

NP-ENGINE: EMPOWERING OPTIMIZATION REASONING IN LARGE LANGUAGE MODELS WITH VERIFIABLE SYNTHETIC NP PROBLEMS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Large Language Models (LLMs) have shown strong reasoning capabilities, with
 014 models like OpenAI’s O-series and DeepSeek R1 excelling at tasks such as math-
 015 ematics, coding, logic, and puzzles through Reinforcement Learning with Veri-
 016 fiable Rewards (RLVR). However, their ability to solve more complex optimiza-
 017 tion problems—particularly NP-hard tasks—remains underexplored. To bridge
 018 this gap, we propose NP-ENGINE, the first comprehensive framework for train-
 019 ing and evaluating LLMs on NP-hard problems. NP-ENGINE covers 10 tasks
 020 across five domains, each equipped with (i) a controllable instance generator, (ii)
 021 a rule-based verifier, and (iii) a heuristic solver that provides approximate optimal
 022 solutions as ground truth. This generator-verifier-heuristic pipeline enables scal-
 023 able and verifiable RLVR training under hierarchical difficulties. We also intro-
 024 duce NP-BENCH, a benchmark derived from NP-ENGINE-DATA, specifically de-
 025 signed to evaluate LLMs’ ability to tackle NP-hard level reasoning problems, fo-
 026 cusing not only on feasibility but also on solution quality. Additionally, we present
 027 QWEN2.5-7B-NP, a model trained via zero-RLVR with curriculum learning on
 028 Qwen2.5-7B-Instruct, which significantly outperforms GPT-4o on NP-BENCH
 029 and achieves SOTA performance with the same model size. Beyond in-domain
 030 tasks, we demonstrate that RLVR training on NP-ENGINE-DATA enables strong
 031 out-of-domain (OOD) generalization to reasoning tasks (logic, puzzles, math, and
 032 knowledge), as well as non-reasoning tasks such as instruction following. We also
 033 observe a scaling trend: increasing task diversity improves OOD generalization.
 034 These findings suggest that task-rich RLVR training is a promising direction for
 035 advancing LLM’s reasoning ability, revealing new insights into the scaling laws
 036 of RLVR.

1 INTRODUCTION

040 Large Language Models (LLMs) have made significant advancements in complex reasoning tasks
 041 such as mathematics He et al. (2025), coding Liu & Zhang (2025), logic Xie et al. (2025), and
 042 puzzles Chen et al. (2025); Ma et al. (2024), showcasing the effectiveness of the Reinforcement
 043 Learning with Verifiable Rewards (RLVR) paradigm Xu et al. (2025b); Albalak et al. (2025). RLVR
 044 leverages high-quality, verifiable reward signals to guide model optimization, thereby enhancing
 045 LLMs’ reasoning abilities OpenAI (2024); Guo et al. (2025); Google (2025); Anthropic (2025).

046 Despite significant advances, most existing research on reasoning in logic, mathematics, and puzzles
 047 focuses primarily on producing the “correct” answer, emphasizing solution accuracy. This emphasis
 048 overlooks solution quality, particularly in tasks that require not just *feasible* answers but *optimal*
 049 solutions. This gap highlights a crucial aspect of reasoning ability, referred to as **optimization**
 050 **reasoning** Li et al. (2025b).

051 To comprehensively evaluate the optimization capabilities of LLMs, we focus on utilizing LLMs
 052 to solve NP-hard problems, which involve complex combinatorial constraints and large problem
 053 spaces, posing significant optimization challenges. Since obtaining the optimal solution is compu-
 054 tationally intractable in polynomial time, achieving better solutions requires the model to engage in

054 advanced reasoning, iterative trial-and-error, the generation of initial feasible solutions, and continuous
 055 self-reflection and optimization.

056 Recent works, such as NPHardEval Fan et al. (2024) and NPPC Yang et al. (2025b), have explored
 057 LLMs’ performance on NP-hard problems. However, these studies are primarily focused on eval-
 058 uation and suffer from limitations, such as insufficient control over difficulty levels and scalability
 059 or reliance on coarse metrics, which restrict their applicability in RLVR. Specifically, they do not
 060 offer the fine-grained optimal solutions necessary for generating high-quality reward signals, posing
 061 a significant challenge for integrating LLMs with RLVR in NP-level optimization tasks.

062 To address this gap, we propose NP-ENGINE, a unified framework for training and evaluating LLMs
 063 on NP-level optimization tasks using RLVR. NP-ENGINE includes 10 tasks across five domains,
 064 each featuring: (i) a scalable generator that produces instances with tunable difficulty, (ii) a rule-
 065 based verifier for automatic evaluation, and (iii) a heuristic algorithm that generates approximate
 066 optimal solutions. This generator-verifier-heuristic pipeline facilitates scalable RLVR training and
 067 allows for a fine-grained analysis of LLM performance.

068 To assess optimization capabilities, we introduce NP-BENCH, a benchmark that categorizes the
 069 10 tasks into five primary categories, each containing 100 problems. Additionally, we design two
 070 metrics—Success Rate (SR) and Average Ratio (AR)—to evaluate the feasibility and optimality
 071 of the LLM’s solutions. We also develop QWEN2.5-7B-NP, trained on Qwen2.5-7B-Instruct us-
 072 ing zero-shot RLVR with curriculum learning strategies. QWEN2.5-7B-NP significantly outper-
 073 forms GPT-4o on NP-BENCH, achieving SOTA SR across all LLMs and the highest AR among
 074 LLMs of the same size. Additionally, we evaluate the out-of-distribution (OOD) generalization of
 075 QWEN2.5-7B-NP on diverse reasoning tasks (logic, math, puzzles, knowledge) as well as non-
 076 reasoning tasks (instruction-following). Our results reveal that increasing task diversity enhances
 077 OOD performance, offering new insights into the scaling laws of RLVR for complex reasoning
 078 tasks. Our contributions are summarized as follows:

- 079 • We introduce NP-ENGINE, a scalable framework that generates near-infinite and hierar-
 080 chically difficult NP-hard problems within the RLVR paradigm, empowering LLMs’ op-
 081 timization reasoning abilities. NP-ENGINE enables Qwen2.5-7B-Instruct to significantly
 082 outperform GPT-4o in optimization reasoning tasks using only 5K training examples.
- 083 • We propose NP-BENCH, a benchmark consisting of 10 NP-level tasks spanning five cate-
 084 gories: Graph Clustering, Resource Scheduling, Graph Partitioning, Subset Selection, and
 085 Path Planning. NP-BENCH provides instances with varying difficulty levels and evaluates
 086 both the feasibility and quality of solutions.
- 087 • Through extensive experiments, we demonstrate that training on NP-ENGINE-DATA en-
 088 ables QWEN2.5-7B-NP to generalize to both reasoning and non-reasoning OOD tasks.
 089 We also observe a positive correlation between task diversity and cross-task generalization
 090 performance, offering new insights into the scaling behavior of RLVR-based training.

093 2 NP-ENGINE-DATA: THE OPTIMIZATION REASONING DATASET

095 2.1 NP PROBLEM CATEGORIES

097 As shown in Figure 1, NP-ENGINE-DATA comprises ten NP tasks of five main categories, including:

098 **Graph Clustering.** Select vertex sets under strict adjacency constraints to optimize structural ob-
 099 jectives, requiring graph structural understanding and reasoning ability. Canonical problems in-
 100 clude Maximum Clique, Maximum Independent Set, and Graph Coloring, focusing on dense-substructure
 101 clustering, mutual exclusivity, and chromatic feasibility.

102 **Resource Scheduling.** Assign activities to limited resources while avoiding conflicts and maximiz-
 103 ing a global objective. The Meeting Scheduling task explores temporal feasibility, capacity
 104 limits, attendance constraints, and multi-constraint optimization.

106 **Graph Partitioning.** Partition a graph into (near-)equal parts while minimizing cut cost.
 107 Balanced Minimum Bisection balances partition constraints with inter-part edge weights,
 108 emphasizing cut minimization under cardinality constraints.

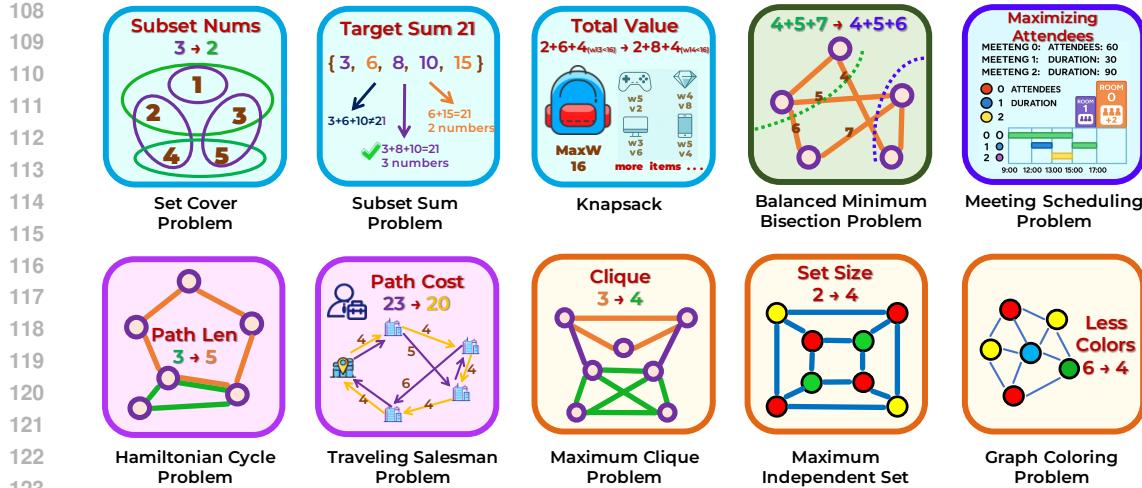


Figure 1: Overview of the NP-ENGINE-DATA: 10 NP-hard level tasks across five categories (graph clustering, resource scheduling, graph partitioning, subset selection, and path planning), designed to improve and evaluate optimization reasoning capabilities in LLMs.

Subset Selection. Choose subsets under combinatorial constraints to optimize coverage or sum/weight limits. Representative tasks such as Subset Sum, Set Cover, and Knapsack involve discrete feasibility checks and value-weight trade-offs.

Path Planning. Find short tours or feasible cycles visiting all nodes under specific distance metrics. The Traveling Salesman Problem and Hamiltonian Cycle test global optimization of permutations, path construction, and cycle feasibility.

2.2 NP-ENGINE-DATA CONSTRUCTION

We outline a four-stage data construction pipeline for NP-ENGINE-DATA: (I) Task Collection and Design; (II) Auto Task Generator and Verifier Development; (III) Heuristic Algorithm Construction; (IV) Task Difficulty Definition.

Stage I: Task Collection and Design. We curate 10 NP-Hard tasks requiring complex reasoning capabilities. Each task is scalable with custom generators to create additional NP-Hard instances, featuring optimal reasoning that integrates various reasoning skills. For example, finding the longest Hamiltonian circuit in a given graph.

Stage II: Auto Task Generator and Verifier Development. We equip the 10 tasks in NP-ENGINE-DATA with custom auto-generators for NP-Hard instances, enabling automatic data scaling for training and evaluation. Each task has a corresponding rule-based verifier, manually validated to assess the correctness of model outputs or provide rewards and penalties for the model’s responses.

Stage III: Heuristic Algorithm Construction. We develop heuristic algorithms for each task to generate sub-optimal solutions, serving as an upper bound for evaluating LLM performance on NP-Hard tasks. These algorithms are efficient and scalable, enabling solution generation for large task instances. For example, for the Traveling Salesman Problem (TSP), we use the multi-start nearest neighbor heuristic to generate an initial shortest circuit, then optimize it through local search until no further improvement is made or a timeout occurs.

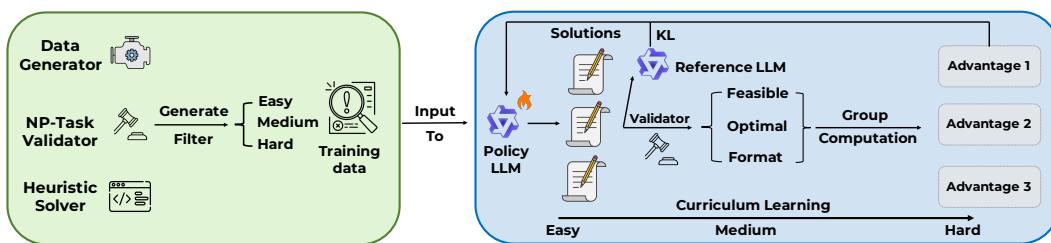
Stage IV: Task Difficulty. For each NP task, difficulty levels are determined by the size and complexity of problem instances. These parameters are controlled in the auto-generator to create instances across varying difficulty levels. For example, in TSP, we adjust the number of cities and path density to generate different levels of difficulty. We define three difficulty levels—Easy, Medium, and Hard—based on performance trends observed in the solution’s success rate and quality across different parameter settings.

162
163
Table 1: Comparison of different reasoning benchmarks.
164

Benchmark	Task Type	Tasks	Scalable	Verifier	Trainable
KOR-Bench Ma et al. (2024)	Knowledge	125	✗	✓	✗
NPR Wu et al. (2025)	Knowledge	1	✗	✗	✗
Logic-RL Xie et al. (2025)	Logic	1	✓	✓	✓
ZebraLogic Lin et al. (2025)	Logic	1	✓	✓	✓
SearchBench Borazjanizadeh et al. (2024)	Puzzle	11	✓	✓	✗
Enigmata Chen et al. (2025)	Puzzle	36	✓	✓	✓
NPHardEval Fan et al. (2024)	NP	9	✗	✗	✗
NPPC Yang et al. (2025b)	NP	25	✓	✗	✗
NP-BENCH	NP	10	✓	✓	✓

174
175 2.3 NP-BENCH: THE OPTIMIZATION REASONING BENCHMARK
176

177 After constructing NP-ENGINE-DATA, we introduce NP-BENCH, a benchmark derived from NP-
178 ENGINE-DATA for evaluating LLMs on NP-hard optimization reasoning tasks. NP-BENCH spans
179 10 tasks across five optimization categories. Table 1 compares NP-ENGINE-DATA with prior bench-
180 marks. Unlike existing NP datasets, NP-ENGINE-DATA provides scalable instance generators and
181 verifiers for all 10 tasks, enabling large-scale training and evaluation under controlled difficulty lev-
182 els. Heuristic solvers are included to offer strong reference baselines and support automatic scoring.
183 For each task, NP-BENCH offers 100 instances with high complexity (e.g., TSP instances with 45
184 to 55 cities), generated by task-specific generators to ensure diverse structures and constraints. We
185 evaluate the solutions using two metrics: **Success Rate (SR)**, which measures the rate of feasible
186 solutions, and **Average Ratio (AR)**, the mean quality ratio of the model’s solution compared to a
187 task-specific heuristic baseline, with infeasible cases scored as 0. This unified approach captures
188 both feasibility and solution quality, providing a concise and comparable measure of LLMs’ ability
189 to solve NP-hard optimization problems.

190 3 NP-RL: THE TRAINING RECIPE
191200
201 Figure 2: Overview of NP-ENGINE. The suite comprises ten NP-hard tasks spanning five categories
202 (graph structure, scheduling, partitioning, subset selection, and tour planning). Each task is equipped
203 with scalable instance generators and verifiers and is stratified into *Easy/Medium/Hard*, enabling
204 RLVR curriculum training in LLMs.
205

206 Developing advanced optimization reasoning in large language models (LLMs) requires a well-
207 structured training strategy. These optimization tasks must not only enable the model to find fea-
208 sible solutions but also emphasize solution quality. Furthermore, when addressing multiple tasks, the
209 model must exhibit versatile reasoning capabilities while avoiding overfitting to specific problem
210 types. To address these challenges, our training framework is structured into three stages: (1) defin-
211 ing verifiable rewards for each task, (2) designing strategies to enhance optimization reasoning, and
212 (3) applying multi-task learning to cultivate generalizable reasoning skills across diverse domains.

213 3.1 RL WITH VERIFIABLE REWARD
214

215 As shown in Figure 2, the reward serves as the guiding signal for the model to learn effective
optimization strategies during the reinforcement learning process. To ensure the model not only

generates feasible solutions but also optimal solutions, our reward function consists of three main components: (1) format reward, to encourage deep reasoning thinking, (2) feasibility reward, which ensures that the generated solutions meet the problem constraints, and (3) optimality reward, which motivates the model to find the optimal solutions.

Format Reward. The format reward ensures that the model generates solutions in the correct format, adhering to the structure: "Please think step by step and output the chain of thought, and your response should end with: Answer: YOUR ANSWER". The format reward R_{format} is defined as:

$$R_{\text{format}} = \begin{cases} 1, & \text{if format is correct} \\ -1, & \text{if format is incorrect} \end{cases}$$

Feasibility Reward. The feasibility reward ensures that the generated solutions satisfy problem constraints, such as finding a Hamiltonian cycle in the graph, which requires avoiding repeated nodes and invalid paths. The feasibility reward $R_{\text{feasibility}}$ is defined as:

$$R_{\text{feasibility}} = \begin{cases} R_{\text{optimal}}, & \text{if solution is valid} \\ -1.5, & \text{if solution is not valid} \end{cases}$$

Optimal Reward. The optimality reward encourages the model to find the best possible solution depending on the optimization goal. The optimality reward R_{optimal} is defined as:

$$R_{\text{optimal}} = \begin{cases} \frac{M_s}{M_h}, & \text{if task target is maximum optimization} \\ \frac{M_h}{M_s}, & \text{if task target is minimum optimization} \end{cases} \in (0, 1]$$

where M_s is the metric value of the solution calculated by NP-VALIDATOR, and M_h is the metric value of the optimal solution generated by NP-HEURISTIC. The optimality reward is designed to be in the range $(0, 1]$, with higher values indicating better solutions. The overall reward R is the sum of these components:

$$R = R_{\text{format}} + R_{\text{feasibility}}$$

3.2 CURRICULUM LEARNING ENHANCING OPTIMIZATION CAPABILITIES.

Exposing models to overly complex tasks early in training can hinder the development of essential problem-solving skills, particularly in RLVR, where it leads to sparse reward signals. A key challenge is ensuring mastery of foundational skills before progressing to harder problems. To address this, we introduce Curriculum Learning, where the model first learns simpler concepts and gradually progresses to more complex ones. Unlike random data shuffling, curriculum learning incrementally increases task difficulty, ensuring a more structured learning process. The difficulty levels are hierarchically designed based on problem size, complexity, and constraints. Initially, the model trains on easier tasks, establishing a strong foundation. As training progresses, the model tackles more challenging tasks, building on prior knowledge and deepening its understanding of optimization reasoning. This approach promotes better model convergence and performance, as the model leverages previously learned knowledge to solve increasingly complex problems. By structuring the learning process in this way, we ensure that the model develops a solid understanding of basic reasoning, ultimately enhancing its ability to generalization across multiple NP tasks.

3.3 MULTI-STAGE RL FOSTERING GENERALIZABLE REASONING SKILLS.

After achieving stable optimization reasoning abilities on a single task, we extend our approach to multi-task training, where the model is trained on all 10 tasks simultaneously during the RLVR process. Multi-task RL exposes the model to a wide variety of NP problem types, but the distinct reasoning approaches required for each task can create conflicts, hindering effective learning. To address this, we employ a multi-stage RL approach. In the first stage, we start with a single epoch of multi-task training to establish basic optimization reasoning abilities. Once these foundational skills are established, additional epochs are introduced to further enhance the model's capabilities, progressing through up to three stages. This staged approach allows the model to gradually adapt to the complexities of different tasks, ensuring effective learning and generalization across a broad range of NP problems. As a result, the model's optimization reasoning performance improves, while its ability to perform "deep thinking" during RLVR training significantly enhances its generalization to tackle other reasoning tasks.

Table 2: Performance of reasoning LLMs, general LLMs, and our trained LLMs on NP-BENCH.

Model	Graph		Schedule		Partition		Selection		Planning		Overall	
	SR	AR	SR	AR	SR	AR	SR	AR	SR	AR	SR	AR
<i>Proprietary LLMs</i>												
DS-V3.1-Thinking	86.0	78.2	99.0	91.4	98.0	77.1	99.3	98.5	61.9	54.3	88.8	79.9
gpt-03	97.0	86.4	99.0	94.5	100.0	51.4	87.4	87.3	74.0	65.1	91.5	76.9
Qwen3-235B-Thinking	66.7	62.9	95.0	93.0	100.0	55.8	98.0	97.1	52.0	44.8	82.3	70.7
gpt-4o-2024-08-06	64.7	29.3	79.0	59.8	100.0	53.0	14.7	9.3	52.0	29.6	62.1	36.2
<i>Open-Source LLMs</i>												
Qwen3-32B	44.7	39.3	94.0	93.9	99.0	52.6	94.1	91.4	21.6	11.2	70.7	57.6
Qwen3-8B	22.7	16.8	78.0	75.3	98.0	51.0	86.0	82.6	3.0	1.2	57.5	45.4
DS-R1-Qwen-32B	23.3	18.1	49.0	45.1	96.0	48.6	85.7	79.7	15.4	7.9	53.9	39.9
DS-R1-Qwen-14B	18.0	13.4	52.0	51.7	32.0	16.2	67.3	63.4	4.5	1.4	34.8	29.2
Qwen2.5-72B	34.7	15.2	59.0	58.5	90.0	39.5	27.0	17.4	6.5	2.1	43.4	26.5
Qwen2.5-32B	35.3	15.2	15.0	12.8	100.0	51.7	32.0	22.4	23.5	6.7	41.2	21.8
Qwen2.5-14B	30.0	11.5	21.0	15.8	89.0	44.3	23.3	12.7	17.5	4.9	36.2	17.8
InternLM3-8b	15.0	3.6	20.0	9.5	86.0	43.3	41.3	23.7	16.0	4.1	35.7	16.8
LLama3.1-8B	23.0	8.0	9.0	7.8	0.0	0.0	28.7	11.4	15.0	1.8	15.1	5.8
Qwen2.5-3B	7.7	2.9	17.0	5.0	6.0	2.2	23.0	10.7	15.5	3.7	13.8	4.9
DS-R1-Qwen-7B	6.3	1.9	1.0	0.9	2.0	1.0	13.7	8.9	0.5	0.1	4.7	2.5
Qwen2.5-7B	11.0	3.1	40.0	19.8	67.0	34.0	26.7	15.2	3.5	1.0	29.6	14.6
QWEN2.5-7B-NP	89.7	27.8	85.0	43.5	99.0	53.8	93.7	79.1	98.2	28.9	93.1	46.6
	+78.7	+24.7	+45.0	+23.7	+32.0	+19.8	+67.0	+63.9	+94.7	+27.9	+63.5	+32.0

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We evaluate the performance of our proposed method on a range of benchmark datasets spanning multiple domains, including NP-BENCH and five out-of-domain benchmarks. These benchmarks are categorized as follows: four **reasoning** benchmarks—(I) **Logic Reasoning**: KOR-Bench; (II) **Math Reasoning**: MATH500 and OlympiadBench; (III) **Knowledge Reasoning**: GPQA_Diamond—and one **Non-Reasoning Task**: IFEVAL, which includes factual and alignment-based instruction-following questions. All experiments are conducted using the OpenCompass Contributors (2023) framework.

Our QWEN2.5-7B-NP is directly trained from Qwen2.5-7B-Instruct-1M Yang et al. (2025a), as we found that applying RLVR to Qwen2.5-7B-Instruct often leads to poor instruction adherence and formatting issues. The detailed training setup is provided in the Appendix.

4.2 EVALUATION RESULTS ON NP-BENCH

As shown in Table 2, we evaluate the performance of LLMs on NP-BENCH using Success Rate (SR) and Average Ratio (AR) as metrics. Our model, QWEN2.5-7B-NP, shows significant improvements over the baseline across all sub-tasks. Notably, the overall SR increases from 29.6 to 93.1, achieving state-of-the-art performance on all models, and the AR rises from 14.6 to 46.6, maintaining state-of-the-art performance for the same model size. The gains are especially pronounced in tasks with complex structures and constraints, such as *Graph* and *Selection*, where both SR and AR improve by several-fold. *Scheduling* tasks, which require balancing temporal feasibility and capacity constraints, also exhibit large relative gains. Even on *Partition*, where the baseline is already strong, QWEN2.5-7B-NP delivers consistent gains, while in *Planning* it achieves near-perfect accuracy.

These results emphasize the significant impact of zero-RLVR on enhancing in-domain optimization reasoning abilities, particularly for tasks like graph-structured search and discrete selection. Additionally, tasks involving scheduling and planning show considerable improvements, demonstrating the model's ability to handle complex constraints and optimization requirements with task-specific reinforcement learning.

4.2.1 EVALUATION RESULTS ON OUT-OF-DOMAIN (OOD) BENCHMARKS

As shown in Table 3, we evaluate out-of-domain (OOD) tasks across five categories: four reasoning tasks—*Logic* (KORBench), *Math* (Math500 and OlympiadBench), *Knowledge*

324
325 Table 3: Performance on out-of-domain benchmarks, including both reasoning and non-reasoning
326 tasks, demonstrates that RLVR training on NP-ENGINE-DATA generalizes effectively.
327

Model	Logic		Math		Knowledge		Instruction		Average
	KORBench	Math500	OlpBench	GPQA_diamond	IFEval				
LLama3.1-8b	44.5	48.6	17.7	22.7	69.3	40.6			
Qwen2.5-3B	36.6	67.2	29.7	30.3	59.1	44.6			
InternLM3-8B	40.7	78.2	25.1	36.9	72.5	50.7			
Qwen2.5-14B	50.6	80.0	45.1	41.9	81.6	59.8			
Qwen2.5-32B	56.2	82.8	48.8	43.9	79.5	62.3			
Qwen2.5-72B	53.0	84.2	49.1	46.0	84.3	63.3			
Qwen2.5-7B	42.9	72.4	30.0	33.3	73.5	50.4			
QWEN2.5-7B-NP	<u>44.1 (+1.2)</u>	<u>74.6 (+2.2)</u>	<u>32.1 (+2.1)</u>	<u>37.4 (+4.1)</u>	<u>79.6 (+6.1)</u>	<u>53.6 (+3.2)</u>			

337
338 Table 4: Comparison of different data proportions for easy (E), medium (M), and hard (H) from
339 NP-ENGINE-DATA during RLVR, as well as curriculum learning (CL) strategies.
340

Data Proportion	CL	In Domain		Out of Domain					
		SR	AR	KB	Math500	OB	GPQA	IF	Avg
Qwen2.5-7B (Base)	✗	4.0	1.9	42.9	72.4	30.0	33.3	73.5	50.4
Qwen2.5-7B (w/o GT)	✗	90.0	25.6	43.4	73.0	30.5	29.3	78.3	50.9
E:M:H=1:4:5	✗	99.0	28.1	42.9	73.8	31.1	35.4	77.9	52.2
	✓	98.0	28.2	43.4	73.6	30.8	37.9	78.5	52.8
E:M:H=1:1:1	✗	97.0	26.9	42.3	74.2	29.6	32.3	78.8	51.5
	✓	98.0	27.1	44.6	74.8	29.4	32.8	79.3	52.2
E:M:H=5:4:1	✗	100.0	28.2	44.2	74.4	30.4	31.3	78.5	51.8
	✓	100.0	29.0	44.3	74.4	31.1	35.9	78.6	52.9

353 (GPQA_diamond)—and one non-reasoning task, *Instruction Following* (IFEval). Our QWEN2.5-
354 7B-NP demonstrates strong generalization capabilities compared to the baseline, with the overall
355 average score increasing from **50.4** to **53.6**. Improvements are observed across all categories, with
356 reasoning benchmarks such as Logic, Math500, and OlympiadBench showing consistent gains of
357 around 2–3 points, and GPQA_diamond improving by over 12%. Even on non-reasoning tasks like
358 IFEval, performance rises by more than 8%.

359 Notably, the RLVR approach on NP-ENGINE-DATA leads to significant improvements in out-
360 of-domain reasoning tasks (logic, math, knowledge), demonstrating that zero-RLVR enhances
361 the model’s generalization ability by fostering deeper reasoning for complex NP-hard optimiza-
362 tion tasks, rather than overfitting to in-domain data. Additionally, our reward design improves
363 instruction-following performance, yielding enhancements in non-reasoning tasks. These results
364 highlight the effectiveness of the NP-ENGINE framework in enhancing both reasoning and non-
365 reasoning capabilities.

367 4.3 ABLATION STUDY

368 4.3.1 CURRICULUM LEARNING AND DATA PROPORTION

369 As shown in Table 4, we investigate the impact of different data proportions—easy (E), medium
370 (M), and hard (H)—on RLVR training, along with the role of curriculum learning (CL) strategies.
371 The experiments focus on the TSP problem to better summarize the rules. We compare several
372 configurations, including the baseline model and a variant without NP-HEURISTIC to provide accurate
373 ground-truth (GT) signals in the reward signal, as well as different data ratios (E:M:H). In terms
374 of in-domain performance, all RLVR configurations show improvements. Even the Qwen2.5-7B
375 (w/o GT) model achieves noticeable gains, with SR rising from 4.0 to 90.0 and AR from 1.9
376 to 25.6. The introduction of curriculum learning (CL) results in further gains across all data pro-
377 portions. The best performance is achieved with the *E:M:H=5:4:1* configuration, which achieves

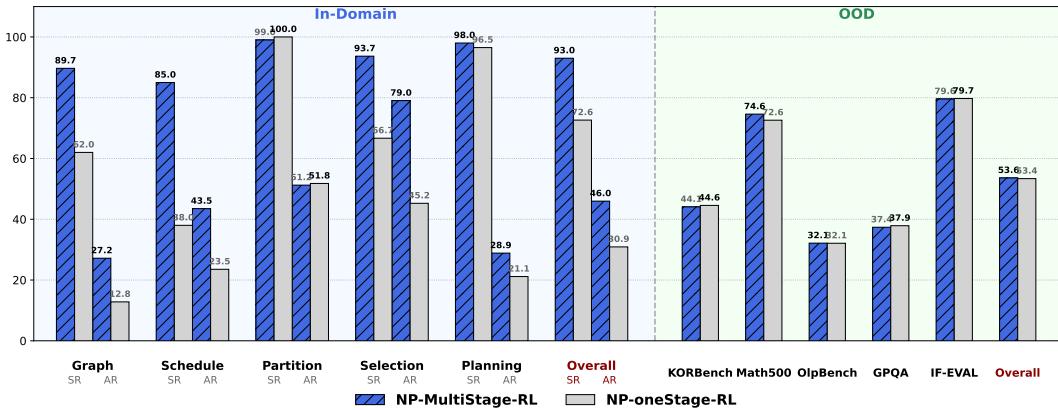
378
379
380
381 Table 5: Performance on out-of-domain benchmarks, with increasing task scale from NP-ENGINE-
382 DATA during RLVR training.
383

381 382 383 Task Number	384 385 386 387 Logic		388 389 390 391 Math		392 393 394 395 Knowledge		396 397 398 Instruction		399 400 Average
	384 385 386 387 KORBench	388 389 390 391 Math500	384 385 386 387 OlpBench	388 389 390 391 GPQA	384 385 386 387 IFEval	388 389 390 391 GPQA	384 385 386 387 IFEval	388 389 390 391 IFEval	
Qwen2.5-7B	42.9	72.4	30.0	33.3	73.5	50.4			
+3 Tasks	43.8 (+0.9)	74.8 (+2.4)	30.5 (+0.5)	37.4 (+4.1)	78.5 (+5.0)	53.0 (+2.6)			
+5 Tasks	44.2 (+1.3)	73.2 (+0.8)	31.9 (+1.9)	37.4 (+4.1)	78.0 (+4.5)	52.9 (+2.5)			
+7 Tasks	44.2 (+1.3)	76.2 (+3.8)	30.4 (+0.4)	35.9 (+2.6)	78.8 (+5.3)	53.1 (+2.7)			
+ALL Tasks	44.1 (+1.2)	74.6 (+2.2)	32.1 (+2.1)	37.4 (+4.1)	79.6 (+6.1)	53.6 (+3.2)			

388
389
390
391
392
393
an average AR of 29.0, outperforming other configurations. For out-of-domain tasks, particularly
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
in the *Math500* and *GPQA* benchmarks, the $E:M:H=5:4:1$ configuration demonstrates superior
generalization with an OOD average of 52.9. The inclusion of curriculum learning stabilizes performance
and enhances the model’s ability to generalize across both reasoning-heavy and instruction-following tasks.

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Overall, these experiments highlight the importance of data proportion in RLVR, particularly the need for a larger proportion of easy tasks to build a strong foundation before tackling more complex problems. Curriculum learning further enhances this process, improving both in-domain and out-of-domain generalization capabilities.

4.3.2 MULTI-STAGE RL RECIPE



444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
13

432 This underscores the advantages of a more comprehensive training approach that spans a wider variety of tasks. The Model trained with data from **7 tasks** performs particularly well on tasks like
 433 Math500 (76.2) and IFEval (78.84), excelling in mathematical and instruction-following tasks.
 434 In comparison, **fewer tasks** as training data yield slightly lower scores in these areas. Models trained
 435 on only **3 tasks** show greater limitations on complex tasks, like KORBench (43.84) and Math500
 436 (74.8). These results emphasize that training on diverse tasks is crucial for achieving optimal performance
 437 across reasoning tasks. In conclusion, incorporating a broader task range enhances the model’s generalization ability, providing valuable insights into the scaling laws of RLVR.
 438
 439

440 441 5 RELATED WORK

442 443
 444 **Reinforcement Learning with Verifiable Rewards (RLVR).** As reinforcement learning (RL) becomes an increasingly important tool for enhancing the reasoning capabilities of LLMs, Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a compelling alternative to Reinforcement Learning with Human Feedback (RLHF). Unlike RLHF, which relies on pretrained reward models and subjective human annotations, RLVR utilizes objective, automatically verifiable outcomes to provide reliable supervision Seed et al. (2025); Guo et al. (2025); Team et al. (2025). Recent models exemplify this paradigm shift: DeepSeek-R1 Guo et al. (2025) improves long-chain reasoning and self-verification through RLVR, while Kimi K1.5 Team et al. (2025) achieves strong performance with long-context training and streamlined policy optimization—without depending on complex value models. The ecosystem supporting RLVR is rapidly maturing. High-quality math corpora with verifiable solutions He et al. (2025); Albalak et al. (2025), structured coding corpora with graded difficulty and reward pipelines Liu & Zhang (2025); Xu et al. (2025b), and procedurally generated puzzle-style datasets with algorithmic verification Xie et al. (2025); Chen et al. (2025); Li et al. (2025a) are now available. Notably, NP problems are inherently verifiable and offer controllable difficulty settings Fan et al. (2024); Yang et al. (2025b), making them well-suited for RLVR-based training. However, most prior RLVR efforts have focused on math, coding, logic, or puzzles, leaving the broader class of NP-hard problems underexplored.

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
 460 **Optimization Reasoning with LLMs.** Various benchmarks have been proposed to evaluate LLMs’ reasoning capabilities across different domains, including mathematical Glazer et al. (2024), logical Xie et al. (2025), puzzle Chen et al. (2025), and programming reasoning Xu et al. (2025a). These tasks typically involve binary answer validation (e.g., True or False), which primarily assess deductive or symbolic reasoning. In contrast, optimization reasoning presents a fundamentally different challenge: it requires models to generate not only feasible solutions but also solutions that are as optimal as possible. Previous work on NP tasks has faced challenges in trainability Fan et al. (2024); Yang et al. (2025b). Despite its significance, optimization reasoning has been underexplored in RLVR-based LLM training. Our work addresses this gap by focusing on NP-class problems. We propose NP-ENGINE, a unified framework for data generation, optimal solution annotation, RLVR training, and evaluation, which empowers LLMs with optimization reasoning capabilities.

470 471 472 6 CONCLUSION

473 474 475 476 477 478 479 480 481 482 483 484 485
 In this work, we present NP-ENGINE, the first comprehensive framework for enabling LLMs to solve NP-hard optimization reasoning problems. By combining scalable instance generation, verifiable rule-based evaluation, and heuristic solvers to provide precise reward signals, NP-ENGINE supports effective RLVR-based training on complex optimization tasks. We also introduce NP-BENCH, a benchmark covering 10 diverse NP-level tasks across five primary optimization reasoning domains, and propose QWEN2.5-7B-NP, an RLVR-trained model that significantly outperforms GPT-4o on NP-BENCH. Our experiments demonstrate that curriculum learning strategies and multi-stage RL training substantially enhance LLMs’ optimization reasoning capabilities. Furthermore, we observe a strong correlation between task diversity and generalization performance, offering insights into the scaling laws for RLVR-based training in complex reasoning domains. We hope this work lays a foundation for future research on integrating LLMs with optimization reasoning and highlights task-rich RLVR training as a promising direction for advancing LLM reasoning in complex optimization tasks. Additionally, our findings reveal new insights into the scaling laws of RLVR.

486 REPRODUCIBILITY STATEMENT
487488 We adhere to the reproducibility guidelines outlined in the ICLR 2026 author guidelines. All data,
489 code, and checkpoints will be made publicly available to facilitate the reproduction of our results at
490 the earliest opportunity.
491492 ETHICS STATEMENT
493494 The NP-ENGINE-DATA dataset was constructed using NP-ENGINE, a rule-based NP data construc-
495 tion environment, ensuring that no ethical risks are involved.
496497 REFERENCES
498500 Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
501 Singh, Chase Blagden, Violet Xiang, Dakota Mahan, et al. Big-math: A large-scale, high-quality
502 math dataset for reinforcement learning in language models. *arXiv preprint arXiv:2502.17387*,
503 2025.504 Anthropic. Claude 3.7 sonnet and claude code, 2025. URL <https://www.anthropic.com/news/claude-3-7-sonnet>.
505506 Nasim Borazjanizadeh, Roei Herzig, Trevor Darrell, Rogerio Feris, and Leonid Karlinsky. Navigat-
507 ing the labyrinth: Evaluating and enhancing llms' ability to reason about search problems. *arXiv*
508 *preprint arXiv:2406.12172*, 2024.
509510 Jiangjie Chen, Qianyu He, Siyu Yuan, Aili Chen, Zhicheng Cai, Weinan Dai, Hongli Yu, Qiying Yu,
511 Xuefeng Li, Jiaze Chen, Hao Zhou, and Mingxuan Wang. Enigmata: Scaling logical reasoning in
512 large language models with synthetic verifiable puzzles, 2025. URL <https://arxiv.org/abs/2505.19914>.
513514 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
515 <https://github.com/open-compass/opencompass>, 2023.
516517 Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dynamic
518 benchmark on reasoning ability of large language models via complexity classes. In *62nd Annual*
519 *Meeting of the Association for Computational Linguistics, ACL 2024*, pp. 4092–4114. Association
520 for Computational Linguistics (ACL), 2024.521 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caro-
522 line Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Fron-
523 tiermath: A benchmark for evaluating advanced mathematical reasoning in ai. *arXiv preprint*
524 *arXiv:2411.04872*, 2024.525 Google. Gemini 2.5: Our most intelligent ai model, 2025.
526 URL <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking>.
527529 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
530 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
531 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.532 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
533 Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
534 contaminated, and verifiable mathematical dataset for advancing reasoning. *arXiv preprint*
535 *arXiv:2504.11456*, 2025.537 Peiji Li, Jiasheng Ye, Yongkang Chen, Yichuan Ma, Zijie Yu, Kedi Chen, Ganqu Cui, Haozhan
538 Li, Jiacheng Chen, Chengqi Lyu, Wenwei Zhang, Linyang Li, Qipeng Guo, Dahua Lin, Bowen
539 Zhou, and Kai Chen. Internbootcamp technical report: Boosting llm reasoning with verifiable
task scaling, 2025a. URL <https://arxiv.org/abs/2508.08636>.

540 Xiaozhe Li, Jixuan Chen, Xinyu Fang, Shengyuan Ding, Haodong Duan, Qingwen Liu, and Kai
 541 Chen. Opt-bench: Evaluating llm agent on large-scale search spaces optimization problems.
 542 *arXiv preprint arXiv:2506.10764*, 2025b.

543 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 544 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv*
 545 *preprint arXiv:2502.01100*, 2025.

546 Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. *arXiv*
 547 *preprint arXiv:2503.18470*, 2025.

548 Kaijing Ma, Xinrun Du, Yunran Wang, Haoran Zhang, Zhoufutu Wen, Xingwei Qu, Jian Yang,
 549 Jiaheng Liu, Minghao Liu, Xiang Yue, et al. Kor-bench: Benchmarking language models on
 550 knowledge-orthogonal reasoning tasks. *arXiv preprint arXiv:2410.06526*, 2024.

551 OpenAI. Learning to reason with llms, 2024. URL <https://openai.com/index/learning-to-reason-with-llms/>.

552 ByteDance Seed, Yufeng Yuan, Yu Yue, Mingxuan Wang, Xiaochen Zuo, Jiaze Chen, Lin Yan,
 553 Wenyuan Xu, Chi Zhang, Xin Liu, et al. Seed-thinking-v1.5: Advancing superb reasoning models
 554 with reinforcement learning. *arXiv preprint arXiv:2504.13914*, 2025.

555 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 556 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 557 llms. *arXiv preprint arXiv:2501.12599*, 2025.

558 Zixuan Wu, Francesca Lucchetti, Aleksander Boruch-Gruszecki, Jingmiao Zhao, Carolyn Jane An-
 559 derson, Joydeep Biswas, Federico Cassano, Molly Q Feldman, and Arjun Guha. Phd knowledge
 560 not required: A reasoning challenge for large language models. *arXiv preprint arXiv:2502.01584*,
 561 2025.

562 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 563 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 564 learning. *arXiv preprint arXiv:2502.14768*, 2025.

565 Shiyi Xu, Yiwen Hu, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, and Ji-Rong Wen. Icpc-eval:
 566 Probing the frontiers of llm reasoning with competitive programming contests. *arXiv preprint*
 567 *arXiv:2506.04894*, 2025a.

568 Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A
 569 diverse, challenging, and verifiable synthetic dataset for coding. *arXiv preprint arXiv:2503.02951*,
 570 2025b.

571 An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
 572 Jianhong Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei Li,
 573 Minmin Sun, Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xiafei Qiu,
 574 Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and Zipeng Zhang. Qwen2.5-1m technical
 575 report, 2025a. URL <https://arxiv.org/abs/2501.15383>.

576 Chang Yang, Ruiyu Wang, Junzhe Jiang, Qi Jiang, Qinggang Zhang, Yanchen Deng, Shuxin Li,
 577 Shuyue Hu, Bo Li, Florian T Pokorny, et al. Nondeterministic polynomial-time problem chal-
 578 lenge: An ever-scaling reasoning benchmark for llms. *arXiv preprint arXiv:2504.11239*, 2025b.

579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594 **A APPENDIX**595 **A.1 USE OF LARGE LANGUAGE MODELS**

596 Large Language Models are used for grammar check and polishing in this paper.

597 **A.2 LIMITATION**600 Due to computational resource constraints, we have conducted experiments using the Qwen2.5-7B-
601 Instruct model. Larger models, such as those with 14B or 32B parameters, have not been trained,
602 and the performance of these more powerful models, starting from a bigger model size, remains
603 unexplored. Additionally, designing individual NP tasks for RLVR training requires meticulous
604 attention to various aspects, including problem definition, validation script development, heuristic
605 algorithm design, and difficulty level calibration. As a result, we have currently designed 10 tasks.
606 Scaling to larger models and incorporating additional tasks remain avenues for future exploration.
607608 **A.3 DETAILED TRAINING SETTING**609 The training experiment utilizes the verl framework, employing the GRPO algorithm for fine-tuning
610 the Qwen2.5-7B-Instruct-1M model. Training is performed on 8 A800 GPUs with a batch size of
611 8 for both training and validation. The maximum prompt length is set to 20,000 tokens, and the
612 response length is capped at 4,096 tokens. Key hyperparameters include a learning rate of 4×10^{-7} ,
613 with a mini-batch size of 256 and a micro-batch size of 64 for PPO updates. KL loss regularization,
614 with a coefficient of 0.001 (KL_{coef}), is applied to stabilize training. The model is trained for 3 epochs
615 to ensure convergence.
616617 **A.4 NP-HARD TASKS**618 **A.4.1 SET COVER**619 The task is to solve the classical Set Cover Problem. Given a universal set U and a collection of
620 subsets $S \subseteq 2^U$, the goal is to find the smallest possible sub-collection of S whose union equals
621 U . In other words, we aim to select the minimum number of subsets such that every element in U
622 is contained in at least one of the selected subsets. If no such selection exists, the answer should
623 be "Impossible". The solution is represented as a list of subset indices corresponding to the chosen
624 sub-collection.
625626 For example, given $U = \{0, 1, 2, 3, 4, 5\}$ and

627
$$S = \{0 : \{0, 1, 2\}, 1 : \{2, 3\}, 2 : \{0, 4\}, 3 : \{3, 4, 5\}, 4 : \{1, 2, 5\}\},$$

628 a valid minimum cover is $[0, 3, 4]$, since the union of these subsets is equal to U .629 The difficulty of the problem instances is categorized based on the size of the universe $|U|$, the
630 number of subsets $|S|$, and the relative subset size (controlled by the parameter `subset_size_factor`):
631632 **• Easy:**633

- 634 – $|U| \in [10, 20]$, $|S| \in [5, 10]$, subset size factor = 0.4
- 635 – Small universe and relatively large subsets, making coverage straightforward.

636 **• Medium:**637

- 638 – $|U| \in [20, 25]$, $|S| \in [10, 15]$, subset size factor = 0.4
- 639 – Moderate universe size and subset count, requiring careful selection.

640 **• Hard:**641

- 642 – $|U| \in [25, 30]$, $|S| \in [15, 25]$, subset size factor = 0.4
- 643 – Larger universe with more subsets, increasing combinatorial complexity.

644 **• Benchmark:**645

- 646 – $|U| \in [30, 40]$, $|S| \in [20, 30]$, subset size factor = 0.4
- 647 – The most challenging setting, with the largest universes and dense subset collections.

648 A.4.2 SUBSET SUM
649650 The Subset Sum Problem asks whether a subset of integers sums up to a given target value T . In
651 this variation, the objective is not only to reach the target sum, but also to maximize the number of
652 elements used in the subset.653 Formally, given a set of integers $\{a_0, a_1, \dots, a_{n-1}\}$ and a target T , the task is to find an index set
654 $I \subseteq \{0, 1, \dots, n-1\}$ such that

655
$$\sum_{i \in I} a_i = T,$$

656

657 and among all valid solutions, the chosen I maximizes $|I|$. If multiple such subsets exist, any of them
658 is acceptable. The submission format requires returning the ordered list of indices, e.g., $[0, 1, 4]$.
659

660 For example, given

661
$$T = 10, \quad \text{numbers} = \{0 : 2, 1 : 3, 2 : 7, 3 : 8, 4 : 5\},$$

662

663 a valid solution is $[0, 1, 4]$, since $2 + 3 + 5 = 10$, and the subset uses three elements, which is
664 maximal.665 The difficulty of generated problem instances is categorized according to the number of integers
666 available ($|\text{numbers}|$), the typical size of the optimal solution ($|I|$), and the range of integer values:
667668 • **Easy:**669

- 670 – Total numbers $\in [5, 10]$, solution size $\in [4, 8]$, values in $[1, 5]$.
- 671 – Small input with low values, ensuring frequent feasible solutions.

672 • **Medium:**673

- 674 – Total numbers $\in [8, 12]$, solution size $\in [4, 8]$, values in $[1, 10]$.
- 675 – Moderate instance size and range, requiring more careful subset selection.

676 • **Hard:**677

- 678 – Total numbers $\in [12, 15]$, solution size $\in [8, 12]$, values in $[1, 15]$.
- 679 – Larger solution sizes and wider value ranges increase combinatorial difficulty.

680 • **Benchmark:**681

- 682 – Total numbers $\in [15, 20]$, solution size $\in [10, 15]$, values in $[1, 15]$.
- 683 – The most challenging setting, with large search space and dense feasible solutions.

684 A.4.3 KNAPSACK
685686 The Knapsack Problem requires selecting a subset of items to maximize the total value without
687 exceeding a weight capacity. Formally, given a set of items $\{(w_i, v_i)\}_{i=0}^{n-1}$, each with weight w_i and
688 value v_i , and a knapsack capacity W , the goal is to find an index set $I \subseteq \{0, 1, \dots, n-1\}$ such that
689

690
$$\sum_{i \in I} w_i \leq W, \quad \text{and} \quad \sum_{i \in I} v_i$$

691

692 is maximized. The submission format requires returning the ordered list of chosen item IDs in square
693 brackets, e.g., $[0, 2, 3]$.

694 For example, with

695
$$W = 20, \quad \text{items} = \{0 : (3, 4), 1 : (4, 5), 2 : (7, 10), 3 : (8, 11)\},$$

696

697 a valid optimal solution is $[0, 2, 3]$, achieving total weight $18 \leq 20$ and total value 25.
698699 The problem instances are categorized into four difficulty levels, determined by the number of items,
700 their weight/value ranges, and the relative knapsack capacity:
701702 • **Easy:**703

- 704 – $6 \leq |I^*| \leq 10$ (solution items), total items $\approx 15\text{--}25$.
- 705 – Weights in $[5, 25]$, value-to-weight ratio in $[1.8, 2.5]$.

702 – Capacity is 1.1–1.4 times the total weight of the solution items.
 703
 704 • **Medium:**
 705 – $8 \leq |I^*| \leq 12$, total items ≈ 25 –35.
 706 – Weights in [20, 80], value-to-weight ratio in [1.5, 2.0].
 707 – Capacity is 1.05–1.25 times the total solution weight.
 708
 709 • **Hard:**
 710 – $15 \leq |I^*| \leq 25$, total items ≈ 35 –60.
 711 – Weights in [50, 200], value-to-weight ratio in [1.2, 1.6].
 712 – Capacity is 1.02–1.15 times the total solution weight.
 713
 714 • **Benchmark:**
 715 – $25 \leq |I^*| \leq 35$, total items ≈ 55 –80.
 716 – Weights in [50, 200], value-to-weight ratio in [1.2, 1.6].
 717 – Capacity is 1.02–1.15 times the total solution weight.
 718 – The most challenging setting, with many items and tight capacity.

A.4.4 BALANCED MINIMUM BISECTION

The Balanced Minimum Bisection Problem requires partitioning a weighted undirected graph $G = (V, E)$ into two disjoint subsets of nearly equal size (differing by at most one vertex) such that the sum of the weights of edges crossing the cut is minimized. Unlike the classic Minimum Cut Problem, this task includes a balance constraint: both partitions must contain approximately the same number of vertices.

Formally, let V be divided into V_1 and V_2 such that $V_1 \cap V_2 = \emptyset$, $V_1 \cup V_2 = V$, and $||V_1| - |V_2|| \leq 1$. The objective is to minimize

$$\sum_{\substack{u \in V_1, v \in V_2 \\ (u, v) \in E}} w(u, v),$$

where $w(u, v)$ is the edge weight. The solution format specifies the two subsets explicitly, e.g., $[[0, 1, 2], [3, 4, 5]]$.

For example, consider the input graph:

$$0 : \{1 : 3, 2 : 1\}, \quad 1 : \{0 : 3, 2 : 2, 3 : 2\}, \quad 2 : \{0 : 1, 1 : 2, 3 : 3\}, \quad 3 : \{1 : 2, 2 : 3\}.$$

A valid optimal balanced bisection is $[[0, 1], [2, 3]]$.

The difficulty of generated instances is determined by the number of nodes, the structural complexity of the graph, and the noise level:

731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

- **Easy:**
 - $|V| \approx 30$.
 - Graphs have clear community structures with dense intra-community edges and sparse inter-community connections, with small noise (≈ 0.1).
 - Balanced cuts are relatively easy to identify.
- **Medium:**
 - $|V| \approx 42$.
 - Graphs exhibit fuzzier community boundaries and more inter-community edges, with moderate noise (≈ 0.15).
 - Increases difficulty by reducing the clarity of the optimal partition.
- **Hard:**
 - $|V| \approx 45$.
 - Graphs are generated with deceptive structures, including “traitor” nodes and reinforced communities.
 - Noise level around 0.1, making near-optimal but incorrect cuts more likely.

756 • **Benchmark:**
 757 – $|V| \approx 50$.
 758 – Graphs include reinforced “hell mode” structures, traitor nodes, and low noise (\approx
 759 0.02).
 760 – The most challenging setting, with multiple plausible partitions and high combinato-
 761 rial complexity.

763 A.4.5 MEETING SCHEDULING PROBLEM

765 The Meeting Scheduling Problem (MSP) aims to assign meetings to rooms and times in order to
 766 maximize total attendee participation, subject to availability and capacity constraints. Each meeting
 767 requires a set of attendees and a duration, each attendee has availability intervals, and each room has
 768 a capacity. A feasible solution must assign to each scheduled meeting a start time and a room such
 769 that:

770 • All required attendees are available for the entire duration.
 771 • The room has sufficient capacity for all attendees.
 772 • No attendee or room is scheduled for overlapping meetings.

775 If a meeting cannot be scheduled under these constraints, it is omitted. The solution is expressed as
 776 an ordered list of tuples (meeting_id, room_id, start_time), sorted by start time.

777 For example, given the input

779 meetings = {0 : ([0, 1, 2], 60), 1 : ([1, 3], 30), 2 : ([0, 2, 3], 90)},
 780
 781 availability = {0 : [(900, 1700)], 1 : [(900, 1200), (1300, 1700)], 2 : [(900, 1700)], 3 : [(1000, 1400)]},
 782
 783 rooms = {0 : 5, 1 : 3},

784 a valid schedule is

785 [(0, 0, 900), (1, 1, 1000), (2, 0, 1020)],

786 which yields a total of 8 attendee participations.

787 The difficulty of generated MSP instances depends on the number of meetings, attendees, rooms,
 788 and fragmentation of availability:

790 • **Easy:**
 791 – 4–5 meetings, 3–5 attendees, 3–4 rooms.
 792 – At most 3 attendees per meeting.
 793 – Availability mostly continuous within the working day.

794 • **Medium:**
 795 – 5–6 meetings, 4–6 attendees, 4–5 rooms.
 796 – At most 4 attendees per meeting.
 797 – Some attendees have fragmented availability (e.g., lunch breaks).

798 • **Hard:**
 799 – 6–7 meetings, 5–7 attendees, 5–6 rooms.
 800 – At most 4 attendees per meeting.
 801 – Heavier overlap among meetings and tighter room capacities.

802 • **Benchmark:**
 803 – 8–10 meetings, 7–9 attendees, 6–7 rooms.
 804 – At most 5 attendees per meeting.
 805 – The most challenging setting, with dense scheduling conflicts and fragmented avail-
 806 ability.

810 A.4.6 HAMILTONIAN CYCLE
811

812 The task is to find a Hamiltonian circuit in a given graph G , which is a path that visits every vertex
813 exactly once and returns to the starting point. The goal is to maximize the number of vertices
814 included in the Hamiltonian circuit. The process starts with a random vertex and finds a small valid
815 subgraph, then iteratively expands the subgraph while ensuring it remains valid, continuing until the
816 largest possible Hamiltonian circuit is found.

817 The problem is categorized into four difficulty levels based on the number of vertices and edge
818 density:

819 • **Easy:**

- 820 – $|V| \in [15, 20]$, $\rho = 0.2$
- 821 – Small graph with sparse edges.

822 • **Medium:**

- 823 – $|V| \in [20, 30]$, $\rho = 0.3$
- 824 – Moderate graph size with moderate connectivity.

825 • **Hard:**

- 826 – $|V| \in [30, 40]$, $\rho = 0.4$
- 827 – Larger graph with denser edges, increasing difficulty.

828 • **Benchmark:**

- 829 – $|V| \in [40, 50]$, $\rho = 0.5$
- 830 – The most challenging, with the largest and densest graph.

831 A.4.7 TRAVELING SALESMAN PROBLEM
832

833 The Traveling Salesman Problem (TSP) is a classical combinatorial optimization problem. Given a
834 set of cities and pairwise distances, the objective is to find the shortest possible tour that:

- 835 • Starts and ends at the same city.
- 836 • Visits each city exactly once in between.

837 The solution is expressed as a route $[c_0, c_1, \dots, c_{n-1}, c_0]$, where c_0 is the starting city and each city
838 appears exactly once except for the repetition of c_0 at the end.

839 For example, given the distance dictionary

840 $0 : \{1 : 10, 2 : 15, 3 : 20\}, 1 : \{0 : 10, 2 : 35, 3 : 25\}, 2 : \{0 : 15, 1 : 35, 3 : 30\}, 3 : \{0 : 20, 1 : 25, 2 : 30\},$

841 a valid optimal solution is

$$842 \quad [0, 1, 3, 2, 0].$$

843 The difficulty of generated TSP instances is determined primarily by the number of cities:

- 844 • **Easy:** 10–20 cities.
- 845 • **Medium:** 20–30 cities.
- 846 • **Hard:** 35–45 cities.
- 847 • **Benchmark:** 45–55 cities.

848 All instances are generated with symmetric distance matrices, with distances sampled uniformly
849 within a predefined range.

864 A.4.8 MAXIMUM CLIQUE PROBLEM
865

866 The Maximum Clique Problem (MCP) is defined on an undirected graph $G = (V, E)$. A clique is a
867 subset of vertices $C \subseteq V$ such that every pair of distinct vertices in C is connected by an edge in E .
868 The problem asks for the largest such subset, i.e., a clique of maximum cardinality.

869 The solution is expressed as a list of vertex IDs forming the clique. For example, given the adjacency
870 lists

$$871 \quad 0 : [1, 2, 3, 4], \quad 1 : [0, 3, 4], \quad 2 : [0, 3], \quad 3 : [0, 1, 2, 4], \quad 4 : [0, 1, 3],$$

872 a valid maximum clique is

$$873 \quad [0, 1, 3, 4],$$

874 which has size 4.

875 The difficulty of generated MCP instances depends on the graph size and density:

- 877 • **Easy:** 4–8 vertices, cliques of size 2–4.
- 878 • **Medium:** 8–12 vertices, cliques of size 2–4.
- 879 • **Hard:** 12–16 vertices, cliques of size 2–6.
- 880 • **Benchmark:** 16–20 vertices, cliques of size 4–8.

883 Graphs are generated by first constructing a guaranteed clique and embedding it into a larger graph
884 with random edges, ensuring the clique exists as the maximum solution.

885 A.4.9 MAXIMUM INDEPENDENT SET
886

887 The Maximum Independent Set (MIS) problem is defined on an undirected graph $G = (V, E)$. An
888 independent set is a subset of vertices $I \subseteq V$ such that no two vertices in I are adjacent in G . The
889 problem asks for the independent set of maximum cardinality.

890 The solution is expressed as a list of vertex IDs forming the set. For example, given the adjacency
891 lists

$$893 \quad 0 : \{1, 2\}, \quad 1 : \{0, 2, 3\}, \quad 2 : \{0, 1, 3\}, \quad 3 : \{1, 2\},$$

894 a maximum independent set is

$$895 \quad [0, 3],$$

896 which has size 2.

897 The difficulty of generated MIS instances depends mainly on the graph size and the planted inde-
898 pendent set:

- 900 • **Easy:** 12–20 vertices, independent set size 4–8.
- 901 • **Medium:** 20–30 vertices, independent set size 8–12.
- 902 • **Hard:** 30–40 vertices, independent set size 12–16.
- 903 • **Benchmark:** 40–50 vertices, independent set size 16–20.

905 Graphs are generated by first selecting a guaranteed independent set and embedding it into a larger
906 graph with randomly added edges, ensuring the independent set exists as the maximum solution.

908 A.4.10 GRAPH COLORING PROBLEM
909

910 The Graph Coloring Problem (GCP) is defined on an undirected graph $G = (V, E)$. The task
911 is to assign a color to each vertex such that no two adjacent vertices share the same color, while
912 minimizing the total number of colors used.

913 The solution is expressed as a list of integers, where the i -th entry denotes the color assigned to
914 vertex i . For example, given the adjacency lists

$$915 \quad 0 : [1, 2], \quad 1 : [0, 3], \quad 2 : [0, 3], \quad 3 : [1, 2],$$

916 a valid optimal coloring is

$$917 \quad [1, 2, 1, 2],$$

918 which uses 2 colors.
919

920 The difficulty of generated GCP instances depends mainly on the number of vertices, the number of
921 colors required, and the edge density:

922

- 923 • **Easy:** 8–12 vertices, 3–4 colors, edge density ≈ 0.2 .
- 924 • **Medium:** 15–22 vertices, 4–6 colors, edge density ≈ 0.35 .
- 925 • **Hard:** 25–32 vertices, 6–8 colors, edge density ≈ 0.5 .
- 926 • **Benchmark:** 32–40 vertices, 6–8 colors, edge density ≈ 0.5 .

927

928 Graphs are generated by partitioning vertices into color classes and adding random edges between
929 different partitions, ensuring that the planted coloring remains a valid optimal solution.

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971