
WebArbiter: A Principle-Guided Reasoning Process Reward Model for Web Agents

Anonymous submission

Abstract
Web agents hold great potential for automating complex com-
puter tasks, yet their interactions involve long horizons, multi-
step decisions, and actions that can be irreversible. In such
settings, outcome-based supervision is sparse and delayed,
often rewarding incorrect trajectories and failing to support
inference-time scaling. This motivates the use of Process Re-
ward Models (WebPRMs) for web navigation, but existing ap-
proaches remain limited: scalar WebPRMs collapse progress
into coarse, weakly grounded signals, while checklist-based
WebPRMs rely on brittle template matching that fails under
layout or semantic changes and often mislabels superficially
correct actions as successful, providing little insight or in-
terpretability. To address these challenges, we introduce We-
bArbiter, a reasoning-first, principle-inducing WebPRM that
formulates reward modeling as text generation, producing
structured justifications that conclude with a preference ver-
dict and identify the action most conducive to task comple-
tion under the current context. Training follows a two-stage
pipeline: reasoning distillation equips the model with coherent
principle-guided reasoning, and reinforcement learning cor-
rects teacher biases by directly aligning verdicts with correct-
ness, enabling stronger generalization. To support systematic
evaluation, we release WEBPRMBENCH, a comprehensive
benchmark spanning four diverse web environments with rich
tasks and high-quality preference annotations. On WEBPRM-
BENCH, WebArbiter-7B outperforms the strongest baseline,
Gemini Flash, by 10.9%. In reward-guided trajectory search
on WebArena-Lite, it surpasses the best prior WebPRM by
up to 7.2%, underscoring its robustness and practical value in
real-world complex web tasks.

1 Introduction
Large Language Models (LLMs) (Achiam et al. 2023; Guo
et al. 2025a) have demonstrated impressive capabilities in
planning (Huang et al. 2024; Zhang et al. 2025a), decision-
making (Li et al. 2024), and complex task execution (Xi
et al. 2024; Zhang et al. 2025b). Extending these abilities
with browser access enables LLM agents to perform com-
plex web tasks similar to humans (OpenAI 2025b; Anthropic
2024; Adept 2022). However, web interactions involve long
horizons, multi-step decisions, and actions that can be ir-
reversible. For example, submitting an incorrect form may
not be recoverable. This requires agents to make reliable
decisions throughout the interaction process, rather than rely-
ing solely on final outcomes. Traditional Outcome Reward

Models (ORMs) are ill-suited: they provide only sparse and
delayed feedback, may misclassify incorrect trajectories as
successes, and cannot guide inference-time strategies, such
as reward-guided search.

Recent studies on web agents (Zhang et al. 2025b; Koh
et al. 2025) have introduced step-level rewards using LLM-
as-judge. While such supervision can be useful, LLM-as-
judge suffers from high cost, limited scalability, and sus-
ceptibility to hallucination, often rewarding fluent but in-
correct actions. This motivates the development of dedi-
cated Process Reward Models (WebPRMs) for web tasks.
Existing WebPRMs largely fall into two categories: scalar
WebPRM (Miao et al. 2025), which collapse progress into
coarse scores with little interpretability or weak grounding;
and generative WebPRM (Chae et al. 2025), which rely on
checklists that are brittle under dynamic layouts and shifting
semantics. Moreover, lacking explicit reasoning, generative
WebPRMs remain vulnerable to surface correlations and sen-
sitive to page changes. These limitations highlight the need
for a reasoning-first WebPRM that can verify progress, re-
sist superficial biases, and provide interpretable chains for
diagnosing errors.

To this end, we propose WebArbiter, a reasoning-first,
principle-inducing WebPRM. It formulates process reward
modeling as text generation: given task context and candi-
date actions with their reasoning traces, the model produces
a structured justification that concludes with a preference
verdict, identifying the action most conducive to task comple-
tion. Unlike scalar scores or checklist-based methods tied to
fixed templates, WebArbiter dynamically derives principles
from user intent and the current state, incorporates them into
reasoning chains that verify whether an action advances task
completion. Training follows a two-stage pipeline: reasoning
distillation equips the model with coherent principle-guided
reasoning, and reinforcement learning corrects teacher bi-
ases and aligns verdicts with correctness. This design trans-
forms reward signals from shallow correlations into auditable
analyses, making judgments robust to environment and page
variations, resistant to spurious cues, and accurate in credit
assignment.

To advance the evaluation of WebPRMs, we introduce
WEBPRMBENCH, the first comprehensive evaluation bench-
mark spanning diverse environments dedicated to WebPRMs.
It provides 1,287 step-level preference instances, each

Figure 1: Performance comparison on WEBPRMBENCH. Left: Average Best-of-N Acc vs. model size, showing superior
efficiency despite smaller scale. Right: Domain-wise Avg BoN Acc, where WEBARBITER achieves the best results across all
environments, confirming robustness and scalability.

consisting of one correct action and four rejected alter-
natives, collected across 4 web environments: Assistant-
Bench (Yoran et al. 2024), Mind2Web (Deng et al. 2023),
WorkArena (Drouin et al. 2024; Boisvert et al. 2025), and We-
bArena (Zhou et al. 2023). The tasks span everyday activities
such as online shopping and forum posting, as well as enter-
prise scenarios like updating schedules in IT management
platforms. By combining scale, diversity, and fine-grained
supervision, WEBPRMBENCH establishes a unified standard
for systematic evaluation of WebPRMs, with Pairwise and
Best-of-N (BoN) Accuracy as the primary metrics.

Extensive experiments on WEBPRMBENCH show that
WebArbiter achieves SOTA Avg. BoN Acc, consistently
surpassing both proprietary LLMs and previous SOTA
WebPRM, WebShepherd, across all environments, and out-
performing the strongest LLM baseline, Gemini Flash, by
+10.9%. Beyond static evaluation, WebArbiter also proves
effective in practice: in reward-guided trajectory search on
WebArena-Lite (Liu et al. 2024b), it delivers substantial gains,
surpassing WebShepherd by up to 7.2%, further demonstrat-
ing robustness in realistic interaction settings.

The key contributions of this work are:

1. We propose WebArbiter, a reasoning-first, principle-
inducing PRM trained with reasoning distillation and rein-
forcement learning, providing auditable reasoning chains
and correctness-aligned signals.

2. We release WEBPRMBENCH, the first comprehensive
evaluation benchmark to provide systematic WebPRM
evaluation across 4 web environments, using Pairwise and
Best-of-N (BoN) Accuracy as standard metrics.

3. We show that WebArbiter achieves SOTA performance
on WEBPRMBENCH, surpassing both proprietary LLMs
and the previous SOTA WebPRM. WebArbiter delivers
up to +7.2% gains in reward-guided trajectory search on
WebArena-Lite.

4. We analyze the training dynamics of WebArbiter, reveal-
ing how different strategies influence performance.

2 Related Work
2.1 LLM-Based Autonomous Web Agents
LLM advances have enabled browser-operating agents (Kim,
Baldi, and McAleer 2024; Sun et al. 2024; Prasad et al. 2023;
Fu et al. 2024; Ma et al. 2023; Zheng et al. 2023b; Tao et al.
2023). One line distills environment-specific state–action
pairs from demonstrations, strong on seen states yet brittle
on novel ones, with SteP as a leading example on WebArena
(Sodhi et al. 2024; Zhou et al. 2023). A second line pursues
open-ended exploration via reflexive evaluation and search
(Pan et al. 2024; Shinn et al. 2024; Koh et al. 2024; Zhang
et al. 2025b). A third direction applies reinforcement learn-
ing (Qi et al. 2025; Wei et al. 2025), yet real sites provide
sparse and delayed signals, which makes value learning un-
stable without dense step feedback. Therefore, WebAgents
require a process-level judge that assesses progress step by
step and supplies auditable signals for search and planning.

2.2 Reward Models in Reasoning and Web Tasks
RMs fall into two families. Scalar RMs attach a single nu-
meric score to a response with a linear scorer and use either
absolute or discriminative schemes for evaluation (Uesato
et al. 2022; Ouyang et al. 2022; Liu et al. 2024a, 2025; Park
et al. 2024; Wang et al. 2024a, 2023b, 2024b). Generative
RMs instead produce natural–language feedback from which
rewards are extracted, aligning with LLM-as-Judge and sup-
porting both single-instance evaluation and multi-response
comparison; they show promising scalability but raise re-
liability concerns due to bias and hallucination (Lightman
et al. 2023; Wang et al. 2023a; Zhang et al. 2025c; Wu et al.
2024; Ye et al. 2025; Zhang et al. 2024; Zheng et al. 2023a).

Building on these, Reasoning RMs cast judging as a deliber-
ate process: they first generate an explicit, context-grounded
chain of principle and analysis, then issue a single prefer-
ence verdict, yielding adaptive test-time compute, stronger
grounding, and interpretable feedback (Chen et al. 2025;
Guo et al. 2025b; Mahan et al. 2024). In web agents, ac-
tion rewards have been derived by the following methods:
LLM-as-Judge (Zhang et al. 2025b; Koh et al. 2025), slow
and unstable during search; scalar scoring (Miao et al. 2025),
which collapses progress into coarse values with little inter-
pretability and weak grounding; and checklist-driven genera-
tive feedback (Chae et al. 2025), whose external templates
are brittle under layout and semantic drift and prone to sur-
face correlations. These limitations motivate a reasoning-first
approach that turns rewards from shallow correlations into
auditable analyses. WebArbiter produces structured justifi-
cations with a single preference verdict, induces principles
from the current instruction and state, and is trained by rea-
soning distillation followed by reinforcement learning, so
that judgments remain robust to environment variations, re-
sist spurious cues, and provide accurate credit assignment
while supporting inference-time scaling.

3 Methodology
In this section, we present the design of WebArbiter. We
begin by framing web navigation as a Partially Observable
Markov Decision Process (POMDP) in §3.1, then describe
how we construct a pairwise-preference dataset for training
in §3.2. We introduce the training pipeline of WebArbiter
model in §3.3. For clarity, we summarize all notations in
Appendix A.

3.1 Background
We formalize web navigation as a POMDP. The environment
E is defined by a state space S , an action space A, and an ob-
servation space O. T : S×A→S denotes the state transition
function. At step p, the agent receives a partial observation
op∈O, executes ap∈A, and transitions to sp+1 = T (sp, ap)
with a new observation op+1. Following WebArena (Zhou
et al. 2024), we represent observations using accessibility
trees, i.e., text-only encodings of visible interactive elements
and their attributes. Given a task instruction I and the ini-
tial state s0 ∈ S, the agent aims to generate a trajectory
τ = (a1, . . . , aP) that completes the task. Here P is the
trajectory length and ap ∈ A denotes the action at step p.
The task evaluator determines whether the task is completed
based on the final state.

3.2 Training Dataset Construction
We build on the WEBPRM COLLECTION (Chae et al. 2025)
for training WebArbiter. Each instance consists of an instruc-
tion I, a sequence of observations O = (o1, . . . , oP), and
expert-annotated trajectories. Specifically, the dataset pro-
vides a set of positive actions A+ = (a+1 , . . . , a

+
P) taken

from expert demonstrations and negative actions A− =
(a−1 , . . . , a

−
P) obtained from rejected trajectories. We convert

these into pairwise preference samples where each candi-
date action is paired with its reasoning trace, yielding the
preference dataset DTrain used for WebArbiter training.

3.3 WebArbiter: a Principle-Inducing Reasoning
Process Reward Model

WebArbiter is built on a Transformer-decoder backbone and
formulates process reward modeling as a text generation task.
At each state, it evaluates candidate actions {(aqp, cqp)}

Q
q=1,

where each action aqp is paired with a reasoning trace cqp
explaining why the agent generated this action. Given task
instruction I, observation op, and history (a<p, c<p), the
model autoregressively generates a structured justification
j = (j1, . . . , jL) of length L that concludes with a preference
verdict ŷ selecting the most appropriate action among the can-
didates. The historical traces are c<p = {c1, . . . , cp−1}, i.e.,
the per-action reasoning traces for previously executed ac-
tions. A concrete training example is provided in Appendix B.
While our experiments instantiate this framework in the stan-
dard pairwise preference setting, the design is general and
extends naturally to multi-candidate.

Unlike the scalar WebPRM (Miao et al. 2025) that col-
lapses progress into opaque scores or the checklist-based
WebPRM (Chae et al. 2025), WebArbiter is a reasoning-first,
principle-inducing WebPRM: it dynamically derives princi-
ples from user intent and the current state, integrates them
into reasoning chains that explicitly assess whether each can-
didate action truly advances task completion. This design
moves reward signals beyond shallow correlations toward
auditable analyses, yielding judgments that are robust to en-
vironment changes, resistant to spurious cues, and precise in
credit assignment.

Formally, the preference dataset is defined as

DTrain = {(I(i), o(i)p , a
(i)
<p, c

(i)
<p,

(a1(i)p , c1(i)p), (a2(i)p , c2(i)p), y(i))}Mi=1, (1)

where y ∈ {a1p, a2p} denotes the preferred action. For nota-
tional simplicity, let

x = (I, op, a<p, c<p, (a
1
p, c

1
p), (a

2
p, c

2
p)). (2)

WebArbiter πθ is parameterized by θ and models the justi-
fication j autoregressively:

πθ(j | x) =
L∏

l=1

πθ(jl | x, j<l). (3)

Training Overview. The overall training objective is
to maximize the likelihood that the predicted preference
matches the ground truth:

max
πθ

E(x,y)∼DTrain, ŷ∼πθ(j|x) [1(ŷ = y)] . (4)

Training proceeds in two stages. The first stage, described
in §3.3, is reasoning distillation, which equips the model with
the ability to generate coherent principle-guided justifications.
This stage encourages judgments to be grounded in explicit
reasoning rather than surface correlations, as we later validate
through ablation studies in §5.1.

Concretely, we sample K examples from DTrain to form
DSFT for supervised distillation, while the remaining data is
used as DRL for reinforcement learning. The second stage,
detailed in §3.3, is reinforcement learning, which aligns the

Figure 2: Overview of WebArbiter. Given an instruction I, current observation op, and history (a<p, c<p), the model compares
candidate actions (a1p, c

1
p) and (a2p, c

2
p). In Stage 1, principle-guided reasoning traces are distilled from a stronger teacher

LLM. In Stage 2, WEBARBITER is trained with reinforcement learning using verifiable rewards R ∈ {−1,+1}, producing
structured justifications and a final verdict. During inference, the model induces principles (e.g., clarity, correctness, progress)
from (I, op, a<p, c<p, (a

1
p, r

1
p), (a

2
p, r

2
p)), applies them to candidate actions, and outputs an auditable judgment identifying the

action that best advances task completion.

verdicts with correctness signals and produces interpretable
step-level rewards for long-horizon tasks. Together, these
stages enable WebArbiter to deliver robust, interpretable, and
scalable supervision for web agents.

Stage 1: Reasoning Distillation. Directly prompting an
instruction-tuned LLM as a reward model often yields super-
ficial, inconsistent chains that do not justify why an action
advances the task. We therefore distill principle-guided rea-
soning from a stronger teacher. Concretely, o3 synthesizes
structured justifications that first derive task-specific princi-
ples from the instruction and state, then ground these prin-
ciples in the page, compare candidate actions against them,
and finally output the preferred action. This equips WebArbi-
ter with principles rather than surface heuristics. Ablations
in §5.1 show that removing explicit principles and relying
solely on reasoning-based justifications notably degrades
performance, highlighting the role of principle induction in
stabilizing step-level judgments. Given (x(i), y(i)) ∈ DSFT,
the teacher generates a justification ĵ(i) = (ĵ

(i)
1 , . . . , ĵ

(i)
Li

).
The distillation dataset is then: DSFT = {x(i), ĵ(i))}Ki=1.
Objective. Reasoning distillation adjusts θ to maximize the
likelihood of generating the teacher justification ĵ that con-
cludes with the preferred action y given x. We minimize the
standard negative log-likelihood:

LSFT(θ) = − 1

K

K∑
i=1

Li∑
l=1

log πθ

(
ĵ
(i)
l | x(i), ĵ

(i)
<l

)
. (5)

Stage 2: Reinforcement Learning. While distillation pro-
vides initial reasoning ability, it inherits teacher biases and
may overfit to superficial patterns, limiting generalization to
unseen environments. To further enhance judgment accuracy,
stability, and generalization, we introduce a reinforcement
learning stage. WebArbiter πθ is treated as a policy that out-
puts a justification j that concludes with a final verdict ŷ.
During rollout, πθ generates the full justification and verdict,
after which a correctness reward R(x, ŷ) ∈ {−1, 1} is as-
signed solely based on whether ŷ matches the ground-truth
preference y. The distilled model from §3.3 serves as the
reference policy πref, ensuring stable optimization.

Objective. Reinforcement learning adjusts θ to maximize
the expected reward while stabilizing reasoning style via KL
regularization. The optimization objective is defined as:

LRL(θ) = max
πθ

E(x,y)∼DRL, ŷ∼πθ(j|x)
[
R(x, ŷ)

]
− βDKL(πθ ∥πref) . (6)

In practice, we adopt Group Relative Policy Optimiza-
tion (GRPO) (Shao et al. 2024) to optimize this objective,
which enables stable updates under binary verifiable rewards.
Through this reinforcement learning stage, WebArbiter di-
rectly aligns its verdicts with correctness signals and converts
structured justifications into reliable, interpretable step-level
reward signals.

4 WEBPRMBENCH

In this section, we introduce WEBPRMBENCH, the first
comprehensive evaluation benchmark spanning diverse envi-
ronments for WebPRMs. Details of dataset construction and
the evaluation protocol are provided below.

4.1 Benchmark Construction
WEBPRMBENCH is constructed from sucessful trajecto-
ries in AGENTREWARDBENCH (Lù et al. 2025), expand-
ing beyond WEBREWARDBENCH (Chae et al. 2025), which
only provides Mind2Web (Deng et al. 2023) and limited We-
bArena data (Zhou et al. 2023). We enrich WebArena with
additional trajectories and incorporate AssistantBench (Yoran
et al. 2024) and WorkArena (Drouin et al. 2024; Boisvert
et al. 2025), resulting in broader coverage of real-world tasks
across four domains: Mind2Web, WebArena, AssistantBench,
and WorkArena. Mind2Web emphasizes cross-task general-
ization across heterogeneous websites. WebArena provides
controlled environments such as shopping, CMS, forums,
and GitLab. AssistantBench introduces open-world tasks on
real websites. WorkArena focuses on enterprise workflows,
including IT and HR. This diversity enables systematic eval-
uation across both consumer-facing and enterprise scenarios,
while covering different levels of control, openness, and task
complexity.

For each state, the action from the successful trajectory
is retained as the positive label, and four rejected alterna-
tives with associated reasoning traces are synthesized to form
preference pairs. To ensure data quality, we sample nega-
tives from diverse policy models to broaden coverage, apply
rule-based filters to remove invalid or mismatched actions,
discard inconsistent cases, and conduct expert verification to
further ensure reliability. We also conduct targeted auditing
to eliminate potential false negatives. Reasoning traces are
truncated to a fixed length to minimize formatting noise. The
resulting benchmark spans 1,287 preference pairs across four
environments, as shown in Tab. 1.

4.2 Evaluation Protocol
Evaluating WebPRMs requires metrics that capture both lo-
cal preference fidelity and global decision reliability under
realistic multi-candidate settings. Inspired by RMB (Zhou
et al. 2025), we adopt two complementary metrics: Pairwise
Accuracy, which measures correctness on individual prefer-
ence pairs, and Best-of-N (BoN) Accuracy, which evaluates
robustness when ranking among multiple distractors. Com-
pared with Pairwise Acc, BoN Acc applies a stricter criterion
by requiring the correct action to outrank all distractors si-
multaneously, providing stronger discriminative power and
better alignment with downstream agent performance.

Pairwise Acc. Given a preference pair (a+, a−), where a+

is the correct action and a− a rejected one, the WebPRM is
correct if it assigns higher preference to a+. Formally:

AccPairwise =
1

|DBench|
∑

(a+,a−)∈DBench

1
[
πθ(a

+) ≻ πθ(a
−)

]
.

(7)

BoN Acc. For each instance (a+, a−1 , . . . , a−Q) ∈ DBench,
the WebPRM is considered correct only when a+ is consis-
tently ranked above all Q distractors, with Q = 4 in our
benchmark. BoN Acc is:

AccBoN =
1

|DBench|

|DBench|∑
i=1

Q∏
q=1

1[πθ(a
+
i) ≻ πθ(a

−q

i)]. (8)

5 Experiments
We conduct comprehensive experiments to evaluate WebAr-
biter on the reward modeling benchmark WEBPRMBENCH
in § 5.1 and on practical applications in § 5.2.

5.1 WEBPRMBENCH
Experimental Setup

Baselines. We compare WebArbiter against three cate-
gories of baselines. (1) Proprietary LLM-as-judge models,
including GPT-4o-mini (OpenAI 2024b), GPT-4o (OpenAI
2024a), GPT-5 (OpenAI 2025a), Claude-3.7-Sonnet (An-
thropic 2025), and Gemini-2.5-Flash (Sundar Pichai and
Demis Hassabis 2025), which are prompted to act as judges
by selecting the preferred action given task context. (2) Open-
source LLM-as-judge models, represented by Qwen2.5-3B-
Instruct and Qwen2.5-7B-Instruct (Qwen et al. 2025), and
Llama-3-70B-Instruct (Meta 2024), providing accessible
yet competitive instruction-tuned baselines. (3) WebPRMs,
where we include WebShepherd (Chae et al. 2025).

Implementation Details. We train WebArbiter on
WEBPRM Collection (Chae et al. 2025), which comprises
30k step-level preference pairs drawn from the Mind2Web
environment. We use 10k pairs for stage-1 reasoning
distillation and the remainder for stage-2 reinforcement
learning. Models are initialized from Qwen2.5-3B-Instruct
and Qwen2.5-7B-Instruct (Qwen et al. 2025) and fine-tuned
with LoRA (Hu et al. 2022). Further implementation details
are provided in the Appendix C.

Evaluation Metrics. We report results using two comple-
mentary metrics: Pairwise Accuracy, which measures cor-
rectness on individual preference pairs, and Best-of-N (BoN)
Accuracy, which evaluates robustness under multi-candidate
settings. Detailed definitions are provided in § 4.2.

Main Results

WebArbiter Significantly Outperforms Baselines. As
shown in Tab. 2, WebArbiter consistently surpasses both pro-
prietary and open-source LLMs across all environments with
BoN Acc. While LLM-as-judge methods often maintain mod-
erate Pairwise Acc, their performance drops sharply on BoN
Acc, revealing poor robustness to hard negatives. In contrast,
WebArbiter sustains strong results on both metrics, establish-
ing its reliability under realistic multi-candidate settings.

Advantage over the SOTA WebPRM. WebShep-
herd (Chae et al. 2025) represents the previous SOTA
WebPRMs. Trained on the same WEBPRM Collection,
which was drawn from the Mind2Web environment,
WebArbiter-7B achieves an Avg. BoN Acc of 77.78%,

Models Mind2Web WebArena AssistantBench WorkArena Avg.
Cross-Task Cross-Website Cross-Domain

Count 142 148 417 371 29 180 1287

Table 1: Data distribution of WEBPRMBENCH, the first comprehensive evaluation benchmark spanning diverse environments
for WebPRMs.

Models Mind2Web WebArena AssistantBench WorkArena Avg.
Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN

LLM-as-judge, Proprietary Language Models

GPT-4o-mini 80.28 45.69 81.40 61.46 88.79 68.97 84.86 66.67 83.83 60.70
GPT-4o 80.60 52.84 79.78 56.06 83.62 58.62 85.69 66.67 82.42 58.55
GPT-5 82.06 62.26 76.89 55.26 76.72 58.62 80.83 65.56 79.12 60.42
Claude Sonnet 81.19 59.60 81.40 62.53 76.92 53.85 88.06 72.22 81.89 62.05
Gemini Flash 81.94 57.86 83.89 67.39 84.62 65.38 92.36 77.08 85.70 66.93

LLM-as-judge, Open-source Language Models

Qwen2.5-3B-Instruct 76.89 37.66 69.54 35.04 80.17 48.28 70.56 42.22 74.29 40.80
Qwen2.5-7B-Instruct 79.02 41.00 72.44 40.16 76.72 37.93 78.06 51.67 76.56 42.69
Llama-3-70B-Instruct 79.43 50.96 77.90 56.60 78.85 46.15 87.50 70.14 80.92 55.96

WebPRMs (3B)

WebShepherd-3B 37.41 21.22 20.33 9.47 36.54 17.24 10.49 2.44 26.19 14.84
⋆ WebArbiter-3B 93.28 78.75 83.29 56.87 76.72 44.83 84.03 60.56 84.33 60.25

WebPRMs (7B+)

WebShepherd-8B 72.35 46.68 33.16 12.37 55.77 44.83 35.85 12.68 49.28 29.14
⋆ WebArbiter-7B 96.47 90.07 84.30 71.43 80.17 72.41 87.36 77.22 87.08 77.78

Table 2: Results on WEBPRMBENCH with Pairwise and BoN Acc. ⋆ denotes our models. Bold numbers indicate the best results,
while underlined numbers denote the second best. Our WebArbiter-7B achieves the highest BoN Acc across all environments,
with an Avg. BoN Acc of 77.78%, outperforming the second-best baseline, i.e., Gemini Flash, by 10.85%.

surpassing WebShepherd-8B by an absolute gain of 48%.
Unlike WebShepherd, which relies on fragile checklists,
WebArbiter employs principle-guided reasoning, yielding
judgments robust to environment and page variations.
Case studies illustrating these differences are provided in
Appendix E.

Robust Generalization Across Environments. WebArbi-
ter not only excels in-domain, achieving 96.47% Pairwise
Acc and 90.07% BoN Acc on Mind2Web, but also generalizes
across diverse benchmarks. On WebArena, it outperforms
the second-best baseline by nearly 4% in BoN Acc, gains
about 3% on AssistantBench, and still edges out strong base-
lines on WorkArena with 77.22%. These results confirm that
principle-guided reasoning supports both strong in-domain
learning and robustness across heterogeneous, noisy, and
enterprise-level environments.

Ablation Study. We compare four training variants to dis-
entangle the effects of reinforcement learning, principle guid-
ance, and justification style. Instruct (Original) denotes a
purely instruction-tuned model without additional optimiza-
tion. Cold Start RL directly applies RL on top of the in-

struction model. Cold Start RL + Principles augments RL
with principle prompting during training, enabling explicit
principle induction before judgment. SFTw/o Principles + RL
performs reasoning distillation without principles, followed
by RL, thereby testing whether narrative-style justifications
alone are sufficient. As shown in Tab. 3, WebArbiter achieves
the best performance. Explicit principles anchor judgments to
progress, producing stable supervision under multi-candidate
web settings.

RL Alone is Unstable Across Web Environments. Cold
Start RL performs well on in-domain Mind2Web but col-
lapses on out-of-domain benchmarks. This highlights that
reward optimization without reasoning distillation struggles
in noisy and complex environments.

Principles Enable Cross-Environment Generalization.
Augmenting RL with principles boosts Avg. BoN Acc, espe-
cially in structurally diverse environments such as WebArena
and AssistantBench. Principles provide transferable facets
for reasoning, reducing reliance on brittle layout cues and
improving robustness to web variability.

Method Mind2Web WebArena AssistantBench WorkArena Avg.
Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN Pairwise BoN

Instruct (Original) 79.02 41.00 72.44 40.16 76.72 37.93 78.06 51.67 76.56 42.69
Instruct + Cold Start RL 97.63 91.38 67.59 43.40 71.55 34.48 73.33 55.00 77.53 56.07
Instruct + Cold Start RL + Principles 96.42 87.88 84.10 60.65 79.31 55.17 83.19 55.56 85.75 64.81
Instruct + SFTw/o Principles + RL 94.26 82.39 75.34 49.87 68.97 41.38 78.61 54.44 79.30 57.02

⋆ WebArbiter 96.47 90.07 84.30 71.43 80.17 72.41 87.36 77.22 87.08 77.78

Table 3: Ablation results on WEBPRMBENCH with Qwen2.5-7B-Instruct as backbone. Best results are in bold and the second best
underlined. WEBARBITER, combining principle-guided reasoning distillation with RL, achieves the highest overall performance.

Reasoning Without Principles is Insufficient.
SFTw/o Principles + RL, i.e., narrative-style justifications
alone, improves fluency but lags behind principle-aware
settings. This confirms that narrating reasoning chains
without principles cannot ensure alignment with true
task progress in complex, long-horizon real-world web
navigation.

5.2 Reward-Guided Trajectory Search
Experimental Setup and Implementations. Reward-
guided trajectory search represents one of the most practical
applications of PRMs, as it directly leverages fine-grained
step-level supervision to improve decision quality during
agent execution. To evaluate WebArbiter in this setting, we
conduct experiments on WebArena-Lite1 (Liu et al. 2024b),
which contains diverse, long-horizon tasks such as online
shopping and content management, closely reflecting real-
world web activities. Performance is measured with Success
Rate. Following WebShepherd (Chae et al. 2025), we adopt
a Best-of-N sampling strategy: the policy model generates
N = 5 candidate actions for each step, and WebArbiter se-
lects the most promising one through a Knockout Tournament
mechanism (Guo et al. 2025b). We evaluate two policies,
GPT-4o-mini (OpenAI 2024b) and GPT-4o (OpenAI 2024a).

Analysis. As shown in Tab. 4, WebArbiter achieves sub-
stantial average improvements under both policy models, far
surpassing baselines. Its advantages arise from three main
factors. First, reasoning mitigates spurious correlations that
often mislead WebPRMs in domains such as Shopping and
Reddit. Gains in Shopping are particularly striking, as tasks
require dense semantic retrieval and inference; stronger poli-
cies can roll out more promising candidate actions, and We-
bArbiter’s structured reward modeling further amplifies these
benefits. Second, in GitLab, tasks frequently allow multiple
equivalent paths. WebShepherd is brittle under such variabil-
ity, whereas WebArbiter leverages reasoning over historical
trajectories and current states to evaluate action validity, en-
abling stronger generalization in dynamic workflows. By con-
trast, CMS exhibits a more template-driven structure, where
actions closely follow standardized patterns. In such cases,
checklist-based supervision remains comparatively effective,
which narrows the relative performance margin. Overall, We-
bArbiter’s reasoning-first design consistently provides ro-

1We did not have access to the MAP domain during this work
and therefore excluded it from our experiments.

Policy WebPRM Shopping CMS Reddit GitLab Avg. ∆

GPT-4o-mini

w/o Trajectory Search* 21.74 22.86 19.05 34.38 24.51 –

GPT-4o-mini 24.44 22.86 26.32 33.33 26.74 +2.23
WebShepherd-8B* 26.09 45.71 23.81 40.62 34.06 +9.55
⋆ WebArbiter-7B 37.78 42.86 36.84 46.67 41.04 +16.53

GPT-4o

w/o Trajectory Search* 23.91 31.43 28.57 56.25 35.04 –

GPT-4o-mini 26.67 37.14 42.11 40.00 36.48 +1.44
WebShepherd-8B* 30.43 42.86 47.62 46.88 41.95 +6.91
⋆ WebArbiter-7B 44.44 42.86 52.63 56.67 49.15 +14.11

Table 4: Success Rates (%) of trajectory search with GPT-
4o-mini and GPT-4o as policy on WebArena-lite. * Results
reported from the WebShepherd (Chae et al. 2025). ∆ is rela-
tive to the w/o Trajectory Search baseline. Our WebArbiter
consistently achieves the highest gains across both policy
models.

bust, interpretable, and scalable supervision across diverse
domains.

6 Conclusion
We presented WEBARBITER, a reasoning-first, principle-
inducing process reward model that frames reward modeling
as structured text generation and produces auditable step-
level judgments with rationales. Through reasoning distil-
lation and reinforcement learning, WebArbiter transforms
superficial correlations into robust signals that verify genuine
task progress, enforce trajectory consistency, and general-
ize across dynamic websites. To support systematic evalu-
ation, we released WEBPRMBENCH, the first comprehen-
sive evaluation benchmark spanning diverse environments
for WebPRMs in web navigation, covering four domains
with diverse tasks and fine-grained step-level supervision.
Extensive experiments demonstrate SOTA performance on
WEBPRMBENCH and substantial improvements in reward-
guided trajectory search on WebArena-Lite, establishing
principle-guided reasoning WebPRMs as a robust and in-
terpretable foundation for scalable web agents.

References
Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya,
I.; Aleman, F. L.; Almeida, D.; Altenschmidt, J.; Altman,
S.; Anadkat, S.; et al. 2023. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774.

Adept. 2022. Act-1: Transformer for actions. https://www.
adept.ai/blog/act-1/.

Anthropic. 2024. Introducing computer use, a new Claude
3.5 Sonnet, and Claude 3.5 Haiku. https://www.anthropic.
com/news/3-5-models-and-computer-use.
Anthropic. 2025. Claude 3.7 Sonnet and Claude Code. https:
//www.anthropic.com/news/claude-3-7-sonnet.
Boisvert, L.; Thakkar, M.; Gasse, M.; Caccia, M.; Chezelles,
T. L. S. D.; Cappart, Q.; Chapados, N.; Lacoste, A.; and
Drouin, A. 2025. WorkArena++: Towards Compositional
Planning and Reasoning-based Common Knowledge Work
Tasks. arXiv:2407.05291.
Chae, H.; Kim, S.; Cho, J.; Kim, S.; Moon, S.; Hwangbo,
G.; Lim, D.; Kim, M.; Hwang, Y.; Gwak, M.; Choi, D.;
Kang, M.; Im, G.; Cho, B.; Kim, H.; Han, J. H.; Kwon, T.;
Kim, M.; woo Kwak, B.; Kang, D.; and Yeo, J. 2025. Web-
Shepherd: Advancing PRMs for Reinforcing Web Agents.
arXiv:2505.15277.
Chen, X.; Li, G.; Wang, Z.; Jin, B.; Qian, C.; Wang, Y.; Wang,
H.; Zhang, Y.; Zhang, D.; Zhang, T.; Tong, H.; and Ji, H. 2025.
RM-R1: Reward Modeling as Reasoning. arXiv:2505.02387.
Deng, X.; Gu, Y.; Zheng, B.; Chen, S.; Stevens, S.; Wang,
B.; Sun, H.; and Su, Y. 2023. Mind2web: Towards a gen-
eralist agent for the web. Advances in Neural Information
Processing Systems, 36: 28091–28114.
Drouin, A.; Gasse, M.; Caccia, M.; Laradji, I. H.; Verme,
M. D.; Marty, T.; Boisvert, L.; Thakkar, M.; Cappart,
Q.; Vazquez, D.; Chapados, N.; and Lacoste, A. 2024.
WorkArena: How Capable Are Web Agents at Solving Com-
mon Knowledge Work Tasks? arXiv:2403.07718.
Fu, Y.; Kim, D.-K.; Kim, J.; Sohn, S.; Logeswaran, L.; Bae,
K.; and Lee, H. 2024. Autoguide: Automated generation and
selection of state-aware guidelines for large language model
agents. arXiv preprint arXiv:2403.08978.
Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang, R.; Xu, R.;
Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; et al. 2025a. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948.
Guo, J.; Chi, Z.; Dong, L.; Dong, Q.; Wu, X.; Huang, S.; and
Wei, F. 2025b. Reward Reasoning Model. arXiv:2505.14674.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.;
Wang, L.; Chen, W.; et al. 2022. Lora: Low-rank adaptation
of large language models. ICLR, 1(2): 3.
Huang, X.; Liu, W.; Chen, X.; Wang, X.; Wang, H.; Lian, D.;
Wang, Y.; Tang, R.; and Chen, E. 2024. Understanding the
planning of LLM agents: A survey. arXiv:2402.02716.
Kim, G.; Baldi, P.; and McAleer, S. 2024. Language models
can solve computer tasks. Advances in Neural Information
Processing Systems, 36.
Koh, J. Y.; McAleer, S.; Fried, D.; and Salakhutdinov, R.
2024. Tree Search for Language Model Agents. arXiv
preprint arXiv:2407.01476.
Koh, J. Y.; McAleer, S.; Fried, D.; and Salakhutdinov,
R. 2025. Tree Search for Language Model Agents.
arXiv:2407.01476.
Li, M.; Zhao, S.; Wang, Q.; Wang, K.; Zhou, Y.; Srivastava,
S.; Gokmen, C.; Lee, T.; Li, E. L.; Zhang, R.; et al. 2024.
Embodied agent interface: Benchmarking llms for embodied

decision making. Advances in Neural Information Processing
Systems, 37: 100428–100534.
Lightman, H.; Kosaraju, V.; Burda, Y.; Edwards, H.; Baker,
B.; Lee, T.; Leike, J.; Schulman, J.; Sutskever, I.; and Cobbe,
K. 2023. Let’s verify step by step. In The Twelfth Interna-
tional Conference on Learning Representations.
Liu, C. Y.; Zeng, L.; Liu, J.; Yan, R.; He, J.; Wang, C.; Yan,
S.; Liu, Y.; and Zhou, Y. 2024a. Skywork-Reward: Bag of
Tricks for Reward Modeling in LLMs. arXiv:2410.18451.
Liu, X.; Zhang, T.; Gu, Y.; Iong, I. L.; Xu, Y.; Song, X.;
Zhang, S.; Lai, H.; Liu, X.; Zhao, H.; Sun, J.; Yang, X.; Yang,
Y.; Qi, Z.; Yao, S.; Sun, X.; Cheng, S.; Zheng, Q.; Yu, H.;
Zhang, H.; Hong, W.; Ding, M.; Pan, L.; Gu, X.; Zeng, A.;
Du, Z.; Song, C. H.; Su, Y.; Dong, Y.; and Tang, J. 2024b.
VisualAgentBench: Towards Large Multimodal Models as
Visual Foundation Agents. arXiv:2408.06327.
Liu, Y.; Yao, Z.; Min, R.; Cao, Y.; Hou, L.; and Li, J. 2025.
PairJudge RM: Perform Best-of-N Sampling with Knockout
Tournament. arXiv:2501.13007.
Lù, X. H.; Kazemnejad, A.; Meade, N.; Patel, A.; Shin, D.;
Zambrano, A.; Stańczak, K.; Shaw, P.; Pal, C. J.; and Reddy,
S. 2025. AgentRewardBench: Evaluating Automatic Evalua-
tions of Web Agent Trajectories. arXiv:2504.08942.
Ma, K.; Zhang, H.; Wang, H.; Pan, X.; and Yu, D. 2023.
Laser: Llm agent with state-space exploration for web navi-
gation. arXiv preprint arXiv:2309.08172.
Mahan, D.; Phung, D. V.; Rafailov, R.; Blagden, C.; Lile, N.;
Castricato, L.; Fränken, J.-P.; Finn, C.; and Albalak, A. 2024.
Generative Reward Models. arXiv:2410.12832.
Meta. 2024. Introducing Meta Llama 3: The most capable
openly available LLM to date. https://ai.meta.com/blog/meta-
llama-3/.
Miao, B.; Wu, Y.; Gao, M.; Yu, Q.; Bu, W.; Zhang, W.;
Li, Y.; Tang, S.; Chua, T.-S.; and Li, J. 2025. Boosting
Virtual Agent Learning and Reasoning: A Step-Wise, Multi-
Dimensional, and Generalist Reward Model with Benchmark.
arXiv:2503.18665.
OpenAI. 2024a. GPT-4o. https://platform.openai.com/docs/
models/gpt-4o.
OpenAI. 2024b. GPT-4o mini: Advancing cost-efficient in-
telligence. https://openai.com/index/gpt-4o-mini-advancing-
cost-efficient-intelligence/.
OpenAI. 2025a. GPT-5 is here. https://openai.com/gpt-5/.
OpenAI. 2025b. Introducing Operator. https://openai.com/
index/introducing-operator/.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright,
C. L.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray,
A.; Schulman, J.; Hilton, J.; Kelton, F.; Miller, L.; Simens, M.;
Askell, A.; Welinder, P.; Christiano, P.; Leike, J.; and Lowe,
R. 2022. Training language models to follow instructions
with human feedback. arXiv:2203.02155.
Pan, J.; Zhang, Y.; Tomlin, N.; Zhou, Y.; Levine, S.; and Suhr,
A. 2024. Autonomous evaluation and refinement of digital
agents. arXiv preprint arXiv:2404.06474.

Park, J.; Jwa, S.; Ren, M.; Kim, D.; and Choi, S. 2024. Off-
setBias: Leveraging Debiased Data for Tuning Evaluators.
arXiv:2407.06551.
Prasad, A.; Koller, A.; Hartmann, M.; Clark, P.; Sabharwal,
A.; Bansal, M.; and Khot, T. 2023. Adapt: As-needed decom-
position and planning with language models. arXiv preprint
arXiv:2311.05772.
Qi, Z.; Liu, X.; Iong, I. L.; Lai, H.; Sun, X.; Zhao, W.; Yang,
Y.; Yang, X.; Sun, J.; Yao, S.; Zhang, T.; Xu, W.; Tang, J.;
and Dong, Y. 2025. WebRL: Training LLM Web Agents via
Self-Evolving Online Curriculum Reinforcement Learning.
arXiv:2411.02337.
Qwen; :; Yang, A.; Yang, B.; Zhang, B.; Hui, B.; Zheng, B.;
Yu, B.; Li, C.; Liu, D.; Huang, F.; Wei, H.; Lin, H.; Yang, J.;
Tu, J.; Zhang, J.; Yang, J.; Yang, J.; Zhou, J.; Lin, J.; Dang,
K.; Lu, K.; Bao, K.; Yang, K.; Yu, L.; Li, M.; Xue, M.; Zhang,
P.; Zhu, Q.; Men, R.; Lin, R.; Li, T.; Tang, T.; Xia, T.; Ren,
X.; Ren, X.; Fan, Y.; Su, Y.; Zhang, Y.; Wan, Y.; Liu, Y.; Cui,
Z.; Zhang, Z.; and Qiu, Z. 2025. Qwen2.5 Technical Report.
arXiv:2412.15115.
Shao, Z.; Wang, P.; Zhu, Q.; Xu, R.; Song, J.; Bi, X.;
Zhang, H.; Zhang, M.; Li, Y. K.; Wu, Y.; and Guo, D. 2024.
DeepSeekMath: Pushing the Limits of Mathematical Reason-
ing in Open Language Models. arXiv:2402.03300.
Sheng, G.; Zhang, C.; Ye, Z.; Wu, X.; Zhang, W.; Zhang,
R.; Peng, Y.; Lin, H.; and Wu, C. 2024. HybridFlow: A
Flexible and Efficient RLHF Framework. arXiv preprint
arXiv: 2409.19256.
Shinn, N.; Cassano, F.; Gopinath, A.; Narasimhan, K.; and
Yao, S. 2024. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information Pro-
cessing Systems, 36.
Sodhi, P.; Branavan, S. R. K.; Artzi, Y.; and McDonald,
R. 2024. SteP: Stacked LLM Policies for Web Actions.
arXiv:2310.03720.
Sun, H.; Zhuang, Y.; Kong, L.; Dai, B.; and Zhang, C. 2024.
Adaplanner: Adaptive planning from feedback with language
models. Advances in Neural Information Processing Systems,
36.
Sundar Pichai; and Demis Hassabis. 2025. Gemini 2.5 Flash.
https://deepmind.google/models/gemini/flash/.
Tao, H.; TV, S.; Shlapentokh-Rothman, M.; Hoiem, D.; and
Ji, H. 2023. Webwise: Web interface control and sequen-
tial exploration with large language models. arXiv preprint
arXiv:2310.16042.
Uesato, J.; Kushman, N.; Kumar, R.; Song, F.; Siegel, N.;
Wang, L.; Creswell, A.; Irving, G.; and Higgins, I. 2022. Solv-
ing math word problems with process-and outcome-based
feedback. arXiv preprint arXiv:2211.14275.
Wang, P.; Li, L.; Shao, Z.; Xu, R.; Dai, D.; Li, Y.; Chen,
D.; Wu, Y.; and Sui, Z. 2023a. Math-shepherd: Verify and
reinforce llms step-by-step without human annotations. arXiv
preprint arXiv:2312.08935.
Wang, T.; Kulikov, I.; Golovneva, O.; Yu, P.; Yuan, W.;
Dwivedi-Yu, J.; Pang, R. Y.; Fazel-Zarandi, M.; Weston, J.;
and Li, X. 2024a. Self-Taught Evaluators. arXiv:2408.02666.

Wang, Z.; Dong, Y.; Delalleau, O.; Zeng, J.; Shen, G.; Egert,
D.; Zhang, J. J.; Sreedhar, M. N.; and Kuchaiev, O. 2024b.
HelpSteer2: Open-source dataset for training top-performing
reward models. arXiv:2406.08673.
Wang, Z.; Dong, Y.; Zeng, J.; Adams, V.; Sreedhar, M. N.;
Egert, D.; Delalleau, O.; Scowcroft, J. P.; Kant, N.; Swope,
A.; and Kuchaiev, O. 2023b. HelpSteer: Multi-attribute Help-
fulness Dataset for SteerLM. arXiv:2311.09528.
Wei, Z.; Yao, W.; Liu, Y.; Zhang, W.; Lu, Q.; Qiu, L.; Yu,
C.; Xu, P.; Zhang, C.; Yin, B.; Yun, H.; and Li, L. 2025.
WebAgent-R1: Training Web Agents via End-to-End Multi-
Turn Reinforcement Learning. arXiv:2505.16421.
Wu, T.; Yuan, W.; Golovneva, O.; Xu, J.; Tian, Y.; Jiao, J.; We-
ston, J.; and Sukhbaatar, S. 2024. Meta-Rewarding Language
Models: Self-Improving Alignment with LLM-as-a-Meta-
Judge. arXiv:2407.19594.
Xi, Z.; Ding, Y.; Chen, W.; Hong, B.; Guo, H.; Wang, J.;
Yang, D.; Liao, C.; Guo, X.; He, W.; et al. 2024. Agentgym:
Evolving large language model-based agents across diverse
environments. arXiv preprint arXiv:2406.04151.
Ye, Z.; Li, X.; Li, Q.; Ai, Q.; Zhou, Y.; Shen, W.; Yan, D.;
and Liu, Y. 2025. Learning LLM-as-a-judge for preference
alignment. In The Thirteenth International Conference on
Learning Representations.
Yoran, O.; Amouyal, S. J.; Malaviya, C.; Bogin, B.; Press, O.;
and Berant, J. 2024. AssistantBench: Can Web Agents Solve
Realistic and Time-Consuming Tasks? arXiv:2407.15711.
Zhang, L.; Hosseini, A.; Bansal, H.; Kazemi, M.; Kumar, A.;
and Agarwal, R. 2024. Generative verifiers: Reward modeling
as next-token prediction. arXiv preprint arXiv:2408.15240.
Zhang, Y.; Lin, C.; Tang, S.; Chen, H.; Zhou, S.; Ma, Y.; and
Tresp, V. 2025a. SwarmAgentic: Towards Fully Automated
Agentic System Generation via Swarm Intelligence. arXiv
preprint arXiv:2506.15672.
Zhang, Y.; Ma, Z.; Ma, Y.; Han, Z.; Wu, Y.; and Tresp, V.
2025b. Webpilot: A versatile and autonomous multi-agent
system for web task execution with strategic exploration. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, 23378–23386.
Zhang, Z.; Zheng, C.; Wu, Y.; Zhang, B.; Lin, R.; Yu, B.; Liu,
D.; Zhou, J.; and Lin, J. 2025c. The lessons of developing
process reward models in mathematical reasoning. arXiv
preprint arXiv:2501.07301.
Zheng, L.; Chiang, W.-L.; Sheng, Y.; Zhuang, S.; Wu, Z.;
Zhuang, Y.; Lin, Z.; Li, Z.; Li, D.; Xing, E.; et al. 2023a.
Judging llm-as-a-judge with mt-bench and chatbot arena. Ad-
vances in neural information processing systems, 36: 46595–
46623.
Zheng, L.; Wang, R.; Wang, X.; and An, B. 2023b. Synapse:
Trajectory-as-exemplar prompting with memory for com-
puter control. In The Twelfth International Conference on
Learning Representations.
Zheng, Y.; Zhang, R.; Zhang, J.; Ye, Y.; Luo, Z.; Feng, Z.;
and Ma, Y. 2024. LlamaFactory: Unified Efficient Fine-
Tuning of 100+ Language Models. In Proceedings of the
62nd Annual Meeting of the Association for Computational

Linguistics (Volume 3: System Demonstrations). Bangkok,
Thailand: Association for Computational Linguistics.
Zhou, E.; Zheng, G.; Wang, B.; Xi, Z.; Dou, S.; Bao, R.; Shen,
W.; Xiong, L.; Fan, J.; Mou, Y.; Zheng, R.; Gui, T.; Zhang, Q.;
and Huang, X. 2025. RMB: Comprehensively Benchmarking
Reward Models in LLM Alignment. arXiv:2410.09893.
Zhou, S.; Xu, F. F.; Zhu, H.; Zhou, X.; Lo, R.; Sridhar, A.;
Cheng, X.; Ou, T.; Bisk, Y.; Fried, D.; Alon, U.; and Neu-
big, G. 2024. WebArena: A Realistic Web Environment for
Building Autonomous Agents. arXiv:2307.13854.
Zhou, S.; Xu, F. F.; Zhu, H.; Zhou, X.; Lo, R.; Sridhar, A.;
Cheng, X.; Ou, T.; Bisk, Y.; Fried, D.; et al. 2023. Webarena:
A realistic web environment for building autonomous agents.
arXiv preprint arXiv:2307.13854.

Contents

A Notation Summary
For clarity, we summarize the main notations used throughout this paper:

• E : web environment, defined by state space S, action space A, and observation space O.
• T : state transition function T : S ×A → S.
• I: task instruction.
• sp, op, ap: state, observation, and action at step p.
• cp: reasoning trace associated with action ap.
• c<p: reasoning traces of all previously executed actions.
• τ = (a1, . . . , aP): trajectory of length P .
• j = (j1, . . . , jL): structured justification of length L, consisting of explicit reasoning and a final verdict.
• πθ: WebArbiter model parameterized by θ.
• ŷ: predicted preference verdict.
• DTrain,DSFT,DRL: training datasets for supervised distillation and reinforcement learning.
• DBench: evaluation dataset for WEBARBITER-BENCH.
• a+: action from a successful trajectory (positive label).
• a− or a−q: rejected action (q = 1, . . . , Q).
• Q: number of distractors in WEBARBITER-BENCH (set to 4).
• M : dataset size (training or evaluation).
• R(x, ŷ): verifiable reward signal.

B Example of Preference Dataset
To illustrate the construction of a preference pair, consider a task instruction from WEBARENA:

• Instruction I: “Find the 2026 conference submission page on the ICLR website.‘’
• Current observation op: [356] banner ’header’, role=’banner’ [359] link ’Home’ [380] button ’Select Year (2026)’ [386]

button ’Dates’ [391] button ’Calls’ [396] button ’Guides’ [401] button ’Organization’ [403] heading ’ICLR 2026’
• History (a<p, c<p):

– a1: Search "ICLR", c1: “I need to find the official ICLR website first. Let me search for ’ICLR’ to locate it.‘’
– a2: Click link "ICLR homepage", c2: “I can see the ICLR official website link in the search results. Clicking on it will take

me to the ICLR homepage where I can find the conference submission information.‘’

• Candidate actions and reasoning traces:

– (a1p, c
1
p): Click link "Call for Papers" ; c1p: “I can see a ’Call for Papers’ link on the ICLR homepage. This link would likely

lead to the submission details page, which should contain information about the 2026 conference submission process that
I’m looking for.‘’

– (a2p, c
2
p): Click "About" link; c2p: “I can see an ’About’ link on the ICLR homepage. Since I need to find the 2026 conference

submission page, the ’About’ section might contain conference overview information including links to submission details
or important dates for the 2026 conference.‘’

• Label y: a1p is preferred.

This example is represented in the dataset as:

(I, op, a<p, c<p, (a
1
p, c

1
p), (a

2
p, c

2
p), y = a1p).

C Training Details
All training is conducted on 8 NVIDIA A100-80GB GPUs with fixed random seeds. Our training framework is bead on
LLama-Factory (Zheng et al. 2024) and VERL (Sheng et al. 2024)

Distillation Stage. We train the model for 5 epochs with a learning rate of 8e-4, using LoRA with a rank of 128.
We apply a cosine learning rate scheduler with a warmup ratio of 0.1. We set the batch size to 256 and the maximum sequence
length to 8,192 tokens.

RLVR Stage. We employ the VERL framework for GRPO training. The learning rate is set to 7.0 × 10−6. The train-
ing uses a fixed batch size of 1,024 with mini-batch size of 128, and adopts Fully Sharded Data Parallel (FSDP) for enhanced
memory efficiency. For rollout generation, we deploy vLLM with tensor parallelism of 4 and GPU memory utilization limited to
0.4. Response sampling uses standard parameters (temperature=1.0, top-p=1.0), generating 7 candidate responses per prompt.
We apply KL regularization with a coefficient of 1.0× 10−3 and clip ratio of 0.2. The maximum input sequence length is 8,192
tokens, and the maximum response length is 4,096 tokens.

D Prompt Repository

WebArbiter

You are a skilled expert at evaluating assistant responses. You should evaluate given
responses based on the given judging criteria.\n Given the context of the
conversation and two responses from the Assistant, you need to determine the better
response. Provide an overall comprehensive comparison upon them.

Intent
{intent}
AXTREE
Note: [bid] is the unique alpha-numeric identifier at the beginning of lines for each

element in the AXTree. Always use bid to refer to elements in your actions.
{observation}
Trajectory
Note: The trajectory contains the sequence of previous actions and their corresponding

thoughts. Each entry reflects the agent’s internal reasoning (‘thought‘) and the
concrete operation it performed (‘action‘).

{trajectory}
start url
{start_url}
current url
The URL provides clues about the user’s position in the application flow. Use both the

path and query parameters to infer page type (e.g., homepage, search results,
product detail, cart, checkout).

{current_url}
Assistant Responses
[The Begin of Response 1]
THOUGHT:
{thought1}
ACTION:
{action1}
[The End of Response 1]
[The Begin of Response 2]
THOUGHT:
{thought2}
ACTION:
{action2}
[The End of Response 2]
Output Instructions
Format your output strictly using the following XML-style tags:
<State>Summarize the current state based on the URL, AXTree, and previous actions.

Include what page the user is currently on, and what relevant UI elements or
information are visible.</State>

<Criteria>Other potential criteria specific to the query and the context, and the
weights of each criteria.</Criteria>

<Analysis>Compare Response 1 and Response 2 in detail according to the <State> and
<Criteria>.</Analysis>

<Answer>Response 1 or Response 2</Answer>
Rules for <Answer>:
- If Response 1 is better, output exactly: <Answer>Response 1</Answer>
- If Response 2 is better, output exactly: <Answer>Response 2</Answer>
Important Notes:
- Be objective and base your evaluation strictly on the content of the responses.
- Do not let the response order, length bias your judgment.

E Case Study: WebArbiter vs. WebShepherd
To further illustrate the differences between WebArbiter and WebShepherd, we present a representative example from WE-
BARENA. The task instruction is:

“What is the rating of Ugreen lightning to 3.5mm cable? Round to the nearest whole number.”

At the current step, the agent observes a search-results page listing the target product. The snippet already shows a “65%” rating
in the result list, but the product detail page has not been opened yet. Two candidate actions are considered:
• a1p: send_msg_to_user with “65%”.
c1p: “The list view already shows a 65% rating, so answer directly.”

• a2p: Click the target product entry to open its detail page, then extract and (if needed) round the rating.
c2p: “Verify the rating on the product page (correct product, correct field) before responding.”

WebShepherd. WebShepherd evaluates candidates using checklist-style templates that are precompiled before the next
observation. These checklists typically include predicates such as “verify on the product page”; hence, even when a rating is
already visible in an earlier search-results snippet, the checklist still requires verification, and thus tends to favor a2p. When the
actual page deviates from the ex-ante forecast (e.g., an early results page surfaces), the precompiled predicates become stale:
they enforce a verification path that may be unnecessary or even brittle under interstitials or layout drift.

WebArbiter. WebArbiter derives principles such as “answer directly when the objective’s required field is already unambigu-
ously satisfied by the current observation,” “ensure correct rounding,” and “avoid redundant navigation when the answer is
already grounded.” It performs dynamic expectation alignment: (i) it forms expectation about what evidence is needed, (ii)
compares the actual page with that expectation, and (iii) revises principle weights and candidate scoring accordingly. Concretely,
upon seeing a clear “65%” rating in the snippet, it downweights “must verify on product page” and upweights “answer directly
with proper rounding,” issuing a preference verdict for a1p and correctly completing the task with minimal steps.

Discussion. This case illustrates a key limitation of precompiled, open-loop checklists: they conflate procedural requirements
(“must navigate to detail page”) with goal satisfaction and thus underperform when early observations already satisfy the objective.
In contrast, WebArbiter grounds decisions in explicit, principle-guided reasoning and closed-loop, dynamic expectation alignment
(predict → observe → compare → revise), enabling it to act on already-sufficient evidence and remain robust to goal–observation
mismatches.

Trajectory
Thought: On One Stop Market’s homepage, the search ...
Action: type [2826] "Ugreen lightning to 3.5mm cable"
Thought: The current Page is on
...

Websheperd Analysis

✗Action Candidate 1

Checklist 1: Search for Product (Yes)
Results for ‘Ugreen lightning to 3.5mm cable’ are visible; the list
view already shows a 65% rating, so I can answer directly.

Checklist 2: Extract Rating (No)
Outputs ‘65%’ from the results snippet without locating a rating
field or confirming formatting on the product page.

Checklist 3: Verify Page (No)
Does not open the product detail page; no on-page verification
or source evidence is performed.

✓ Action Candidate 2

Checklist 1: Search for Product (Yes)
Results are visible, but the correct next step is to open the
product page to verify the rating.

Checklist 2: Extract Rating (In Progress)
Plan to locate the rating on the product page and then round,
the action moves toward the rating field, but the value has not
yet been located or parsed at this step.

Checklist 3: Verify Page (No)
Does not open the product detail page; no on-page verification
or source evidence is performed.

WebAribiter Analysis

 Principle

1. Correctness of the rating value (60%)

2. Correct rounding to the nearest whole number（20%）

3. Reference to the right product (not a different product)
（10%）

4. Action appropriateness (should not click a wrong element)
（10%）

Comparing against the principle:

1. Correct rating – both fine.

2. Rounding – both fine.

3. Correct product
- Action Candidate1 implicitly correct
- Action Candidate 2 may be off.

4. Action appropriateness
- Action Candidate 1 minimal

Conclusion:

✓ Action Candidate 1 — more accurate and progressive
(Chosen)

✗ Action Candidate 2 — may click the wrong element

Instruction
What is the rating of Ugreen lightning to 3.5mm cable?
Round to the nearest whole number.

Action Candidate 1
Thought: The page lists a 65% rating on the search
results snippet.
Action: send_msg_to_user ["65%"]

Action Candidate 2
Thought: Open the product page to verify the rating, then
round to nearest whole.
Action: click [6368]

Figure 3: Case study on product rating in WebArena-Lite. The snippet shows “65%” before opening the product page. Web-
Shepherd, constrained by fixed checklists, may enforce redundant verification. WebArbiter, using principle-guided reasoning,
recognizes the snippet as sufficient and selects the correct action.

