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Figure 1: High-resolution and diverse image synthesis results from DiverseAR, fully unleashing the potential of
bitwise autoregressive generative models.

ABSTRACT

In this paper, we investigate the underexplored challenge of sample diversity in autoregressive (AR)
generative models with bitwise visual tokenizers. We initially analyze the factors limiting diversity in
bitwise AR models and identify two key issues: 1) the binary classification nature of bitwise modeling,
which restricts the prediction space, and 2) the overly-sharp logits distribution, which causes sampling
collapse and reduces diversity. Built on these insights, we propose DiverseAR, a principle and
effective method that enhances image diversity without sacrificing visual quality. Specifically, we
introduce an adaptive logits distribution scaling mechanism that dynamically adjusts the sharpness
of the binary output distribution across different sampling steps, resulting in a smoother prediction
distribution and improved diversity. To mitigate the potential fidelity loss caused by distribution
smoothing, we further develop an energy-based generation path search algorithm that avoids sampling
low-confidence tokens, thereby preserving high visual quality. Extensive experiments highlight that
DiverseAR can unlock greater diversity in bitwise autoregressive image generation.

1 INTRODUCTION

Recently, autoregressive (AR) models have attracted considerable attention in visual generation. Inspired by the
remarkable success of large language models (Brown et al., 2020; Radford et al., 2018; Touvron et al., 2023; Achiam
et al., 2023), researchers have begun to explore AR-based approaches for visual synthesis (Sun et al., 2024; Tian et al.,
2024; Yu et al., 2025; Pang et al., 2024), aiming to leverage their strong modeling capacity and unified generation
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Figure 2: Quantitative and qualitative comparison of diversity among SD3, LlamaGen, and Infinity.

paradigm. Benefiting from these strengths, AR-based models have demonstrated impressive capabilities in image
generation (Tian et al., 2024; Han et al., 2024; Sun et al., 2024), achieving competitive performance compared to
diffusion-based (Podell et al., 2023; Chen et al., 2023) approaches in recent studies.

Existing autoregressive models for visual generation commonly adopt vector quantization (VQ) to transform continuous
image representations into discrete token sequences, serving as the foundation for autoregressive modeling. Early
studies (Sun et al., 2024; Pang et al., 2024; Tian et al., 2024) follow this approach by encoding images into index-based
token sequences using a visual tokenizer (Razavi et al., 2019; Van Den Oord et al., 2017; Esser et al., 2021; Lee
et al., 2022), and then applying AR models to generate images either token-by-token or scale-by-scale. However,
this discretization process introduces quantization errors due to the limited size of the token vocabulary, hindering
the generation of fine-grained details. Moreover, coarse supervision and train–inference mismatch during generation
exacerbate visual degradation (Han et al., 2024), leading to artifacts and making the tokenizer a key bottleneck in
AR models. To address these limitations, recent studies (Han et al., 2024) explore bitwise modeling, which replaces
index-wise tokens with bitwise tokens. This design allows for an effectively unlimited token space while maintaining
computational and memory efficiency. Bitwise modeling also provides finer supervision and more stable training
dynamics, contributing to improved generation quality. Despite these advantages, bitwise autoregressive models exhibit
limited output diversity. As illustrated in Fig. 2, Infinity (Han et al., 2024) generates significantly less diverse samples
than SD3 (Esser et al., 2024) and LlamaGen (Sun et al., 2024) when sampling with different random seeds. This
limitation remains under-explored, hindering the broader applicability of bitwise AR models.

In this paper, we pioneer the investigation into the diversity limitations of bitwise autoregressive models. As a first step
toward a comprehensive understanding, we analyze the underlying causes of low sample diversity. Our study identifies
two primary contributing factors: 1) The binary classification characteristics of bitwise modeling. Since each bit is
predicted independently as either 0 or 1, the model is inherently limited to two candidate outcomes per position. This
severely constrains the sampling space, rendering top-k sampling ineffective and limiting the overall expressive capacity
during sampling. 2) Overconfident output distributions. The probability distribution over the two possible bit values
is often highly peaked, with one bit having significantly higher probability than the other. This causes top-p sampling
to frequently collapse to the most probable class, resulting in overly localized sampling and reduced exploration of
alternative outcomes.

Building on these insights, we propose DiverseAR, an effective approach that enhances image diversity without
sacrificing visual quality. As shown in Fig. 3, early coarse scales in the generation process tend to produce structurally
homogeneous outputs. To address this, we introduce an adaptive logits scaling mechanism at coarse sampling stages,
which dynamically adjusts the sharpness of the binary output distribution across sampling steps. By preventing overly
confident predictions, this approach preserves uncertainty in early stages and increases the entropy of the predictive
distribution. As a result, the model is encouraged to explore a broader set of plausible generation paths, leading to
improved sample diversity. However, we observe that smoothing the distribution can shift the probability mass
away from the model’s learned distribution, introducing local artifacts. To mitigate this issue, we further design
an energy-based generation path search algorithm that steers sampling away from low-probability tokens. By
constraining sampling to high-confidence regions of the model’s output distribution, it reduces the risk of accumulating
unlikely bit patterns that can lead to artifacts, thereby preserving high visual quality.
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Figure 3: Visualization of sampling process for the same prompt across different random seeds.

We conduct a comprehensive experimental evaluation of our approach. The results demonstrate that DiverseAR
significantly improves sample diversity while maintaining high visual fidelity, as shown in Fig. 1. Our contributions are
summarized as follows:

• We present the first in-depth analysis of the diversity limitations in bitwise autoregressive models, identifying
two core factors: the binary classification characteristics of bitwise modeling and the excessively peaked
output distribution.

• We introduce DiverseAR, which combines an adaptive logits scaling mechanism with an energy-based
generation path search algorithm. This design jointly enhances sample diversity while maintaining high-
fidelity image synthesis.

• Extensive experiments demonstrate the superiority of our proposed method. For example, on Infinity-2B, our
method improves LPIPS by 20% compared to the baseline, and achieves approximately a 5% gain in GenEval
Score.

2 RELATED WORK

Autoregressive Image Generation with Vector quantization. Inspired by the success of autoregressive language
models (Brown et al., 2020; Radford et al., 2018; Touvron et al., 2023; Achiam et al., 2023), autoregressive image
generation (Ramesh et al., 2021; Chang et al., 2022; Yu et al., 2024; Li et al., 2024; Fan et al., 2024; Tang et al., 2024;
Sun et al., 2024; Tian et al., 2024; Han et al., 2024) has advanced rapidly through the use of quantized tokenizers
(Van Den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2021) that embed images into compact latent spaces.
Vector-quantization (VQ)-based methods (Razavi et al., 2019; Van Den Oord et al., 2017; Esser et al., 2021; Lee et al.,
2022) convert image patches into discrete tokens represented by indices and employ a decoder-only transformer to
predict the next-token index, resulting in efficient yet expressive image representations. Approaches like LlamaGen
(Sun et al., 2024) and Parti (Yu et al., 2022) incorporate jointly learned discrete token vocabularies into transformer
architectures, enabling high-quality image generation and maintaining strong scaling performance. Frameworks such as
VAR (Tian et al., 2024) and FAR (Yu et al., 2025) employ coarse-to-fine sequential generation, with VAR progressively
refining across spatial resolutions and FAR across frequency bands, demonstrating robust scalability. (Yu et al., 2024)
propose compressing images into one-dimensional sequences, reducing redundancy and achieving more compact
representations. (Guo et al., 2025) introduce a coarse-to-fine token prediction strategy, wherein the model first predicts
coarse-grained indices followed by fine-grained ones.

Autoregressive Image Generation without Vector quantization. Finite Scalar Quantization (FSQ) (Mentzer et al.,
2023) proposes quantizing tokens to constants nearest to codebook entries, which improves codebook utilization and
simplifies training. Lookup Free Quantization(LFQ) (Yu et al., 2023) and Binary Spherical Quantization (BSQ) (Zhao
et al., 2024) adopt binary quantization to further enhance training stability and reduce quantization error. Infinity (Han
et al., 2024) employs BSQ (Zhao et al., 2024) and introduces a bitwise infinite-vocabulary classifier (IVC), enhance
scalability and minimize information loss from discretization, while also integrating a bitwise self-correction mechanism
to mitigate cumulative errors during autoregressive decoding. Furthermore, recent research (Tang et al., 2024; Li et al.,
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(a) Probability density of output probabilities at different scales (b) The proportion of bits exhibiting randomness across different scales

Figure 4: Analysis of the Distribution of Predicted Logits for Binary Classifiers

2024; Ren et al., 2025; Chen et al., 2024; Fan et al., 2024) has explored combining diffusion and autoregressive models
by modeling continuous tokens, substituting categorical cross-entropy with diffusion-based losses (Fan et al., 2018;
Holtzman et al., 2019).

3 METHODOLOGY

3.1 PRELIMINARY

Existing autoregressive models typically adopt vector quantization (VQ) to discretize continuous images into token
sequences, which are then synthesized by transformers in a causal manner, either token-by-token or scale-by-scale.
Early methods often use a visual tokenizer to encode images into index-based token sequences. For instance, VAR
adopts VQGAN with a multi-scale quantization layer to tokenize images and predicts residual features Fk ∈ [Vd]

hk×wk

at k-th scale using a Vd-class classifier.

However, index-wise tokenization is constrained by the limited vocabulary size, incurs quantization errors, and suffers
from fuzzy supervision, causing visual detail loss and local distortions.

To address these limitations, recent work has investigated bitwise modeling, replacing index-based tokens with bitwise
tokens to enhance expressiveness and reduce quantization artifacts. Infinity is one of the most notable approaches
in this area. It introduces a bitwise autoregressive model, comprising a bitwise visual tokenizer, a bitwise infinite-
vocabulary classifier (IVC), and a bitwise self-correction module. The IVC employs d binary classifiers in parallel
(where d = log2(Vd)) to predict residual features. At each scale k, given the token index l, the IVC predicts the logits
T

(l,i)
k : {0, 1} → R for the i-th bit of the l-th token. We then sample the bit-wise token Y l

k as follows:

Y l
k =

[
Y

(l,1)
k , Y

(l,2)
k , . . . , Y

(l,d)
k

]
, Y

(l,i)
k ∼ softmax

(
T

(l,i)
k /τ

)
, Y

(l,i)
k ∈ {0, 1}. (1)

Here, the sampling operator ∼ can be instantiated as argmax, top-k, or top-p sampling. Compared to conventional
classifiers, IVC is much more efficient in terms of both parameters and memory, and benefits from more steady
supervision. In this work, we build upon Infinity to explore strategies for enhancing the diversity and improving the
quality of bitwise autoregressive models.

3.2 WHY DOES BITWISE AR MODEL DEGRADE DIVERSITY?

Despite achieving impressive performance in text-to-image synthesis, the images generated by bitwise AR model
exhibit limited diversity, as evidenced in Fig. 2. Through the visual analysis of the generation process, we find that at
the early, coarse scales, the synthesized results already exhibit a high degree of structural homogeneity, as illustrated in
Fig. 3. This observation suggests that the lack of diversity may stem from the collapse of classifier predictions in the
early stages of generation.

This behavior can be traced to the design of the infinite-vocabulary classifier used in Infinity, which is composed of d
independent binary classifiers, as presented in Eq. 1. The binary nature of these classifiers imposes inherent constraints
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(a) Comparison of visual quality under different settings (b) Entropy of the predicted probabilities at each scale under different settings

𝜏 = 0.5 (Default) 𝜏 = 5

𝜏 = 10 Adaptive 𝜏 scaling

Figure 5: Quality and entropy comparison under different τ settings.

on sampling. In particular, it renders top-k sampling ineffective, as each bit has only two possible outcomes. As a
result, Infinity adopts top-p sampling to introduce stochasticity into the generation process. To further understand the
source of diversity collapse, we analyze the behavior of these binary classifiers by visualizing the distribution of their
predicted logits. As shown in Fig. 4(a), the predicted probabilities are often highly peaked, with one class (either 0 or 1)
receiving near-certain confidence—frequently exceeding the default top-p threshold of 0.97. This overconfidence leads
to a collapse in randomness: despite the use of top-p sampling, the dominant class is almost always selected, effectively
reducing the sampling process to a deterministic decision. Moreover, at earlier scales, this phenomenon becomes even
more pronounced.

This leads to top-p sampling frequently collapsing to the class with the higher probability, thereby losing randomness.
As depicted in Fig. 4 (b), under the default sampling configuration, only about 10% of the bits on the first scale exhibit
randomness. Moreover, this collapse of randomness at the bit level leads to constrained feature variation across sampling
trajectories, ultimately resulting in reduced diversity in the generated outputs. These findings indicate that the diversity
degradation in bitwise autoregressive models primarily stems from two factors: the binary classification nature of
bitwise modeling and the overconfidence of the predicted output distributions.

3.3 ADAPTIVE TEMPERATURE SCALING FOR ENHANCED DIVERSITY

Building upon these insights, a straightforward solution is to increase the temperature coefficient τ in the binary
classifier (Eq. 1), which smooths the binary probability distributions and improve the effectiveness of top-p sampling.

However, due to substantial variation in the predicted bit-wise logits, a fixed temperature τ may fail to provide
appropriate smoothing. In cases where the logits are overly sharp, achieving desired smoothing requires a large
temperature, which in turn introduces excessive randomness during the refinement of fine-grained details and ultimately
degrades visual quality. As shown in Fig. 5, increasing τ to 5 or 10 results in large entropy shifts across scales compared
to the default, leading to incoherent and visually distorted outputs.

To mitigate the drawbacks of simply increasing the temperature coefficient to a fixed τ , we propose an adaptive
temperature scaling strategy that determines τk for each scale k based on the predicted logits, thereby achieving proper
smoothing, as shown in Fig. 6(a).

Specifically, we first compute the maximum bit-probability p
(l,i)
k for the logits T (l,i)

k of the i-th bit in the l-th token at
scale k:

p
(l,i)
k = max

c∈{−1,1}

exp
(
T

(l,i)
k (c)/τk

)∑
c′∈{−1,1} exp

(
T

(l,i)
k (c′)/τk

) . (2)

We then compute the average of these max-probabilities across all d bits for all Lk tokens at scale k:
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Figure 6: Overview of the proposed method DiverseAR, which consists of Adaptive τ Scaling and Energy-Based
Generation Path Search.

p̄k(τk) =
1

Lk × d

Lk∑
l=1

d∑
i=1

p
(l,i)
k . (3)

Intuitively, p̄k(τk) captures the average peak confidence of the classifier at scale k. To control this confidence level, we
define a target smoothing level Sk for each scale and search for a τk such that p̄k ≈ Sk. This is efficiently achieved via
binary search:

∣∣p̄k(τk)− Sk

∣∣ < ϵ, (4)

where ϵ is a small numerical tolerance. The algorithmic details are provided in Appendix A. In the early diversity-
oriented synthesis phase, we select smaller Sk values, leading to larger τk values and smoother probability distributions
. In the later visual refinement phase, a smaller temperature τk is restored to maintain the visual quality of generated
images. As shown in Fig. 5(b), the adaptive temperature scaling mechanism introduces sufficient randomness in the
early sampling stage (indicated by higher entropy), promoting diverse layouts, while avoiding excessive stochasticity in
the later stage (lower entropy), thereby minimizing negative impacts on perceptual quality.

3.4 ENERGY-BASED GENERATION PATH SEARCH FOR QUALITY ENHANCEMENT

Low energy region

Energy: -12.3, 
Geneval:0.740

High energy region

Energy: -4.5, 
Geneval:0.701

Energy: -4.5, 
Geneval:0.701

Energy: -9.3, 
Geneval:0.727 Energy: -6.2, 

Geneval:0.714

Energy: -12.3, 
Geneval:0.740

Figure 7: Visualization results of different energy
regions

Expanding the sampling space in the early stage of image gen-
eration may lead to sampling from low-confidence regions,
thereby introducing semantic artifacts into partial samples, as
illustrated in Fig. 9. Prior work (Liu et al., 2020) shows that
lower energy values correspond to higher logits assigned to pre-
dicted bits, indicating greater model confidence at each token
position. Building on this insight, we find that in the bitwise
AR model, lower energy in the logits (i.e., higher confidence)
is often associated with better visual quality, as shown in Fig. 7.
Motivated by this connection, we propose an energy-based
generation path search algorithm, as illustrated in Fig. 6(b).

Specifically, we follow the definition of energy proposed in
(Liu et al., 2020). At the k-th scale, the energy of its predicted
logits can be computed using the following formulation:

Ek = − 1

Lk

Lk∑
l=1

log

(
d∑

i=1

eT
l,i
k

)
, (5)
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where T l,i
k denotes the logit for the i-th bit of the l-th token at scale k, and Lk is the total number of tokens at that

scale. After the adaptive temperature scaling at scale k, we perform a generation path search to identify low-energy
trajectories. We first sample M candidate initialization and propagate each forward through the next N scales, yielding
M distinct candidate paths. For the m-th path, we compute its cumulative energy by averaging per-scale energy values:

Em =
1

N

k+N∑
j=k+1

Em
j , m = 1, 2, . . . ,M. (6)

We then select the path with the lowest cumulative energy by solving:

r∗ = argmin
m∈{1,...,M}

Em. (7)

The selected path r∗ is then propagated through the remaining scales to complete the sampling process. Notably, since
this selection is performed in early stages, where both resolution and token count are relatively low, the additional
computational overhead is minimal.

4 EXPERIMENTS

Table 1: Diversity and Quality Evaluation: LPIPS and CLIP Similarity, GenEval and DPG Benchmark

Model
Diversity GenEval(↑) (Ghosh et al., 2023) DPG(↑) (Hu et al., 2024)

LPIPS(↑) CLIP(↓) Two Obj Position Color Attri Overall Global Relation Overall

Diffusion Model

SDv1.5 (Rombach et al., 2022) 0.7909 0.8291 0.38 0.04 0.06 0.37 74.63 73.49 63.18
PixArt-alpha (Chen et al., 2023) 0.6896 0.9096 0.50 0.08 0.07 0.48 74.97 82.57 71.11

SDXL (Podell et al., 2023) 0.7403 0.8768 0.74 0.15 0.23 0.55 83.27 86.76 74.65
SD3.5 -medium (Esser et al., 2024) 0.7294 0.8952 0.74 0.34 0.36 0.62 - - -

AutoRegressive Models

LlamaGen (Sun et al., 2024) 0.7110 0.7662 0.34 0.07 0.04 0.32 - - 65.16
Hart (Tang et al., 2024) 0.7106 0.8834 - - - 0.52 - - 80.89

Show-o (Xie et al., 2024a) 0.6427 0.9251 0.80 0.31 0.50 0.68 - - 67.48

Infinity-2B (Han et al., 2024) 0.5555 0.9381 0.83 0.44 0.53 0.716±0.05 88.61 87.97 81.51±0.3
DiverseAR-2B 0.6712 0.9192 0.88 0.51 0.60 0.760±0.04 89.20 87.57 81.72±0.3

Infinity-8B (Han et al., 2024) 0.3745 0.9583 0.90 0.62 0.69 0.797±0.02 86.93 91.24 85.88±0.2
DiverseAR-8B 0.5510 0.9354 0.91 0.63 0.68 0.802±0.03 92.79 90.55 86.14±0.2

4.1 EXPERIMENTAL SETTINGS

Evaluation Metrics. To evaluate diversity, we use 50 prompts and generate 50 images per prompt with different
random seeds, resulting in a total of 2,500 images. For each prompt, we compute pairwise LPIPS (Zhang et al., 2018)
and CLIP (Radford et al., 2021) similarities among the 50 samples, average these values over all pairs to obtain a
per-prompt score, and then report the mean across prompts as the final diversity scores. For quality assessment, we
report GenEval (Ghosh et al., 2023), DPG (Hu et al., 2024), ImageReward (Xu et al., 2023), and HPSv2 (Wu et al.,
2023) scores. GenEval and DPG scores are computed across multiple seeds to estimate error bars. The results of
ImageReward and HPSv2 are reported in the appendix C.

Implementation Details. For Infinity-2B, we use the default setting with a CFG of 4 and a fixed sampling temperature
of 0.5. DiverserAR-2B sets CFG to 4 and applies an adaptive temperature schedule to target average maximum bit
probabilities Sk that increases linearly from 0.60 to 0.90 across the first half of the scales. For the remaining ones, we
use argmax sampling to select the highest-probability bit at each position. During energy-based path search, we sample
M = 8 candidate paths at scale 2, propagate each through scales 3 to 6, and compute the average cumulative energy
along each path. The details for the 8B model configuration are provided in Appendix B.1. To verify the scalability of
our method, we also evaluate it on the VQ-based autoregressive model HART. The experimental details are provided in
Appendix C.1. All experiments are run on NVIDIA H20 GPUs.

4.2 MAIN RESULTS

Quantitative Results. Tab. 1 compares the diversity and quality metrics across different methods. Compared to
Infinity-2B (Han et al., 2024), DiverseAR-2B improves LPIPS by 0.1216 (approximately 20%) and decreases CLIP

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

 Insect made from vintage 1960s electronic components. capacitors. resistors. transistors. wires. 
diodes. solder, circuitboard.

close-up shot of a diecast toy car,  diarama, night, lights from windows, bokeh, snow.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 1 Seed 2 Seed 3 Seed 4
O

rig
in

al
O

ur
s

Figure 8: Comparison of output diversity between the original method and our approach
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Figure 9: Quality Comparison of High-Energy vs. Low-Energy Sampling Outputs

similarity by 0.0213, yielding the diversity level comparable to that of SD3.5 and LlamaGen. In terms of quality,
our method consistently improves GenEval and DPG scores. The “Position” and “Color Attribution” sub-scores in
GenEval each increase by 7%, and the overall score improves by 4.4%. We also report the comparison results for the
8B model in Appendix E. Our method achieves substantial gains—LPIPS improves by approximately 60%—while still
preserving high visual quality. Furthermore, we also evaluate our method on an additional VQ-based autoregressive
model, HART (Tang et al., 2024). The corresponding results are provided in Appendix C.1.

Table 2: Diversity and Quality Evaluation under Different
Search Strategies in the 2B model

Method Latency
Diversity GenEval DPG

LPIPS CLIP Overall Overall

Baseline ×1.0000 0.5555 0.9381 0.716 81.51
+ Adaptive τ ×1.0005 0.6768 0.9172 0.739 81.56

+ Energy search ×1.1187 0.5426 0.9398 0.744 81.58
+ Adaptive τ & Energy search ×1.1192 0.6712 0.9192 0.760 81.72

Table 3: Comparison of Different τ Settings for Diversity
and Quality Evaluation in the 2B model

Metric τ = 5 (half) τ = 10 (half) τ = 20 (half) Adaptive τ

LPIPS 0.6767 0.7132 0.7578 0.6712

CLIP 0.9176 0.8874 0.8130 0.9192

GenEval 0.728 0.704 0.593 0.760

Qualitative Results. Fig. 8 visualizes output diversity across different random seeds, comparing our method with the
baseline in 2B models. Additional comparisons are provided in Appendix E. These results demonstrate the effectiveness
and superiority of our proposed method, which achieves significantly enhanced diversity while maintaining high visual
quality.

4.3 ABLATION STUDIES

The impact of individual components. Tab. 2 presents the impact of each component in our method on final
performance. As shown, adaptive temperature scaling significantly improves the diversity of generated images (LPIPS:
0.5555 → 0.6712) while maintaining high visual quality and introduces only negligible extra inference time. Meanwhile,
by combining the energy-based generation path search, we achieve the best visual quality (GenEval: 0.716 → 0.760).
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Moreover, since the path search operates only at the coarser early scales, it introduces only minimal latency(×1 →
×1.1192).

Table 4: Sensitivity analysis of Sk: effect of different
schedules on diversity and quality.

Method LPIPS ↑ CLIP ↓ GenEval ↑

Baseline 0.5555 0.9381 0.716
Fixed Sk (Sk = 0.6) 0.6913 0.9021 0.750
Fixed Sk (Sk = 0.65) 0.6801 0.9137 0.751
Fixed Sk (Sk = 0.7) 0.6653 0.9226 0.751
Linear Sk (0.6→ 0.9) 0.6712 0.9192 0.760

Table 5: Effect of varying the number of selected scales on
diversity and GenEval scores under linear adjustment.

Metric
Number of Selected Scales

0 1 3 5 7

LPIPS 0.5555 0.5954 0.6669 0.6713 0.6712
CLIP 0.9381 0.9283 0.9188 0.9182 0.9192
GenEval (Adaptive τ ) 0.716 0.719 0.725 0.733 0.739
GenEval (Adap. + Search) 0.744 0.748 0.752 0.755 0.760

τ = 5 τ = 10

τ = 20 Adaptive τ
a photo of a vase and a spoon

Figure 10: Visualization results
of different τ settings

Comparison of Fixed and Adaptive τ . Tab. 3 compares three fixed τ settings
(τ = 5, 10, 20 applied to the first half of scales) with our adaptive τ . We observe
that simply increasing the early-stage τ does not effectively balance diversity and
quality: although τ = 20 yields a significant gain in diversity, it also causes a
notable drop in quality. The visualization of different τ settings is shown in Fig. 10.
Furthermore, due to the substantial variation in logits distributions across samples,
selecting a single fixed τ that works universally is difficult. By contrast, determining
τ adaptively through the target average peak confidence Sk provides a more robust
and effective solution.

Sensitivity Analysis of Sk. Tab. 4 presents the sensitivity analysis of Sk on the
final performance of our method. The results show that DiverseAR consistently
outperforms the baseline across a broad range of parameter settings without re-
quiring extensive or fine-grained tuning. For example, using a fixed Sk = 0.6
achieves stronger diversity with an LPIPS score of 0.6913, compared to the baseline
of 0.5555. At the same time, the linear Sk schedule yields a GenEval score of
0.760, which demonstrates a more stable and effective balance between diversity
and quality. These observations indicate that the improvements mainly stem from
the core design of our method—namely, adjusting the overly sharp probability
distributions in the early stages to enhance diversity.

The impact of varying the number of adaptive scaling layers. Tab. 5 presents
LPIPS and GenEval results when adaptive temperature scaling is applied to an increasing number of initial scales. Even
without any distribution adjustment (i.e., using only energy-based search), GenEval improves by 0.028. As more scales
undergo temperature adjustment, GenEval rises progressively, and combining adaptive scaling with energy-based search
yields additional gains. Since the target smoothing level reaches S7 = 0.9 at the 7th scale, we apply argmax sampling
for the remaining scales without further adjusting the logit distribution.

We also provide additional ablation studies, including the computational overhead of energy-based search on different
models, the GenEval scores under different search metrics, the diversity comparison across different CFG scales, as
well as other related analyses. More experimental results and ablations are reported in Appendix C.

5 CONCLUSION

In this work, we conduct the first in-depth investigation into the diversity limitations of bitwise autoregressive models
for image generation. Through detailed analyses, we identify two key factors that restrict sample diversity: the binary
nature of bitwise modeling, which narrows the sampling space, and the overly peaked output distribution, which
causes sampling collapse and suppresses variability. To address these challenges, we propose DiverseAR, a simple yet
effective method that enhances diversity without compromising visual fidelity. Our approach introduces an adaptive
logits scheduling mechanism to maintain uncertainty across early sampling stages and an energy-based generation path
search algorithm to avoid low-confidence predictions. Extensive experiments on multiple benchmarks validate the
effectiveness of DiverseAR in producing more diverse and high-quality samples, demonstrating its potential to improve
the applicability of bitwise autoregressive generation.
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6 ETHICS STATEMENT

Our work focuses on improving the diversity of bitwise autoregressive image generation models. We do not foresee
direct ethical concerns beyond those commonly associated with generative models, such as potential misuse for
generating misleading or harmful content. All experiments are conducted on publicly available datasets under their
corresponding licenses. No personally identifiable information or sensitive data was used. We encourage responsible
and transparent use of our method in downstream applications.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All implementation details, including model configura-
tions, and evaluation settings, are provided in Sec. 4.1 and Appendix B. We have released pseudocode for the proposed
algorithms, and the setup for evaluation benchmarks. To facilitate replication, the source code and scripts for running
experiments will be made publicly available upon publication.
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APPENDIX

A ALGORITHMIC IMPLEMENTATION

We present the implementation details of our two core components in Algorithms 1 and 2.

Algorithm 1 outlines the Adaptive Temperature Scaling process, which dynamically adjusts the temperature τk at each
scale to match the target average maximum bit probability Sk. To achieve this, we adopt a binary search strategy
bounded by pre-defined minimum and maximum temperatures (τmin = 0.001, τmax = 100), iteratively refining τk
until the target smoothness criterion is satisfied within a tolerance of ϵ = 0.005.

Algorithm 2 presents the Energy-Based Path Search, which aims to select the most coherent generation trajectory across
scales. At a designated sampling scale k, we first generate M candidate paths under the current τk. Each path is then
propagated through the subsequent N scales, and its average energy is computed. The path with the lowest cumulative
energy is selected as the final decoding trajectory.

Together, these two algorithms enhance the diversity and quality of bitwise autoregressive generation.

Algorithm 1 Adaptive Temperature Scaling
1: Input: targets Sk, predicted logits Tk, tolerance ϵ, bounds

τmin, τmax

2: Initialize ℓ← τmin, u← τmax

3: repeat
4: τ ← (ℓ+ u)/2
5: Compute p̄k(τ)
6: if p̄k(τ) > Sk then
7: u← τ
8: else
9: ℓ← τ

10: end if
11: until |p̄k(τ)− Sk| < ϵ
12: τk ← τ
13: Output: predicted probability softmax (Tk/τk)

Algorithm 2 Energy-Based Path Search
1: Input: sampling scale k, lookahead N scales, candidates

path number M
2: Generate logits at scale k under τk
3: Sample M candidate generation paths
4: for m = 1, . . . ,M do
5: Em ← 0
6: for j = k + 1, . . . , k +N do
7: Em += Em

j

8: end for
9: Em ← Em/N

10: end for
11: r∗ ← argmin

m∈{1,...,M}
Em

12: Output: r∗-th generation path

B MORE EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS OF THE DIVERSITY METRICS

We use the official LPIPS implementation with an AlexNet (Krizhevsky et al., 2017) backbone, normalizing
images to [−1, 1] and computing average pairwise distances across upper-triangular entries. To reduce mem-
ory usage, the computation is split into smaller chunks. For CLIP similarity, we use the Hugging Face
openai/clip-vit-base-patch32 model. Images are encoded into L2-normalized vectors via the CLIP (Rad-
ford et al., 2021; Dosovitskiy et al., 2020) image encoder, and average cosine similarities are computed from the
upper-triangular portion of the similarity matrix.

B.2 THE IMPLEMENTATION DETAILS OF DIVERSEAR-8B

For the Infinity-8B model, the baseline follows the default configuration: a CFG of 4 and a fixed sampling temperature
of 1. In our DiverseAR-8B, we also use a CFG of 4 but employ an adaptive temperature schedule that drives the average
maximum bit probability to {0.60, 0.60, 0.65, 0.65, 0.65, 0.7, 0.7, 0.7} over the first eight scales. For the remaining
scales, we revert to argmax sampling, selecting the highest-probability bit at each position. In our energy-based path
search, at scale 3 we sample M = 8 candidate token sets and propagate each through scales 3–7, computing the
cumulative average energy along each trajectory. We then select the lowest-energy path to complete the sample. All
experiments were conducted on NVIDIA H20 GPUs.
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C ADDITIONAL EXPERIMENTAL RESULTS AND ABLATIONS

C.1 ADDITIONAL EXPERIMENTAL RESULTS

Human Preference Evaluation. We further assess our method through both quantitative benchmarks and a user
study. Tab. 6 reports ImageReward and HPSv2.1 scores for the 2B models, where DiverseAR outperforms the Infinity
baseline, confirming improved diversity without sacrificing visual fidelity. A user preference study is also carried out
following the setup of Infinity. Specifically, we developed a web interface that displays paired image grids generated by
Infinity and DiverseAR side by side. Volunteers were asked to choose the better set in terms of overall quality, prompt
following, and diversity. We presented 200 such pairs and collected evaluations from 50 participants. The entire study
was conducted double-blind: participants neither knew which model produced which image nor saw others’ choices
during evaluation. As reported in Table 7, a majority of participants (66%) preferred DiverseAR for image quality, and
nearly all (91%) rated its outputs as more diverse.

Results on the VQ-based HART Model. We present the results for the VQ-based autoregressive model HART. For
this model, we leverage an adaptive noise injection strategy to enhance sample diversity in the early stages of sampling.
Specifically, we introduce a linearly decayed Gumbel noise strength, ranging from [1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8] in the
first few sampling steps, to perturb the distribution of the logits, while keeping the remaining steps or scales consistent
with the default setting. The results are reported in Tab. 8. We observe that by adjusting the probability distribution
through this noise scheduling, the HART model achieves improved diversity without compromising perceptual quality.

Table 6: Human preference metrics on
Infinity-2B and DiverseAR-2B.

Method ImageReward ↑ HPSv2.1 ↑
Infinity 30.26 0.8972
DiverseAR 30.41 0.9013

Table 7: User study results: percentage of participants preferring
each method.

Method Overall ↑ Prompt Following ↑ Diversity ↑
Infinity 0.34 0.47 0.09
DiverseAR 0.66 0.53 0.91

Table 8: The comparison of HART and DiverseAR on diversity (LPIPS, CLIP) and GenEval benchmarks.

Diversity GenEval

Model LPIPS↑ CLIP↓ Two Obj Position Color Attri single_object overall

HART 0.7107 0.8834 0.63 0.11 0.19 0.97 0.511
HART+DiverseAR 0.7501 0.8685 0.61 0.17 0.23 0.97 0.518

C.2 ADDITIONAL ABLATIONS

Table 9: Diversity comparison between Infinity-2B and
DiverseAR-2B at different CFG scales.

CFG scale Model LPIPS ↑ CLIP ↓
2 Infinity-2B 0.5581 0.9301
2 DiverseAR-2B 0.6720 0.9101
3 Infinity-2B 0.5548 0.9366
3 DiverseAR-2B 0.6738 0.9144
4 Infinity-2B 0.5555 0.9381
4 DiverseAR-2B 0.6712 0.9192

Table 10: Comparison of GenEval scores obtained under
different search metrics.

Method GenEval ↑

Baseline 0.716

+ Negative log-probability 0.748

+ Entropy search 0.748

+ Energy-based search 0.760

The impact of different search metrics on GenEval Score We investigate how various metrics correlate with
GenEval performance under the default configuration. Specifically, for each metric (e.g., entropy, cumulative energy,
and mean maximum bit probability), we generated 50 samples per GenEval prompt and grouped them into five percentile
bins based on their respective metric scores. For each bin, we then computed the average GenEval score. As shown in
Fig. 11, all three metrics exhibit a linear relationship with quality, with energy showing the strongest correlation—lower
energy consistently corresponds to higher GenEval scores, indicating better image fidelity.
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Tab. 10 presents several alternative search metrics to further investigate their impact on performance. Among them,
energy-based search achieves the highest GenEval scores, highlighting the superiority of energy as a search criterion.
This advantage arises because computing energy directly from logits provides a more faithful measure of model confi-
dence, whereas applying softmax may discard valuable information contained in the model’s raw outputs. Theoretical
justification for this property can be found in (Liu et al., 2020).

Fig. 9 contrasts samples generated via low- versus high-energy decoding paths: high-energy trajectories often produce
local artifacts and coherence breaks, whereas low-energy trajectories yield more coherent outputs. Accordingly, energy
is employed as the criterion for guiding the generation path search.

Impact of CFG on Diversity and Robustness of DiverseAR Tab. 9 reports the diversity scores (LPIPS and CLIP
similarity) of Infinity-2B and DiverseAR-2B under varying CFG settings. While lowering the CFG scale typically
enhances the diversity of diffusion models, it has limited effect on the bitwise autoregressive model Infinity. As shown,
reducing the CFG from 4 to 2 leads to only a marginal increase in LPIPS, from 0.5555 to 0.5881. In contrast, DiverseAR
consistently achieves substantial improvements in generation diversity across all CFG settings, suggesting that our
method is robust and effective under different guidance strengths.

Candidate Number M and Lookahead Depth N Tab. 11 reports the effect of varying the number of candidate
paths M and lookahead depth N on GenEval scores and time cost for both the 2B and 8B models. As shown, the
performance of our method remains relatively stable across a broad range of values, indicating that DiverseAR is not
highly sensitive to these hyperparameters. This robustness highlights the practicality of our default configuration, which
achieves a favorable balance between computational efficiency and output quality.

Improve diversity by more detailed prompts. Tab. 12 compares diversity obtained by leveraging LLMs to rewrite
30 prompts into 50 variations each (by permuting location, pose, size, and color of objects) with our proposed method.
We then evaluated both approaches on a dataset of 30 samples. While prompt rewriting improves diversity to some
extent (LPIPS: 0.6549), our method achieves a significantly higher score (LPIPS: 0.7133), demonstrating its clear
advantage.

Combine multiple bits forming an int token and use top-k sampling. We further evaluate the effect of applying
top-k sampling after combining multiple bits into integer tokens. As shown in Tab. 13, this strategy yields only marginal
improvements in diversity compared to the baseline, while our method significantly outperforms it. Moreover, top-k
sampling incurs a substantial increase in inference time (Top-5: 1.45× vs. Ours: 1.0005×), making it less practical in
comparison.

We find that the probabilities for most of the 16-bit combinations concentrate on the first five. We further visualize
the predicted probabilities of the first five combinations, as shown in the Tab. 14, and observe that the distributions
are extremely sharp. This limits the effectiveness of top-k sampling in increasing diversity and significantly increases
inference time.

Figure 11: Relationships Among Metrics and
GenEval Scores

Setting
DiverseAR-2B DiverseAR-8B

GenEval ↑ Time GenEval ↑ Time

Baseline 0.716 1x 0.797 1x
M=8,N=2 0.748 1.07x 0.791 1.08x
M=8,N=3 0.751 1.09x 0.797 1.10x
M=8,N=4 (default) 0.760 1.12x 0.802 1.13x
M=4,N=4 0.747 1.06x 0.793 1.07x
M=6,N=4 0.754 1.09x 0.798 1.10x
M=8,N=4 (default) 0.760 1.12x 0.802 1.13x

Table 11: Comparison of different (M,N) settings for DiverseAR-
2B and DiverseAR-8B in terms of GenEval and wall-clock time.
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Table 12: Comparison of prompt rewriting versus
our method.

Method LPIPS ↑ CLIP ↓

Baseline 0.5536 0.9444
Rewrite 0.6549 0.9166
Ours 0.7133 0.9065

Table 13: Comparison of top-k sampling (bit-to-int tokens) versus
our method.

Method T ↓ LPIPS ↑ CLIP ↓ GenEval ↑

Baseline ×1.0000 0.5536 0.9444 0.716
Top-5 Sampling ×1.4517 0.5783 0.9388 0.717
Ours ×1.0005 0.7133 0.9065 0.740

Table 14: Distribution of top-k probabilities across different scales.

Scale Top-1 Prob Top-2 Prob Top-3 Prob Top-4 Prob Top-5 Prob

Scale 0 0.62 0.18 0.11 0.07 0.003
Scale 1 0.58 0.23 0.06 0.03 0.003
Scale 2 0.37 0.18 0.10 0.05 0.02
Scale 3 0.29 0.15 0.08 0.05 0.02

D DETAILS ON ADDITIONAL METRICS FOR PATH SELECTION

To further analyze the correlation between intermediate representations and final image quality, we report two additional
search-related metrics in Fig. 11: entropy and average maximum bit probability.

First, we compute the unadjusted bit probability p
′(l,i)
k , i.e. the predicted probability of the i-th bit for token l at scale k

before any adaptive adjustment:

p
′(l,i)
k = max

c∈{−1,1}

exp
(
T

(l,i)
k (c)/τ

)∑
c′∈{−1,1} exp

(
T

(l,i)
k (c′)/τ

) . (8)

Based on Eq. equation 8, the entropy at scale k (before applying any temperature adjustment) is defined as:

Hk =
1

Lkd

Lk∑
l=1

d∑
i=1

[
p
′(l,i)
k log2 p

′(l,i)
k + (1− p

′(l,i)
k ) log2(1− p

′(l,i)
k )

]
. (9)

Similarly, the mean maximum bit probability at scale k is computed as:

Pk =
1

Lkd

Lk∑
l=1

d∑
i=1

p
′(l,i)
k , (10)

which reflects the average confidence across all predicted bits at the given scale.

To evaluate the m-th generation trajectory across scales, we define aggregated forms of these metrics over N successive
scales as:

Hm =
1

N

k+N∑
j=k+1

Hm
j , (11)

Pm =
1

N

k+N∑
j=k+1

Pm
j . (12)

These aggregated entropy and confidence measures can be computed for each sampled trajectory during generation.
Empirically, we observe that samples with lower entropy or higher average maximum bit probability are more likely
to yield higher-quality images. As shown in Fig 11, both metrics exhibit strong linear correlations with the final
GenEval scores, suggesting that they can serve as reliable indicators for selecting high-fidelity outputs in the path search
procedure.
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E MORE RESULTS

We present additional qualitative results for the Infinity-2B model in Fig. 12 and 13, and for the Infinity-8B model in
Fig. 14 and 15. In Fig. 12, for the first prompt, our method not only alters the layout of the samples but also their visual
style. Fig. 13 offers further comparisons under 2B across additional prompts. Similarly, Fig. 14 and 15 show that under
the 8B model, DiverseAR consistently yields substantially more diverse outputs. These examples demonstrate that
DiverseAR enhances output variability while preserving high visual fidelity.

F ADDITIONAL RELATED WORK

Diversity Control in AR Models. Autoregressive generation adopts decoding heuristics from language modeling to
modulate diversity. Top-k sampling restricts token selection to the k most probable options at each step (Fan et al.,
2018; Radford et al., 2019; Keskar et al., 2019; Ramesh et al., 2021), while nucleus (top-p) sampling selects the smallest
token set whose cumulative probability exceeds p(Holtzman et al., 2019; Yu et al., 2022; Zhang et al., 2020). Typical
sampling filters out tokens with information content deviating from the context’s average uncertainty, retaining those
within a tolerance range to balance quality and diversity(Meister et al., 2022). Truncation sampling treats the output
as a mixture of ideal and smoothed distributions, pruning tokens below an entropy-conditioned threshold (Hewitt
et al., 2022; Wang et al., 2023; Hao et al., 2024). Diverse beam search adds inter-beam penalties to mitigate mode
collapse (Vijayakumar et al., 2016; Wu et al., 2022; Zhang et al., 2023), while minimum Bayes–risk (MBR) decoding
selects outputs minimizing expected task-specific loss (Bertsch et al., 2023; Chang et al., 2022). There is also work (Xie
et al., 2024b; Zhu et al., 2024) that adjusts the temperature coefficient to calibrate sampling in large language models.
However, our approach is fundamentally different: we focus on smoothing the overly sharp early-stage distributions in
bitwise autoregressive models, rather than calibrating LLM sampling.

G LIMITATION AND FUTURE WORK

One limitation of our method is the slight increase in inference time caused by the search over multiple candidate paths.
In practice, the overhead remains limited, amounting to approximately 1.12× that of the baseline under the default
setting. In future work, we will explore training-time strategies to better address the diversity limitations of the bitwise
autoregressive generation model.

H THE USE OF LARGE LANGUAGE MODELS

In this work, we employed large language models (LLMs) to assist with minor vocabulary refinement and formatting
adjustments. Specifically, we used LLMs to improve sentence logic, condense paragraph length, and adjust the
formatting of tables and figures. We take full responsibility for any consequences arising from the use of LLMs in the
preparation of this manuscript.
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A dreamy scene of a sleeping dragon curled around a glowing planet 
in space, constellations forming mystical runes above, purple nebula 
background, whimsical and cinematic, extremely high detail.

A luxury wristwatch submerged in ice, surrounded by sliced citrus 
fruits and icy vapor, product photography style, studio lighting, crisp 
reflections, ultra-minimal yet intensely sharp, Apple-style aesthetics.

Product photography, a perfume placed on a white marble table 
with pineapple, coconut, limenext to it as decoration, white 
curtains, full of intricate details, realistic, minimalist, layered 
gestures in a bright and concise atmosphere, minimalist style.

two superheroes called spacefrog (a dashing green cartoon-like frog 
with a red cape) rand astroduck (a yellow fuzzy duck, part-robot, with 
blue/grey armor), near a garden pond, next to their spaceship, a 
classic flying saucer, called the Tadpole 3000. photorealistic.

A dog and a cat is chasing and playing. A blue car driving along a coastal road.

A cozy corner with a comfortable armchair, upholstered in soft fabric, 
beside it sits a sleek laptop on a small wooden side table, with warm 
ambient lighting creating a perfect space for focused work or relaxation.

An elaborate digital masterpiece that features the artist Tommy Cash, 
rendered in the distinctive and psychedelic style of Alex Grey 
combined with the nostalgic Americana of Norman Rockwell. 

A vintage circus-style poster proclaiming ‘Diversity&Quality’ in 
ornate retro typography, framed by decorative scrollwork.

On the soft, warm sand of the beach, a fluffy white rabbit with rounded 
ears is caught in a curious moment, gently placing its paw on the ribbed 
surface of a pink scallop shell. The scallop, slightly open, reveals its 
smooth interior contrasting with its coarse outer texture
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Figure 12: Qualitative T2I comparison between original method and DiverseAR under the 2B model. The first
row shows baseline results; the second row shows DiverseAR results.
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A serene photo of a horse drinking from a reflective pond at dawn. A documentary image of a sheepdog guiding sheep across a grassy 
hill.

A morning-light portrait of a snow leopard perched on a rocky 
cliff.

A low-angle view of a crocodile lurking at the water’s edge of a 
swamp.

A close-up image of a dairy cow’s eye reflecting rolling 
green hills.

A natural portrait of a red fox pausing beside a mossy 
log in a pine forest.

A macro shot of a hedgehog curled in autumn leaves under a rustic 
wooden fence.

A street-life image of a city rat scurrying along old cobblestones at 
dusk.

A detailed headshot of a rat sniffing wildflowers in a meadow. A rustic snapshot of a goat perched on a rock in a mountainous pasture.
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Figure 13: More qualitative T2I comparison between original method and DiverseAR under the 2B model. The
first row shows baseline results; the second row shows DiverseAR results.
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Dynamic performance of robotic acrobats leaping over reflective 
stages in bright sunlight.

Stylish editorial photography of penguins on an illuminated ice 
runway with vivid aurora lighting.

A sleek robotic panther sprinting across a crystalline desert under a 
blazing sunlit sky

Holographic lions roaming peacefully across sunlit plains beneath 
bright midday skies.

Fantasy airship dock illuminated by vibrant pastel-colored lights 
against dawn skies.

Holographic eagle soaring majestically above shimmering desert 
dunes under bright daylight.

A futuristic jazz ensemble of robotic raccoons performing on a neon-
infused stage under pastel skies.

Elegant cyber-foxes in bioluminescent cloaks prowling a dew-
soaked forest at first light.

Futuristic fashion portrait of bioluminescent deer in avant-garde 
attire strolling through misty woodlands.

A surreal close-up of iridescent beetles atop translucent mushrooms 
in a bright woodland.
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Figure 14: Qualitative T2I comparison between original method and DiverseAR under the 8B model. The first
row shows baseline results; the second row shows DiverseAR results.
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A dramatic shot of a tiger resting on a rocky outcrop against a stormy 
sky.

A travel-style photo of a monkey observing tourists from a 
stone railing.

An elegant garden tea party featuring sophisticated otters beneath 
soft, golden sunlight.

A phosphorescent salamander exploring a sunlit, dew-laden log in a 
misty forest.

A high-resolution portrait of a majestic horse grazing in a 
sunlit meadow at golden hour.

An editorial shot of a glossy cow standing in a dewy pasture 
under overcast skies.

A detailed profile of a rooster crowing on a moss-covered fence post. A soft-focus photo of a sheep nibbling clover in a sun-dappled 
pasture.

A lifestyle image of a shepherd dog lying alert beside a flock of 
grazing sheep.

A serene landscape with a lone horse standing under a willow tree 
by a pond.
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Figure 15: More qualitative T2I comparison between original method and DiverseAR under the 8B model. The
first row shows baseline results; the second row shows DiverseAR results.
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