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ABSTRACT

Recent advancements in Large Language Models (LLMs) have significantly in-
creased context window sizes, enabling sophisticated applications but also in-
troducing substantial computational overheads, particularly computing key-value
(KV) cache in the prefill stage. Prefix caching has emerged to save GPU power
in this scenario, which saves KV cache at disks and reuse them across multiple
queries. However, traditional prefix caching mechanisms often suffer from sub-
stantial latency because the speed of loading KV cache from disks to GPU mem-
ory is bottlenecked by the throughput of I/O devices. To optimize the latency of
long-context prefill, we propose Cake, a novel KV cache loader, which employs
a bidirectional parallelized KV cache generation strategy. Upon receiving a pre-
fill task, Cake simultaneously and dynamically loads saved KV cache from prefix
cache locations and computes KV cache on local GPUs, maximizing the utiliza-
tion of available computation and I/O bandwidth resources. Additionally, Cake
automatically adapts to diverse system statuses without manual parameter. tuning.
In experiments on various prompt datasets, GPUs, and I/O devices, Cake offers
up to 68.1% Time To First Token (TTFT) reduction compare with compute-only
method and 94.6% TTFT reduction compare with I/O-only method.

1 INTRODUCTION

Large Language Models (LLMs) have been widely adopted in large-scale online services, making
efficient online serving of these models a critical research and engineering challenge (Kwon et al.,
2023; Agrawal et al., 2024; Zheng et al., 2023; Miao et al., 2024; Leviathan et al., 2023; Ning et al.,
2023; Jin et al., 2024b). Recent advancements in LLM development have significantly expanded the
models’ context windows, enabling sophisticated applications such as long document understand-
ing (Wang et al., 2024), long-context Retrieval Augmented Generation (RAG) (Jiang et al., 2024),
and complex LLM agents (Zhang et al., 2024). For instance, GPT-4 boasts a context window of 128k
tokens (openAI, 2024), while Claude-3.5 Sounet extends this further to 200K tokens (Anthropic,
2024). However, processing these long-context prompts introduces substantial computational over-
head, particularly in the prefill stage, where the key-value (KV) cache is calculated. 1 For example,
generating KV cache for a 200-page book like ”The Great Gatsby” (approximately 72K tokens) re-
quires about 180GB of memory. For a 70B parameter model, generating such a KV cache on an
A100 GPU takes approximately 30 seconds, significantly impacting user experience.

To mitigate this overhead, prefix caching, i.e., the cache of KV cache, has emerged as a useful mech-
anism. This approach is particularly effective in applications where long contexts are frequently and
repeatedly used across multiple requests. For example, in long document processing tasks, the KV
cache of a large document can be reused for multiple queries about its content. Similarly, in coding
assistance scenarios, a cached summary of the codebase can be reused across multiple code comple-
tion or Q&A requests. LLM service providers like Claude and Deepseek have begun implementing
such prefix caching mechanism in their online services (Anthropic, 2023; Deepseek, 2024). Recent
studies have proposed various system solutions to implement prefix caching (Juravsky et al., 2024;
Jin et al., 2024a; Gim et al., 2024). LLM inference engines such as vLLM (Kwon et al., 2023) and
SGLang (Zheng et al., 2023) cache KV in local CPU memory, but this approach is limited by CPU
memory size. Given that disks offer much larger capacity and are more cost-efficient than CPU

1KV cache is an essential technique to reduce the computational overhead of LLM inference in the decoding
stage for each request and widely adopted in the state-of-the-art inference system.
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memory, storing KV caches in local or remote disks has become a more viable option (Gao et al.,
2024; AutoGen, 2024). CacheGen (Liu et al., 2023) proposes solutions to optimize KV streaming
from local or remote disks to GPU memory, aiming for scalable prefix caching.
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Figure 1: Workflow of long-context
LLM inference with prefix caching.
Cake operates in the KV loading
phase (highlighted in blue). The
configuration parameter is based
on the specification of LambdaLab
Server (Lambda, 2024).

In practice, long-context LLM inference workflow with pre-
fix caching is depicted in Figure 1. Upon receiving an LLM
request, the serving system first checks whether it has a prefix
with available corresponding KV cache. If so, the system di-
rectly loads KV cache from the cache location to the GPU’s
memory, saving the overhead of recomputation. Note that
prefix caching may involve multiple levels, including CPU
memory, local disks, and remote disks. After loading the
cached prefix, the system continues the prefill of remaining
tokens in the request and proceeds with subsequent steps.

However, while prefix caching saves GPU computation, it
is not optimized for latency, specifically Time-to-First-Token
(TTFT), one of the key metrics in LLM serving. When the
prefix cache is not found in local CPU memory (a com-
mon scenario due to CPU memory constraints), streaming
KV cache data from disk or network is often not faster than
recomputing KV cache if GPU power is available as we
demonstrated in § 3. Additionally, both the available compu-
tation and I/O resources vary based on the system workload.
Consequently, the two approaches of obtaining KV cache-
GPU computation and prefix cache loading - are only ben-
eficial in terms of latency when there is sufficient GPU power
or I/O bandwidth, respectively. Currently, there is a lack of
dynamic KV cache management systems that can optimize LLM inference latency across diverse
system statuses.

To address this gap, we propose Cake (Computation and Network Aware KV CachE loader), a
system designed to achieve optimal latency for long-context LLM inference. Cake simultane-
ously leverages local computation and data streaming from prefix cache locations to generate the
KV cache. It employs a bidirectional parallelized KV cache generation strategy: upon receiving a
prefill task, Cake immediately utilizes available GPU power to compute KV cache in normal order
starting from the first token, while simultaneously loading the prefix cache in reverse order starting
from the last token, until all tokens have corresponding KV cache data. This design is inspired by
key observations about the characteristics of computing and streaming KV cache: the computational
cost of generating KV cache increases with the token’s distance from the beginning of the sequence,
while the data streaming cost remains constant regardless of token position. Importantly, Cake’s
design is both simple and elegant, adapting to diverse situations in terms of system architecture and
available resources, without requiring manual parameter tuning.

The main contribution of this paper includes the design and evaluation of Cake, which enables the
following features improving the quality of LLM serving.

• Optimized latency: Cake optimizes the overall latency of KV cache loading by achieving maxi-
mum utilization of computation and network streaming in parallel without any idle time.

• Automatic adaptation: Cake continuously adapts to the available network and computational
resources, achieving low latency without downgrading system performance. Previous computation-
only and network-only KV cache prefill solutions are special cases of Cake.

• Negligible Overhead: Cake introduces minimal computational and memory overhead, ensuring
it doesn’t negatively impact the performance of the underlying system.

Our experiments demonstrate that Cake efficiently utilizes both computation and I/O fetching to
significantly reduce the prefilling latency in long-context LLM inference. Evaluations on diverse
datasets, including LongChat (Li et al., 2023a), TriviaQA, and NarrativeQA (Bai et al., 2023),
show that Cake achieves substantial improvements in Time-to-First-Token (TTFT). Compared to
compute-only methods, Cake achieves an average 36.7% reduction in TTFT. When compared to
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I/O-only methods, the improvement is even more pronounced, with an average 60.55% reduction
in TTFT. Notably, Cake accomplishes these performance gains while introducing minimal overhead
to the system, making it a highly efficient and practical solution for optimizing long-context LLM
inference across various scenarios and workloads.

2 BACKGROUND

2.1 KV CACHE IN LLM INFERENCE

Large language models (LLMs) have recently made significant impacts across numerous domains.
The key to their success lies in the attention mechanism, which enables these models to scale up and
effectively process long contexts (Vaswani et al., 2017; Brown et al., 2020). In the attention calcu-
lation process, the computation of Key (K) and Value (V) vectors for previously processed tokens
becomes redundant during the decoding phase. Recognizing this, the concept of KV cache (Zhang
et al., 2023) is introduced. This approach involves storing these computed values and reusing them
to reduce computational overhead in subsequent decoding steps.

State-of-the-art LLM inference engines (Kwon et al., 2023; Miao et al., 2024; Zheng et al., 2023)
typically divide the inference procedure into two distinct phases: prefill and decode. The prefill
stage generates the initial KV cache for the input prompt. In the subsequent decode stage, the
model utilizes this cache to generate new tokens sequentially. As each new token is produced,
its corresponding K and V vectors are computed and appended to the KV cache. This caching
mechanism significantly accelerates inference by converting the time complexity of token generation
from quadratic to linear (Yang et al., 2024).

2.2 KV CACHE SAVING AND REUSING

The prefill stage is a highly resource-consuming procedure that often saturates GPU computation
resources and causes high latency compared to the normal decoding procedure (Agrawal et al.,
2024). This overhead becomes even more significant in long context scenarios (Fu, 2024).

Meanwhile, it is common for parts of prompts to be reused across multiple requests. For instance,
system messages in chatbot services guiding the LLM model’s behavior are usually long and shared
across multiple messages. In Retrieval-Augmented Generation scenarios, fetching long text blocks
as the context to generate answers can improve the generation performance (Jiang et al., 2024).
Other use cases include coding assistants that need to maintain a summarized version of the codebase
in the prompt (Cursor, 2024), and agentic search, tool use and multi-agent communication which
require multiple rounds of API calls using the same set of historical data (Wu et al., 2023; Li et al.,
2023b).

To address these challenges and optimize inference efficiency, various systems have been developed
to save and reuse KV cache via prefix caching mechanism (Zheng et al., 2023; Kwon et al., 2023;
Juravsky et al., 2024; Jin et al., 2024a; Gim et al., 2024; Gao et al., 2024). A typical workflow of
these systems are demonstrate in Figure 1. These systems leverage different layers of the storage
hierarchy, each with its own trade-offs. GPU memory offers the lowest latency but has the highest
cost and smallest capacity, making it impractical for long-term KV cache storage. CPU memory,
used by some inference engines (Zheng et al., 2023; Kwon et al., 2023), is often insufficient for
large-scale online serving systems handling millions of requests per second. Consequently, local
or remote disk storage has emerged as a more viable option for large-scale operations, offering
a balance between cost and capacity. The trend towards disk-based KV cache storage is evident
in industry practices. For example, Deepseek, a major LLM API service provider, implements
prefix caching on disk, potentially reducing users’ inference costs by up to 90% (Deepseek, 2024).
Similarly, the multi-agent framework AutoGen employs disk-based prefix caching (AutoGen, 2024).

Cake aligns with the prefix caching mechanism for long-context LLM inference, improving latency
by simultaneously scheduling KV computation and loading.

2.3 CHUNK PREFILL

Chunk prefill is a technique used to optimize the prefill stage of LLM inference, particularly for
long input sequences. Unlike the decoding procedure, which is memory-bound, prefill stage is a
computation-intensive process that demands significant GPU resources for extended periods. For
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instance, prefilling 10,000 tokens on a 7B model on an A100 GPU takes approximately 1 seconds.
Directly processing a long text prompt in its entirety for prefilling would monopolize the GPU,
severely impacting the latency of other tasks.

Originally proposed in Sarathi (Agrawal et al., 2023; 2024), this method divides the input sequence
into smaller, near-equal sized chunks and processes them sequentially. By breaking down large
prefill requests into manageable chunks, chunk prefill allows for improved throughput and reduced
prefill operations’ latency impact in LLM serving systems. It enables the interleaving of prefill op-
erations with decode operations, minimizing the blocking effect of long prompts on other tasks.This
approach has been widely adopted in current mainstream LLM inference engines (Zheng et al.,
2023; Kwon et al., 2023).

In vLLM’s detailed implementation of chunk prefill (Kwon et al., 2023), the inference engine forms
a batch of requests for each inference step based on a predetermined token budget. The scheduler
prioritizes decode requests, allocating one token from the budget to each. Any remaining tokens
in the budget are then assigned to prefill requests. This dynamic allocation determines the chunk
size for chunk prefill operations. By giving precedence to decode requests, this approach minimizes
interference with ongoing decoding requests, ensuring lower inter-token latency (ITL) for decode
while efficiently utilizing available resources for prefill tasks.

Cake adopts chunk prefill by default as it aims for the long-context inference scenarios.

3 EXPLORATORY EXPERIMENTS AND MOTIVATION

Upon receiving a new prefill task, the KV cache can be obtained through various sources, including
the computation on local GPU, fetching from local disk, or data streaming from a remote loca-
tion, as mentioned in § 2. This section evaluates the performance of different KV cache loading or
generation methods and identifies potential improvements, motivating the design of Cake.

Finding 1: The latency of loading KV cache from local or remote disks is linearly correlated
with the data size.

The size of the KV cache grows linearly with the number of tokens and can be calculated as:
KV cache size = 4 ·Nl ·H · Lmax ·B · P, (1)

Where Nl is the number of layers, H is the hidden size, Lmax is the maximum context length, B
is the batch size, and P is the precision in bytes. Using this formula, we can estimate that for the
Llama3-70B model with FP16 precision, the KV cache for a single token consumes approximately
2.5 MB. Consequently, a 15-page research paper contains around 10,000 tokens, would require a
great amount of memory as large as 25 GB.

Because of the size, the process of loading long-context KV cache into GPU memory is not fast
because of the constrained bottleneck throughput of the I/O devices. Local storage options vary in
performance: SATA SSDs offer I/O bandwidths of around 600 MB/s, HDDs are limited to about
200 MB/s, and high-end NVMe SSDs can achieve read speeds of up to 3 GB/s at a premium cost.
Even in the optimal case with a 3 GB/s read bandwidth, loading the KV cache for a 10-page paper
would take approximately 8 seconds. Such latency will be even longer when using remote storage,
whose bottleneck becomes the network bandwidth. Typical network bandwidths rarely exceed 20
Gbps (i.e., 3GB/s) (Liu et al., 2023; Jain et al., 2023), potentially leading to transfer times of up to
10 seconds to fetch the 25 GB KV cache from a remote disk.

Finding 2: The latency and memory usage of computing KV cache on GPUs increases quadrat-
ically with the length of the sequence.

During the prefill stage, the computation cost for generating KV cache of later tokens (i.e., those
with higher indices in the sequence) is expected to be higher than for earlier tokens This is because
of the inherent nature of attention mechanisms — computing KV cache involves attention operations
across the current and all preceding tokens. To test this hypothesis, we conducted experiments on
long-context prefill tasks with the chunk prefill mechanism described in § 2.3. Results presented in
Figure 3 demonstrate a clear pattern: the latency for each chunk linearly increases with its index;
i.e., the latency for the whole sequence is quadratically correlated with the sequence length. We can
also observe the KV cache memory usage linearly increases with the chunk index. The observation
is critical for Cake to arrange computation tasks optimally.
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Finding 3: Computing KV cache could be even faster than loading cached KV cache.

We compare the performance of loading and computing KV cache at various system settings. We use
various GPUs to perform chunk prefill of a random context with 32k tokens through LongAlpaca-7B
and -13B (Chen et al., 2023) models, implemented on vLLM (Kwon et al., 2023). We use equavelant
throughput as the evaluation metric, dividing the computed or loaded KV cache file size by the time
spent. We evaluate the prefill using chunk sizes as 512, as suggested by vLLM.

We present the results in Figure 2. Loading KV cache from remote disk is faster than loading from
a local HDD but is slower than loading from a local SSD. Throughput of computing KV cache with
100% A100 GPU power is comparable to that of loading KV cache from SSD disk or network.

Conclusion. The above experiments highlighted the limitation of existing prefix caching – load-
ing KV cache via disk or network I/O introduces substantial latency. Recomputation of KV cache,
though consuming GPU power, is fast enough to potentially accelerate the prefill process. Our find-
ings suggest that an optimal approach for prefix caching could simultaneously leverage available
GPU power and I/O bandwidth. This strategy forms the core concept of Cake.

4 DESIGN OF Cake

We propose Cake, a system that adaptively utilizes both network and available computation re-
sources to achieve low-latency KV cache loading. In this section, we first discuss the scope of Cake
by specifying its use cases in Section 4.1. We then elaborate design details in Section 4.2 and analyze
the benefit of Cake in Section 4.3.

4.1 USE CASES OF Cake

Cake works upon a LLM serving system with prefix caching as depicted in Figure 1. Cake is
especially beneficial when the system needs to load saved KV cache from disk storage to GPU
Memory for inference. It’s worth noting that in cases where the required KV cache data already
resides in GPU or CPU memory, it is beyond the scope of Cake. This is because the bandwidth
between CPU and GPU is dramatically higher than disk I/O or computation speeds, then comparing
with I/O, computation can provide limited help. However, given the memory size constraints on
CPU and GPU and the large size of long-context caches, such scenarios are relatively infrequent,
making Cake a crucial component for most long-context LLM inference with prefix caching tasks.

Cake is complementary to other optimization techniques. For instance, methods focused on reducing
KV cache size (Hooper et al., 2024; Jiang et al., 2023; Kang et al., 2024) or optimizing KV cache
loading from local/remote disks (Liu et al., 2023) can be used in conjunction with Cake, potentially
yielding even greater performance improvements. Furthermore, Cake is designed to integrate seam-
lessly with state-of-the-art LLM serving systems (Kwon et al., 2023; Yao et al., 2024), enhancing
their capabilities in handling long-context scenarios efficiently.

4.2 DESIGN DETAILS

We build Cake upon the chunk prefill design discussed in §2.3, where a long sequence is split into
chunks, and the prefill is performed chunk by chunk. Chunk prefill is widely adopted for long-
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Stage0: E ating cake makes me happy , I enjoy eating cakes .

Stage1: E ating cake makes me happy , I enjoy eating cakes .

….

StageN-1: E ating cake makes me happy , I enjoy eating cakes .

StageN E ating cake makes me happy , I enjoy eating cakes .

Compute I/O LoadUnfinished Chunks Loaded Chunks

Figure 4: Diagram illustrating the workflow of Cake

context LLM inference systems to offer scalable management of concurrent multiple user requests.
In Cake, chunks serve as the fundamental unit for scheduling prefill tasks.

The key idea of Cake is to simultaneously leverage both local computation and I/O for data streaming
to optimize the latency of KV cache prefill. For each long-context request, Cake determines an
efficient schedule for using all available resources to accomplish KV cache prefill, i.e., determining
for each chunk whether to utilize local GPU computation or data streaming from local/remote disks,
as well as the sequence of these operations. As discussed in §3, the computation of KV cache on later
chunks is more expensive than that on earlier chunks. Therefore, we should prioritize computation
operations on chunks near the beginning of the sequence while let cache loading operations to fill
later chunks. Inspired by this intuition, we design Cake as a bidirectional parrallelized KV cache
loader as below.

As illustrated in Figure 4, upon receiving a request, Cake splits the sequence into chunks and initiates
two simultaneous processes: (1) The local GPU computes KV cache from the beginning chunk of
the prompt, progressing towards the end. (2) The data streaming process fetches KV cache starting
from the last chunk, moving in reverse direction. This bidirectional approach continues until the two
processes converge in the middle, signaling the completion of KV cache generation for the entire
prompt. We discuss the whole algorithms in Appendix§A and the system implementation details in
Appendix§B.

4.3 BENEFITS OF Cake

Our design offers several key benefits:

• Optimized latency: Cake optimally reduces the overall latency of prefill with KV cache loading
by parallelizing computation and network streaming without any idle time.

• Automatic adaptation: Cake dynamically adapts to varying conditions without relying on man-
ually defined parameters. It consistently offers latency improvements across different sequence
lengths and diverse system configurations, tolerating fluctuations in network conditions and compu-
tational capabilities. This adaptability is evidenced by our comprehensive evaluation across various
scenarios, as detailed in Section 5.

• Negligible overhead: Cake automatically balances the demand for computation and network
resources according to dynamic situations without substantial additional overhead. Previous
computation-only and network-only KV cache loading solutions (e.g., Kwon et al. (2023); Liu et al.
(2023)) become special cases of Cake when either computation or network is unavailable. Ad-
ditionally, Cake operates without such computation-intensive profiling phase, further reducing its
operational overhead.

5 EVALUATION

In this section, we first introduce the setup of our experiments and then we utilize thorough ex-
periemnts to address the following questions:

6
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1. How does Cake perform under varying I/O bandwidth conditions when utilizing the full power of
GPU? §5.2

2. What is the impact of context length on Cake performance?§5.2

3. How does Cake adapt to different levels of available GPU resources?§5.3

4. How effectively does Cake integrate with state-of-the-art KV cache compression techniques?§5.4

5. What overhead does Cake introduce when integrated into vLLM’s inference procedure?§5.5

5.1 EXPERIMENT SETUP

Models. We evaluate Cake on fine-tuned long context models LongAlpaca-7B (Chen et al., 2023)
based on LLama2. The per-token KV cache size is 0.5MB respectively, using 16-bit floating point
as the data type.

Evaluation Metrics. We use time-to-first-token (TTFT) as our primary evaluation metric. TTFT
is widely used in LLM inference, measuring the time between the arrival of a user query and the
generation of the first token. In other words, it reflects either the time of loading stored KV cache or
computing new KV cache.

Datasets. We evaluate Cake across a range of context lengths based on three datasets with dif-
ferent tasks: LongChat (Li et al., 2023a) for multi-turn conversation, and TriviaQA and Narra-
tiveQA (Bai et al., 2023) for long document question-answering tasks. Based on the statistics an-
alyzed in CacheGen (Liu et al., 2023), we found that most dataset queries fall between 5k to 16k
tokens in length. Since the specific token values don’t affect our evaluation of Cake performance
(only the token length matters), we create synthetic prompts by uniformly sampling 20 data points
between 5k to 16k tokens to evaluate the system’s performance. To further stress test Cake and
evaluate its performance at the upper limit of the models’ capabilities, we also generate synthetic
prompts with 32K tokens, which corresponds to the maximum context window supported by the
LongAlpaca models.

Baselines. We compare Cake to three types of KV cache prefill/loading mechanisms:

• Compute-only methods, which employ chunk prefill to compute all the KV cache. As suggested
by vLLM, the token budget size is set to 512 throughout the experiment.

• I/O Fetch-only, which loads saved KV cache from local/remote disks through Disk/Network I/O.

• KV cache Compression methods, which are orthogonal to our work. They can compress the
KV cache size to make them more efficiently transferable through I/O. In our evaluation, we com-
bine the most common 8bit quantization and CacheGen compression technique (Liu et al., 2023)
with Cake to further evaluate its performance.

Hardware setting. We run our evaluation on two server configurations: 1) An NVIDIA A100 80GB
GPU server equipped with a 64-core AMD EPYC 7763 CPU and 2.0TB memory. 2) An NVIDIA
H100 GPU server equipped with a 26-core vCPU and 200GB memory.

I/O Bandwidth Control. To precisely control I/O Bandwidth with different I/O Bandwidth traces,
we calculate the delay time based on the size of the chunk and network bandwidth, and then instruct
LLMCache to sleep for this calculated time before fitting the data into CPU memory.

GPU Resource Usage. In online serving scenarios, it’s common for a machine to serve multiple
users’ requests simultaneously. Thus, a user’s prefill operation may not always have access to the
full GPU resources. To evaluate different available GPU resource conditions, we utilize vLLM’s
token budget scheduling policy as discussed in §2.3. We schedule a partial token budget to Cake’
prefill request and use other synthetically generated requests to consume the rest of the token budget,
simulating different levels of GPU resource availability.

5.2 Cake PERFORMANCE UNDER FULL GPU RESOURCES SETTING

In this section, we evaluate Cake with full GPU resources and present the results in Figure 5a. We
simulated three static I/O bandwidths (2000/5000/10000 Mbps) to represent different I/O conditions
(HDD, network, SSD) and recorded the TTFT for a 32k token context under various settings.
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Figure 5: Evaluation of Cake with full GPU resources

Our observations show that compared to I/O fetch-only methods, utilizing full GPU power simul-
taneously reduces TTFT by 76.9-93.5% on A100 and 80.2-94.6% on H100. Moreover, compared
to compute-only methods, Cake saves up to 31.5% on A100 and 26.7% on H100. These results
demonstrate that Cake significantly reduces TTFT for long contexts.

We further analyzed the workload distribution between computation and fetching in Cake under
different context lengths to understand context length effect on compute and I/O. In this setting, we
fixed the compute power to use the full A100 GPU, the I/O bandwidth to 10000mbps. As shown
in Figure 5b. The top figure reveals that with 10000 Mbps bandwidth, the percentage of KV cache
chunks processed by computation decreases by 10% as context length increases from 2k to 32k
tokens. This aligns with our observation in §2.3: as context length grows, computing KV cache
for later tokens becomes more time-consuming, while I/O time remains constant. Consequently, at
the convergence point, a smaller percentage of tokens will be processed by computation as context
length increases.

The bottom figure illustrates the ratio of Cake TTFT to compute-only TTFT. We observe that as
context length increases from 2k to 32k tokens, the relative TTFT is reduced by 15%. This demon-
strates that Cake becomes even more efficient compared to compute-only methods as context length
increases.

Referring to Figure 3, we note that computing later chunks also requires more GPU memory.
KV cache memory consumption grows linearly with token size. With Cake under 10000 Mbps
bandwidth, only 75% tokens need to do computation and store KV cache in GPU memory, while
the saved 25% space can be allocated for other short requests. This further highlights Cake’s mem-
ory efficiency.

5.3 Cake PERFORMANCE UNDER DIFFERENT GPU USAGE

In this section, we evaluate Cake under different GPU resource usage scenarios to assess its perfor-
mance in real-world settings where GPU resources need to be shared among multiple users. The
results are demonstrated in Figure 8. We control GPU usage by scheduling limited token budgets as
described in §5.1. We present two representative results with a context length of 14k tokens, with
additional results available in Appendix§C.

Compared to the compute-only method, Cake leverages I/O prefetching to reduce latency by 5.3-
68.1%. Higher I/O bandwidth allows Cake to provide greater benefits. When compared to I/O-
only methods, Cake utilizes computation to reduce latency by 27.4-93.7%, with higher computation
power yielding more significant improvements.

Specifically, using the compute-only method, reducing computation power from 90% to 10% results
in an 8.22x increase in prefilling latency, leading to an additional 14.34s delay. However, Cake au-
tomatically fetches more chunks of KV cache via I/O, reducing latency by up to 68.1% compared to
the compute-only method and 27.4-65.1% compared to the I/O-only method under the same condi-
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(a) Computation Power 90% (b) Computation Power 10%

Figure 6: Comparing Cake with compute-only and different I/O fetching methods.

tions. This observation generalizes across different context lengths and compute powers, as shown
in our results in Appendix§C, demonstrating that Cake consistently achieves the fastest prefilling
speed compared to both computation-only and I/O-only methods.

In conclusion, Cake significantly reduces prefilling latency when available computation power is
insufficient by leveraging KV cache fetching. This feature can be exploited to utilize fragmented
computational resources for prefilling long context requests without adversely affecting other users’
experience.

5.4 INCORPORATING KV CACHE COMPRESSION WITH Cake

In this section, we show that Cake can incorporate with state-of-the-art KV cache compression tech-
nologies to further boost its performance. We use the same settings as in §5.3 and apply the widely
used 8bit-quantization and the latest CacheGen (Liu et al., 2023) to reduce the size of KV cache.
Theoretically, they will reduce the fetching time by 2 and 8.6 respectively, thus lowering the band-
width requirement.
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70
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A100
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Figure 7: Per-step inference
time in vLLM before and af-
ter integration with Cake. The
solid line represents the step
time without Cake, while the ’x’
markers indicate step times with
Cake.

Our results in Figure 8 demonstrate that 8bit-quantization
and CacheGen significantly enhance I/O bandwidth, achieving
speedups of up to 1.95x and 7.97x respectively. Leveraging
these improvements, Cake is able to fetch more KV cache chunks
during computation, resulting in a remarkable 11.83x speedup
compared to computation with only 10% GPU power. Further-
more, Cake combined with CacheGen reduces time-to-first-token
(TTFT) by 32.8-73.5% compared to Cake with raw KV cache,
showcasing its ability to efficiently utilize all available resources
to minimize latency.

Conversely, when Cake has access to 90% of GPU resources,
it outperforms CacheGen-only fetching by reducing TTFT by
66.4%. This demonstrates Cake’s adaptability across different re-
source availability scenarios. As detailed in Appendix§C, Cake
consistently achieves superior performance compared to both
computation-only and fetching-only methods across a wide range
of scenarios, highlighting its versatility and effectiveness in opti-
mizing prefilling latency.

5.5 OVERHEADS OF Cake IN LLM SERVING SYSTEM

To demonstrate Cake has negaligible overheads, we compare the duration of each engine step on
original vLLM and vLLM with Cake. As is shown on Figure 7, we launch a chunk prefill job on
A100 and H100 server, and the chunk prefill time of vLLM with Cake basically follows the trace
of original vLLM. This results prove that Cake introduce negaligible overheads, as it only needs to
check whether the next chunk is already fetched and doesn’t have to schedule anything.
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6 DISCUSSION

In this section, we discuss the benefits and potential overheads introduced by Cake. Our system
effectively utilizes both compute and I/O resources to reduce KV cache loading latency, thereby
improving the Time To First Token (TTFT).

Comparison with Compute-Only Methods. Unlike approaches that rely solely on computation,
Cake leverages I/O bandwidth to reduce the computational load, resulting in lower latency. This is
particularly advantageous as I/O resources are often less costly and more readily available compared
to high-performance compute resources.

Comparison with I/O-Only Methods. While Cake primarily focuses on efficient I/O utilization, it
also employs compute resources to further reduce TTFT. This dual approach may introduce some
additional computational overhead. However, as discussed in §5.3 and §2.3, we can strategically use
only the unused token budget for chunk prefill computation. This approach minimizes the system’s
computational overhead due to the batching effect and efficient GPU utilization. The added com-
putation is efficiently processed alongside other tasks, leveraging GPU parallelism. Even if there
are no unused token left, we can pause the compute procedure and let I/O contribute more to the
procedure.

Cost-Benefit Analysis. In many online services, users who pay more often receive higher priority
and faster request processing. Cake is particularly well-suited for these scenarios, offering signifi-
cantly reduced TTFT for a marginal increase in cost.

7 CONCLUSION

In this paper, we introduced Cake, a novel approach that efficiently utilizes both I/O and compute
resources to reduce Time To First Token (TTFT) for LLM serving systems with prefix caching. Cake
dynamically adapts to varying resource conditions, seamlessly integrating with existing KV cache
optimization techniques to achieve optimal latency with minimal overhead. Our evaluation shows
Cake outperforms both compute-only and I/O-only methods, reducing TTFT by up to 95% com-
pared to baselines. Cake balances I/O and compute resources to maximize performance gains with-
out significantly increasing costs. As a simple plug-in solution, Cake is easily implementable in
existing LLM serving systems with prefix caching, offering substantial performance improvements
and straightforward integration to enhance the responsiveness and efficiency of LLM services.

8 ETHICS STATEMENT

Our research on Cake, a system for reducing Time To First Token (TTFT) in LLM serving sys-
tems, primarily focuses on improving computational efficiency without directly involving human
subjects or sensitive personal data. However, we acknowledge broader ethical implications: po-
tential disparities in service quality based on user access levels, the positive environmental impact
through optimized resource utilization, our commitment to transparency and reproducibility, the risk
of misuse in scaling harmful LLM applications, and the importance of adhering to ethical AI de-
ployment guidelines. We declare no conflicts of interest and affirm our commitment to the ICLR
Code of Ethics, having conducted this research with integrity and in compliance with established
ethical standards in AI and computer science. While Cake aims to enhance LLM services, we en-
courage implementers to consider fair allocation strategies, implement safeguards against misuse,
and continue efforts to minimize the environmental footprint of AI systems.
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A DETAILS OF Cake ALGORITHM

The workflow of Cake can be described in detail as follows:

1. Upon receiving a request, Cake first splits the input sequence into chunks of a predetermined size
(e.g., 512 tokens as suggested by vLLM).

2. Two pointers are initialized: compute ptr starting at the beginning of the sequence (index 0),
and io ptr at the end of the sequence (index total tokens− 1).

3. Two parallel processes are initiated: a) A GPU computation thread that starts from compute ptr
and moves forward. b) An I/O streaming thread that starts from io ptr and moves backward.

4. The GPU computation thread: - Computes KV cache for chunks starting from compute ptr. -
After each chunk computation, it updates compute ptr by adding the chunk size. - Continues until
compute ptr reaches or surpasses io ptr, or until the required KV cache is found in CPU memory.

5. The I/O streaming thread: - Fetches pre-computed KV cache for chunks ending at io ptr from
storage (local or remote) to CPU memory. - After each chunk fetch, it updates io ptr by subtracting
the chunk size. - Continues until io ptr reaches or goes below compute ptr.

6. The process concludes when the two pointers meet or cross each other, indicating that KV cache
for the entire sequence has been either computed or loaded.

7. Finally, Cake returns the complete KV cache for the entire sequence, ready for use in the subse-
quent inference steps.

This bidirectional approach allows Cake to efficiently utilize both computational and I/O resources
simultaneously, minimizing idle time and optimizing the overall latency of KV cache preparation
for long-context LLM inference.

Algorithm 1 Cake Bidirectional KV cache Loading Algorithm
1: procedure COMPUTEKV
2: while compute ptr < io ptr do
3: if ISINCPUMEMORY(compute ptr, CHUNK SIZE) then
4: Signal I/O worker to stop
5: break
6: Compute KV cache for chunk starting at compute ptr using GPU
7: compute ptr ← compute ptr + CHUNK SIZE

8: procedure FETCHKV
9: while compute ptr < io ptr do

10: Fetch KV cache for chunk ending at io ptr from storage to CPU Memory
11: io ptr ← io ptr − CHUNK SIZE

12: Initialize CPU Memory, compute ptr = 0, io ptr = total tokens− 1
13: Start COMPUTEKV in a new thread
14: Start FETCHKV in a new thread
15: Wait for both threads to complete
16: return KV cache for the entire sequence

B IMPLEMENTATION

We implement Cake by extending LMCache (LMCache, 2024) and integrating it with vLLM (Kwon
et al., 2023), adding approximately 1,000 lines of code.

B.1 ENHANCEMENTS TO LMCACHE

LMCache, originally developed as the KV cache management backend for CacheGen (Liu et al.,
2023), hashes token chunks into keys for efficient KV cache retrieval. To enable Cake to continu-
ously receive KV cache in the background, we introduce the following enhancements:

Asynchronous Retrieval We implement an asynchronous get operation to complement LM-
Cache’s existing asynchronous put functionality. This involves creating a dedicated worker thread
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that continuously reads chunk keys from a task queue and retrieves the corresponding KV cache
to memory. Upon successful retrieval, the chunk’s key is added to a resident dictionary for quick
access.

Buffer Preallocation We modify LMCache to preallocate chunk buffers as soon as a chunk key is
pushed to the queue. This optimization allows the worker to immediately write received KV cache
into memory and proceed to the next chunk without delay.

B.2 INTEGRATION WITH LLM SERVING SYSTEMS

Cake operates concurrently with LLM serving systems like vLLM. The integration process works
as follows:

1. Upon receiving a request, Cake divides it into chunks based on the scheduled token budget.

2. Hashed keys for these chunks are pushed to the task queue in reverse order using the push seq
API.

3. While the asynchronous get worker fetches KV cache from the end of the sequence, vLLM begins
chunk prefill from the start.

4. After each vLLM engine step, Cake checks if the next chunk of tokens is already in the resident
dictionary using the is resident API.

5. If the chunk is resident, Cake interrupts the chunk prefill process and directs vLLM to begin token
generation.

6. If the chunk is not resident, chunk prefill continues until it encounters a chunk present in the
dictionary.

This bidirectional approach allows Cake to efficiently utilize both I/O and computational resources,
potentially reducing the Time To First Token (TTFT) for long-context LLM inference tasks.

C PERFORMANCE OF Cake UNDER DIFFERENT CONDITIONS

We compare the performance of Cake with compute-only and I/O-only methods. We also incor-
porate 8bits-quantization and CacheGen into Cake, which further boost our performance. Selected
diagrams includes 9k and 14k context lengths with 10-50-90% of GPU resources. Bandwidth we
test ranges from 2000-10000 mbps. Across all the conditions, Cake with CacheGen produce the best
performance with the lowest TTFT.
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Figure 8: Comparing Cake with recompute only and different I/O fetching methods.
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