [1.2, 1.6].
Capacity is 1.02-1.15 times the total solution weight.
The most challenging setting, with many items and tight capacity.

A.4.4 BALANCED MINIMUM BISECTION

The Balanced Minimum Bisection Problem requires partitioning a weighted undirected graph G =
(V, E) into two disjoint subsets of nearly equal size (differing by at most one vertex) such that
the sum of the weights of edges crossing the cut is minimized. Unlike the classic Minimum Cut
Problem, this task includes a balance constraint: both partitions must contain approximately the
same number of vertices.

Formally, let V' be divided into V; and V5 such that Vi NVo = (), ViUV, = V, and |\V1| — \VQH <1
The objective is to minimize
Y. wlu),

u€Vy,veEV2
(u,v)ER

where w(u,v) is the edge weight. The solution format specifies the two subsets explicitly, e.g.,
[[0,1,2],[3,4,5]]
For example, consider the input graph:
0:{1:3,2:1}, 1:{0:3,2:2,3:2}, 2:{0:1,1:2,3:3}, 3:{1:2,2:3}.
A valid optimal balanced bisection is [[0, 1], [2, 3]].

The difficulty of generated instances is determined by the number of nodes, the structural complexity
of the graph, and the noise level:

* Easy:
- |V] = 30.
— Graphs have clear community structures with dense intra-community edges and sparse
inter-community connections, with small noise (= 0.1).
— Balanced cuts are relatively easy to identify.

* Medium:
- |V| =~ 42.
— Graphs exhibit fuzzier community boundaries and more inter-community edges, with
moderate noise (=~ 0.15).

— Increases difficulty by reducing the clarity of the optimal partition.
* Hard:
- |V] =~ 45.
— Graphs are generated with deceptive structures, including “traitor” nodes and rein-
forced communities.

— Noise level around 0.1, making near-optimal but incorrect cuts more likely.

14
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¢ Benchmark:
- |V| = 50.

— Graphs include reinforced “hell mode” structures, traitor nodes, and low noise (=
0.02).

— The most challenging setting, with multiple plausible partitions and high combinato-
rial complexity.

A.4.5 MEETING SCHEDULING PROBLEM

The Meeting Scheduling Problem (MSP) aims to assign meetings to rooms and times in order to
maximize total attendee participation, subject to availability and capacity constraints. Each meeting
requires a set of attendees and a duration, each attendee has availability intervals, and each room has
a capacity. A feasible solution must assign to each scheduled meeting a start time and a room such
that:

* All required attendees are available for the entire duration.

* The room has sufficient capacity for all attendees.

* No attendee or room is scheduled for overlapping meetings.
If a meeting cannot be scheduled under these constraints, it is omitted. The solution is expressed as
an ordered list of tuples (meeting_id, room_id, start_time), sorted by start time.

For example, given the input
meetings = {0 : ([0, 1,2],60), 1: ([1,3],30), 2:([0,2,3],90)},
availability = {0 : [(900,1700)], 1 : [(900,1200), (1300, 1700)], 2 : [(900, 1700)], 3 : [(1000, 1400)]},
rooms = {0: 5, 1: 3},
a valid schedule is
[(0,0,900), (1,1,1000), (2,0,1020)],
which yields a total of 8 attendee participations.

The difficulty of generated MSP instances depends on the number of meetings, attendees, rooms,
and fragmentation of availability:

* Easy:
— 4-5 meetings, 3-5 attendees, 3—4 rooms.
— At most 3 attendees per meeting.
— Auvailability mostly continuous within the working day.

¢ Medium:

— 5-6 meetings, 4-6 attendees, 4—5 rooms.

— At most 4 attendees per meeting.

— Some attendees have fragmented availability (e.g., lunch breaks).
* Hard:

— 6-7 meetings, 5-7 attendees, 5—6 rooms.

— At most 4 attendees per meeting.

— Heavier overlap among meetings and tighter room capacities.
* Benchmark:

— 8-10 meetings, 7-9 attendees, 67 rooms.

— At most 5 attendees per meeting.

— The most challenging setting, with dense scheduling conflicts and fragmented avail-
ability.
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A.4.6 HAMILTONIAN CYCLE

The task is to find a Hamiltonian circuit in a given graph G, which is a path that visits every vertex
exactly once and returns to the starting point. The goal is to maximize the number of vertices
included in the Hamiltonian circuit. The process starts with a random vertex and finds a small valid
subgraph, then iteratively expands the subgraph while ensuring it remains valid, continuing until the
largest possible Hamiltonian circuit is found.

The problem is categorized into four difficulty levels based on the number of vertices and edge
density:
* Easy:

— V] €[15,20], p = 0.2
— Small graph with sparse edges.

¢ Medium:

- |V| €]20,30],p=0.3
— Moderate graph size with moderate connectivity.

e Hard:

- |V| €[30,40], p =04
— Larger graph with denser edges, increasing difficulty.

¢ Benchmark:
- |V] € [40,50], p = 0.5
— The most challenging, with the largest and densest graph.
A.4.7 TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem (TSP) is a classical combinatorial optimization problem. Given a
set of cities and pairwise distances, the objective is to find the shortest possible tour that:

* Starts and ends at the same city.

* Visits each city exactly once in between.

The solution is expressed as a route [cg, ¢1, . . ., Cp—1, Co], Where ¢q is the starting city and each city
appears exactly once except for the repetition of ¢ at the end.

For example, given the distance dictionary
0:{1:10,2:15,3:20}, 1:{0:10,2:35,3:25}, 2:{0:15,1:35,3:30}, 3:{0:20,1:25,2:30},
a valid optimal solution is
[0,1,3,2,0].
The difficulty of generated TSP instances is determined primarily by the number of cities:

* Easy: 10-20 cities.
¢ Medium: 20-30 cities.
e Hard: 35-45 cities.

¢ Benchmark: 45-55 cities.

All instances are generated with symmetric distance matrices, with distances sampled uniformly
within a predefined range.
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A.4.8 MAXIMUM CLIQUE PROBLEM

The Maximum Clique Problem (MCP) is defined on an undirected graph G = (V, E). A clique is a
subset of vertices C' C V' such that every pair of distinct vertices in C' is connected by an edge in E.
The problem asks for the largest such subset, i.e., a clique of maximum cardinality.

The solution is expressed as a list of vertex IDs forming the clique. For example, given the adjacency
lists
0:[1,2,3,4], 1:]0,3,4], 2:[0,3], 3:[0,1,2,4], 4:[0,1,3],

a valid maximum clique is
[07 1) 37 4])

which has size 4.

The difficulty of generated MCP instances depends on the graph size and density:

» Easy: 4-8 vertices, cliques of size 2—4.

* Medium: 8-12 vertices, cliques of size 2—4.

* Hard: 12-16 vertices, cliques of size 2—6.

* Benchmark: 16-20 vertices, cliques of size 4-8.

Graphs are generated by first constructing a guaranteed clique and embedding it into a larger graph
with random edges, ensuring the clique exists as the maximum solution.

A.4.9 MAXIMUM INDEPENDENT SET

The Maximum Independent Set (MIS) problem is defined on an undirected graph G = (V, E). An
independent set is a subset of vertices I C V such that no two vertices in [ are adjacent in G. The
problem asks for the independent set of maximum cardinality.

The solution is expressed as a list of vertex IDs forming the set. For example, given the adjacency
lists
0:{1,2}, 1:{0,2,3}, 2:{0,1,3}, 3:{1,2},

a maximum independent set is
[0, 3],

which has size 2.
The difficulty of generated MIS instances depends mainly on the graph size and the planted inde-
pendent set:

* Easy: 12-20 vertices, independent set size 4-8.

* Medium: 20-30 vertices, independent set size §—12.

* Hard: 3040 vertices, independent set size 12-16.

* Benchmark: 40-50 vertices, independent set size 16-20.

Graphs are generated by first selecting a guaranteed independent set and embedding it into a larger
graph with randomly added edges, ensuring the independent set exists as the maximum solution.

A.4.10 GRAPH COLORING PROBLEM

The Graph Coloring Problem (GCP) is defined on an undirected graph G = (V, E). The task
is to assign a color to each vertex such that no two adjacent vertices share the same color, while
minimizing the total number of colors used.

The solution is expressed as a list of integers, where the ¢-th entry denotes the color assigned to
vertex ¢. For example, given the adjacency lists

0:1,2], 1:00,3], 2:[0,3], 3:[1,2],

a valid optimal coloring is
[1a 2) 17 2]7
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which uses 2 colors.
The difficulty of generated GCP instances depends mainly on the number of vertices, the number of
colors required, and the edge density:

» Easy: 8-12 vertices, 3—4 colors, edge density ~ 0.2.

* Medium: 15-22 vertices, 4-6 colors, edge density ~ 0.35.

* Hard: 25-32 vertices, 68 colors, edge density ~ 0.5.

* Benchmark: 32-40 vertices, 6-8 colors, edge density = 0.5.

Graphs are generated by partitioning vertices into color classes and adding random edges between
different partitions, ensuring that the planted coloring remains a valid optimal solution.
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