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ABSTRACT

Large Reasoning Models (LRMs) have shown remarkable reasoning capabilities,
yet they often suffer from overthinking, expending redundant computational steps
on simple problems, or underthinking, failing to explore sufficient reasoning paths
despite inherent capabilities. These issues lead to inefficiencies and potential inac-
curacies, limiting practical deployment in resource-constrained settings. Existing
methods to mitigate overthinking, such as suppressing reflective keywords or ad-
justing reasoning length, may inadvertently induce underthinking, compromising
accuracy. Therefore, we propose REBALANCE, a training-free framework that
achieves efficient reasoning with balanced thinking. REBALANCE leverages con-
fidence as a continuous indicator of reasoning dynamics, identifying overthink-
ing through high confidence variance and underthinking via consistent overcon-
fidence. By aggregating hidden states from a small-scale dataset into reasoning
mode prototypes, we compute a steering vector to guide LRMs’ reasoning trajec-
tories. A dynamic control function modulates this vector’s strength and direction
based on real-time confidence, pruning redundancy during overthinking, and pro-
moting exploration during underthinking. Extensive experiments conducted on
four models ranging from 0.5B to 32B, and across nine benchmarks in math rea-
soning, general question answering, and coding tasks demonstrate that REBAL-
ANCE effectively reduces output redundancy while improving accuracy, offering
a general, training-free, and plug-and-play strategy for efficient and robust LRM
deployment. Code and models will be made publicly available.

1 INTRODUCTION

Recent advances in Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) have substan-
tially enhanced the reasoning capabilities of Large Reasoning Models (LRMs) (Jaech et al., 2024;
Guo et al., 2025; Team, 2025). However, LRMs may exhibit overthinking (Chen et al., 2024b),
allocating redundant reasoning steps to simple problems. This redundancy incurs substantial com-
putational costs with marginal performance gains (Sui et al., 2025), and may introduce hallucina-
tions (Sun et al., 2025). Thus, overthinking severely limits the practical deployment of LRMs in
resource-constrained environments.

Recent efforts (Yue et al., 2025) have been made to mitigate overthinking by shortening reasoning
chains. However, these approaches primarily target overthinking and may overlook the critical issue
of underthinking (Wang et al., 2025c), where LRMs fail to sufficiently explore valid reasoning paths
despite possessing the inherent capability to solve the problem, as shown in Fig. 1(a). Specifically,
Wang et al. (2025a), Ma et al. (2025b), and Chen et al. (2025) suppress keywords indicative of reflec-
tion and exploration, but indiscriminately affect both redundant and valuable reasoning, inevitably
causing underthinking. Another direction (Zhang et al., 2025c; Lou et al., 2025; Huang et al., 2025a)
adjusts reasoning length based on problem difficulty via SFT or RL, yet often penalizes lengthy rea-
soning (Su et al., 2025b) or dilutes rewards for control tokens (Fang et al., 2025). Such designs may
cause decision boundary collapse (Lou et al., 2025), biasing models toward overly short reasoning
chains and inducing underthinking. Hence, a key question arises: How can we mitigate overthinking
without inducing underthinking, achieving efficient reasoning with balanced thinking?

Key observations. To address this issue, we need to develop a dynamic mechanism capable of ex-
plicitly modeling and controlling both overthinking and underthinking. Though recent works (Zhang
et al., 2025a; Yang et al., 2025b; Lin et al., 2025a) have achieved dynamic control by adopting manu-
ally designed metrics to adaptively retain or discard entire reasoning paths, this rigid binary selection
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Step 1: So, the solution is all ! in − #, % or %, # .

Overthinking (Baseline)

Step 2: Wait, but when ! is zero, !! + '!" is less than (),so ! includes zero.

Underthinking (Current Method)
Step 1: Therefore, we transform the inequality back, and get − # < ! < %
or % < ! < #. So, 

Answer: − #, #

Balanced Thinking (Ours)
Step 1: So, that means ! must satisfy − # < ! < % or % < ! < #
Step 2: Let me verify. For ! = %:−' < %! + ' ∗ % " < (), so zero is included.

Answer: − #, #

excluding zero seems correct.

Answer: − #, % %, #

Step 3:                                                Say ! = ) ... What about ! = # ... How 

about ! = ( ... .                                ! = −( ... <omitted>

But let me double-check.

But let me check

Consise & Sufficient Reasoning     875 tokens

Insufficient Reasoning           534 tokens

Redundant Reasoning        1659 tokens

(a) Qualitative comparison. (b) Quantitative comparison.
Figure 1: Qualitative and quantitative comparisons with previous state-of-the-art methods for mitigating
overthinking. (a) Given the question “For what real values of x is −4 < x4 + 4x2 < 21?”, the model first
obtains intervals (−

√
3, 0) and (0,

√
3), and then verifies if x = 0 is included. However, the baseline (Guo

et al., 2025) redundantly checks irrelevant values after correctly validating x = 0, causing overthinking. Cur-
rent mitigation methods (Yang et al., 2025b) overly suppress necessary reflection, leading to underthinking.
Our method dynamically controls the reasoning state, effectively balancing these two extremes. (b) REBAL-
ANCE outperforms previous state-of-the-art method (Chen et al., 2025) across multiple mathematical reasoning
datasets and model scales (0.5B–32B), reducing reasoning length while simultaneously improving accuracy.

may sacrifice the potentially valuable intermediate reasoning steps, thus still risking underthinking.
This motivates us to investigate a continuous and reliable indicator of reasoning states for providing
dynamic fine-grained reasoning control.

As shown in Fig. 2, we can observe that the confidence values correlate with LRMs’ reasoning be-
haviors. Specifically, high confidence variance may reflect frequent indecisive switching between
different reasoning paths, causing redundant steps and delayed answer convergence, i.e., overthink-
ing. Conversely, consistent overconfidence can lead to premature commitment to incorrect reasoning
paths, i.e., underthinking. Thus, confidence can be leveraged as an indicator of reasoning dynam-
ics. Given that LRMs’ internal reasoning states are inherently represented by their hidden states (Su
et al., 2025a), this observation prompts us to consider whether the efficient reasoning can be achieved
through balanced thinking, by dynamically adjusting hidden states according to confidence levels.

Our solution. In this work, we propose ReBalance, a training-free method that achieves efficient
Reasoning with Balanced thinking. To achieve dynamic control between overthinking and under-
thinking, we first identify reasoning steps indicating overthinking and underthinking from a small-
scale seen dataset, aggregate their corresponding hidden states into reasoning mode prototypes, and
compute a steering vector that encodes the transition between them, i.e., from overthinking to un-
derthinking. Since the steering vector captures the model’s inherent reasoning dynamics, it exhibits
strong generalization across diverse unseen data, as demonstrated in our experiments.

With this steering vector, we further introduce a dynamic control function that modulates the strength
and direction of the vector based on the model’s confidence at each step. When signs of overthinking
emerge, the steering is amplified to prune redundancy. Conversely, when underthinking is inferred,
steering is reversed to promote exploration of alternative reasoning paths. This adaptive mechanism
effectively balances reasoning depth across various contexts, enhancing efficiency without compro-
mising the core reasoning abilities.

Extensive experiments across four models ranging from 0.5B to 32B, and on nine benchmarks cov-
ering math reasoning, general question answering, and coding tasks, demonstrate the effectiveness
and strong generalization capabilities of REBALANCE. Notably, REBALANCE not only reduces
output length but also improves the accuracy. To summarize, our contributions are as follows:

• As the current methods struggle to balance between overthinking and underthinking, we
identify that confidence can serve as a continuous and reliable signal for characterizing
both overthinking and underthinking in LRMs, enabling fine-grained behavioral control.
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• To achieve dynamic reasoning control, we propose REBALANCE, an efficient and training-
free framework that dynamically steers the reasoning trajectory of LRMs by modulating
their internal state based on confidence estimates.

• Extensive experiments across different models and tasks demonstrate that REBALANCE
improves both inference efficiency and accuracy, offering a plug-and-play solution for
boosting the efficiency of LRMs without compromising performance.

2 BACKGROUND AND MOTIVATION

2.1 PRELIMINARIES

In the following, to investigate the dynamics of the reasoning process of large reasoning models
(LRMs), we introduce the computation of stepwise confidence and confidence variance. Stepwise
confidence measures the degree to which the model consistently adheres to the same reasoning path,
while confidence variance between different steps quantifies the frequency of switching between
different reasoning paths. The discussion of related work is presented in Appendix G.

Stepwise confidence. For each token position t ∈ Ts, we can define the tokenwise maximum
predicted probability pmax

t = maxv∈V pθ(v |x<t). Then, we can obtain the confidence cs of the
reasoning step Ss, which is the geometric average of these maxima across all tokens in the step:

cs = exp

(
1

|Ts|
∑
t∈Ts

ln pmax
t

)
(1)

Confidence variance. To capture short-term fluctuations in confidence, we compute the confi-
dence variance Var(·) over recent steps. Since long-term history is less relevant, we focus on local
variability by calculating the variance within a sliding window of size |W | ≥ 1, and we can define
the window Ws for the s-th step as Ws = {max(1, s−W+1), . . . , s}. Then, with the average step
confidence c̄s = 1

|Ws|
∑

j∈Ws
cj within the window Ws, we can obtain the confidence variance for

the s-th step Var(cs;Ws) as:

Var(cs;Ws) =


0, |Ws| = 1,

1

|Ws|
∑

j∈Ws

(cj − c̄s)2, |Ws| ≥ 2. (2)

To this end, regardless of the current stepwise confidence level, a high Var(cs;Ws) indicates fre-
quent switching among different reasoning paths, which may force the model to continue generating
redundant reasoning steps instead of concluding, leading to overthinking. Differently, consistently
high cs with low Var(cs;Ws) implies premature commitment and potential underthinking. These
statistics will guide the dynamic control mechanism that will be introduced later.

2.2 KEY OBSERVATIONS

As discussed above, existing approaches designed to mitigate overthinking effectively reduce the
length of inference outputs, yet struggle to achieve satisfactory accuracy. To investigate the underly-
ing reasons, we analyze how the length of reasoning sequences relates to the ground-truth reasoning
length for both correctly and incorrectly answered samples, before and after applying methods in-
tended to mitigate overthinking, as shown in Fig. 2(a). Specifically, we collect inference samples
under three conditions: the original model, the model after applying existing methods, and the model
after applying our proposed method. We utilize ground-truth as a proxy for ideal reasoning length.

The trade-off between overthinking and underthinking. Theoretically, if an overthinking mit-
igation approach effectively reduces redundant reasoning steps, the reasoning sequence lengths of
correctly answered samples should accordingly decrease. Conversely, if such methods introduce un-
derthinking by prematurely truncating necessary reasoning, resulting in errors, the reasoning lengths
for these incorrect samples should also decrease. As shown in Fig. 2(a), both existing methods and

3
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Figure 2: (a) Effects of overthinking mitigation on reasoning modes. We compare the distributions of rea-
soning lengths for correct and incorrect predictions before and after applying overthinking mitigation methods.
The reduction in reasoning lengths for correct and incorrect predictions indicates the degree to which over-
thinking is alleviated and underthinking is introduced, respectively. Existing methods significantly introduce
underthinking, whereas our method effectively achieves a balanced reduction of both. (b) Correlation be-
tween confidence and reasoning modes. We observe that the overthinking samples exhibit higher confidence
variance compared to normal samples, while underthinking samples show persistently high confidence levels.

our proposed approach significantly mitigate overthinking. However, existing methods introduce no-
table underthinking, whereas our proposed approach maintains reasoning length distribution similar
to the original model, demonstrating superior balanced thinking capacity.

Consequently, addressing the critical issue of simultaneously mitigating overthinking and preventing
underthinking becomes essential. Achieving this requires explicit modeling of these two reasoning
modes. Intuitively, questions correctly answered by the original model but incorrectly answered
after applying overthinking mitigation methods are likely due to restricted exploration, indicating
underthinking. Conversely, questions correctly answered by both the original and mitigated models
with shortened reasoning sequences likely reflect the successful reduction of redundant steps, indi-
cating overthinking. Based on these categorizations, we analyze changes in stepwise confidence and
confidence variance relative to normal reasoning, as illustrated in Fig. 2(b).

Confidence indicates reasoning states. Our analysis reveals that overthinking typically coincides
with higher confidence variance, indicative of hesitation across reasoning steps, while underthinking
is characterized by persistently high confidence levels, reflecting premature commitment to incorrect
reasoning paths without sufficient exploration. These findings support our proposal that confidence
can serve as a continuous and reliable indicator of the model’s reasoning state, enabling fine-grained
behavioral control. A comprehensive analysis, including the correlation between confidence and
reasoning length (Appendix A.2), inertia effects of confidence states (Appendix A.3), confidence
variations across models (Appendix A.4), model keywords and confidence states (Appendix A.6),
and the discriminability of confidence in latent space (Appendix A.5) are provided in the Appendix.

3 METHOD

3.1 OVERVIEW

In this section, we present REBALANCE, a training-free framework designed to dynamically balance
overthinking and underthinking, thereby improving efficiency without compromising accuracy.

Specifically, REBALANCE first explicitly models reasoning states prone to overthinking or under-
thinking using stepwise confidence and confidence variance (Sec. 3.2). Next, it utilizes these identi-
fied states to extract distinct steering vectors from deep-layer hidden states, capturing key behavioral
patterns of different reasoning modes between overthinking and underthinking (Sec. 3.3). Finally,
the steering vectors will be controlled by a dynamic function that adaptively modulates steering
strength and direction, ensuring balanced thinking during the reasoning process (Sec. 3.4). Collec-
tively, these complementary components provide precise, adaptive, and efficient control over the
reasoning process. The overview is shown in Fig. 3.

4
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Figure 3: Illustration of the REBALANCE framework. We first perform offline one-pass data collection on
a small-scale seen dataset. At each step, the steering vector is extracted at the first token of the specified layer
based on confidence, and a dynamic function is fitted according to model behaviors. During deployment, the
dynamic function outputs steering weights based on the model’s real-time confidence online, thus balancing
between overthinking and underthinking.

3.2 EXPLICIT MODELING OF OVERTHINKING AND UNDERTHINKING

Building upon the insights that confidence serves as a reliable indicator of overthinking and un-
derthinking, we first formally define these reasoning states and then explicitly model them using
confidence metrics.

Definitions of overthinking and underthinking. Let the <think>. . .</think> trajectory be
segmented into steps S1, . . . , Ssmax

by the delimiter mentioned in Sec. 2.1. Denote the partial rea-
soning up to step s by r≤s and the induced answer distribution (if forced to stop at s) by πs; let
prediction ds = argmaxπs under a specified decoding rule, then we define the stability index as:

s⋆ = min
{
s : ds′ = ds for all s′≥s and ds is correct

}
. (3)

The stability index s⋆ serves as a signal to distinguish different reasoning modes. Specifically, A
trajectory may exhibit overthinking if it continues after s⋆. Conversely, it exhibits underthinking
if it stops at step s with incorrect prediction ds while there exists s′ > s with correct ds′ . These
definitions formalize the notions of redundant computation after convergence to the correct answer
and premature termination before sufficient reasoning.

Explicit modeling with confidence. Then, the above definitions can be instantiated using the step-
wise confidence cs and the confidence variance vs = Var(cs;Ws) introduced in Sec. 2.1. With a
small-scale seen dataset that has been used for training, we can obtain the empirical quantiles (Hyn-
dman & Fan, 1996) Qc(·) and Qv(·) and thresholds as:

τLc = Qc(qL), τHc = Qc(qH), τLv = Qv(qL), τHv = Qv(qH), (4)

where 0 < qL < qH < 1 specify the lower and upper quantiles, respectively. Then, with these
thresholds, we can classify the reasoning steps into two sets O and U :

O ← { s : cs ≤ τLc ∧ vs ≥ τHv }, U ← { s : cs ≥ τHc ∧ vs ≤ τLv }. (5)

Concretely, as illustrated in Fig. 2(b), the overthinking set O contains instances characterized by
high reasoning variance and low confidence, reflecting unstable or oscillating reasoning trajectories.
On the other hand, the underthinking set U comprises cases with low variance and persistently high
confidence, indicating premature convergence and a tendency toward underthinking. Instances not
belonging to O ∪ U can be treated as normal and are excluded from further analysis.

5
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3.3 CONFIDENCE-BASED STEERING VECTOR EXTRACTION

In this section, based on the modeling of overthinking and underthinking introduced in Sec 3.2, we
extract prototypical representations of both reasoning modes from the hidden states of LRMs via
an offline, single forward pass. Then, the resulting prototypes enable the construction of a steering
vector that delineates the trajectory from overthinking to underthinking, thereby facilitating fine-
grained behavior control.

One-pass prototype extraction. To obtain prototypes, we perform a single offline inference pass
over a small seen dataset Dseen, segmenting reasoning steps by the delimiter \n\n. During this pass,
we automatically select the optimal deep-layer based on LRMs’ intrinsic separability of reasoning
modes (see Appendix A.5), from which we collect hidden states h

t
(1)
s

at the first token t(1)s of each
step. h

t
(1)
s

serves as a compact encoding of step-level intent (Yang et al., 2025b) and, under causal
masking, conditions the generation of all subsequent tokens within the step. We find that deeper lay-
ers exhibit stronger discriminability between reasoning modes and improved generalization across
datasets, as analyzed in Appendix A.5.

Then, with the hidden stages and the tags O and U mentioned in Sec. 3.2 for each step, we can
obtain the overthinking and underthinking prototypes, i.e., µO and µU, respectively:

µO =
1

|O|
∑
s∈O

h
t
(1)
s
, µU =

1

|U|
∑
s∈U

h
t
(1)
s
. (6)

Steering vector construction. The prototypes µO and µU denote the representations leading to
overthinking and underthinking respectively. The steering vector is then defined as the direction
from underthinking µU to overthinking µO:

v =
µO − µU

∥µO − µU∥2
. (7)

With the steering vector v, we can formalize the transition between two reasoning modes. To mod-
ulate the behavior during inference, we adjust the initial token h

t
(1)
s

of each step as follows:

h̃
t
(1)
s

= h
t
(1)
s

+ αs v, αs = λs δs, λs≥0, δs∈{+1,−1}, (8)

where αs represents the signed steering weight at step s, combining the steering strength λs and
direction δs. When δs = +1, we can address underthinking by stimulating the exploration of alter-
native reasoning paths. Conversely, δs = −1 mitigates overthinking by encouraging commitment.
These adjustments conceptually establish the boundaries within which the model’s reasoning pro-
cess operates, aiming to maintain a balanced state that ensures efficient and effective reasoning.

3.4 MODEL BEHAVIOR–BASED DYNAMIC CONTROL FUNCTION

Considering the evolving nature of model states and contexts over time, we introduce a dynamic
control function that adaptively adjusts steering strength and direction during inference. Motivated
by Sec. 2.2, which shows that the confidence correlates with reasoning modes, the steering weight αs

can be deemed as the output of a continuous function g(cs, vs) with respect to the current confidence
cs and variance vs. Therefore, the steering weight αs, strength λs and direction δs are defined as:

αs = g(cs, vs) = δs · λs. (9)

During inference, at each step s, we obtain the confidence cs and variance vs, set αs = g(cs, vs), and
inject αs v at the first token t(1)s for the selected layer as in Eq. 8. This keeps trajectories between the
overthinking and underthinking boundaries while adding no extra forward passes beyond standard
decoding. Concretely, the dynamic control function g(cs, vs) formulates as:

g(cs, vs) = sign
(
cs − τHc

)︸ ︷︷ ︸
Steering direction δs

·B(cs, vs) tanh
(∣∣cs − τHc ∣∣)︸ ︷︷ ︸

Steering strength λs

(10)

The steering direction δs is determined by the sign function sign(cs − τHc ), where the confidence
threshold τHc is obtained as Eq. 4. It takes a negative value when confidence is below the high-
confidence threshold (cs < τHc ) to mitigate overthinking, and a positive value when confidence is

6
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MATH-500 AIME24 AIME25 GSM8K AMC23 Olympiad

Method Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓

DeepSeek-R1-Distill-Qwen-1.5B
Baseline (Guo et al., 2025) 79.6 4516 23.3 12596 16.7 14556 76.0 1018 55.0 8990 41.2 8785
CoD (Xu et al., 2025a) 80.2 3512 33.3 11894 13.3 10941 69.5 531 62.5 6812 35.2 7160
DEER (Yang et al., 2025b) 67.0 2251 20.0 8135 23.3 8719 69.2 684 57.5 5132 35.4 5982
NoThinking (Ma et al., 2025b) 75.0 1582 6.67 6998 16.6 7473 61.6 285 60.0 3267 37.3 3485
NoWait (Wang et al., 2025a) 78.0 2645 30.0 8225 16.6 7574 75.1 641 60.0 3302 40.6 4795
Dynasor-CoT (Fu et al., 2025) 77.2 3694 26.7 10564 26.7 12462 77.1 1035 72.5 6505 42.6 8859
SEAL (Chen et al., 2025) 78.6 3259 23.3 10785 26.7 8544 76.4 754 75.0 5084 32.7 7117
Manifold Steering (Huang et al., 2025b) 78.6 3458 30.0 10134 – – 77.2 593 72.5 6236 – –
ReBalance (Ours) 83.0 3474 36.7 9040 30.0 8140 78.3 765 80.0 5216 43.9 7235
∆ vs. Baseline (+3.4) (−23.1%) (+13.4) (−28.2%) (+13.3) (−44.1%) (+2.3) (−24.9%) (+25.0) (−42.0%) (+2.7) (−17.6%)

DeepSeek-R1-Distill-Qwen-7B
Baseline (Guo et al., 2025) 89.8 3699 40.0 13994 26.7 13778 89.2 1098 75.0 6898 56.1 7590
CoD (Xu et al., 2025a) 90.0 3127 46.7 11663 36.7 10198 84.5 339 85.0 3654 47.5 5688
DEER (Yang et al., 2025b) 87.8 2367 50.0 8924 40.0 8919 90.4 676 80.0 5157 53.9 5804
NoThinking (Ma et al., 2025b) 80.6 834 26.7 4427 20.0 7850 87.1 284 65.0 1911 45.3 3331
NoWait (Wang et al., 2025a) 86.8 2479 50.0 6844 26.7 6979 90.2 806 85.0 3795 52.1 4760
Dynasor-CoT (Fu et al., 2025) 88.2 2723 46.7 9864 33.3 11069 87.6 732 85.0 5121 55.4 7427
SEAL (Chen et al., 2025) 90.6 2843 43.3 10112 26.7 9835 88.4 811 77.5 5164 53.9 6261
Manifold Steering (Huang et al., 2025b) 88.4 2239 53.3 8457 – – 87.6 440 87.5 4440 – –
ReBalance (Ours) 92.6 2903 56.7 9012 40.0 9227 91.6 912 95.0 4767 57.0 6321
∆ vs. Baseline (+2.8) (−21.5%) (+10.0) (−19.7%) (+13.3) (−33.0%) (+2.4) (−16.9%) (+20.0) (−30.9%) (+0.9) (−16.2%)

Qwen3-14B
Baseline (Yang et al., 2025a) 93.8 4470 66.7 10888 56.7 13125 95.1 2231 95.0 7240 60.6 7450
CoD (Xu et al., 2025a) 93.8 2950 66.7 10212 53.3 11828 95.6 627 95.0 5360 62.2 6554
DEER (Yang et al., 2025b) 93.0 2825 66.7 9973 56.7 11806 95.8 934 95.0 5527 66.1 6849
NoThinking (Ma et al., 2025b) 93.8 2657 70.0 8898 53.3 9892 95.1 369 87.5 4503 64.0 5880
NoWait (Wang et al., 2025a) 92.8 3219 60.0 10507 56.7 10924 95.6 1129 95.0 5050 59.2 7332
Dynasor-CoT (Fu et al., 2025) 93.8 4063 73.3 10369 60.0 12159 95.6 1483 95.0 6582 – –
SEAL (Chen et al., 2025) 93.4 3727 63.3 10322 50.0 10901 95.7 1369 90.0 6126 62.3 7131
ReBalance (Ours) 94.0 3641 73.3 9464 56.7 11057 96.3 1441 100.0 5230 66.3 7257
∆ vs. Baseline (+0.2) (−18.5%) (+6.6) (−13.1%) (+0.0) (−15.8%) (+1.2) (−35.4%) (+5.0) (−27.8%) (+5.7) (−2.6%)

QwQ-32B
Baseline (Team, 2025) 94.8 4535 66.7 14342 46.7 13350 96.3 1506 87.5 7021 66.7 8219
CoD (Xu et al., 2025a) 93.8 3516 63.3 11438 46.7 12189 96.2 670 92.5 6217 67.7 7028
DEER (Yang et al., 2025b) 94.4 3179 70.0 8885 46.7 10972 96.2 944 95.0 6435 64.3 7085
NoThinking (Ma et al., 2025b) 94.8 3912 66.7 10507 56.7 11839 96.5 1326 90.0 7119 66.1 8132
NoWait (Wang et al., 2025a) 93.8 2879 66.7 8190 63.3 8970 96.3 942 92.5 4717 62.6 8223
Dynasor-CoT (Fu et al., 2025) 94.2 4176 63.3 11156 – – 95.2 1095 90.0 6544 – –
SEAL (Chen et al., 2025) 92.6 3536 63.3 10344 56.7 11384 96.2 1221 95.0 6341 67.5 7371
FlashThink (Jiang et al., 2025) 93.2 3144 60.0 10034 40.0 11861 96.5 910 92.5 6702 – –
TrimR (Lin et al., 2025a) 93.8 3830 56.7 8345 43.3 8827 93.7 1319 90.0 6055 – –
ReBalance (Ours) 95.2 3662 70.0 10350 63.3 11575 96.8 1289 95.0 6064 68.6 7422
∆ vs. Baseline (+0.4) (−19.3%) (+3.3) (−27.8%) (+16.6) (−13.3%) (+0.5) (−14.4%) (+7.5) (−13.6%) (+1.9) (−9.7%)

Table 1: Performance on math reasoning benchmarks. Metrics include Pass@1 (↑) and #Tokens (↓) on six
math reasoning benchmarks. Changes are shown in orange for Pass@1 and blue for #Tokens. FlashThink and
TrimR are reproduced according to the paper.

above this threshold (cs > τHc ) to alleviate underthinking. This guarantees the steering consistently
directs the state away from the nearer reasoning boundary.

The steering strength λs is composed of two parts: (1) soft saturation tanh
(
|cs − τHc |

)
and (2)

variance-aware amplitude B(cs, vs). Specifically, regarding the soft saturation tanh
(
|cs − τHc |

)
, a

smooth, saturating growth in |cs − τHc | avoids abrupt changes and keeps the mapping monotone in
cs for any fixed vs. The soft saturation function guarantees the steering strength grows gradually as
the state approaches the reasoning boundary, ensuring numerical stability.

Differently, the variance-aware amplitude B(cs, vs) is a model behavior-based scalar amplitude that
adapts across models based on the step confidence cs and variance vs. It is required to indicate the
model’s current thinking status, shifting between moderate and overthinking/underthinking reason-
ing modes. To this end, the amplitude function can be formulated as:

B(cs, vs) =


Bm +

(
Bo −Bm

)
ψ(cs, vs) if cs ≤ τLc and vs ≥ τHv ,

Bm +
(
Bu −Bm

)
ψ(cs, vs) if cs ≥ τHc and vs ≤ τLv ,

Bm otherwise.
(11)

In Eq. 11, Bm, Bo, and Bu are adaptive mode boundaries representing moderate, overthinking,
and underthinking, respectively. ψ(cs, vs) denotes a conditioned gating function whose output
ranges from 0 to 1 to ensure smooth transitions. The thresholds (τLc , τ

H
c , τ

L
v , τ

L
v ) are obtained in

Eq. 4. Following the reasoning mode definitions outlined in Eq. 5, when cs ≤ τLc and vs ≥ τHv ,
indicating a state of overthinking, the transition occurs between Bm and Bo. Differently, when
cs ≥ τHc and vs ≤ τLv , indicating a state of overthinking, the transition should be performed be-
tween Bm and Bu. Notably, Bm and Bo are adaptively derived from models without manual tuning.

In this context, the amplitude B(cs, vs) serves as an indicator of the current reasoning status, com-
plemented by the saturation function, which ensures the numerical stability of the final steering
strength. More details, theoretical derivations, and proofs regarding the mode boundaries and the
gating function are provided in Appendix B due to the page limit.
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SCIENCE COMMONSENSE PROGRAMMING

GPQA-D StrategyQA LiveCodeBench
Method Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓ Pass@1↑ #Tokens↓

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 17.1 8 727 63.2 435 19.5 12 509
Ours 21.7 (+4.6) 6 902 (−20.9%) 67.7 (+4.5) 401 (−7.8%) 22.5 (+3.0) 11 622 (−7.1%)
DeepSeek-R1-Distill-Qwen-7B
Baseline 33.8 7 392 88.1 350 44.0 9 851
Ours 39.4 (+5.6) 5 180 (−29.9%) 88.9 (+0.8) 310 (−11.4%) 46.5 (+2.5) 8 651 (−12.2%)
Qwen3-14B
Baseline 60.6 7 451 94.2 267 83.5 7 101
Ours 67.2 (+6.6) 5 779 (−22.4%) 94.3 (+0.1) 260 (−2.6%) 84.6 (+1.1) 6 088 (−14.3%)
QwQ-32B
Baseline 63.1 7 424 93.6 274 87.5 6 622
Ours 67.2 (+4.1) 6 296 (−15.2%) 95.7 (+2.1) 265 (−3.3%) 88.3 (+0.8) 5 649 (−14.7%)

Table 2: Generalization capabilities on other non-math tasks. Metrics include Pass@1 (↑) and #Tokens (↓).
Changes are shown in orange for Pass@1 and blue for #Tokens.

Method Math500 GSM8K Olympiad
Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓

Rebalance (Ours) 83.0 3474 78.3 765 43.9 7235
|Ws| = 5 82.4 3686 78.2 910 42.2 7343
|Ws| = 10 81.0 4084 77.8 940 44.7 7679
Bu = 0 82.0 3343 78.1 761 39.4 7147
Bu = 0.2 83.6 3600 80.5 850 44.2 7923
Bu = 0.5 81.4 3543 77.7 890 41.3 8773

Table 3: Ablations on the R1-1.5B backbone across difficulty levels. We analyze performance changes on
three math benchmarks with varying difficulty: Math500 (medium), GSM8K (easy), and Olympiad (hard).
Metrics are Pass@1 accuracy (%) and generated token numbers. Arrows indicate change relative to our original
REBALANCE: Acc. ↑ increase, ↓ decrease; Tokens ↓ decrease, ↑ increase.

4 EXPERIMENT

Evaluation is conducted on mathematics reasoning datasets: MATH-500 (Lightman et al.,
2023b), AIME24 (AI-MO, 2024a), AIME25 (OpenCompass, 2025), AMC23 (AI-MO, 2024b),
GSM8K (Cobbe et al., 2021), and OLYMPIADBENCH (He et al., 2024); scientific reasoning dataset,
GPQA DIAMOND (Rein et al., 2024); commonsense reasoning dataset, STRATEGYQA (Geva et al.,
2021); and code reasoning dataset, LIVECODEBENCH (Jain et al., 2024). Besides, the proposed
steering extraction and dynamic control function fitting are performed for each backbone once and
held fixed across all unseen benchmarks for evaluation. 500 randomly sampled MATH (Hendrycks
et al., 2021) problems are utilized during these processes, and the sensitivity analysis is shown in
Fig. 5(c). More comprehensive experimental details, including the baseline introductions, are pro-
vided in Appendix D.

4.1 MAIN RESULTS

Math reasoning. As shown in Tab. 1, REBALANCE outperforms all baselines on six math reason-
ing benchmarks spanning diverse difficulties and distributions. Without introducing any auxiliary
models or inference stages, it simultaneously improves Pass@1 and reduces the average generated
token count by at most 52.3%. Notably, on AMC23, REBALANCE attains perfect Pass@1 with
Qwen3-14B and it lifts DeepSeek-R1-Distill-Qwen-7B to performance comparable to QwQ-32B.

Other reasoning scenarios. We evaluate REBALANCE in a cross-domain setting, fixing the steer-
ing vector and control surface across tasks. As shown in Tab. 2, without domain-specific tuning,
REBALANCE maintains Pass@1 and reduces the reasoning length by at most 47.5% on challenging
scientific reasoning, programming, and simpler commonsense QA tasks. These results demonstrate
strong cross-domain generalization.
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Figure 5: (a-b) Layerwise Performance of MATH-500 for (a) R1–7B and (b) QwQ–32B. (c) Sensitivity to
sample size for steering vector extraction. (d) Performance with cross-domain vectors.

4.2 ABLATION STUDY

Impact of static αs control. We ablate the dynamic schedule by fix-
ing the steering weight αs. As shown in Fig. 4, positive αs (U → O)
improves accuracy but increases reasoning length, intensifying with
larger |αs| (e.g., αs = +3 on QWQ–32B yields a 147% token in-
crease). Negative αs reduces tokens at the expense of accuracy. These
results motivate dynamic adapting αs to instance difficulty.
Impact of the steering layer. We test generalization by fitting steer-
ing vectors and control surfaces at various layers (selected by depth
ratio). Fig. 5(a–b) shows that steering at any tested depth reduces
token count without harming accuracy. The strongest trade-off ap-
pears in mid-to-late layers, consistent with our probing analysis (Ap-
pendix A.5), where representations from these layers exhibit the high-
est confidence separability and thus incur minimal noise.
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Figure 4: Static αa Control on
MATH-500. Top: R1-7B; Bot-
tom: QwQ–32B.

Steering vector choice and generalization. As shown in Fig. 5(c–d), we estimate steering vec-
tors from math datasets of varying scale and a cross-domain science corpus (GPQA), fitting a control
surface for each. Vectors generalize across datasets: REBALANCE improves efficiency while pre-
serving accuracy. A clear trend emerges: vectors from harder datasets prioritize accuracy gains over
token savings, aligning with the method’s mechanism: harder data induces a conservative surface
prioritizing correctness, while easier data yields a more aggressive one favoring token savings.

Impact of window size |Ws|. Rows 4 and 5 of Tab. 9 show how the control-surface window size
|Ws| affects reasoning. Empirically, larger windows substantially increase token usage, consistent
with the intuition that they smooth short-term fluctuations while reducing responsiveness to local
anomalies. Theoretically, we show that the confidence trajectory during inference satisfies a Marko-
vian continuity assumption (see Appendix A.3); a small window (|Ws| = 2) is therefore sufficiently
expressive and more sensitive to local reasoning patterns. However, with a larger window, accuracy
increases on the hard Olympiad benchmark, in line with prior findings that extended deliberation
improves performance at the expense of longer outputs (Jin et al., 2024; Muennighoff et al., 2025).

Impact of underthinking mode boundary Bu. Tab. 9 (Row 6) shows that removing the under-
thinking mode boundary slightly reduces tokens but significantly lowers accuracy, especially on
tasks demanding extended reasoning. Moderate increases (0.1 → 0.2; Rows7̃–8) encourage deeper
deliberation and boost accuracy at a modest token cost, while larger increases (0.1 → 0.5) trigger
overthinking and degrade performance. An overly strong boundary disrupts these normal reason-
ing paths. The other two mode boundaries Bm and Bo, are adaptively determined based on model
behavior, requiring no manual tuning (Appendix B).

5 CONCLUSION

This paper analyzes the limitations of existing approaches to overthinking mitigation, and we ob-
serve that such attempts often introduce the countervailing problem of underthinking. Therefore, we
propose REBALANCE, a training-free method that curbs overthinking while avoiding underthinking.
Extensive experiments across diverse models and datasets show that REBALANCE reduces redun-
dancy while preserving accuracy, achieving efficient reasoning with balanced thinking. A promising
future direction is to apply REBALANCE to the multi-modal reasoning scenarios.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025a.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms. arXiv preprint arXiv:2502.12134, 2025b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025b.

Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning.
arXiv preprint arXiv:2504.03234, 2025c.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Hang Yuan, Bin Yu, Haotian Li, Shijun Yang, Christina Dan Wang, Zhou Yu, Xueyin Xu, Weizhen
Qi, and Kai Chen. Not all tokens are what you need in thinking. arXiv preprint arXiv:2505.17827,
2025.

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and Jing
Xu. Following length constraints in instructions, 2024. URL https://arxiv. org/abs/2406.17744,
2024.

Linan Yue, Yichao Du, Yizhi Wang, Weibo Gao, Fangzhou Yao, Li Wang, Ye Liu, Ziyu Xu, Qi Liu,
Shimin Di, et al. Don’t overthink it: A survey of efficient r1-style large reasoning models. arXiv
preprint arXiv:2508.02120, 2025.

Jinghan Zhang, Xiting Wang, Fengran Mo, Yeyang Zhou, Wanfu Gao, and Kunpeng Liu. Entropy-
based exploration conduction for multi-step reasoning. arXiv preprint arXiv:2503.15848, 2025a.

Nan Zhang, Yusen Zhang, Prasenjit Mitra, and Rui Zhang. When reasoning meets compression:
Benchmarking compressed large reasoning models on complex reasoning tasks. arXiv preprint
arXiv:2504.02010, 2025b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shengjia Zhang, Junjie Wu, Jiawei Chen, Changwang Zhang, Xingyu Lou, Wangchunshu Zhou,
Sheng Zhou, Can Wang, and Jun Wang. Othink-r1: Intrinsic fast/slow thinking mode switching
for over-reasoning mitigation. arXiv preprint arXiv:2506.02397, 2025c.

Shimao Zhang, Yu Bao, and Shujian Huang. Edt: Improving large language models’ generation by
entropy-based dynamic temperature sampling. arXiv preprint arXiv:2403.14541, 2024.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous
concept space. arXiv preprint arXiv:2505.15778, 2025d.

Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Zhi Jin, and Hong Mei. Hot or cold? adaptive temperature
sampling for code generation with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 437–445, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CONTENTS

A Supplementary Motivation and Evidence 17

A.1 From Overthinking to Underthinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2 Confidence-Length Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.3 Markov Persistence of Confidence States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.4 Distributional Heterogeneity in Model Confidence . . . . . . . . . . . . . . . . . . . . . . . 20

A.5 Encoding of Confidence Signals in Latent Representations . . . . . . . . . . . . . . . . . . . 20

A.6 Confidence as Evidence under Vocabulary Coverage Gaps . . . . . . . . . . . . . . . . . . . 21

B Method Details 24

B.1 Explicit Modeling of Overthinking and Underthinking . . . . . . . . . . . . . . . . . . . . . 24

B.2 Confidence-Based Steering Vector Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B.3 Model Behavior-Based Dynamic Control Function . . . . . . . . . . . . . . . . . . . . . . . 27

C Additional Experimental Results and Ablations 29

C.1 Ablation on Individual Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.2 Ablation on Gating Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C.3 Cross-Domain and Cross-Difficulty Transferability . . . . . . . . . . . . . . . . . . . . . . . 30

C.4 Pass@k and Avg@k Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

C.5 Performance Variation under Different Confidence Distributions . . . . . . . . . . . . . . . . 33

C.6 Semantic Change and Creativity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C.7 Confidence Characteristics of Overthinking and Underthinking . . . . . . . . . . . . . . . . . 36

C.8 Performance comparison with TrimR and Flashthink . . . . . . . . . . . . . . . . . . . . . . 36

C.9 Balanced Thinking with Dynamic Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 37

C.10 Additional Prototype Construction Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 38

D Details on Experimental Settings 39

E Details on Benchmarks 40

F Details on Prompts 41

G Details on Prompt-Based Approaches 42

H Detailed Discussion of Related Works 43

I Efficiency Analysis 45

J The Use of Large Language Models 46

K Ethics Statement 46

L Reproducibility Statement 46

M Case Study 47

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0

2000

4000

6000

8000

Ou
tp

ut
 le

ng
th

 (w
or

ds
)

BASELINE DEER NOWAIT NOTHINK DYNASOR Our Method

0 100 200 300
Reference length (words)

0

2000

4000

6000

8000

Ou
tp

ut
 le

ng
th

 (w
or

ds
)

0 100 200 300
Reference length (words)

0 100 200 300
Reference length (words)

0 100 200 300
Reference length (words)

0 100 200 300
Reference length (words)

0 100 200 300
Reference length (words)

Co
rre

ct
W

ro
ng

Figure 6: Mitigating Overthinking Without Inducing Underthinking. Evaluation on the MATH dataset with
DeepSeek-R1-Distill-Qwen-1.5B. Each panel plots output length vs. reference length (words), restricted to
reference≤ 300 and output≤ 8000. Top: correct examples. Bottom: incorrect examples. Competing methods
reduce overthinking at the cost of underthinking, whereas Our Method mitigates overthinking without inflating
underthinking.

A SUPPLEMENTARY MOTIVATION AND EVIDENCE

A.1 FROM OVERTHINKING TO UNDERTHINKING

Why do many anti-overthinking techniques backfire as underthinking? Empirically, the chain of
thought (CoT) length and model performance are positively correlated, so aggressively truncating
or penalizing long chains can excise necessary reasoning and degrade accuracy (Jin et al., 2024).
Token-complexity theory (Lee et al., 2025) further posits an intrinsic minimum token budget for
success. Enforcing uniformly short budgets or early termination pushes more instances below this
threshold, yielding concise but wrong outputs. Moreover, the reasoning-boundary framework (Chen
et al., 2024a) shows that optimal CoT length and reasoning path selection are task-dependent, thus
global length controls disregard this heterogeneity and may steer reasoning trajectories outside the
feasible region for a given task.

As shown in Fig. 6, on the MATH dataset with DEEPSEEK-R1-DISTILL-QWEN-1.5B, prior meth-
ods indeed curb overthinking but often induce underthinking, manifesting as a collapse of error
distributions toward short outputs. In contrast, Our Method adaptively identifies and modulates the
reasoning process, selectively shortening reasoning chains when appropriate while preserving longer
explorations necessary for challenging instances. Consequently, our approach mitigates overthink-
ing without inducing underthinking, as evidenced by error distributions that avoid collapsing into
shorter outputs.

A.2 CONFIDENCE-LENGTH ASSOCIATION

Although confidence is commonly used as a proxy for a model’s certainty, its connection to actual
reasoning behavior remains ambiguous. To effectively utilize confidence for identifying suboptimal
reasoning patterns or enabling adaptive control, it is essential to first establish a clear and quan-
tifiable relationship between confidence and specific aspects of model behavior. Building upon the
quantitative patterns presented in Fig. 2(b), which reveal distinct confidence signatures associated
with overthinking and underthinking, we focus here on another key dimension of efficient reasoning:
reasoning length.

Specifically, we measure how response length relates to step-level confidence on MATH-500, us-
ing four models (DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, Qwen3-14B,
QwQ-32B; each with n = 500 samples). Here, the length of a response is defined as the total num-
ber of words in the reasoning text before the first </think>, and this count is aligned with the
list of confidence values for each step. For every answer, we compute two key quantities: (i) the
minimum step-level confidence, and (ii) the variance of step-level confidence within the answer.

Since confidence values produced by non-greedy decoding tend to be heavily skewed toward the
upper end of the interval [0, 1] rather than following a balanced and symmetric bell-shaped distribu-
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tion, the usual Pearson correlation is not suitable. Therefore, we use the nonparametric Spearman
rank correlation to capture the relationship more reliably.

Our correlation analysis results are shown in Tab. 4. Across all four models, word count shows a
clear negative association with the minimum step-level confidence (Spearman ρ values roughly be-
tween −0.62 and −0.80), and a clear positive association with the variance of step-level confidence
within each answer (Spearman ρ values roughly between 0.46 and 0.70). For all reported entries,
the 95% bootstrap confidence intervals do not include zero. These results provide quantitative ev-
idence that confidence trajectories encode meaningful signals about reasoning effort and stability,
supporting their use as reliable indicators for dynamic reasoning control.

Model Words vs Min confidence Words vs Confidence variance

ρ CI lo CI hi ρ CI lo CI hi

DeepSeek-R1-Distill-Qwen-1.5B −0.733 −0.777 −0.684 0.602 0.542 0.655

DeepSeek-R1-Distill-Qwen-7B −0.624 −0.681 −0.560 0.458 0.385 0.527

QwQ-32B −0.801 −0.835 −0.765 0.698 0.643 0.746

Qwen3-14B −0.681 −0.730 −0.628 0.623 0.561 0.682

Table 4: Spearman correlations (ρ) between word count length and confidence statistics on MATH-500. The
95% bootstrap percentile confidence intervals (CI lo and CI hi, with B = 2000) are reported in separate
columns. All correlation coefficients are significant at p < 0.001.

A.3 MARKOV PERSISTENCE OF CONFIDENCE STATES

Effective dynamic control over a model’s reasoning trajectory often relies on the ability to recognize
its current reasoning state. Intuitively, this requires examining a contextual window of recently
generated reasoning steps, i.e., a sliding window over the chain-of-thought trace. However, for
complex problems such as those in AIME (AI-MO, 2024a), reasoning traces can span thousands
of tokens. While a larger window might seem necessary to capture sufficient context, it introduces
significant computational overhead and may obscure fine-grained shifts in reasoning behavior.

In this section, we demonstrate that the model’s confidence trajectory exhibits strong first-order
Markov persistence. This finding reveals a key insight: the current reasoning state can be accurately
inferred from just the immediately preceding step. Consequently, a minimal window of size two is
sufficient and often preferable for capturing the essential dynamics of the reasoning process.

To formalize this, for each answer, we split the model outputs by double newlines (\n\n) and align
the resulting segments with the sentence-level confidences; we only consider adjacencies that occur
within complete, untruncated reasoning trajectories that contain the final answer. We then collect all
adjacent confidence pairs (ct−1, ct) from the model’s reasoning traces.

We convert each confidence value into either a high state or a low state using the model-wise median
threshold τ :

st = I(ct ≥ τ), st ∈ {H,L}, τ = median{ct over all sentences of the model}.
Here H (high) represents ct ≥ τ and L (low) represents ct < τ . If a confidence value equals the
threshold, that sentence is placed in the high state.

For each model, we form a two-by-two transition count matrix

N =

[
HH HL
LH LL

]
,

where HH is the number of transitions from high to high and HL is the number of transitions from
high to low.

By normalizing each row, we obtain the corresponding transition probabilities:

P (H→H) =
HH

HH +HL
, P (H→L) =

HL

HH +HL
,

P (L→H) =
LH

LH + LL
, P (L→L) =

LL

LH + LL
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To measure how strongly a state tends to be followed by the same state, we use the odds ratio

OR =
HH · LL
HL · LH

.

We evaluate statistical significance using a two-sided Fisher exact test applied to N. When all cells
of the matrix are positive, we also report the approximate ninety-five percent confidence interval for
the odds ratio (Woolf method):

log(ÔR)± 1.96
√

1
HH + 1

HL + 1
LH + 1

LL , CI95% = exp(·).

For easier interpretation, we additionally provide the same state rate

SameRate =
HH + LL

HH +HL+ LH + LL
.

All values reported in our results, including transition probabilities, odds ratios, confidence intervals,
and significance levels, are computed using this median-based thresholding procedure.

From Tab. 5, all four models show clear evidence of strong like-to-like persistence in confidence
when using the model-wise median threshold. The transition probabilities for remaining in the
same state, P (H→H) and P (L→L), are both larger than the probabilities of switching to the
opposite state. The overall same state rate satisfies SameRate > 0.5, the Fisher exact tests give
p < 0.001, and the diagonal odds ratios are consistently greater than one with ninety-five percent
confidence intervals that do not include one. Taken together, these results provide strong support
for the presence of first-order Markov persistence, which reflects a clear tendency for the confidence
state to remain stable from one step to the next.

Model P (H→H) P (L→L) SameRate OR CI lo CI hi Sig.

DeepSeek-R1-Distill-Qwen-1.5B 0.666 0.665 0.666 3.96 3.83 4.10 ***
DeepSeek-R1-Distill-Qwen-7B 0.653 0.651 0.652 3.51 3.38 3.65 ***
QwQ-32B 0.670 0.673 0.672 4.19 4.03 4.35 ***
Qwen3-14B 0.657 0.659 0.658 3.70 3.56 3.86 ***

Table 5: Adjacent state persistence in step-level confidence using a median threshold for binarization. Rows
report the same state transition probabilities and diagonal odds ratios (OR) with ninety-five percent Woolf
confidence intervals. Significance codes (Sig.): * p < 0.05, ** p < 0.01, *** p < 0.001 (two sided Fisher
exact test).

This observation directly guides the design of our sliding window. Based on this insight, we set
the window size to w = 2 instead of a larger value. A window of length two records each pair of
adjacent states and therefore captures the transition patterns P (H→L) and P (L→H) without any
loss of information. This choice keeps detection lag to a minimum and prevents brief reversals from
being averaged away. When the model begins to drift away from its current reasoning direction,
for example, when it moves into an overthinking regime, the adjacent transition window allows the
intervention strength to increase immediately.
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A.4 DISTRIBUTIONAL HETEROGENEITY IN MODEL CONFIDENCE

In this study, our goal is to design a dynamic con-
trol function that leverages stepwise confidence and
its variance during the reasoning process to enable
real-time, adaptive regulation of model behavior. We
aim to make this control mechanism highly adaptable,
i.e., capable of fully realizing our proposed concept
of balanced thinking and delivering accurate, smooth,
and responsive control. However, greater adaptabil-
ity inherently involves introducing additional param-
eters, which raises concerns about the generalization
ability of such a control function across diverse mod-
els. To address this, we analyze and compare confi-
dence distributions across multiple models to inves-
tigate whether a universal hyperparameter configura-
tion can be identified.

Figure 7: KDE (Confidence) for QwQ-32B,
Qwen3-14B, and DeepSeek-R1-Distill-Qwen-
7B and 1.5B on MATH-500.

As shown in Fig. 7, we visualize confidence distributions across reasoning steps for multiple mod-
els on the same dataset. The three models based on the QWEN2 family, namely QWQ-32B,
DEEPSEEK-R1-DISTILL-QWEN-7B, and DEEPSEEK-R1-DISTILL-QWEN-1.5B, display broadly
similar distributional patterns, although each model still exhibits its own characteristic shape. In
contrast, the QWEN3-14B model, built upon the QWEN3 family, exhibits a clearly different confi-
dence profile compared with the QWEN2 family. These observations are consistent with previous
findings that the LLAMA-3.1-NEMOTRON-NANO-8B model tends to operate in a uniformly low
confidence regime throughout its reasoning process (Yang et al., 2025b).

These distributional differences highlight the difficulty of designing a single set of hyperparameters
capable of effectively generalizing across various models. Consequently, this motivates our pro-
posed model behavior-based dynamic control function fitting approach in Sec. 3.4, which automat-
ically derives parameters tailored to the unique confidence behaviors of each model. By leveraging
this behavior-aware strategy, our method eliminates the need for manual hyperparameter tuning,
thereby ensuring robust adaptability and broad applicability across diverse model architectures and
confidence profiles.

A.5 ENCODING OF CONFIDENCE SIGNALS IN LATENT REPRESENTATIONS

To enable dynamic control over a model’s reasoning behavior through confidence-aware steering,
it is crucial to understand how confidence manifests in the model’s internal representations. Since
hidden states directly encode the evolving behavioral dynamics of a transformer during reasoning,
they provide a natural substrate for both analyzing and manipulating the model’s certainty. In this
section, we demonstrate that confidence is not merely correlated with, but systematically and pre-
dominantly linearly encoded in hidden states. This insight underpins an automated approach for
identifying the most effective layers to target in steering interventions.

Confidence is discernible in hidden layers. From Eq. 1, we obtain stepwise confidence values.
We also extract the hidden state H

(i)
s of the token following the delimiter \n\n. This gives rise to a

direct mapping between hidden state and confidence:

H(i)
s 7−→ cs.

Thus, the layer-i hidden state for sentence s corresponds to its confidence cs. As shown in Fig. 8,
we apply t-SNE to project the hidden states H(i)

s into a two-dimensional space and color each point
according to its corresponding confidence cs. Clear clusters emerge: high-confidence and low-
confidence representations form visibly distinct regions, with this separation becoming even more
pronounced in the mid-late layer embeddings. These observations indicate that confidence acts as a
discernible signal in the hidden space, providing direct empirical support for our subsequent linear
probing analysis.

Linear probing of the confidence signal. Building on the above observations, we employ a linear
probing approach to examine how confidence is encoded in the hidden layers and to assess the
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strength of this linear relationship. Formally, the mapping is expressed as:

cs = w(i)H(i)
s + b(i).

Here, w(i) and b(i) denote the parameters of the linear model.

Because hidden layer representations typically have several thousand dimensions, using a linear
head directly may lead to overfitting and unstable estimation. To address this, we apply a standard
dimensionality reduction method, PCA, to project the hidden states into a low-dimensional sub-
space, and then study the relationship between the reduced representations and the corresponding
confidence values. The detailed statistics before and after PCA are summarized in Tab. 6.

cs = w(i)Z(i)
s + b(i), H(i)

s 7−→ Z(i)
s .

Here, Z(i)
s denotes the low-dimensional representation obtained from the original hidden state H(i)

s .

The overall probe analysis pipeline is illustrated in Fig. 10. We employ a standard ridge regression
approach to estimate the parameters w(i) and b(i).

min
w(i), b(i)

∑
s

(
cs −w(i)Z(i)

s − b(i)
)2

+ λ
∥∥∥w(i)

∥∥∥2
2
.

After fitting the ridge-based linear probe, we obtain the predicted confidence values as follows.

ĉs = w(i)Z(i)
s + b(i).

We assess how accurately confidence can be predicted from the hidden representations by com-
puting the coefficient of determination R2. The formulation is given below. A higher R2 value,
approaching 1, indicates that confidence is more readily linearly decodable from the representations
of the corresponding layer.

R2 = 1−
∑

s (cs − ĉs)
2∑

s (cs − c̄)
2 .

Automated steering layer selection using R2. We evaluate the relationship between the confi-
dence values cs and the hidden state H

(i)
s across all layers of each model, as shown in Fig. 9. A

consistent pattern emerges: the coefficient of determination R2 typically reaches its maximum in
the middle to late layers, indicating that cs is more easily linearly decodable from H

(i)
s in these

layers. Since steering fundamentally operates through linear shifts in the hidden space, we select
the layer with the highest R2 as the steering layer. The entire procedure is fully automated, allowing
the system to identify the optimal steering layer without manual intervention. In principle, choosing
this layer minimizes the additional noise introduced by the steering operation.

Model Original Dim PCA Dim Retained Var.

DeepSeek-R1-Distill-Qwen-1.5B 1 536 64 0.889 3

DeepSeek-R1-Distill-Qwen-7B 3 584 64 0.857 3

QwQ-32B 5 120 64 0.833 5

Qwen3-14B 5 120 64 0.900 0

Table 6: Cumulative explained variance retained by PCA (k = 64) across models. Higher retained variance
indicates a stronger low-dimensional linear structure amenable to probing.

A.6 CONFIDENCE AS EVIDENCE UNDER VOCABULARY COVERAGE GAPS

A growing number of efficient reasoning methods mitigate overthinking by relying on predefined
keyword vocabularies. Representative strategies include targeted suppression of specific tokens
(e.g., NOWAIT (WANG ET AL., 2025A)), latent-space guidance that steers the model away from
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Figure 8: t-SNE projections of hidden states sampled immediately after \n\n; colors encode sentence-level
confidence (0–1). (a) DeepSeek-R1-Distill-Qwen-1.5B — layers 5, 20, 28. (b) DeepSeek-R1-Distill-Qwen-7B
— layers 5, 20, 28. (c) Qwen3-14B — layers 5, 20, 35. (d) QwQ-32B — layers 5, 20, 58.

states prone to emitting certain tokens (e.g., SEAL (Chen et al., 2025), MANIFOLD STEER-
ING (Huang et al., 2025b)), and cue-word–driven early stopping, which treats designated trigger
terms as checkpoints to terminate the reasoning process when appropriate (e.g., FLASHTHINK-
ING (JIANG ET AL., 2025), TRIMR (LIN ET AL., 2025A), DEER (YANG ET AL., 2025B),
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Figure 9: Layer-wise linear probe decodability (R2) of confidence. Mid-to-late layers achieve the highest
scores, motivating the steering-layer choice.

Figure 10: Linear-confidence probe with PCA. Given an input sequence, we freeze the language model (LM)
and extract layer-wise hidden states. The representations are projected by PCA and passed to a linear predictor
to estimate step-level confidence. We repeat this procedure across layers to obtain layer-wise test-setR2 scores.

DYNASOR-COT (FU ET AL., 2025)). However, the fundamental reason why such lexical inter-
ventions improve reasoning behavior remains poorly understood. In this section, we aim to uncover
the mechanism behind their effectiveness by aggregating keyword vocabularies from representative
methods and analyzing their relationship with model confidence. Our key finding is that vocabulary-
based strategies are, in essence, incomplete approximations of confidence-based control: they cap-
ture only the most frequent lexical manifestations of low-confidence reasoning, while missing a
broader spectrum of uncertainty signals.

Category Vocabulary

NoWait (suppress) wait, alternatively, hmm, but, however, alternative, another,
check, double-check, oh, maybe, verify, other, again, now, ah,
any

SEAL—Transition alternatively, think differently, another way, another
approach, another method, another solution, another
strategy, another technique

SEAL—Reflection wait, verify, make sure, hold on, think again, ’s correct, ’s
incorrect, let me check, seems right

Table 7: Unified vocabularies for NoWait (keyword suppression) and SEAL transition/reflection cues.

To investigate this, we first compile the keyword sets used by NOWAIT and SEAL as illustrative
examples (see Tab. 7). Notably, these lexical items function as surface markers of the model’s
epistemic uncertainty. Using DEEPSEEK-R1-DISTILL-QWEN-7B on MATH-500, we compute
a sentence-level confidence at each reasoning step and project it to all words appearing in that
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sentence. As summarized in Tab. 8, the vast majority of these words are associated with confi-
dences below the model’s overall mean (c̄ = 0.8162). This pattern suggests a straightforward
interpretation: vocabulary-based interventions such as NOWAIT and SEAL primarily suppress low-
confidence modes of the model’s reasoning, rather than targeting particular semantics per se.

As illustrated in Fig. 11, both SEAL and NoWait reliably elevate the model’s confidence along
the reasoning trajectory. This empirical pattern corroborates our analysis: NOWAIT achieves the
effect by suppressing the emission of high-frequency lexical markers associated with low confi-
dence, whereas SEAL steers the hidden representations away from states that tend to produce low-
confidence, high-frequency sentences. In essence, both methods act by attenuating the model’s
low-confidence modes.

However, vocabulary-driven heuristics do not, by
themselves, capture the model’s low-confidence
modes. In practice, such methods identify only a sub-
set of high-frequency lexical correlates of low con-
fidence, leaving a substantial long-tail of equally in-
formative cues outside the predefined lists and thus
unmeasured. As illustrated in Tab. 8, we enumer-
ate several representative omissions that most exist-
ing approaches fail to account for. Consequently,
confidence-based approaches systematically surface
the model’s low-confidence modes—irrespective of
their lexical realization. Figure 11: KDE (Confidence) - Origin vs

NoWait vs SEAL.
This comprehensive extraction provides a principled basis for subsequent research to diagnose and
mitigate overthinking, enabling more complete coverage than vocabulary-driven heuristics. Look-
ing forward, a fruitful research agenda is to pursue a confidence-based line of work. One direction
is to treat low-confidence states as actionable checkpoints for early exit, developing calibrated cri-
teria and adaptive halting policies to further improve the accuracy–efficiency trade-off of early-exit
models. Another is to analyze the relationship between semantic (meaning-level) uncertainty and
model-internal confidence estimates, thereby deepening our understanding of—and ultimately miti-
gating—both overthinking and underthinking behaviors.

B METHOD DETAILS

In this section, we provide a more detailed introduction to the technical details of REBALANCE
presented in Sec. 3. First, in Sec. B.1, we formally define these reasoning modes and propose an
explicit, confidence-based modeling paradigm to quantitatively distinguish between redundant rea-
soning and premature conclusion. Building upon this foundation, Sec. B.2 presents the Confidence-
Based Steering Vector Extraction, where we leverage hidden-state representations to derive di-
rectional steering vectors that guide LRMs’ reasoning trajectory towards optimal decision-making
boundaries. Finally, Sec. B.3 details our Model Behavior-Based Dynamic Control Function, which
dynamically modulates steering strength according to real-time confidence and variance metrics. By
integrating these three sequential components, our framework achieves a robust and adaptive control
mechanism, effectively balancing exploration and commitment in the reasoning processes of LRMs.

B.1 EXPLICIT MODELING OF OVERTHINKING AND UNDERTHINKING

Formal Definition. Let the reasoning trajectory inside <think>. . .</think> be split into steps
S1, . . . , Ssmax

by the double newline delimiter \n\n introduced in Sec. 2.1. Let r≤s denote the
partial reasoning up to step s. If the model is forced to stop after step s and produce a conclusion
from r≤s, it induces a distribution over answers which we denote by πs. Let ds = argmaxπs be
the predicted conclusion under a fixed decoding rule. Define the stability index

s⋆ = min
{
s : ds′ = ds for all s′ ≥ s and ds is correct

}
.

A trajectory exhibits overthinking if it continues generating steps after s⋆. Conversely, A trajectory
exhibits underthinking if it stops at step s with an incorrect ds while there exists s′ > s such that ds′
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would be correct. These definitions capture redundant reasoning beyond the earliest stable correct
decision and premature commitment before sufficient exploration.

Explicit Modeling with Confidence. We instantiate the above definition using the sequence
of stepwise confidence {cs} and confidence variance {vs} as defined in Sec. 2.1, where vs =
Var(cs;Ws) and W∫ is a sliding window. We can determine two-sided quantile thresholds from
a small-scale seen dataset. Let Qc(q) and Qv(q) be the empirical q-quantile of {cs} and {vs}.
Choose 0 < qL < qH < 1 and define

τLc = Qc(qL), τHc = Qc(qH), τLv = Qv(qL), τHv = Qv(qH).

A step is tagged as low-confidence if cs ≤ τLc and high-confidence if cs ≥ τHc . Similarly, A step is
tagged as high-variance if vs ≥ τHv and low-variance if vs ≤ τLv . We then define the sets

O = { s : cs ≤ τLc and vs ≥ τHv }, U = { s : cs ≥ τHc and vs ≤ τLv }.

As observed in Fig. 2(b), high variance reflects frequent switching across reasoning paths and often
co-occurs with low confidence; thus, we treat O as a proxy for overthinking. Persistently high
confidence with low variance indicates stable yet potentially premature commitment, making U a
proxy for underthinking. Steps that fall outside both sets are considered to reflect a normal state and
are excluded from subsequent analyses.

B.2 CONFIDENCE-BASED STEERING VECTOR EXTRACTION

Building upon the explicit modeling paradigm, we propose deriving steering vectors from deep-layer
hidden representations to guide LRMs away from undesirable reasoning modes. These vectors are
efficiently obtained via a one-pass collection performed only once per model prior to deployment,
eliminating additional computation during actual use.

One-Pass Data Collection. We prepare a small-scale seen dataset Dseed and run the model once
per prompt. When the model generates a delimiter \n\n, the next token marks the first token of a
new step. At this token, we save deep-layer hidden states h

ℓ,t
(1)
s

for step index s and selected layers
ℓ, chosen via a probing method maximizing confidence separability on a single dataset but shared
across all datasets (see Appendix A.5). The first token of a step serves as a compact representation
of the step mode for two reasons. First, it typically encodes the intent that sets the direction of the
step (e.g., wait or alternatively)(Yang et al., 2025b), and due to the causal mask, all later tokens
in the step condition on it. Second, deep layers show stronger distinguishability between the two
reasoning modes in our empirical study, consistent with Gekhman et al. (2025); Skean et al. (2025).

Steering Vector Extration Using the tags from sets O and U , we form latent distributions for the
overthinking and underthinking modes. For each selected layer ℓ, we obtain mode prototypes by
averaging the hidden states obtained from the one-pass data collection

µO
ℓ =

1

|O|
∑
s∈O

h
ℓ,t

(1)
s
, µU

ℓ =
1

|U|
∑
s∈U

h
ℓ,t

(1)
s
.

The difference between the two prototypes defines a steering vector for the l-th layer

vℓ =
µO

ℓ − µU
ℓ

∥µO
ℓ − µU

ℓ ∥2
.

This vector encodes the transition direction in latent space from underthinking toward overthinking,
with its negation representing the reverse.

During inference, we inject the steering vector solely at each step’s first token. Specifically, we
modify the deep hidden state by
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h̃
ℓ,t

(1)
s

= h
ℓ,t

(1)
s

+ αℓ vℓ.

Let t(1)s be its position and let αℓ ∈ R be a scalar steering weight that controls strength λℓ and
direction λℓ.

αℓ = λℓ δℓ, λℓ ≥ 0, δℓ ∈ {+1,−1}.

Setting δℓ = +1 pushes the state away from underthinking and increases exploration. Setting
δℓ = −1 pushes the state away from overthinking and facilitates the model to coverage to a rea-
sonable reasoning path. The values of λℓ and δℓ will be determined by the dynamic control function
introduced in the later section. Conceptually, the two prototypes act as boundaries of the model’s
reasoning process. Our goal is to keep the stepwise state between these boundaries so that the model
reasons efficiently with balanced thinking.

B.3 MODEL BEHAVIOR-BASED DYNAMIC CONTROL FUNCTION

Inputs differ in difficulty, and the model’s reasoning state evolves over time. To keep the trajectory
between the overthinking and underthinking boundaries, we set the steering weight α online as a
continuous function of the current state. The function takes the stepwise confidence cs and the
confidence variance vs as inputs, and outputs a steering weight α that determines both direction δ
and magnitude λ. The weight pushes the state away from the closer boundary and grows as the state
approaches that boundary.

From a confidence curve to a control surface. To derive this three-dimensional surface, we
first construct a simplified two-dimensional curve f(c) based solely on confidence c. From the
previous analysis, the steering weight α needs to transition smoothly from a minimum negative value
(away from overthinking) to a maximum positive value (away from underthinking) as confidence c
increases. Many functions satisfy this requirement. Here, we adopt the widely used sigmoid as an
illustration.

For ease of spatial transformation, we express the sigmoid function in terms of the hyperbolic tan-
gent:

σ(c) =
1

1 + e−c
=

1

2
+

1

2
tanh

( c
2

)
.

Our goal is to spatially transform this sigmoid to align precisely with the overthinking and under-
thinking boundaries. After transformation, the function becomes:

f(c) = a+ b tanh(k(c+m)),

where a, b, k, and m represent spatial transformation parameters, which can be obtained by fitting.

However, as detailed in Appendix A.4, confidence distributions vary significantly across models,
making it difficult to find universally applicable parameters. Thus, we propose a model behavior-
based fitting method. This method adaptively determines these parameters based on model-specific
behavior, using the previously collected stepwise confidence cs and confidence variance vs from the
one-pass data collection without additional computational cost.

Specifically, after the one-pass collection, we obtain hidden-state distributions and corresponding
prototypes for overthinking and underthinking, from which we derive a steering vector v. Since
the steering vector connects prototypes that represent their respective hidden-state distributions,
the steering strength can be interpreted as the displacement of these distributions along the vec-
tor direction. Therefore, adjusting the magnitude of this displacement enables us to capture specific
behavioral characteristics of the model, allowing tailored data point generation.

To illustrate this, consider first the alleviation of overthinking. Suppose the hidden-state distribution
of overthinking is bounded. The aggressive displacement is defined as the minimal distance required
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to shift all points within this distribution beyond its boundary. A more moderate displacement, how-
ever, moves only the overthinking prototype outside the boundary, defining the moderate distance.
We explicitly anchor this through specific behavioral criteria:

• Anchor A1: At c = τLc , the steering should yield a negative moderate displacement, effec-
tively guiding the state away from overthinking.

• Anchor A2: At c = τHc , the steering is set to zero, as the state is considered to lie within
the normal confidence region, and thus no additional steering is applied.

In contrast, mitigating underthinking poses unique challenges. Experimental observations indicate
that LRMs may also consistently exhibit high confidence during normal reasoning, making direct
numerical quantification of overconfidence, a defining characteristic of underthinking tendency, dif-
ficult. Therefore, we adopt a conservative mitigation approach. Recognizing that greater disper-
sion in confidence distributions corresponds to larger distances between prototypes measured by the
norm of the steering vector, we select aggressive and moderate displacements for underthinking as
small proportional fractions of this norm. This proportional strategy reduces underthinking with-
out adversely affecting normal reasoning and ensures scalability across diverse LRMs’ confidence
distributions. This approach is anchored by:

• Anchor A3: At c = 1, the maximum normalized confidence, the steering provides a posi-
tive moderate displacement to mitigate excessive confidence and counteract underthinking.

We obtain these moderate targets from model behavior in latent space. Let prototype distance dprot =
∥µO −µU∥2 and let ss = v⊤h

t
(1)
s

. Define a separating threshold along v by t = 1
2 v

⊤(µO +µU).
The moderate distance for overthinking is

dO,m = v⊤µO − t,

which moves the overthinking prototype to the boundary. The aggressive distance for overthinking
is

dO,a = max
s∈O

(
ss
)
− t,

which moves all overthinking steps past the boundary. For underthinking, we adopt a conservative
rule since normal reasoning can also show sustained high confidence. We set

dU,m = ρmU d
prot, dU,a = ρaU d

prot,

with constants 0 < ρmU < ρaU. These distances scale with the separation between prototypes and
adapt across models. Because v has unit norm, a displacement of size d along v corresponds to a
steering magnitude d in the hidden space. We therefore fit f so that

f(τLc ) = − dO,m, f(τHc ) = 0, f(1) = + dU,m.

We solve for b and k by least squares on these anchors. This yields a smooth curve that produces
negative weights at low confidence and positive weights at high confidence, with zero at the center.

Lifting to a variance aware surface. We now incorporate variance to obtain a two-input control
g(c, v). The idea is to keep the sign and basic shape from f(c) while increasing the magnitude near
the two high-risk regions. The overthinking region is c ≤ τLc with v ≥ τHv . The underthinking
region is c ≥ τHc with v ≤ τLv . However, abrupt steering strength changes at region boundaries
are undesirable. To mitigate this, we define smooth gates that approach one inside each region and
decay to zero outside

ψO(c, v) = σ

(
τLc − c

ηc

)
σ

(
v − τHv
ηv

)
, ψU(c, v) = σ

(
c− τHc
ηc

)
σ

(
τLv − v

ηv

)
,
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Figure 12: Left: heatmap of g(cs, vs) with v on a log scale; Right: 3D surface of g(cs, vs). Dashed lines mark
qc25, q

c
75 and qv25, qv75.

where σ(x) = 1/(1 + e−x). The parameters ηc > 0 and ηv > 0 control the width of the transition
and smooth the change near region boundaries. We then modulate the amplitude of f by replacing
the moderate distances with aggressive distances inside the corresponding region. Let

B(c, v) = Bm +
(
BO,a −Bm

)
ψO(c, v) +

(
BU,a −Bm

)
ψU(c, v),

with Bm chosen by the fit of f , BO,a = dO,a, and BU,a = dU,a. The final control surface is

g(c, v) = sign
(
c− τHc

)
B(c, v) tanh

(
k
∣∣c− τHc

∣∣).
For fixed v, the map is monotone in c. For fixed c, the magnitude increases smoothly as v enters
the overthinking or underthinking region. The sign follows the confidence side so that the weight
always pushes away from the nearer boundary.

Online steering. At step s we set

αs = g(cs, vs), λs = |αs|, δs = sign(αs).

These values plug into the injection rule and separate direction and magnitude as defined earlier.
The procedure is training-free and uses only statistics that are already computed online. It adapts
across models through the behavior-based distances and across inputs through the gates on (cs, vs).
The result is a continuous controller that keeps the trajectory between the two mode boundaries and
allocates more steering when the state drifts toward either boundary.

Function Visualization. We visualize the fitted mapping g(cs, vs) for DEEPSEEK–R1–DISTILL–
QWEN–1.5B. Darker regions—characterized by high variance and low confidence—indicate where
the overthinking penalty is strongest. Conversely, the lighter, positive region at low variance and
high confidence marks where the underthinking penalty is strongest.

C ADDITIONAL EXPERIMENTAL RESULTS AND ABLATIONS

C.1 ABLATION ON INDIVIDUAL AXES

We study univariate effects via axis-wise ablations of g(cs, vs): define gc(cs) := g(cs, v̄) and
gv(vs) := g(c̄, vs), where v̄ and c̄ denote the means of confidence variance v and stepwise con-
fidence c estimated on the extraction set. As shown in the first three rows of Tab. 9, both univariate
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Method Math500 GSM8K Olympiad

Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓
Full [g(c, v)] 83.0 3474 78.3 765 43.9 7235
g(c) 82.6 ↓ 3387 ↓ 78.1 ↓ 890 ↑ 41.7 ↓ 6612 ↓
g(v) 76.6 ↓ 3596 ↑ 78.0 ↓ 658 ↓ 39.6 ↓ 6876 ↓

Table 9: Axis-wise ablations on the R1-1.5B backbone across difficulty levels. We analyze perfor-
mance changes on three math benchmarks with varying difficulty: Math500 (medium), GSM8K (easy), and
Olympiad (hard). Metrics are Pass@1 accuracy (%) and generated token numbers. Arrows indicate change
relative to Full [ g(c, v) ]: Acc. ↑ increase, ↓ decrease; Tokens ↓ decrease, ↑ increase.

Gating Functions MATH-500 GSM8K Olympiad GPQA-D

Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓
DeepSeek-R1-Distill-Qwen-1.5B

Baseline 79.6 4516 76.0 1018 41.2 8785 17.1 8727
Sigmoid Gate 83.0 3474 78.3 765 43.9 7235 21.7 6902
Linear Gate 83.6 3600 79.2 800 42.5 6794 17.7 7019
Hard-Step Gate 81.2 3830 79.7 820 41.8 7528 17.2 6537
Polynomial-Fitted Gate 82.8 3508 79.0 798 44.2 7059 20.7 6161
ReLU-Shaped Gate 84.0 3277 80.1 818 43.0 6875 19.7 6966

DeepSeek-R1-Distill-Qwen-7B

Baseline 89.8 3699 89.2 1098 56.1 7590 33.8 7392
Sigmoid Gate 92.6 2903 91.6 912 57.0 6321 39.4 5180
Linear Gate 91.2 3113 90.0 936 56.2 6303 43.0 5589
Hard-Step Gate 92.0 3115 90.0 909 57.8 6319 40.4 5448
Polynomial-Fitted Gate 91.6 2932 91.3 913 56.0 6206 38.9 5768
ReLU-Shaped Gate 91.4 3054 91.7 928 57.0 6362 39.9 5758

Table 10: Performance comparison of different gating functions across benchmarks. We evaluate both
DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B on four reasoning datasets. Metrics
are Pass@1 accuracy (%) and the number of generated tokens. Different gating mechanisms exhibit notable
variations in both accuracy and efficiency.

variants degrade REBALANCE performance, indicating that the bivariate form g(c, v) provides finer-
grained and more effective control than single-variable schemes.

C.2 ABLATION ON GATING MECHANISM

Our control surface design is originally built upon a smoothly parameterized sigmoid gating func-
tion, which is a widely adopted choice in prior work due to its simplicity and smoothness properties.
The primary role of this gating mechanism, as outlined in Sec. 3.4 and further detailed in Ap-
pendix B.3, is to produce a smoother fitted surface and avoid abrupt transitions in steering strength
during inference.

To investigate the sensitivity of our method to the specific form of the gating function, we conduct
an ablation study by replacing the default sigmoid gate with several alternative gating strategies. As
shown in Tab. 10, we evaluate four variants: a linear gate, a hard-step gate, a polynomial-fitted gate,
and a ReLU-shaped gate. Results across multiple models, difficulty levels, and domains indicate that
all variants achieve effective reasoning performance, with only minor differences observed across
datasets. This demonstrates that our approach is robust to the particular choice of gating function.

Notably, while the sigmoid function yields strong empirical performance relative to baseline, it was
selected primarily for its common usage rather than through extensive engineering optimization.
Our experiments suggest that with additional tuning or more sophisticated gate designs, performance
could potentially be further improved. However, since the precise design of the gating function is
not the central focus of this work, we retain the standard sigmoid as the default for simplicity and
reproducibility.

C.3 CROSS-DOMAIN AND CROSS-DIFFICULTY TRANSFERABILITY
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Cross-domain transferability. To validate the cross-domain transferability of ReBalance, we
conduct experiments on DeepSeek-R1-Distill-Qwen-1.5B. Specifically, we extract steering vectors
and confidence statistics from coding (LiveCodeBench) and commonsense (StrategyQA) tasks and
transfer them to the mathematics domain (MATH-500). We also report the quartiles of the confi-
dence distribution (q25c, q75c) and variance distribution (q25v, q75v) derived from each extraction
dataset. For readability, confidence quartiles are scaled by 100 and variance quartiles by 1000.

As observed in Tab. 11, although the confidence statistics differ to some extent across domains,
ReBalance achieves strong performance in all cases. Notably, extractions from StrategyQA can
even achieve higher Pass@1 scores compared to those from MATH within the same domain.

Cross-difficulty transferability. We categorize commonly used mathematical reasoning datasets
by difficulty level: easy (GSM8K, AMC23), medium (MATH/MATH-500), and hard (AIME24,
AIME25, Olympiad). Using the medium-difficulty datasets as an intermediary, we examine two
transfer directions, easy-to-medium and hard-to-medium, to explore how changes in task difficulty
affect the transfer performance of ReBalance. The experimental results on DeepSeek-R1-Distill-
Qwen-1.5B are shown in Tab. 11.

However, data distributions vary across different datasets, which may introduce confounding factors
beyond just difficulty. Moreover, it is challenging to precisely quantify the difficulty gaps between
datasets, posing significant challenges to the analysis. Therefore, we leverage the ground-truth
difficulty grading within the MATH dataset and conduct an analysis based on QwQ-32B (Tab. 11),
performing an in-distribution, fine-grained difficulty classification from Level 1 to Level 5 within
the same dataset.

Based on the experimental results, we have the following observations. Firstly, the higher the diffi-
culty of the extraction dataset, the lower the confidence and the higher the variance. This reflects the
model’s broader and more frequent exploration of reasoning paths, aligning with the decision rule
we proposed in Eq. 5, where confidence serves as an indicator. Secondly, Extraction datasets of easy
difficulty prioritize token reduction, while those of hard difficulty prioritize accuracy improvement.
We believe this occurs because easy extraction datasets exhibit higher confidence and lower vari-
ance; thus, according to Eq. 5, the range classified as overthinking is wider, and the underthinking
range is narrower. This results in more frequent triggering of the overthinking criterion, causing the
dynamic control function to preferentially suppress redundant reasoning. The opposite occurs for
harder datasets.

Therefore, we suggest using extraction datasets of medium difficulty (e.g., MATH) in practical ap-
plications to achieve an optimal accuracy-efficiency trade-off.

C.4 PASS@K AND AVG@K PERFORMANCE ANALYSIS

The core issue addressed by ReBalance is balanced thinking, i.e., mitigating overthinking while
simultaneously preventing underthinking. Here, “underthinking” refers to cases where the model
is inherently capable of solving a problem but produces an incorrect answer due to insufficient
reasoning. According to the definition of Pass@k, this metric effectively grants the model multiple
reasoning attempts and expanded exploration space, counting a question as correct if any one of the
k sampled solutions is successful. Therefore, theoretically, for problems that meet the underthinking
criterion, which are those that the model is truly capable of solving, the likelihood of obtaining
a correct answer approaches certainty as the number of samples increases, eventually converging
toward the model’s capability ceiling (Karan & Du, 2025). At this point, the impact of underthinking
on accuracy becomes negligible, and ReBalance primarily serves to alleviate overthinking.

To validate the above analysis, we evaluate Pass@20 over 20 samples and measure the average token
length of generated sequences on the few-example datasets AMC23, AIME24, and AIME25. The
results are shown in Tab. 12.

As can be seen, consistent with our analysis, ReBalance significantly reduces reasoning length with-
out any degradation in model accuracy. This demonstrates that our proposed confidence indicator
accurately characterizes overthinking and underthinking. Thanks to this precise characterization,
ReBalance prunes only genuinely redundant reasoning steps rather than essential or effective ones,
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Dataset Confidence Distribution MATH-500

q25c q75c q25v q75v Pass@1 ↑ #Tokens ↓
QwQ-32B

MATH 70.6 92.0 0.4 7.3 95.2 3662
Level-1 74.8 92.8 0.3 5.2 94.8 3447
Level-2 72.4 92.7 0.3 6.9 94.8 3623
Level-3 71.0 92.1 0.4 6.9 95.2 3678
Level-4 69.6 92.0 0.4 7.4 95.0 3696
Level-5 69.2 91.1 0.4 7.7 95.4 3720

DeepSeek-R1-Distill-Qwen-1.5B

MATH 66.8 93.9 0.5 11.0 83.0 3474
GSM8K 76.9 94.4 0.3 6.7 80.6 3221
AMC23 61.8 94.2 0.4 10.4 82.8 3277
AIME24 63.2 92.1 0.5 9.8 83.2 3568
AIME25 58.9 90.2 0.4 9.3 84.0 3796
Olympiad 58.1 84.2 0.5 9.5 83.6 3862
GPQA 56.5 82.8 0.5 9.5 81.4 4260
LiveCodeBench 62.4 91.2 0.5 6.2 82.0 3482
StrategyQA 61.2 85.8 0.4 8.3 83.4 3667

Table 11: Performance Variation under Difficulty-Conditioned Control Surfaces. We investigate per-
formance shifts induced by control surfaces derived from datasets of varying difficulty. For each difficulty
tier, we extract the steering vectors and fit the associated control surface, and subsequently evaluate them on
DeepSeek-R1-Distill-Qwen-1.5B and QwQ-32B. The results indicate systematic differences in Rebalance be-
havior, suggesting that dataset difficulty plays a non-trivial role in shaping the resulting control dynamics.

Method AMC23 AIME2024 AIME2025

Pass@20 ↑ #Tokens ↓ Pass@20 ↑ #Tokens ↓ Pass@20 ↑ #Tokens ↓
DeepSeek-R1-Distill-Qwen-1.5B

Baseline 97.5 7430 63.3 10645 43.3 10447
ReBalance 97.5 4832 63.3 9243 46.7 8652

DeepSeek-R1-Distill-Qwen-7B

Baseline 100.0 6021 76.7 11249 66.7 11379
ReBalance 100.0 5264 76.7 8563 66.7 9019

Qwen3-14B

Baseline 100.0 7331 90.0 11367 80.0 12717
ReBalance 100.0 5124 90.0 9247 80.0 10381

QwQ-32B

Baseline 100.0 7034 86.7 14121 83.3 13386
ReBalance 100.0 5651 86.7 9853 83.3 11586

Table 12: Pass@20 Performance and Token Efficiency. ReBalance preserves accuracy while consistently
reducing the token usage of baseline models.

enabling lossless and efficient sequence compression even when the model operates near its capa-
bility ceiling.

Following prior work (Jaech et al., 2024; Guo et al., 2025), we report Avg@4 on the large-scale
MATH-500 dataset. For the few-sample benchmarks AMC23, AIME24, and AIME25, we also
include Avg@16 together with Avg@4 to evaluate the model’s average case reasoning performance
under both low-sampling settings and medium-sampling settings. As shown in Tab. 13 and 14, we
have the following observations:

• Inter-dataset variability in randomness. As reflected by the standard deviations of
Avg@k and Tok@k, datasets with very few samples exhibit substantially higher vari-
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Model Avg@1 Tok@1 Avg@4 ± Std Tok@4 ± Std

DeepSeek-R1-Distill-Qwen-1.5B 79.6 4516 79.6 ± 0.004 4620 ± 100.9
w/ ReBalance 83.0 3474 83.3 ± 0.007 3553 ± 55.5

DeepSeek-R1-Distill-Qwen-7B 89.8 3699 89.4 ± 0.007 3703 ± 56.4
w/ ReBalance 92.6 2903 92.6 ± 0.001 2894 ± 38.1

Qwen3-14B 93.8 4470 93.8 ± 0.001 4550 ± 38.8
w/ ReBalance 94.0 3641 94.1 ± 0.001 3674 ± 44.6

Table 13: Multi-sample evaluation on MATH-500.

Model Avg@1 Tok@1 Avg@4 ± Std Tok@4 ± Std Avg@16 ± Std Tok@16 ± Std

AIME24

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 23.3 12596 21.7 ± 0.02 12897 ± 830.7 19.6 ± 0.03 12931 ± 830.7
ReBalance 36.7 9040 34.2 ± 0.04 9179 ± 718.4 35.6 ± 0.05 9179 ± 602.6

DeepSeek-R1-Distill-Qwen-7B
Baseline 40.0 13994 41.7 ± 0.03 13636 ± 434.2 41.3 ± 0.04 13764 ± 418.2
ReBalance 56.7 9012 55.0 ± 0.02 8664 ± 896.5 57.9 ± 0.05 9167 ± 620.9

Qwen3-14B
Baseline 66.7 10888 70.0 ± 0.02 11488 ± 188.1 67.1 ± 0.06 11174 ± 307.9
ReBalance 73.3 9464 71.7 ± 0.02 9627 ± 115.3 73.1 ± 0.02 9613 ± 112.1

AIME25

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 16.7 14556 15.0 ± 0.02 14107 ± 354.3 15.4 ± 0.02 14589 ± 416.3
ReBalance 30.0 8140 27.5 ± 0.03 8447 ± 447.0 27.5 ± 0.03 8723 ± 626.9

DeepSeek-R1-Distill-Qwen-7B
Baseline 26.7 13778 28.3 ± 0.04 12340 ± 308.3 27.3 ± 0.04 12192 ± 308.3
ReBalance 40.0 9227 40.0 ± 0.02 8813 ± 609.3 40.0 ± 0.02 9241 ± 463.2

Qwen3-14B
Baseline 56.7 13125 55.0 ± 0.05 12900 ± 241.7 54.4 ± 0.06 12457 ± 298.7
ReBalance 56.7 11057 57.5 ± 0.06 11023 ± 213.1 57.3 ± 0.07 11013 ± 224.3

AMC23

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 55.0 8990 53.8 ± 0.01 8616 ± 302.6 54.1 ± 0.02 8637 ± 538.8
ReBalance 80.0 5216 80.6 ± 0.04 4730 ± 255.3 80.0 ± 0.04 4729 ± 433.5

DeepSeek-R1-Distill-Qwen-7B
Baseline 75.0 6898 74.9 ± 0.02 6297 ± 520.2 74.8 ± 0.02 6297 ± 335.1
ReBalance 95.0 4767 93.8 ± 0.02 4115 ± 423.4 92.2 ± 0.04 4226 ± 394.4

Qwen3-14B
Baseline 95.0 7240 91.3 ± 0.03 7244 ± 115.3 93.1 ± 0.03 6985 ± 210.3
ReBalance 100.0 5230 98.8 ± 0.02 5120 ± 98.4 97.7 ± 0.02 4848 ± 190.2

Table 14: Multi-sample evaluation on AMC23, AIME24, and AIME25.

ance—up to an order of magnitude larger than that of large-sample datasets such as MATH-
500. This affects both accuracy and generated sequence length.

• Performance stability on large-sample datasets. On datasets with sufficient sample size,
multi-sample evaluation has minimal impact on the relative performance between ReBal-
ance and the baseline. The performance gap remains largely consistent across different
sampling counts.

• Performance stability on few-sample datasets. Although both accuracy and sequence
length fluctuate more significantly with increased sampling on few-sample datasets, the
relative improvement of ReBalance over the baseline remains stable. Notably, under 16-
sample evaluation, ReBalance yields even larger performance gains compared to the orig-
inal single-sample setting across multiple datasets and models, further demonstrating its
effectiveness and robustness.

C.5 PERFORMANCE VARIATION UNDER DIFFERENT CONFIDENCE DISTRIBUTIONS

To examine the generalizability of Rebalance across distinct confidence regimes within the same
model, we keep both the control surface and evaluation samples fixed while varying the model’s
decoding temperature. This setup allows us to assess whether Rebalance consistently yields per-
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Temperature Confidence Distribution Baseline Rebalance

qc25 qc75 qv25 qv75 Pass@1 (%) Token Pass@1 (%) Token

0.2 1 1 0 0 68.4 6248 77.0 4335
0.4 0.9602 1 0 0.0006 72.6 5694 79.6 3906
0.6 0.8507 1 0 0.0039 79.4 4584 81.6 3689
0.8 0.7156 0.9845 0.0002 0.0098 81.0 4529 84.6 3485
1.0 0.5516 0.9449 0.0006 0.0164 82.4 4660 82.4 3488

Table 15: Performance of Rebalance under different temperature settings on DeepSeek-R1-Distill-
Qwen-1.5B. Rebalance consistently provides higher accuracy and shorter reasoning traces from low- to high-
temperature settings, demonstrating stable generalization under varying confidence distributions.

(a) (b) (c) (d)

Figure 13: (a)–(d) show the mean confidence distributions of the Baseline and Rebalance models at temper-
atures 0.2, 0.4, 0.8, and 1.0, respectively. The trend reveals a clear temperature-dependent effect: at lower
temperatures, Rebalance systematically reduces the model’s overconfident predictions, whereas at higher tem-
peratures, it shifts the distribution upward, counteracting the underconfidence introduced by increased sampling
randomness.

formance gains under different confidence distributions. As shown in Tab. 15, Rebalance behaves
adaptively across decoding temperatures. At low temperatures, the model exhibits persistently high
confidence, which frequently triggers the underthinking detector; Rebalance then encourages more
diverse reasoning trajectories. Conversely, at higher temperatures, the model produces higher vari-
ance and lower confidence, activating the overthinking detector; in this regime, Rebalance effectively
narrows the search space and accelerates convergence. As illustrated in Fig. 13, the results provide
a detailed view of how Rebalance adjusts the model’s behavior across temperature regimes. At
lower temperatures, Rebalance effectively suppresses overconfident predictions, thereby reducing
underthinking and substantially improving the model’s accuracy.

C.6 SEMANTIC CHANGE AND CREATIVITY ANALYSIS

Even though Appendix A.6 examines the relationship between the keyword vocabulary and con-
fidence, it remains necessary to analyze the semantics of the model’s generated outputs. To this
end, we conduct a systematic semantic analysis of the DeepSeek-R1-Distill-Qwen-1.5B reasoning
traces using the Transition and Reflection vocabularies introduced in SEAL Chen et al. (2025). As
shown in Tab. 16, we quantify the semantic changes of the model under NoWait, NoThinking, and
our method before and after steering. For readability, TF and TF-IDF scores are scaled by a fac-
tor of 1000. We observe that both reflection and transition patterns decrease to varying degrees
across all methods. However, the first two baselines suffer from noticeable accuracy drops. In con-
trast, our method preserves a non-negligible amount of these reasoning patterns, which substantially
contributes to maintaining, and in some cases even improving, the model’s accuracy. Retaining re-
flection and transition patterns appears to be a key factor for preserving reasoning correctness in
large language models.

To evaluate whether applying Rebalance imposes any unintended drawbacks on creativity and the
naturalness of the expressions, we further assess the models using the Creative Writing v3 bench-
mark Paech (2025). The experimental results are summarized in Tab. 17.

We evaluate four models using Claude-Sonnet-4.5 Anthropic (2024) as the judge model. For each
model, we report three metrics: (1) Rubric Score, an aggregate quality score across multiple writing
dimensions; (2) Elo Score, a relative writing-quality ranking calibrated with GPT-3.5-Turbo OpenAI
(2023) and DeepSeek-R1-Distill-Qwen-1.5B as fixed anchors; and (3) Fine-grained Ability Scores,
covering fifteen creative-writing competencies: coherent (logical consistency and structural clar-
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Method Reflection Transition Performance Change

Word Count TF TF–IDF Word Count TF TF–IDF ∆Pass@1 ∆Tokens

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 30.3 9.7 12.1 6.7 2.4 3.9 – –
NoThinking 3.9 1.7 4.6 0.9 0.4 1.3 -4.6 -64.9%
NoWait 1.6 1.7 3.5 0.1 1.9 × 10−2 7.7 × 10−2 -1.6 -41.4%
Rebalance 10.5 6.4 9.3 1.7 1.0 2.3 +3.4 -23.1%

DeepSeek-R1-Distill-Qwen-7B
Baseline 19.2 8.1 10.3 5.2 2.3 3.7 – –
NoThinking 1.8 1.2 3.1 0.1 9.6 × 10−2 4.5 × 10−2 -9.2 -77.4%
NoWait 1.2 1.8 3.9 0.03 2.8 × 10−2 1.8 × 10−2 -3.0 -32.9%
Rebalance 12.8 6.7 9.2 2.7 1.4 2.8 +2.8 -21.5%

Qwen3-14B
Baseline 24.0 9.2 10.8 8.7 3.3 4.4 – –
NoThinking 10.4 5.5 9.4 2.8 1.0 2.4 0.0 -40.5%
NoWait 2.1 1.8 3.3 0.0 9.4 × 10−3 4.1 × 10−2 -1.0 -27.9%
Rebalance 13.2 6.8 8.1 4.6 2.3 3.3 +0.2 -18.5%

QwQ-32B
Baseline 26.7 11.2 13.3 10.1 3.8 5.1 – –
NoThinking 26.0 11.5 13.7 9.5 3.8 5.1 0.0 -13.7%
NoWait 2.5 2.4 4.1 0.1 2.2 × 10−2 8.1 × 10−2 -1.0 -27.9%
Rebalance 22.1 10.8 10.1 5.4 2.5 3.8 +0.4 -19.3%

Table 16: Semantic statistics of Transition and Reflection vocabularies across different methods and mod-
els, and corresponding performance changes. For each method on each model, we report the total word
count, term frequency (TF), and TF–IDF score for both vocabularies, as well as the change in accuracy and
tokens relative to the Baseline of the same model.

ity), creativity (originality and non-templated expression), descriptive imagery (vivid, sensory-rich
description), pacing (appropriate narrative flow), elegant prose (fluency and stylistic refinement),
instruction following (accurate adherence to instructions), consistent voice & tone (stable narrative
voice), strong dialogue (natural, character-appropriate dialogue), sentence flow (smooth transitions
between sentences), show–don’t–tell (conveying meaning through scene and action rather than ex-
position), avoids amateurish prose (avoidance of clichés or novice patterns), emotional depth (nu-
anced emotional expression), avoids positivity bias (avoidance of forced optimism), avoids purple
prose (restraint from overly ornate language), believable characters (psychological plausibility and
consistent character voices).

It can be observed that after applying ReBalance, the models generally maintain and even improve
their performance in creativity and the naturalness of expressions. The percentage of metrics that
are higher than or equal to those of the original models is notably high: 71% for DeepSeek-R1-
Distill-Qwen-1.5B, 88% for DeepSeek-R1-Distill-Qwen-7B, 100% for Qwen3-14B, and 65% for
QwQ-32B. Notably, Qwen3-14B achieves significant improvements across all metrics after apply-
ing ReBalance. We posit that this improvement stems from ReBalance’s ability to continuously and
gently guide the reasoning process, achieving a balance between overthinking and underthinking,
thereby maintaining the model within effective reasoning boundaries. Consequently, the models
exhibit measurable improvements in creative-writing performance, indicating that ReBalance accel-
erates convergence without compromising the model’s capacity for innovative or divergent thinking.

We additionally evaluate Qwen2.5-7B-Instruct and find that its creativity scores are substantially
higher than those of the distilled DeepSeek-R1-Distill-Qwen-7B, further supporting our observa-
tions. Our analysis reveals that distillation systematically reduces linguistic diversity, a property
that is closely tied to creativity. Likewise, task-specific fine-tuning may limit creative expression by
reinforcing existing patterns at the expense of novel exploration.

In contrast, Rebalance induces a form of cognitive restructuring in the model’s internal reasoning
process, which partially restores and enhances creative expressiveness. These findings highlight an
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Method Score Ability

Rubric Elo Coh Crt Img Pac Ele Inst Voi Dia Flo SDT Ama Emo Pos Pur Ch

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 15.0 30.0 1.3 1.8 2.8 1.9 5.4 1.5 2.9 2.9 4.1 2.5 3.2 1.2 11.5 9.2 1.8
Rebalance 15.2 57.5 1.5 1.9 2.7 2.2 5.6 1.4 2.8 3.0 4.3 2.5 3.3 1.2 11.2 9.4 1.7

DeepSeek-R1-Distill-Qwen-7B
Baseline 22.9 308.9 4.0 4.4 4.8 4.8 6.6 3.1 5.0 4.2 6.6 4.0 5.4 2.7 9.9 9.6 3.4
Rebalance 23.4 349.7 4.3 4.5 4.7 5.1 6.7 3.0 5.0 4.6 6.6 4.1 5.4 2.9 9.9 9.9 3.5
Qwen3-14B
Baseline 42.6 1295.2 8.8 7.1 10.3 7.7 8.2 9.2 11.2 6.4 8.1 5.5 6.6 8.1 10.8 8.4 8.8
Rebalance 50.5 1368.0 12.2 7.2 11.6 11.3 9.5 12.1 12.3 8.2 9.9 6.9 8.0 9.4 12.6 9.0 10.3
QwQ-32B
Baseline 52.7 1438.2 12.6 8.1 12.0 11.7 9.8 13.6 12.6 8.5 9.8 8.1 8.3 9.8 11.4 9.6 10.6
Rebalance 52.8 1442.7 12.7 7.9 12.3 11.8 9.9 12.6 12.2 8.6 9.8 7.9 8.0 9.8 12.2 9.5 10.7
Qwen2.5-7B-Instruct
Baseline 33.5 877.6 7.4 5.2 7.2 7.6 8.5 6.1 8.0 6.2 8.7 4.8 6.9 4.9 9.5 10.6 6.3

GPT3.5-Turbo
Baseline 52.8 1500.0 13.2 7.1 11.5 12.2 10.5 12.7 13.3 8.1 11.0 7.2 8.9 9.1 11.5 10.4 10.8

Table 17: Creative-writing performance on Creative Writing v3 benchmark. Ability abbreviations: Coh
= Coherent; Crt = Creativity; Img = Descriptive Imagery; Pac = Pacing; Ele = Elegant Prose; Inst = Instruction
Following; Voi = Consistent Voice & Tone; Dia = Strong Dialogue; Flo = Sentence Flow; SDT = Show-Don’t-
Tell; Ama = Avoids Amateurish Prose; Emo = Emotional Depth; Pos = Avoids Positivity Bias; Pur = Avoids
Purple Prose; Ch = Believable Characters.

Model
Normal (O-base) Overthinking Normal (U-base) Underthinking

Conf. Var. Len. Conf. Var. Len. Conf. Var. Len. Conf. Var. Len.

DeepSeek-R1-Distill-Qwen-1.5B 80.4 18.5 1357 78.6 21.3 2386 85.1 22.2 2909 89.7 16.7 1726
DeepSeek-R1-Distill-Qwen-7B 90.0 11.0 2809 81.8 23.0 5995 82.4 22.0 3259 91.2 12.0 2752
Qwen3-14B 92.6 8.7 5763 88.1 12.1 8819 85.3 11.3 6305 9.27 8.0 5743
QwQ-32B 84.0 16.1 3712 75.4 22.1 6377 76.2 18.5 4573 78.9 1.76 3080

Table 18: Comparison of Confidence, Variance, and Output Length Across Thinking Modes. For each
model, we report statistics for Normal responses paired with Overthinking (Normal (O-base)) and Underthink-
ing (Normal (U-base)), together with the corresponding Overthinking and Underthinking states.

important direction for future work: developing methods that improve reasoning stability without
suppressing linguistic diversity or creative generation.

C.7 CONFIDENCE CHARACTERISTICS OF OVERTHINKING AND UNDERTHINKING

Fig. 2(b) in the main text highlights a core contribution of our work: confidence serves as a con-
tinuous and reliable indicator for explicitly modeling overthinking and underthinking. In Fig. 2(b),
we use DeepSeek-R1-Distill-Qwen-1.5B on MATH-500 for visualization. To demonstrate the gen-
erality of this observation, we extend the experimental setup to include four model sizes (1.5B to
32B) across three distinct model families. Tab. 18 presents a comprehensive quantitative analysis of
stepwise confidence and confidence variance across these models. For clarity, confidence values are
scaled by 100 and variance by 1000.

We can observe that, across all models shown in Tab. 18, the results consistently align with those
of Fig. 2(b): Firstly, overthinking samples exhibit lower confidence and higher variance, suggesting
hesitant and repeated switching between reasoning paths, often leading to redundant reasoning; Sec-
ondly, underthinking samples show higher confidence and lower variance, and this persistently high
confidence often causes the model to prematurely commit to an incorrect reasoning path, hinder-
ing thorough exploration. This observation further confirms that confidence can serve as a general
indicator, broadly applicable across various large reasoning models.

C.8 PERFORMANCE COMPARISON WITH TRIMR AND FLASHTHINK

Since the official implementations of TrimR (Lin et al., 2025a) and FlashThink (Jiang et al., 2025)
are not publicly available, we reproduce both methods for a fair comparison.
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QwQ-32B MATH-500 AIME24 AIME25 GSM8K AMC23 GPQA-D

Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓ Pass@1 ↑ #Tokens ↓

TrimR

threshold=0.5 93.8 3830 56.7 8345 43.3 8827 93.7 1319 90.0 6055 63.1 6380
threshold=0.75 94.8 4048 70.0 10235 53.3 11397 96.7 1410 87.5 6778 69.2 7312
threshold=1 93.8 4241 66.7 11007 56.7 11726 95.9 1432 90.0 6890 63.7 7012

Flashthink

max tokens=16000 94.8 2854 56.7 8757 60.0 9613 96.3 1090 90.0 5200 64.7 5751
max tokens=32000 94.6 2884 66.7 11390 63.3 11218 96.7 1098 95.0 5596 66.2 5982

ReBalance(ours)

max tokens=16000 95.2 3662 70.0 10350 63.3 11575 96.8 1289 95.0 6064 67.2 6296

Table 19: Performance comparison with TrimR and Flashthink on QwQ-32B. All experiments are run
with the same sampling parameters.

Reproduction of TrimR. We adopt the reflection tokens given in the paper to split reasoning into
fixed-interval sub-thoughts and feed them into a verifier model for answer detection. We use a
streaming inference pipeline that monitors generation through OpenAI-compatible endpoints. Since
the step size is unspecified, we set it to 100 tokens, consistent with the original Fig. 8. Both the
overthinking-compression module (via answer convergence) and the underthinking-compression
module (via budget monitoring) are enabled accordingly. In the original study, TrimR was exe-
cuted on Ascend NPUs with the NPU-native Pangu-7B model serving as the verifier. Since we do
not have access to Ascend NPUs, our experiments are instead conducted on NVIDIA RTX PRO
6000 GPUs and adopt Qwen2.5-7B-Instruct (Yang et al., 2025a) as the verifier, following the other
configuration outlined in their paper.

In TrimR, R denotes the underthinking threshold defined in the original paper. Specifically, the
reasoning process is terminated once it reaches R% of the maximum sequence length, with R =
0.5 used by default. Since TrimR is originally validated only on models of 32B parameters or
larger, we conduct our comparison using QwQ-32B to ensure a fair assessment of its strengths.
Despite TrimR’s use of an additional 7B auxiliary model, an extra inference stage, and post-hoc
optimization via repetition truncation, ReBalance still achieves significantly better performance.
Moreover, our analysis of the R parameter reveals that increasing R leads to notable accuracy gains
for TrimR on challenging benchmarks such as AIME24 and AIME25. This observation further
supports the hypothesis that existing approaches designed to mitigate overthinking can inadvertently
induce underthinking, highlighting a critical trade-off in current reasoning frameworks.

Reproduction of FlashThink. For FlashThink, we follow the paper’s core procedure, i.e., seg-
menting the chain-of-thought using delimiter tokens and invoking a verifier model for early exit.
Like TrimR, we employ a streaming inference pipeline that monitors generation via OpenAI-
compatible endpoints. Each detected segment is forwarded to the verifier (Qwen2.5-7B-Instruct)
using the original prompt template. The main results for TrimR and FlashThink are reported in
Tab. 1, with more detailed comparisons provided in Tab. 19.

Overall, while FlashThink and TrimR effectively reduce token usage, they incur significant
inference-time overhead. Frequent verification interrupts disrupt the decoding process, stall the
pipeline, and degrade KV-cache efficiency; moreover, deploying a separate verifier increases sys-
tem complexity. In contrast, ReBalance introduces minimal overhead, maintains uninterrupted de-
coding, and simultaneously reduces token consumption and latency, offering a more practical and
self-contained solution.

C.9 BALANCED THINKING WITH DYNAMIC TEMPERATURE

In this work, we use steering as an illustrative example to practically implement our idea of balanc-
ing overthinking and underthinking. Notably, the concept itself is generalizable and applicable to a
variety of approaches aiming at promoting balanced thinking. To support this argument, inspired by
Zhang et al. (2024) and Zhu et al. (2024), we replace the dynamic steering component in ReBalance
with a much simpler approach: adjusting the temperature parameter. Specifically, when overthinking
is detected during inference, we reduce the temperature to avoid excessively divergent exploration
leading to redundant reasoning. Conversely, when underthinking is detected, we increase the tem-
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Method
AMC23 AIME24 AIME25 Olympiad

Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens

DeepSeek-R1-Distill-Qwen-1.5B
Baseline 55 8990 23.3 12596 16.7 14556 41.2 8785
Dynamic Temperature 75 7344 36.7 12054 23.3 11659 44.7 8538
Dynamic Steering 80 5216 36.7 9040 30.0 8140 43.9 7253

DeepSeek-R1-Distill-Qwen-7B
Baseline 75 6898 40.0 13994 26.7 13778 56.1 7590
Dynamic Temperature 82.5 5856 53.3 10593 36.7 10740 57.5 7498
Dynamic Steering 95.0 4767 56.7 9012 40.0 9227 57.0 6321

QwQ-32B
Baseline 87.5 7021 66.7 14342 46.7 13350 66.7 8219
Dynamic Temperature 92.5 6721 66.7 11202 53.3 12134 67.6 8160
Dynamic Steering 95.0 6064 70.0 10350 63.3 11575 68.6 7422

Table 20: Performance comparison across three model sizes under different inference-time control methods.

perature to broaden reasoning. Due to constraints in time and computational resources, we conduct
only preliminary experiments using a discrete, binary hyperparameter setting without further tuning.
Still using confidence as the indicator, we set the temperature to 1.2 upon detecting underthinking,
and reduce it to 0.7 upon detecting overthinking.

The comparative results are summarized in Tab. 20. Even with such a simple configuration, our
balanced thinking approach achieves significant performance improvements and reductions in rea-
soning length. Therefore, we believe the performance can be further enhanced by introducing a
model behavior-based dynamic function fitting method similar to ReBalance, which naturally en-
ables adaptive continuous regulation without manual hyperparameter tuning.

C.10 ADDITIONAL PROTOTYPE CONSTRUCTION STRATEGIES

In Sec. 3.2 of the main text, we provide two definitions for overthinking and underthinking in Eq. 3
and Eq. 5, respectively, and select Eq. 5 as ReBalance’s explicit modeling approach. To address
potential concerns, we present a comparative analysis and experimental validation of these two
definitions.

Comparative analysis. Although Eq. 3 appears more concise and intuitive, it serves only as a
theoretical definition of overthinking and underthinking. Its purpose is to provide a conceptual
distinction between the two phenomena through a formalized expression. This definition operates
at the trajectory level, classifying an entire reasoning trajectory as overthinking or underthinking by
comparing it against an idealized stability index that acts as a decision boundary. Consequently, if
Eq. 3 were directly used as the indicator for steering vector extraction, it would inevitably lead to
the following issues.

• Mismatch in operational granularity. Our method aims to adaptively adjust the model’s
behavior based on the real-time reasoning state at each step. This requires a step-level,
fine-grained indicator to detect tendencies toward overthinking or underthinking. To avoid
a mismatch in operational granularity, we therefore maintain the same step-level resolu-
tion during the steering vector extraction. However, Eq. 3 only supports trajectory-level
classification of reasoning modes, and this granularity mismatch may lead to suboptimal
performance.

• Limited applicability. The stability index requires access to ground truth, which intro-
duces an additional dependency on labeled data. Although one could follow Lin et al.
(2025a) using an external verifier to approximate ground truth by assessing the existence
and equivalence of answers across consecutive sub-thoughts, this strategy still relies on the
verifier’s capability, prompt design, and hyperparameters for determining answer equiv-
alence. Consequently, it may incur extra engineering overhead and introduce potential
performance bottlenecks.

• Difficulty in capturing complex reasoning dynamics. Eq. 3 defines the stability index
only when all subsequent reasoning steps yield identical answers that exactly match the
ground truth. However, existing studies have shown that the accuracy of reasoning mod-
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Interval 1 2 3 4 5 6 7 8 9 10

Relative Position Range [0.0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]
Count of Stability Indices 27.41 16.45 10.96 9.87 6.58 3.29 2.85 2.19 3.95 16.45

Table 21: Distribution of stability indices over relative position intervals.

Methods ∥S∥2 MATH-500 (Pass@1) MATH-500 (#Tokens) AIME24 (Pass@1) AIME24 (#Tokens)

Baseline – 79.6 4516 23.3 12596
Vector Extraction w/ Stability Index 11.4 81.8 4715 20.0 12563
Vector Extraction w/ Confidence 62.4 83.0 3474 36.7 9040

Table 22: Comparison of steering vector extraction variants.

els is not positively correlated with reasoning length (Chen et al., 2024b); on the con-
trary, longer reasoning sequences may introduce more hallucinations (Liu et al., 2025a).
Therefore, while Eq. 3 offers a convenient and intuitive way to conceptually distinguish
overthinking from underthinking, its rigid requirement makes it unsuitable as a practical
indicator in real-world scenarios, given the inherent complexity and variability of actual
reasoning dynamics.

Experimental validation. To quantitatively validate the above analysis, we perform steering vec-
tor extraction using Equation 3 as follows. First, consistent with existing methods, we randomly
select 500 seen samples from the MATH training set and feed them into DeepSeek-R1-Distill-Qwen-
1.5B. We collect the generated output sequences and record the model’s confidence at each reasoning
step. To identify steps corresponding to overthinking and underthinking, following Lin et al. (2025a)
and Jiang et al. (2025), we use Qwen2.5-7B-Instruct (Yang et al., 2025a) to determine whether each
step contains the ground truth (see Appendix G for the prompt template). Once a step containing
the ground truth is detected, it is designated as the stability index: all preceding steps are classified
as underthinking, and all subsequent steps as overthinking. The labeling procedure produces 29,701
overthinking samples and 24,710 underthinking samples, showing that our partitioning strategy is
reasonable and results in a well-balanced dataset.

To analyze the relative positional distribution of stability indices within the entire thinking sequence,
we divide the range of relative positions (0–1) into 10 equal intervals (bins). We then count the num-
ber of occurrences of stability indices falling into each interval, as shown in Tab. 21. Notably, an
interesting observation emerges here: the stability indices exhibit a bimodal distribution along the
thinking sequence, with pronounced concentrations around Interval 1 and 10. These two Intervals
correspond to the underthinking and overthinking behaviors of reasoning models, respectively, fur-
ther providing strong empirical support for the necessity of balanced thinking.

The subsequent steps, including steering vector extraction, fitting of the dynamic control function,
and dynamic steering during inference, are kept identical to those in ReBalance. The experimental
results, along with the comparison of steering vector norms ∥S∥2, are shown in Tab. 22.

We observe that the experimental results obtained using the steering vector extracted via Eq. 5 sig-
nificantly outperform those of Eq. 3 in both accuracy and efficiency, strongly validating our analysis
above. Moreover, the difference in ∥S∥2 reveals that when switching to stability index-based extrac-
tion, the norm of the steering vector becomes substantially smaller. This indicates a blurring of the
boundary between overthinking and underthinking, further explaining the performance gap between
the two methods.

D DETAILS ON EXPERIMENTAL SETTINGS

Benchmarks. Evaluation is conducted on mathematics reasoning datasets: MATH-500 (Light-
man et al., 2023b), AIME24 (AI-MO, 2024a), AIME25 (OpenCompass, 2025), AMC23 (AI-MO,
2024b), GSM8K (Cobbe et al., 2021), and OLYMPIADBENCH (He et al., 2024); scientific rea-
soning dataset, GPQA DIAMOND (Rein et al., 2024); commonsense reasoning dataset, STRATE-
GYQA (Geva et al., 2021); and code reasoning dataset, LIVECODEBENCH (Jain et al., 2024).
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Evaluation metrics. We implement REBALANCE in both Hugging Face Transformers (Wolf
et al., 2019) and vLLM (Kwon et al., 2023b). We evaluate using Pass@1 (↑) and the average number
of generated tokens Tok (↓). Unless otherwise specified, results are reported with the Transformers
implementation.

Backbone reasoning models. We conduct experiments on 4 open-source large language models
used as backbones: DEEPSEEK–R1–DISTILL–QWEN (1.5B and 7B) (Guo et al., 2025), QWEN3–
14B (Yang et al., 2025a), and QWQ–32B Team (2025). Together, they span 3 model architectures
and 4 parameter scales, enabling controlled comparisons across model families and sizes.

Steering extraction and dynamic function fitting. From 500 randomly sampled
MATH (Hendrycks et al., 2021) problems, we estimate a steering vector and a control sur-
face for each backbone once and hold them fixed across all benchmarks.

Baseline methods. We compare REBALANCE against representative training-free methods for
efficient inference that do not rely on auxiliary models. (i) PROMPT-BASED methods:
COD (Xu et al., 2025a) and NOTHINKING (Ma et al., 2025b); (ii) OUTPUT-BASED methods:
NOWAIT (Wang et al., 2025a); (iii) DYNAMIC EARLY-EXIT methods: DYNASOR–COT (Fu
et al., 2025), DEER (Yang et al., 2025b), FLASHTHINK Jiang et al. (2025), and TRIMR Lin et al.
(2025a); (iv) STEERING methods: SEAL (Chen et al., 2025) and MANIFOLD STEERING (Huang
et al., 2025b). This set covers the major design paradigms (prompting, output-time control, early
exiting, and latent steering) under a training-free setting. Further details on additional PROMPT-
BASED baselines are provided in Appendix G.

Hardware. All experiments were conducted on a single server with 8× NVIDIA RTX PRO 6000
(Blackwell Server Edition) GPUs.

Decoding settings. Unless otherwise noted, we use nucleus sampling with

temperature = 0.7, top p = 0.95, max generated tokens = 16000.

The same decoding configuration is applied across both the Transformers and vLLM backends.

E DETAILS ON BENCHMARKS

MATH-500 (moderate; 500 problems). Comprises 500 problems spanning arithmetic, algebra,
geometry, and calculus, with varying difficulty levels. It evaluates a model’s ability in complex
mathematical formalism, equation solving, and structured reasoning. (Lightman et al., 2023b)

AIME24 (hard; 30 problems). An Olympiad-style set assessing logical deduction and advanced
problem-solving skills; includes official AIME problems from the 2024 cycle. (AI-MO, 2024a)

AIME25 (hard; 30 problems). An updated set from the same AIME competition as AIME24,
continuing to target high-level deductive and multi-step mathematical reasoning. (OpenCompass,
2025)

GPQA DIAMOND (hard; 198 problems). A challenging graduate-level subset with multiple-
choice questions authored by domain experts in biology, physics, and chemistry. (Rein et al., 2024)

AMC23 (simple; 40 problems). An aggregated 40-problem set based on AMC 12 (2023 A/B).
Items are multiple choice and span the standard high-school curriculum (calculus excluded), posi-
tioned below AIME-level difficulty. (AI-MO, 2024b)

GSM8K (simple; 1319 problems). Grade-school and middle-school word problems emphasizing
short chain-of-thought arithmetic reasoning; commonly used split is ∼7.5k train / ∼1k test. (Cobbe
et al., 2021)
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OLYMPIADBENCH (hard; 675 problems). A bilingual math+physics Olympiad-style benchmark
sourced from international/national olympiads and Gaokao, substantially more challenging than
standard competition datasets. (He et al., 2024)

STRATEGYQA (simple; 2,780 problems). Yes/No questions requiring implicit multi-hop com-
monsense reasoning; each example provides a decomposition and supporting evidence passages.
(Geva et al., 2021)

LIVECODEBENCH (hard; 400 problems, v1). A contamination-aware coding benchmark con-
structed from competitive-programming problems (e.g., LeetCode, AtCoder, Codeforces). Tasks
require generating runnable programs that are judged by execution-based unit tests, emphasizing
algorithmic reasoning, data-structure design, and implementation fidelity. We use version v1 with
400 problems. (Jain et al., 2024)

F DETAILS ON PROMPTS

Math - (MATH-500, AIME 2024, AIME 2025, AMC23, GSM8K, Olympiad).

<|System|> Please reason step by step, and place the final answer
inside \boxed{}.

<|User|> [question]

Science - GPQA.

<|System|> Please reason step by step, and place the final answer
inside \boxed{}.

<|User|> [question]

Answer with the choice letter only, in \boxed{}. Do not include
option text.

Commonsense - StrategyQA.

<|System|> You answer binary commonsense questions. Think step by
step, then output exactly one final line: \boxed{Yes} or \

boxed{No}.
<|User|> [question]

Answer with \boxed{Yes} or \boxed{No} only.
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Code - LiveCodeBench.

<|User|>
### Instruction: You will be given a question (problem

specification) and will generate a correct Python program
that matches the specification and passes all tests. You will
NOT return anything except for the program.

Question:
[problem]
Ensure that when the python program runs, it reads the inputs,

runs the algorithm and writes output to STDOUT.
python # YOUR CODE HERE
### Response:<|im_end|><|im_start|>assistant<think>

Prompt Used for Steering Vector Extraction in Eq. 3.

You are an Answer Detector for reasoning blocks of a large
language model.

I will provide a gold answer and ONE sentence from the model's
internal thinking process.

Your task: Determine whether THIS thinking sentence already
clearly contains the correct answer.

Gold answer: {gold_answer}
Thinking sentence: {thinking_sentence}

Respond ONLY with a JSON object, in this exact format:

{found: <yes/no>}

Rules:
1. Output yes if this thinking sentence:

- explicitly states the gold answer, OR
- gives a mathematically/semantically equivalent expression,
OR
- computes a value that uniquely determines the gold answer.

2. Otherwise output no.
3. No explanations, no extra fields, no additional text.
4. Only judge THIS sentence. Ignore all context.
5. Ignore notation differences, equivalent arithmetic, and

paraphrases.

G DETAILS ON PROMPT-BASED APPROACHES

From the main experimental table, we observe that prompt-based approaches can, to a certain extent,
mitigate redundant reasoning. This represents one of the simplest methods for altering model behav-
ior. The specific details of the currently popular “Magic Prompts” are summarized in the Table 23.

Modifying prompts is not in conflict with our proposed method. In fact, we integrate our approach
with prompt-based techniques in our experiments and observe that QwQ-32B achieves further per-
formance improvements on several datasets. For instance, on the MATH-500 dataset, replacing our
prompt reduced the number of generated tokens from 3662 to 3064 without compromising accu-
racy, demonstrating the complementary benefits of prompt refinement. Notably, existing research
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Method Prompt Modification
CoT (Wei et al.,
2022)

Please reason step by step.

CoD (Xu et al.,
2025a)

Think step by step, but only keep a minimum draft for each thinking step, with 5
words at most.

CCoT (Renze &
Guven, 2024)

Think step by step, Be concise.

CCoT-2-45 (Nayab
et al., 2024)

Let’s think a bit step by step and limit the answer length to 45 words.

BTC (Ding et al.,
2024)

Rapidly evaluate and use the most effective reasoning shortcut to answer the ques-
tion.

NoThinking (Ma
et al., 2025a)

<think> Okay, I have finished thinking.</think>

Table 23: Prompt modifications used in different reasoning strategies.

has shown that even with the same prompt content, different positioning strategies can significantly
affect both the accuracy and efficiency of large language models (Cobbina & Zhou, 2025). However,
our main experimental results also indicate that prompt-based methods are not always effective, as
the model does not consistently follow instructions. Regarding the broader issue of model con-
trollability, a substantial body of research has already explored the use of reinforcement learning
(RL) techniques to achieve more reliable control over large reasoning models (LRMs) (Aggarwal &
Welleck, 2025; Yuan et al., 2024). Building upon these insights, exploring how to effectively com-
bine multiple training-free strategies with advanced control methods remains an important direction
for future work.

H DETAILED DISCUSSION OF RELATED WORKS

Chain-of-Thought (CoT). CoT prompting elicits intermediate rationales and markedly improves
multi-step reasoning (Wei et al., 2022); self-consistency further aggregates diverse chains (Wang
et al., 2022). Beyond a single chain, search/verification variants under the Tree-of-Thought um-
brella include Tree-of-Thoughts (Yao et al., 2023), Stream-of-Search (Gandhi et al., 2024), Graph-
of-Thoughts (Besta et al., 2024), Process Reward Models (Lightman et al., 2023a), and RL-based
Self-Correction (Kumar et al., 2024). A converging view is that judiciously increasing test-time
compute—via multiple paths, search, or verification—can rival or surpass pure parameter scaling
for reasoning (Snell et al., 2025).

Latent Reasoning. Latent reasoning shifts the chain-of-thought from discrete tokens to continu-
ous hidden representations, reducing tokenized traces and sampling while preserving intermediate
signals—thus improving test-time efficiency. Representative approaches include soft thinking with
gated hidden-state signals (Zhang et al., 2025d), training models to reason directly in a continuous
latent space via internal activations (Hao et al., 2024), compressing long CoT into dense vectors
(Cheng & Van Durme, 2024), and assistant-guided soft CoT that maintains a multi-step structure in
latent form (Xu et al., 2025b).

Post-Training Methods for Efficient Reasoning. Post-training approaches reduce test-time cost
by shaping models’ use of chain-of-thought (CoT) after pretraining. We group them into SFT-based
and reinforcement fine-tuning (RFT)-based

SFT-based. Supervised fine-tuning can induce conditional brevity: paired supervision under
matched conditions (e.g., long vs. short) teaches when concise reasoning suffices (Kang et al., 2025).
A complementary line supervises compressed rationales with an explicit compression control at in-
ference; more principled compression schemes further improve faithfulness and controllability (Xia
et al., 2025; Yuan et al., 2025).

RFT-based. Reinforcement fine-tuning directly optimizes the accuracy–efficiency trade-off via re-
ward shaping and preference learning. Examples include difficulty-aware ranking to form preference
data followed by SimPO optimization (Shen et al., 2025); fixed accuracy–length rewards with PPO
(Arora & Zanette, 2025); self-adaptive CoT learning with GRPO (Yang et al., 2025c); and dynami-
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cally weighted rewards that balance accuracy and length during PPO training (Su & Cardie, 2025).
Control-token policies decide when to think using GRPO, and explicit reinforcement of how long to
reason enables length control (Aggarwal & Welleck, 2025).

Overall, these methods teach models to reason when necessary and remain concise otherwise, im-
proving the accuracy–latency/token trade-off without increasing parameter count.

Steering-Based Methods for Efficient Reasoning. Recent work explores steering mechanisms
that intervene directly in a model’s latent states to improve reasoning efficiency without retraining
the backbone. Early work has already examined steering in the prompt space to elicit more con-
trollable model outputs (Liu et al., 2023), and has also leveraged steering-based methods to mitigate
hallucinations (Liu et al., 2024). Recent work has extensively explored using steering-based methods
to enable more efficient reasoning. SEAL (Chen et al., 2025) partitions model thoughts into exe-
cution, reflection, and transition phases, and uses a small amount of training data to bias the model
toward the execution mode. MANIFOLD STEERING (Huang et al., 2025b) constructs redundant ver-
sus concise datasets based on response length and keyword density, derives a steering vector from
them, and applies it to all tokens across all layers. REASONING STRENGTH PLANNING (Sheng
et al., 2025) further introduces a pre-allocated direction vector injected into the activation corre-
sponding to the <think> token, whose magnitude encodes the desired reasoning strength in terms
of the target number of reasoning tokens, with steering consistently applied at each layer for every
generated token. Unlike the static steering methods above, CONTROLLING THINKING SPEED(Lin
et al., 2025b) introduces a dynamic variant. They construct steering vectors by pairing long and short
correct responses and extracting the hidden states of the last token in the first two reasoning steps
at a chosen layer. A sliding-window controller then adjusts the steering strength based on token-
level difficulty, measured via the Jensen–Shannon divergence between shallow- and deep-layer logit
distributions, decreasing or increasing the magnitude according to a window-specific threshold.

However, the adjustment mechanism remains fundamentally one-directional in how steering mag-
nitude is updated. Moreover, the steering-based methods above focus primarily on mitigating over-
thinking, yet overlook a complementary issue: alleviating overthinking often introduces or amplifies
underthinking (Wang et al., 2025c). REBALANCE addresses this gap through a bidirectional dynamic
steering mechanism that uses real-time confidence during reasoning as an indicator to assess the ten-
dency toward overthinking or underthinking, dynamically adjusting both the direction and intensity
of steering to achieve efficient reasoning with balanced thinking.

Early-Exit Methods for Efficient Reasoning. A prominent line of work toward efficient reason-
ing involves enabling models to exit early from their reasoning process once sufficient evidence for
an answer has been gathered. Representative approaches such as TRIMR (Lin et al., 2025a) and
FLASHTHINK (Jiang et al., 2025) employ an external instruction-following model to monitor the
target model’s chain-of-thought: when the monitor deems further reasoning unnecessary, it halts the
process and triggers answer generation. Other methods, including DEER (Yang et al., 2025b) and
DYNASOR-COT (Fu et al., 2025), instead rely on internal signals, such as the model’s confidence
or entropy over candidate answers, to determine an appropriate exit point. While these strategies
effectively reduce token consumption by forcibly terminating redundant reasoning, they all share a
fundamental limitation: the decision to terminate is binary and coarse-grained, typically applied at
the level of the entire reasoning path (e.g., sub-thoughts in TRIMR or reasoning chunks in FLASH-
THINK). This rigid binary selection risks discarding potentially valuable reasoning steps, thereby
inducing additional underthinking (Wang et al., 2025c). Although TRIMR includes certain mecha-
nisms addressing underthinking, it primarily opts for abandoning reasoning upon detecting under-
thinking, which leans towards engineering-driven token length optimization rather than genuinely
addressing underthinking itself. Moreover, both TRIMR and FLASHTHINK depend on handcrafted
keyword triggers to identify termination points, limiting their adaptability across models and tasks.

In contrast, REBALANCE departs fundamentally from this paradigm. Rather than merely mitigating
overthinking through early exit, ReBalance is explicitly designed to simultaneously mitigate over-
thinking and prevent underthinking. It achieves this not by discarding reasoning paths, but by lever-
aging confidence as an indicator to dynamically detect the model’s tendency toward overthinking
or underthinking in real-time. Based on this detection, it adaptively adjusts the strength and direc-
tion of steering, thereby dynamically controlling the model’s behavior to keep its reasoning state
consistently within the reasoning boundary. This enables balanced thinking without requiring any
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additional verifiers or inference stages, making ReBalance an efficient, dynamic, and fine-grained
reasoning acceleration approach.

Acceleration for Efficient Reasoning. Beyond training-time efficiency, a complementary line of
work targets inference-time acceleration—reducing latency and improving throughput under fixed
hardware budgets. One class of methods exploits speculative decoding, drafting tokens with a
lightweight proposer and verifying them with the target model to amortize compute (Leviathan et al.,
2023). A second class reduces memory and scheduling overhead via paged KV-cache management
and continuous batching, enabling high-utilization serving at scale (Kwon et al., 2023a). A third line
optimizes the sampling process itself: Monte Carlo tree or search–style strategies for data synthesis
(Li et al., 2025), best-of-n reasoning accelerated by speculative rejection (Sun et al., 2024), and
early-decoding schemes that self-estimate the necessary n to balance quality and cost (Wang et al.,
2025b).

Small Language Models (SLMs) for Efficient Reasoning. A complementary line of work pur-
sues efficient inference by compressing or transferring reasoning ability into smaller backbones.
First, quantization can degrade multi-step reasoning if applied naively, calling for calibration-aware
schemes and mixed-precision designs (Liu et al., 2025b). Second, distillation transfers long-horizon
reasoning into compact policies by (i) shortening and regularizing chain-of-thought traces and (ii)
internalizing deliberate reasoning into fast feedforward behavior (Luo et al., 2025; Yu et al., 2024).
Third, pruning/compression benchmarks sparsity and related compression knobs on complex rea-
soning tasks, revealing sensitivity to where and how compression is applied (Zhang et al., 2025b).
Finally, a recent assessment reports the combined effects of distillation and pruning on SLMs, high-
lighting regimes where small models recover strong reasoning at a fraction of the compute (Srivas-
tava et al., 2025).

I EFFICIENCY ANALYSIS

We conduct a comprehensive efficiency evaluation of ReBalance by comparing its inference over-
head against both the baseline and other efficient reasoning methods. Specifically, we report four
key metrics: tokens per second (TPS), time per request (TPR), and additional GPU memory con-
sumption relative to the baseline.

Specifically, to ensure a thorough comparison, we include prompt-based methods (NoThinking,
CoD), early-exit methods (FlashThink, TrimR), and latent steering methods (SEAL). Different from
existing methods, ReBalance preserves an effective thinking process by promoting exploration when
necessary to avoid underthinking, particularly when the model faces difficult reasoning problems.
As a result, it is more likely to incur efficiency overheads on challenging datasets. In the following,
we adopt AIME24 for the efficiency evaluation, as shown in Tab. 24.

• Token generation efficiency: By observing TPS, it can be seen that since the confidence
utilized by ReBalance can be directly obtained from the log probability of each token’s
decoded output, and the dynamic function introduced in this method is very lightweight, the
proposed dynamic adjustment logic has a negligible impact on the single-token generation
time compared to the baseline.

• Reasoning time acceleration: As shown by TPS and #Tokens, ReBalance significantly
shortens reasoning length without compromising token generation efficiency, yielding 1.5×
and 1.4× TPR speedups over DeepSeek-R1-Distill-Qwen-7B and QwQ-32B, respectively.

• Additional GPU memory usage: Although ReBalance requires the use of extracted steer-
ing vectors during reasoning, their GPU memory footprint is minimal (e.g., the vector
size for QwQ-32B is only 22 KB). In contrast, early-exit methods, such as FlashThink and
TrimR, require additional verifiers (usually at least 7B), introducing extra GPU memory
usage and communication load.

In conclusion, ReBalance achieves outstanding performance in tokens per second, time per request,
additional GPU memory usage, and generated sequence length.
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Method TPS TPR (s) Additional GPU Memory (GB) #Tokens

DeepSeek-R1-Distill-Qwen-7B
Baseline 80.2 174.6 – 13994
NoThinking 80.1 55.2 0.0 4427
CoD 80.2 145.5 0.0 11663
FlashThink 73.8 135.9 18.3 10034
TrimR 48.8 147.7 15.4 7213
SEAL 78.8 128.3 0.0 10112
ReBalance (Ours) 78.5 114.8 0.0 9012

QwQ-32B
Baseline 20.5 698.6 - 14342
NoThinking 20.6 509.6 0.0 10507
CoD 20.7 552.0 0.0 11438
FlashThink 14.9 673.4 18.3 10034
TrimR 6.5 1289.8 15.7 8345
SEAL 20.3 508.8 0.0 10344
ReBalance (Ours) 20.5 504.4 0.0 10350

Table 24: Efficiency analysis on DeepSeek-R1-Distill-Qwen-7B and QwQ-32B.

J THE USE OF LARGE LANGUAGE MODELS

In this work, large language models are used exclusively for polishing the writing and checking
grammar. They are not involved in research ideation, experimental design, data analysis, or the
formulation of conclusions. All substantive intellectual contributions are made by the authors.

K ETHICS STATEMENT

We confirm that this research adheres to the ICLR Code of Ethics. Our method is purely algorithmic
and theoretical in nature, involving no human subjects, personal data, or real-world deployment that
could lead to harmful, biased, or discriminatory outcomes. We have carefully considered poten-
tial ethical implications—including fairness, transparency, and societal impact—and conclude that
the proposed approach poses no significant ethical concerns. All experiments were conducted on
publicly available datasets.

L REPRODUCIBILITY STATEMENT

To facilitate replication, we fix the random seed to 42 for all sampling and evaluation. All exper-
iments are run on the same hardware (8× NVIDIA RTX PRO 6000 GPUs) with unified decoding
configurations (temperature=0.7, top p=0.95, max generated tokens=16000). Steering
vectors and control surfaces are extracted once from a random sample of 500 MATH problems
and then reused across all benchmarks. Together with standardized evaluation metrics (Pass@1 and
average token length), these settings ensure that our results can be reproduced reliably.
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M CASE STUDY

Figure 14: A DeepSeek-R1-Distill-Qwen-1.5B inference case shows that, although the model arrives at the
correct solution, its reasoning is rife with redundancy and repetition. Beyond the necessary boundary checks,
it inspects numerous inconsequential points, incurring substantial token overhead.
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Figure 15: In a DeepSeek-R1-Distill-Qwen-1.5B inference case, applying existing overthinking-mitigation
techniques reduces token usage relative to the baseline; however, the absence of verification steps results in an
incorrect answer.
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Figure 16: In a DeepSeek-R1-Distill-Qwen-1.5B inference example, the incorporation of judicious verification
steps yields a correct and succinct response.
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