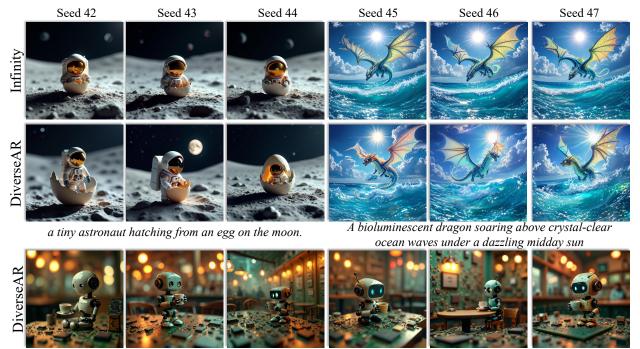
DIVERSEAR: BOOSTING DIVERSITY IN BITWISE AUTOREGRES-SIVE IMAGE GENERATION

Anonymous authors

Paper under double-blind review



A tiny vintage robot sipping coffee on a circuitboard café, surrounded by microchips, resistors, and glowing transistors, moody bokeh lights, tilt-shift perspective, Wes Anderson-inspired, warm color palette.

Figure 1: **High-resolution and diverse image synthesis results from DiverseAR**, fully unleashing the potential of bitwise autoregressive generative models.

ABSTRACT

In this paper, we investigate the underexplored challenge of sample diversity in autoregressive (AR) generative models with bitwise visual tokenizers. We initially analyze the factors limiting diversity in bitwise AR models and identify two key issues: 1) the binary classification nature of bitwise modeling, which restricts the prediction space, and 2) the overly-sharp logits distribution, which causes sampling collapse and reduces diversity. Built on these insights, we propose **DiverseAR**, a principle and effective method that enhances image diversity without sacrificing visual quality. Specifically, we introduce an adaptive logits distribution scaling mechanism that dynamically adjusts the sharpness of the binary output distribution across different sampling steps, resulting in a smoother prediction distribution and improved diversity. To mitigate the potential fidelity loss caused by distribution smoothing, we further develop an energy-based generation path search algorithm that avoids sampling low-confidence tokens, thereby preserving high visual quality. Extensive experiments highlight that DiverseAR can unlock greater diversity in bitwise autoregressive image generation.

1 Introduction

Recently, autoregressive (AR) models have attracted considerable attention in visual generation. Inspired by the remarkable success of large language models (Brown et al., 2020; Radford et al., 2018; Touvron et al., 2023; Achiam et al., 2023), researchers have begun to explore AR-based approaches for visual synthesis (Sun et al., 2024; Tian et al., 2024; Yu et al., 2025; Pang et al., 2024), aiming to leverage their strong modeling capacity and unified generation

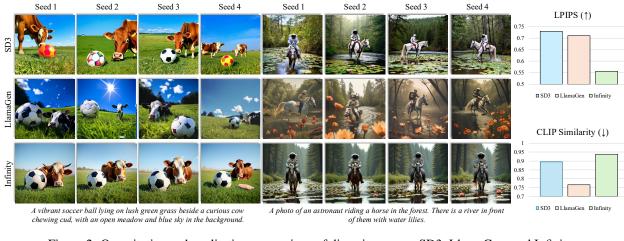


Figure 2: Quantitative and qualitative comparison of diversity among SD3, LlamaGen, and Infinity.

paradigm. Benefiting from these strengths, AR-based models have demonstrated impressive capabilities in image generation (Tian et al., 2024; Han et al., 2024; Sun et al., 2024), achieving competitive performance compared to diffusion-based (Podell et al., 2023; Chen et al., 2023) approaches in recent studies.

Existing autoregressive models for visual generation commonly adopt vector quantization (VQ) to transform continuous image representations into discrete token sequences, serving as the foundation for autoregressive modeling. Early studies (Sun et al., 2024; Pang et al., 2024; Tian et al., 2024) follow this approach by encoding images into index-based token sequences using a visual tokenizer (Razavi et al., 2019; Van Den Oord et al., 2017; Esser et al., 2021; Lee et al., 2022), and then applying AR models to generate images either token-by-token or scale-by-scale. However, this discretization process introduces quantization errors due to the limited size of the token vocabulary, hindering the generation of fine-grained details. Moreover, coarse supervision and train–inference mismatch during generation exacerbate visual degradation (Han et al., 2024), leading to artifacts and making the tokenizer a key bottleneck in AR models. To address these limitations, recent studies (Han et al., 2024) explore bitwise modeling, which replaces index-wise tokens with bitwise tokens. This design allows for an effectively unlimited token space while maintaining computational and memory efficiency. Bitwise modeling also provides finer supervision and more stable training dynamics, contributing to improved generation quality. Despite these advantages, bitwise autoregressive models exhibit limited output diversity. As illustrated in Fig. 2, Infinity (Han et al., 2024) generates significantly less diverse samples than SD3 (Esser et al., 2024) and LlamaGen (Sun et al., 2024) when sampling with different random seeds. This limitation remains under-explored, hindering the broader applicability of bitwise AR models.

In this paper, we pioneer the investigation into the diversity limitations of bitwise autoregressive models. As a first step toward a comprehensive understanding, we analyze the underlying causes of low sample diversity. Our study identifies two primary contributing factors: 1) The binary classification characteristics of bitwise modeling. Since each bit is predicted independently as either 0 or 1, the model is inherently limited to two candidate outcomes per position. This severely constrains the sampling space, rendering top-k sampling ineffective and limiting the overall expressive capacity during sampling. 2) Overconfident output distributions. The probability distribution over the two possible bit values is often highly peaked, with one bit having significantly higher probability than the other. This causes top-p sampling to frequently collapse to the most probable class, resulting in overly localized sampling and reduced exploration of alternative outcomes.

Building on these insights, we propose **DiverseAR**, an effective approach that enhances image diversity without sacrificing visual quality. As shown in Fig. 3, early coarse scales in the generation process tend to produce structurally homogeneous outputs. To address this, we introduce an **adaptive logits scaling** mechanism at coarse sampling stages, which dynamically adjusts the sharpness of the binary output distribution across sampling steps. By preventing overly confident predictions, this approach preserves uncertainty in early stages and increases the entropy of the predictive distribution. As a result, the model is encouraged to explore a broader set of plausible generation paths, leading to improved sample diversity. *However, we observe that smoothing the distribution can shift the probability mass away from the model's learned distribution, introducing local artifacts*. To mitigate this issue, we further design an **energy-based generation path search algorithm** that steers sampling away from low-probability tokens. By constraining sampling to high-confidence regions of the model's output distribution, it reduces the risk of accumulating unlikely bit patterns that can lead to artifacts, thereby preserving high visual quality.

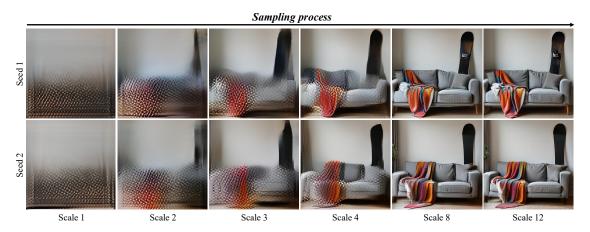


Figure 3: Visualization of sampling process for the same prompt across different random seeds.

We conduct a comprehensive experimental evaluation of our approach. The results demonstrate that DiverseAR significantly improves sample diversity while maintaining high visual fidelity, as shown in Fig. 1. Our contributions are summarized as follows:

- We present the first in-depth analysis of the diversity limitations in bitwise autoregressive models, identifying
 two core factors: the binary classification characteristics of bitwise modeling and the excessively peaked
 output distribution.
- We introduce DiverseAR, which combines an adaptive logits scaling mechanism with an energy-based generation path search algorithm. This design jointly enhances sample diversity while maintaining highfidelity image synthesis.
- Extensive experiments demonstrate the superiority of our proposed method. For example, on Infinity-2B, our
 method improves LPIPS by 20% compared to the baseline, and achieves approximately a 5% gain in GenEval
 Score.

2 Related work

Autoregressive Image Generation with Vector quantization. Inspired by the success of autoregressive language models (Brown et al., 2020; Radford et al., 2018; Touvron et al., 2023; Achiam et al., 2023), autoregressive image generation (Ramesh et al., 2021; Chang et al., 2022; Yu et al., 2024; Li et al., 2024; Fan et al., 2024; Tang et al., 2024; Sun et al., 2024; Tian et al., 2024; Han et al., 2024) has advanced rapidly through the use of quantized tokenizers (Van Den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2021) that embed images into compact latent spaces. Vector-quantization (VQ)-based methods (Razavi et al., 2019; Van Den Oord et al., 2017; Esser et al., 2021; Lee et al., 2022) convert image patches into discrete tokens represented by indices and employ a decoder-only transformer to predict the next-token index, resulting in efficient yet expressive image representations. Approaches like LlamaGen (Sun et al., 2024) and Parti (Yu et al., 2022) incorporate jointly learned discrete token vocabularies into transformer architectures, enabling high-quality image generation and maintaining strong scaling performance. Frameworks such as VAR (Tian et al., 2024) and FAR (Yu et al., 2025) employ coarse-to-fine sequential generation, with VAR progressively refining across spatial resolutions and FAR across frequency bands, demonstrating robust scalability. (Yu et al., 2024) propose compressing images into one-dimensional sequences, reducing redundancy and achieving more compact representations. (Guo et al., 2025) introduce a coarse-to-fine token prediction strategy, wherein the model first predicts coarse-grained indices followed by fine-grained ones.

Autoregressive Image Generation without Vector quantization. Finite Scalar Quantization (FSQ) (Mentzer et al., 2023) proposes quantizing tokens to constants nearest to codebook entries, which improves codebook utilization and simplifies training. Lookup Free Quantization(LFQ) (Yu et al., 2023) and Binary Spherical Quantization (BSQ) (Zhao et al., 2024) adopt binary quantization to further enhance training stability and reduce quantization error. Infinity (Han et al., 2024) employs BSQ (Zhao et al., 2024) and introduces a bitwise infinite-vocabulary classifier (IVC), enhance scalability and minimize information loss from discretization, while also integrating a bitwise self-correction mechanism to mitigate cumulative errors during autoregressive decoding. Furthermore, recent research (Tang et al., 2024; Li et al.,

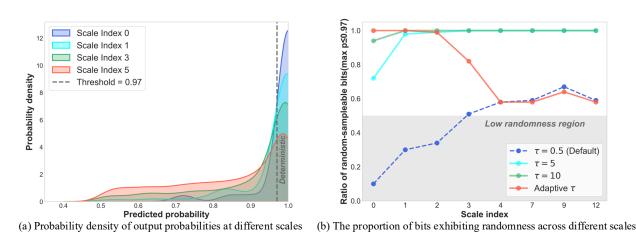


Figure 4: Analysis of the Distribution of Predicted Logits for Binary Classifiers

2024; Ren et al., 2025; Chen et al., 2024; Fan et al., 2024) has explored combining diffusion and autoregressive models by modeling continuous tokens, substituting categorical cross-entropy with diffusion-based losses (Fan et al., 2018; Holtzman et al., 2019).

3 METHODOLOGY

3.1 PRELIMINARY

Existing autoregressive models typically adopt vector quantization (VQ) to discretize continuous images into token sequences, which are then synthesized by transformers in a causal manner, either token-by-token or scale-by-scale. Early methods often use a visual tokenizer to encode images into index-based token sequences. For instance, VAR adopts VQGAN with a multi-scale quantization layer to tokenize images and predicts residual features $\mathbf{F}_k \in [V_d]^{h_k \times w_k}$ at k-th scale using a V_d -class classifier.

However, index-wise tokenization is constrained by the limited vocabulary size, incurs quantization errors, and suffers from fuzzy supervision, causing visual detail loss and local distortions.

To address these limitations, recent work has investigated bitwise modeling, replacing index-based tokens with bitwise tokens to enhance expressiveness and reduce quantization artifacts. Infinity is one of the most notable approaches in this area. It introduces a bitwise autoregressive model, comprising a bitwise visual tokenizer, a bitwise infinite-vocabulary classifier (IVC), and a bitwise self-correction module. The IVC employs d binary classifiers in parallel (where $d = \log_2(V_d)$) to predict residual features. At each scale k, given the token index l, the IVC predicts the logits $T_k^{(l,i)}:\{0,1\}\to\mathbb{R}$ for the i-th bit of the l-th token. We then sample the bit-wise token Y_k^l as follows:

$$\boldsymbol{Y_k^l} = \left[Y_k^{(l,1)}, Y_k^{(l,2)}, \dots, Y_k^{(l,d)} \right], \quad Y_k^{(l,i)} \sim \operatorname{softmax} \left(T_k^{(l,i)} / \tau \right), \quad Y_k^{(l,i)} \in \{0, 1\}.$$
 (1)

Here, the sampling operator \sim can be instantiated as $\arg\max$, $\operatorname{top-}k$, or $\operatorname{top-}p$ sampling. Compared to conventional classifiers, IVC is much more efficient in terms of both parameters and memory, and benefits from more steady supervision. In this work, we build upon Infinity to explore strategies for enhancing the diversity and improving the quality of bitwise autoregressive models.

3.2 Why does Bitwise AR Model Degrade Diversity?

Despite achieving impressive performance in text-to-image synthesis, the images generated by bitwise AR model exhibit limited diversity, as evidenced in Fig. 2. Through the visual analysis of the generation process, we find that at the early, coarse scales, the synthesized results already exhibit a high degree of structural homogeneity, as illustrated in Fig. 3. This observation suggests that the lack of diversity may stem from the collapse of classifier predictions in the early stages of generation.

This behavior can be traced to the design of the infinite-vocabulary classifier used in Infinity, which is composed of d independent binary classifiers, as presented in Eq. 1. The binary nature of these classifiers imposes inherent constraints

(a) Comparison of visual quality under different settings

 $\tau = 0.5$ (Default)

267268269

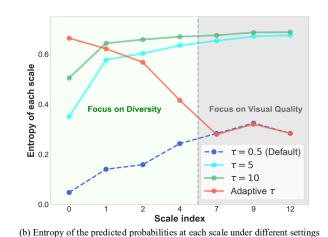


Figure 5: Quality and entropy comparison under different τ settings.

on sampling. In particular, it renders top-k sampling ineffective, as each bit has only two possible outcomes. As a result, Infinity adopts top-p sampling to introduce stochasticity into the generation process. To further understand the source of diversity collapse, we analyze the behavior of these binary classifiers by visualizing the distribution of their predicted logits. As shown in Fig. 4(a), the predicted probabilities are often highly peaked, with one class (either 0 or 1) receiving near-certain confidence—frequently exceeding the default top-p threshold of 0.97. This overconfidence leads to a collapse in randomness: despite the use of top-p sampling, the dominant class is almost always selected, effectively reducing the sampling process to a deterministic decision. Moreover, at earlier scales, this phenomenon becomes even more pronounced.

This leads to top-p sampling frequently collapsing to the class with the higher probability, thereby losing randomness. As depicted in Fig. 4 (b), under the default sampling configuration, only about 10% of the bits on the first scale exhibit randomness. Moreover, this collapse of randomness at the bit level leads to constrained feature variation across sampling trajectories, ultimately resulting in reduced diversity in the generated outputs. These findings indicate that the diversity degradation in bitwise autoregressive models primarily stems from two factors: *the binary classification nature of bitwise modeling and the overconfidence of the predicted output distributions*.

3.3 Adaptive Temperature Scaling for Enhanced Diversity

 $\tau = 5$

Building upon these insights, a straightforward solution is to increase the temperature coefficient τ in the binary classifier (Eq. 1), which smooths the binary probability distributions and improve the effectiveness of top-p sampling.

However, due to substantial variation in the predicted bit-wise logits, a fixed temperature τ may fail to provide appropriate smoothing. In cases where the logits are overly sharp, achieving desired smoothing requires a large temperature, which in turn introduces excessive randomness during the refinement of fine-grained details and ultimately degrades visual quality. As shown in Fig. 5, increasing τ to 5 or 10 results in large entropy shifts across scales compared to the default, leading to incoherent and visually distorted outputs.

To mitigate the drawbacks of simply increasing the temperature coefficient to a fixed τ , we propose an adaptive temperature scaling strategy that determines τ_k for each scale k based on the predicted logits, thereby achieving proper smoothing, as shown in Fig. 6(a).

Specifically, we first compute the maximum bit-probability $p_k^{(l,i)}$ for the logits $T_k^{(l,i)}$ of the i-th bit in the l-th token at scale k:

$$p_k^{(l,i)} = \max_{c \in \{-1,1\}} \frac{\exp(T_k^{(l,i)}(c)/\tau_k)}{\sum_{c' \in \{-1,1\}} \exp(T_k^{(l,i)}(c')/\tau_k)}.$$
 (2)

We then compute the average of these max-probabilities across all d bits for all L_k tokens at scale k:

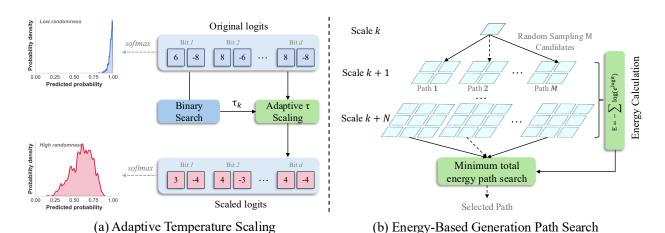


Figure 6: Overview of the proposed method DiverseAR, which consists of Adaptive τ Scaling and Energy-Based Generation Path Search.

$$\bar{p}_k(\tau_k) = \frac{1}{L_k \times d} \sum_{l=1}^{L_k} \sum_{i=1}^d p_k^{(l,i)}.$$
 (3)

Intuitively, $\bar{p}_k(\tau_k)$ captures the average peak confidence of the classifier at scale k. To control this confidence level, we define a target smoothing level S_k for each scale and search for a τ_k such that $\bar{p}_k \approx S_k$. This is efficiently achieved via binary search:

$$\left|\bar{p}_k(\tau_k) - S_k\right| < \epsilon,\tag{4}$$

where ϵ is a small numerical tolerance. The algorithmic details are provided in Appendix A. In the early diversity-oriented synthesis phase, we select smaller S_k values, leading to larger τ_k values and smoother probability distributions . In the later visual refinement phase, a smaller temperature τ_k is restored to maintain the visual quality of generated images. As shown in Fig. 5(b), the adaptive temperature scaling mechanism introduces sufficient randomness in the early sampling stage (indicated by higher entropy), promoting diverse layouts, while avoiding excessive stochasticity in the later stage (lower entropy), thereby minimizing negative impacts on perceptual quality.

3.4 ENERGY-BASED GENERATION PATH SEARCH FOR QUALITY ENHANCEMENT

Expanding the sampling space in the early stage of image generation may lead to sampling from low-confidence regions, thereby introducing semantic artifacts into partial samples, as illustrated in Fig. 9. Prior work (Liu et al., 2020) shows that lower energy values correspond to higher logits assigned to predicted bits, indicating greater model confidence at each token position. Building on this insight, we find that in the bitwise AR model, lower energy in the logits (i.e., higher confidence) is often associated with better visual quality, as shown in Fig. 7. Motivated by this connection, we propose an energy-based generation path search algorithm, as illustrated in Fig. 6(b).

Specifically, we follow the definition of energy proposed in (Liu et al., 2020). At the k-th scale, the energy of its predicted logits can be computed using the following formulation:

$$E_k = -\frac{1}{L_k} \sum_{l=1}^{L_k} \log \left(\sum_{i=1}^d e^{T_k^{l,i}} \right),$$
 (5)

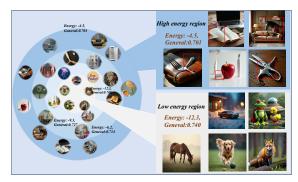


Figure 7: Visualization results of different energy regions

where $T_k^{l,i}$ denotes the logit for the *i*-th bit of the *l*-th token at scale k, and L_k is the total number of tokens at that scale. After the adaptive temperature scaling at scale k, we perform a generation path search to identify low-energy trajectories. We first sample M candidate initialization and propagate each forward through the next N scales, yielding M distinct candidate paths. For the m-th path, we compute its cumulative energy by averaging per-scale energy values:

$$E^{m} = \frac{1}{N} \sum_{j=k+1}^{k+N} E_{j}^{m}, \quad m = 1, 2, \dots, M.$$
 (6)

We then select the path with the lowest cumulative energy by solving:

$$r^* = \underset{m \in \{1, \dots, M\}}{\operatorname{arg \, min}} E^m. \tag{7}$$

The selected path r^* is then propagated through the remaining scales to complete the sampling process. Notably, since this selection is performed in early stages, where both resolution and token count are relatively low, the additional computational overhead is minimal.

4 EXPERIMENTS

Table 1: Diversity and Quality Evaluation: LPIPS and CLIP Similarity, GenEval and DPG Benchmark

	Dive	Diversity GenEval(†) (Ghosh et al., 2023) DP			DPG	G(†) (Hu et al., 2024)			
Model	LPIPS(†)	CLIP(↓)	Two Obj	Position	Color Attri	Overall	Global	Relation	Overall
			Diffusio	n Model					
SDv1.5 (Rombach et al., 2022) PixArt-alpha (Chen et al., 2023) SDXL (Podell et al., 2023)	0.7909 0.6896 0.7403	0.8291 0.9096 0.8768	0.38 0.50 0.74	0.04 0.08 0.15	0.06 0.07 0.23	0.37 0.48 0.55	74.63 74.97 83.27	73.49 82.57 86.76	63.18 71.11 74.65
SD3.5 -medium (Esser et al., 2024)	0.7294	0.8952	0.74	0.34	0.36	0.62	- 65.27	-	-
			AutoRegres	sive Model	s				
LlamaGen (Sun et al., 2024) Hart (Tang et al., 2024) Show-o (Xie et al., 2024a)	0.7110 0.7106 0.6427	0.7662 0.8834 0.9251	0.34	0.07 - 0.31	0.04 - 0.50	0.32 0.52 0.68		- - -	65.16 80.89 67.48
Infinity-2B (Han et al., 2024) DiverseAR-2B	0.5555 0.6712	0.9381 0.9192	0.83 0.88	0.44 0.51	0.53 0.60	0.716±0.05 0.760±0.04	88.61 89.20	87.97 87.57	81.51±0.3 81.72±0.3
Infinity-8B (Han et al., 2024) DiverseAR-8B	0.3745 0.5510	0.9583 0.9354	0.90 0.91	0.62 0.63	0.69 0.68	0.797±0.02 0.802±0.03	86.93 92.79	91.24 90.55	85.88±0.2 86.14±0.2

4.1 EXPERIMENTAL SETTINGS

Evaluation Metrics. To evaluate diversity, we use 50 prompts and generate 50 images per prompt with different random seeds, resulting in a total of 2,500 images. For each prompt, we compute pairwise LPIPS (Zhang et al., 2018) and CLIP (Radford et al., 2021) similarities among the 50 samples, average these values over all pairs to obtain a per-prompt score, and then report the mean across prompts as the final diversity scores. For quality assessment, we report GenEval (Ghosh et al., 2023), DPG (Hu et al., 2024), ImageReward (Xu et al., 2023), and HPSv2 (Wu et al., 2023) scores. GenEval and DPG scores are computed across multiple seeds to estimate error bars. The results of ImageReward and HPSv2 are reported in the appendix C.

Implementation Details. For Infinity-2B, we use the default setting with a CFG of 4 and a fixed sampling temperature of 0.5. DiverserAR-2B sets CFG to 4 and applies an adaptive temperature schedule to target average maximum bit probabilities S_k that increases linearly from 0.60 to 0.90 across the first half of the scales. For the remaining ones, we use argmax sampling to select the highest-probability bit at each position. During energy-based path search, we sample M=8 candidate paths at scale 2, propagate each through scales 3 to 6, and compute the average cumulative energy along each path. The details for the 8B model configuration are provided in Appendix B.1. To verify the scalability of our method, we also evaluate it on the VQ-based autoregressive model HART. The experimental details are provided in Appendix C.1. All experiments are run on NVIDIA H20 GPUs.

4.2 MAIN RESULTS

Quantitative Results. Tab. 1 compares the diversity and quality metrics across different methods. Compared to Infinity-2B (Han et al., 2024), DiverseAR-2B improves LPIPS by 0.1216 (approximately 20%) and decreases CLIP

380

382

384

385

387

389 390

391

392 393 394

397

400 401 402

403 404

405 406

407

408

409

410

411

412 413

414

423

424

425

426 427

428

429

430

431

Figure 8: Comparison of output diversity between the original method and our approach

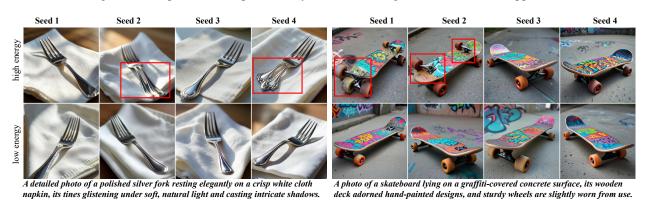


Figure 9: Quality Comparison of High-Energy vs. Low-Energy Sampling Outputs

similarity by 0.0213, yielding the diversity level comparable to that of SD3.5 and LlamaGen. In terms of quality, our method consistently improves GenEval and DPG scores. The "Position" and "Color Attribution" sub-scores in GenEval each increase by 7%, and the overall score improves by 4.4%. We also report the comparison results for the 8B model in Appendix E. Our method achieves substantial gains—LPIPS improves by approximately 60%—while still preserving high visual quality. Furthermore, we also evaluate our method on an additional VQ-based autoregressive model, HART (Tang et al., 2024). The corresponding results are provided in Appendix C.1.

Table 2: Diversity and Quality Evaluation under Different Table 3: Comparison of Different τ Settings for Diversity Search Strategies in the 2B model

and Quality Evaluation in the 2B model

Method	Latency	Dive	rsity	GenEval	DPG	Metric	$\tau = 5 \text{ (half)}$	$\tau = 10$ (half)	$\tau = 20$ (half)	Adaptive τ
		LPIPS	CLIP	Overall	Overall					
Baseline	×1.0000	0.5555	0.9381	0.716	81.51	LPIPS	0.6767	0.7132	0.7578	0.6712
+ Adaptive $ au$	×1.0005	0.6768	0.9172	0.739	81.56	CLIP	0.9176	0.8874	0.8130	0.9192
+ Energy search	×1.1187	0.5426	0.9398	0.744	81.58					
+ Adaptive τ & Energy search	×1.1192	0.6712	0.9192	0.760	81.72	GenEval	0.728	0.704	0.593	0.760

Fig. 8 visualizes output diversity across different random seeds, comparing our method with the baseline in 2B models. Additional comparisons are provided in Appendix E. These results demonstrate the effectiveness and superiority of our proposed method, which achieves significantly enhanced diversity while maintaining high visual quality.

ABLATION STUDIES

The impact of individual components. Tab. 2 presents the impact of each component in our method on final performance. As shown, adaptive temperature scaling significantly improves the diversity of generated images (LPIPS: $0.5555 \rightarrow 0.6712$) while maintaining high visual quality and introduces only negligible extra inference time. Meanwhile, by combining the energy-based generation path search, we achieve the best visual quality (GenEval: $0.716 \rightarrow 0.760$).

433

434 435

444 445

446

447

448

449

450

451

452

453 454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472 473 474

475 476

477

478

479

480

481

482

483

484 485 Moreover, since the path search operates only at the coarser early scales, it introduces only minimal latency $(\times 1 \rightarrow$ $\times 1.1192$).

schedules on diversity and quality.

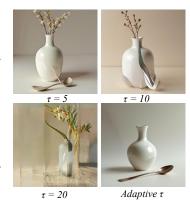
Method	$\mid \text{LPIPS} \uparrow$	CLIP↓	$GenEval \uparrow$
Baseline	0.5555	0.9381	0.716
Fixed S_k ($S_k = 0.6$)	0.6913	0.9021	0.750
Fixed $S_k (S_k = 0.65)$	0.6801	0.9137	0.751
Fixed S_k ($S_k = 0.7$)	0.6653	0.9226	0.751
Linear $S_k (0.6 \rightarrow 0.9)$	0.6712	0.9192	0.760

Table 4: Sensitivity analysis of S_k : effect of different Table 5: Effect of varying the number of selected scales on diversity and GenEval scores under linear adjustment.

Metric	Number of Selected Scales					
	0	1	3	5	7	
LPIPS	0.5555	0.5954	0.6669	0.6713	0.6712	
CLIP	0.9381	0.9283	0.9188	0.9182	0.9192	
GenEval (Adaptive τ)	0.716	0.719	0.725	0.733	0.739	
GenEval (Adap. + Search)	0.744	0.748	0.752	0.755	0.760	

Comparison of Fixed and Adaptive τ . Tab. 3 compares three fixed τ settings $(\tau = 5, 10, 20)$ applied to the first half of scales) with our adaptive τ . We observe that simply increasing the early-stage τ does not effectively balance diversity and quality: although $\tau = 20$ yields a significant gain in diversity, it also causes a notable drop in quality. The visualization of different τ settings is shown in Fig. 10. Furthermore, due to the substantial variation in logits distributions across samples, selecting a single fixed τ that works universally is difficult. By contrast, determining τ adaptively through the target average peak confidence S_k provides a more robust and effective solution.

Sensitivity Analysis of S_k . Tab. 4 presents the sensitivity analysis of S_k on the final performance of our method. The results show that DiverseAR consistently outperforms the baseline across a broad range of parameter settings without requiring extensive or fine-grained tuning. For example, using a fixed $S_k = 0.6$ achieves stronger diversity with an LPIPS score of 0.6913, compared to the baseline of 0.5555. At the same time, the linear S_k schedule yields a GenEval score of 0.760, which demonstrates a more stable and effective balance between diversity and quality. These observations indicate that the improvements mainly stem from the core design of our method—namely, adjusting the overly sharp probability distributions in the early stages to enhance diversity.



a photo of a vase and a spoon

Figure 10: Visualization results of different τ settings

The impact of varying the number of adaptive scaling layers. Tab. 5 presents

LPIPS and GenEval results when adaptive temperature scaling is applied to an increasing number of initial scales. Even without any distribution adjustment (i.e., using only energy-based search), GenEval improves by 0.028. As more scales undergo temperature adjustment, GenEval rises progressively, and combining adaptive scaling with energy-based search yields additional gains. Since the target smoothing level reaches $S_7 = 0.9$ at the 7th scale, we apply argmax sampling for the remaining scales without further adjusting the logit distribution.

We also provide additional ablation studies, including the computational overhead of energy-based search on different models, the GenEval scores under different search metrics, the diversity comparison across different CFG scales, as well as other related analyses. More experimental results and ablations are reported in Appendix C.

Conclusion

In this work, we conduct the first in-depth investigation into the diversity limitations of bitwise autoregressive models for image generation. Through detailed analyses, we identify two key factors that restrict sample diversity: the binary nature of bitwise modeling, which narrows the sampling space, and the overly peaked output distribution, which causes sampling collapse and suppresses variability. To address these challenges, we propose *DiverseAR*, a simple yet effective method that enhances diversity without compromising visual fidelity. Our approach introduces an adaptive logits scheduling mechanism to maintain uncertainty across early sampling stages and an energy-based generation path search algorithm to avoid low-confidence predictions. Extensive experiments on multiple benchmarks validate the effectiveness of DiverseAR in producing more diverse and high-quality samples, demonstrating its potential to improve the applicability of bitwise autoregressive generation.

ETHICS STATEMENT

Our work focuses on improving the diversity of bitwise autoregressive image generation models. We do not foresee direct ethical concerns beyond those commonly associated with generative models, such as potential misuse for generating misleading or harmful content. All experiments are conducted on publicly available datasets under their corresponding licenses. No personally identifiable information or sensitive data was used. We encourage responsible and transparent use of our method in downstream applications.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All implementation details, including model configurations, and evaluation settings, are provided in Sec. 4.1 and Appendix B. We have released pseudocode for the proposed algorithms, and the setup for evaluation benchmarks. To facilitate replication, the source code and scripts for running experiments will be made publicly available upon publication.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Amanda Bertsch, Alex Xie, Graham Neubig, and Matthew R Gormley. It's mbr all the way down: Modern generation techniques through the lens of minimum bayes risk. arXiv preprint arXiv:2310.01387, 2023.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. <u>Advances in neural</u> information processing systems, 33:1877–1901, 2020.
- Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative image transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11315–11325, 2022.
- Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. <u>Advances in Neural Information Processing Systems</u>, 37:24081–24125, 2024.
- Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12873–12883, 2021.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.
- Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. <u>arXiv preprint arXiv:1805.04833</u>, 2018.
- Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun, Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models with continuous tokens. <u>arXiv:2410.13863</u>, 2024.
- Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. <u>Advances in Neural Information Processing Systems</u>, 36:52132–52152, 2023.
- Ziyao Guo, Kaipeng Zhang, and Michael Qizhe Shieh. Improving autoregressive image generation through coarse-to-fine token prediction. arXiv preprint arXiv:2503.16194, 2025.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. arXiv:2412.04431, 2024.

- Shaozhe Hao, Xuantong Liu, Xianbiao Qi, Shihao Zhao, Bojia Zi, Rong Xiao, Kai Han, and Kwan-Yee K Wong. Bigr: Harnessing binary latent codes for image generation and improved visual representation capabilities. <u>arXiv:2410.14672</u>, 2024.
- John Hewitt, Christopher D Manning, and Percy Liang. Truncation sampling as language model desmoothing. <u>arXiv</u> preprint arXiv:2210.15191, 2022.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. <u>arXiv</u> preprint arXiv:1904.09751, 2019.
- Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. arXiv preprint arXiv:2403.05135, 2024.
- Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.
- Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11523–11532, 2022.
- Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation without vector quantization. Advances in Neural Information Processing Systems, 37:56424–56445, 2024.
- Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection. <u>Advances in neural information processing systems</u>, 33:21464–21475, 2020.
- Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Typical decoding for natural language generation. <u>arXiv</u> preprint arXiv:2202.00666, 2022.
- Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.
- Yatian Pang, Peng Jin, Shuo Yang, Bin Lin, Bin Zhu, Zhenyu Tang, Liuhan Chen, Francis EH Tay, Ser-Nam Lim, Harry Yang, et al. Next patch prediction for autoregressive visual generation. arXiv:2412.15321, 2024.
- Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. <u>arXiv preprint arXiv:2307.01952</u>, 2023.
- Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International conference on machine learning, pp. 8748–8763. PmLR, 2021.
- Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, pp. 8821–8831. Pmlr, 2021.
- Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. <u>Advances</u> in neural information processing systems, 32, 2019.
- Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-token: Next-x prediction for autoregressive visual generation. arXiv preprint arXiv:2502.20388, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In <u>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</u>, pp. 10684–10695, 2022.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint arXiv:2406.06525, 2024.

Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang, Han Cai, Yao Lu, and Song Han. Hart: Efficient visual generation with hybrid autoregressive transformer. <u>arXiv preprint arXiv:2410.10812</u>, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. Advances in neural information processing systems, 37:84839–84865, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. <u>Advances in neural information</u> processing systems, 30, 2017.

 Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence models. <u>arXiv:1610.02424</u>, 2016.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language: Beit pretraining for vision and vision-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19175–19186, 2023.

Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Daxin Jiang, and Nan Duan. Nüwa: Visual synthesis pre-training for neural visual world creation. In <u>European conference on computer vision</u>, pp. 720–736. Springer, 2022.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024a.

Johnathan Xie, Annie S Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating language models with adaptive temperature scaling. arXiv preprint arXiv:2409.19817, 2024b.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. <u>Advances in Neural Information Processing</u> Systems, 36:15903–15935, 2023.

Hu Yu, Hao Luo, Hangjie Yuan, Yu Rong, and Feng Zhao. Frequency autoregressive image generation with continuous tokens. arXiv preprint arXiv:2503.05305, 2025.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–tokenizer is key to visual generation. <u>arXiv:2310.05737</u>, 2023.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen. An image is worth 32 tokens for reconstruction and generation. <u>Advances in Neural Information Processing Systems</u>, 37:128940–128966, 2024.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off diversity and quality in natural language generation. arXiv preprint arXiv:2004.10450, 2020.

- Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated dataset for instruction-guided image editing. Advances in Neural Information Processing Systems, 36:31428–31449, 2023.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In <u>Proceedings of the IEEE conference on computer vision and pattern recognition</u>, pp. 586–595, 2018.
- Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary spherical quantization. arXiv preprint arXiv:2406.07548, 2024.
- Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Zhi Jin, and Hong Mei. Hot or cold? adaptive temperature sampling for code generation with large language models. In <u>Proceedings of the AAAI Conference on Artificial Intelligence</u>, volume 38, pp. 437–445, 2024.

APPENDIX

702

703 704

705 706

708

709

710

711

712

713

714

715

716

721

722

723

724

725

726

727

728

729

730

731

732

737 738 739

740 741

742

743

744

745

746747748

749 750

751

752

753

755

A ALGORITHMIC IMPLEMENTATION

We present the implementation details of our two core components in Algorithms 1 and 2.

Algorithm 1 outlines the Adaptive Temperature Scaling process, which dynamically adjusts the temperature τ_k at each scale to match the target average maximum bit probability S_k . To achieve this, we adopt a binary search strategy bounded by pre-defined minimum and maximum temperatures ($\tau_{\min} = 0.001$, $\tau_{\max} = 100$), iteratively refining τ_k until the target smoothness criterion is satisfied within a tolerance of $\epsilon = 0.005$.

Algorithm 2 presents the Energy-Based Path Search, which aims to select the most coherent generation trajectory across scales. At a designated sampling scale k, we first generate M candidate paths under the current τ_k . Each path is then propagated through the subsequent N scales, and its average energy is computed. The path with the lowest cumulative energy is selected as the final decoding trajectory.

Together, these two algorithms enhance the diversity and quality of bitwise autoregressive generation.

Algorithm 1 Adaptive Temperature Scaling

```
1: Input: targets S_k, predicted logits T_k, tolerance \epsilon, bounds
      	au_{\min}, 	au_{\max}
 2: Initialize \ell \leftarrow \tau_{\min}, u \leftarrow \tau_{\max}
 3: repeat
 4:
           \tau \leftarrow (\ell + u)/2
 5:
            Compute \bar{p}_k(\tau)
  6:
            if \bar{p}_k(\tau) > S_k then
  7:
                u \leftarrow \tau
 8:
            else
 9:
                \ell \leftarrow \tau
10:
           end if
11: until |\bar{p}_k(\tau) - S_k| < \epsilon
12: \tau_k \leftarrow \tau
13: Output: predicted probability softmax (T_k/\tau_k)
```

Algorithm 2 Energy-Based Path Search

```
1: Input: sampling scale k, lookahead N scales, candidates
    path number M
2: Generate logits at scale k under \tau_k
3: Sample M candidate generation paths
4: for m = 1, ..., M do
        E^m \leftarrow 0
5:
6:
        for j = k + 1, ..., k + N do
           E^m += E_j^m
7:
8:
        end for
        E^m \leftarrow E^m/N
9:
10: end for
11: r^* \leftarrow \arg\min E^m
           m \in \{1, ..., M\}
12: Output: r^*-th generation path
```

B More Experimental Details

B.1 IMPLEMENTATION DETAILS OF THE DIVERSITY METRICS

We use the official LPIPS implementation with an AlexNet (Krizhevsky et al., 2017) backbone, normalizing images to [-1,1] and computing average pairwise distances across upper-triangular entries. To reduce memory usage, the computation is split into smaller chunks. For CLIP similarity, we use the Hugging Face openai/clip-vit-base-patch32 model. Images are encoded into L2-normalized vectors via the CLIP (Radford et al., 2021; Dosovitskiy et al., 2020) image encoder, and average cosine similarities are computed from the upper-triangular portion of the similarity matrix.

B.2 THE IMPLEMENTATION DETAILS OF DIVERSEAR-8B

For the Infinity-8B model, the baseline follows the default configuration: a CFG of 4 and a fixed sampling temperature of 1. In our DiverseAR-8B, we also use a CFG of 4 but employ an adaptive temperature schedule that drives the average maximum bit probability to $\{0.60, 0.60, 0.65, 0.65, 0.65, 0.7, 0.7, 0.7\}$ over the first eight scales. For the remaining scales, we revert to argmax sampling, selecting the highest-probability bit at each position. In our energy-based path search, at scale 3 we sample M=8 candidate token sets and propagate each through scales 3–7, computing the cumulative average energy along each trajectory. We then select the lowest-energy path to complete the sample. All experiments were conducted on NVIDIA H20 GPUs.

ADDITIONAL EXPERIMENTAL RESULTS AND ABLATIONS

ADDITIONAL EXPERIMENTAL RESULTS

Human Preference Evaluation. We further assess our method through both quantitative benchmarks and a user study. Tab. 6 reports ImageReward and HPSv2.1 scores for the 2B models, where DiverseAR outperforms the Infinity baseline, confirming improved diversity without sacrificing visual fidelity. A user preference study is also carried out following the setup of Infinity. Specifically, we developed a web interface that displays paired image grids generated by Infinity and DiverseAR side by side. Volunteers were asked to choose the better set in terms of overall quality, prompt following, and diversity. We presented 200 such pairs and collected evaluations from 50 participants. The entire study was conducted double-blind: participants neither knew which model produced which image nor saw others' choices during evaluation. As reported in Table 7, a majority of participants (66%) preferred DiverseAR for image quality, and nearly all (91%) rated its outputs as more diverse.

Results on the VQ-based HART Model. We present the results for the VQ-based autoregressive model HART. For this model, we leverage an adaptive noise injection strategy to enhance sample diversity in the early stages of sampling. Specifically, we introduce a linearly decayed Gumbel noise strength, ranging from [1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8] in the first few sampling steps, to perturb the distribution of the logits, while keeping the remaining steps or scales consistent with the default setting. The results are reported in Tab. 8. We observe that by adjusting the probability distribution through this noise scheduling, the HART model achieves improved diversity without compromising perceptual quality.

Table 6: Human preference metrics on Infinity-2B and DiverseAR-2B.

Table 7: User study results: percentage of participants preferring each method.

Method	ImageReward ↑	HPSv2.1↑
Infinity	30.26	0.8972
DiverseAR	30.41	0.9013

Method	Overall ↑	Prompt Following ↑	Diversity ↑
Infinity	0.34	0.47	0.09
DiverseAR	0.66	0.53	0.91

Table 8: The comparison of HART and DiverseAR on diversity (LPIPS, CLIP) and GenEval benchmarks.

	Dive	rsity			GenEval		
Model	LPIPS↑	CLIP↓	Two Obj	Position	Color Attri	single_object	overall
HART HART+DiverseAR	0.7107 0.7501		0.63 0.61	0.11 0.17	0.19 0.23	0.97 0.97	0.511 0.518

C.2 ADDITIONAL ABLATIONS

Table 9: Diversity comparison between Infinity-2B and Table 10: Comparison of GenEval scores obtained under DiverseAR-2B at different CFG scales. different search metrics.

CFG scale	Model	LPIPS ↑	$\text{CLIP} \downarrow$
2 2	Infinity-2B	0.5581	0.9301
	DiverseAR-2B	0.6720	0.9101
3 3	Infinity-2B	0.5548	0.9366
	DiverseAR-2B	0.6738	0.9144
4 4	Infinity-2B	0.5555	0.9381
	DiverseAR-2B	0.6712	0.9192

Method	GenEval ↑
Baseline	0.716
+ Negative log-probability	0.748
+ Entropy search	0.748
+ Energy-based search	0.760

The impact of different search metrics on GenEval Score We investigate how various metrics correlate with GenEval performance under the default configuration. Specifically, for each metric (e.g., entropy, cumulative energy, and mean maximum bit probability), we generated 50 samples per GenEval prompt and grouped them into five percentile bins based on their respective metric scores. For each bin, we then computed the average GenEval score. As shown in Fig. 11, all three metrics exhibit a linear relationship with quality, with energy showing the strongest correlation—lower energy consistently corresponds to higher GenEval scores, indicating better image fidelity.

Tab. 10 presents several alternative search metrics to further investigate their impact on performance. Among them, energy-based search achieves the highest GenEval scores, highlighting the superiority of energy as a search criterion. This advantage arises because computing energy directly from logits provides a more faithful measure of model confidence, whereas applying softmax may discard valuable information contained in the model's raw outputs. Theoretical justification for this property can be found in (Liu et al., 2020).

Fig. 9 contrasts samples generated via low- versus high-energy decoding paths: high-energy trajectories often produce local artifacts and coherence breaks, whereas low-energy trajectories yield more coherent outputs. Accordingly, energy is employed as the criterion for guiding the generation path search.

Impact of CFG on Diversity and Robustness of DiverseAR Tab. 9 reports the diversity scores (LPIPS and CLIP similarity) of Infinity-2B and DiverseAR-2B under varying CFG settings. While lowering the CFG scale typically enhances the diversity of diffusion models, it has limited effect on the bitwise autoregressive model Infinity. As shown, reducing the CFG from 4 to 2 leads to only a marginal increase in LPIPS, from 0.5555 to 0.5881. In contrast, DiverseAR consistently achieves substantial improvements in generation diversity across all CFG settings, suggesting that our method is robust and effective under different guidance strengths.

Candidate Number M and Lookahead Depth N Tab. 11 reports the effect of varying the number of candidate paths M and lookahead depth N on GenEval scores and time cost for both the 2B and 8B models. As shown, the performance of our method remains relatively stable across a broad range of values, indicating that DiverseAR is not highly sensitive to these hyperparameters. This robustness highlights the practicality of our default configuration, which achieves a favorable balance between computational efficiency and output quality.

Improve diversity by more detailed prompts. Tab. 12 compares diversity obtained by leveraging LLMs to rewrite 30 prompts into 50 variations each (by permuting location, pose, size, and color of objects) with our proposed method. We then evaluated both approaches on a dataset of 30 samples. While prompt rewriting improves diversity to some extent (LPIPS: 0.6549), our method achieves a significantly higher score (LPIPS: 0.7133), demonstrating its clear advantage.

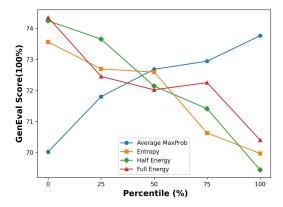
Combine multiple bits forming an int token and use top-k sampling. We further evaluate the effect of applying top-k sampling after combining multiple bits into integer tokens. As shown in Tab. 13, this strategy yields only marginal improvements in diversity compared to the baseline, while our method significantly outperforms it. Moreover, top-k sampling incurs a substantial increase in inference time (Top-5: 1.45× vs. Ours: 1.0005×), making it less practical in comparison.

We find that the probabilities for most of the 16-bit combinations concentrate on the first five. We further visualize the predicted probabilities of the first five combinations, as shown in the Tab. 14, and observe that the distributions are extremely sharp. This limits the effectiveness of top-k sampling in increasing diversity and significantly increases inference time.

Baseline

M=8, N=2

Setting



M=8,N=3	0.751	1.09x
M=8,N=4 (default)	0.760	1.12x
M=4,N=4	0.747	1.06x
M=6,N=4	0.754	1.09x
M=8,N=4 (default)	0.760	1.12x

Figure 11: Relationships Among Metrics and GenEval Scores

Table 11: Comparison of different (M, N) settings for DiverseAR-2B and DiverseAR-8B in terms of GenEval and wall-clock time.

DiverseAR-2B

0.716 1x

0.748 1.07x

Time

GenEval ↑

DiverseAR-8B

0.797

0.793

0.798

0.802

Time

1.07x

1.10x

1.13x

1x

0.791 1.08x

0.797 1.10x

0.802 1.13x

GenEval ↑

Table 12: Comparison of prompt rewriting versus our method.

Table 13: Comparison of top-k sampling (bit-to-int tokens) ve	ersus
our method.	

Method	LPIPS ↑	CLIP↓	
Baseline	0.5536	0.9444	
Rewrite	0.6549	0.9166	
Ours	0.7133	0.9065	

Method	T \	LPIPS ↑	CLIP↓	GenEval ↑
Baseline	×1.0000	0.5536	0.9444	0.716
Top-5 Sampling	×1.4517	0.5783	0.9388	0.717
Ours	×1.0005	0.7133	0.9065	0.740

Table 14: Distribution of top-k probabilities across different scales.

Scale	Top-1 Prob	Top-2 Prob	Top-3 Prob	Top-4 Prob	Top-5 Prob
Scale 0	0.62	0.18	0.11	0.07	0.003
Scale 1	0.58	0.23	0.06	0.03	0.003
Scale 2	0.37	0.18	0.10	0.05	0.02
Scale 3	0.29	0.15	0.08	0.05	0.02

D DETAILS ON ADDITIONAL METRICS FOR PATH SELECTION

To further analyze the correlation between intermediate representations and final image quality, we report two additional search-related metrics in Fig. 11: entropy and average maximum bit probability.

First, we compute the unadjusted bit probability $p_k^{\prime(l,i)}$, i.e. the predicted probability of the i-th bit for token l at scale k before any adaptive adjustment:

$$p_k^{\prime(l,i)} = \max_{c \in \{-1,1\}} \frac{\exp(T_k^{(l,i)}(c)/\tau)}{\sum_{c' \in \{-1,1\}} \exp(T_k^{(l,i)}(c')/\tau)}.$$
 (8)

Based on Eq. equation 8, the entropy at scale k (before applying any temperature adjustment) is defined as:

$$H_k = \frac{1}{L_k d} \sum_{l=1}^{L_k} \sum_{i=1}^d \left[p_k^{\prime(l,i)} \log_2 p_k^{\prime(l,i)} + (1 - p_k^{\prime(l,i)}) \log_2 (1 - p_k^{\prime(l,i)}) \right]. \tag{9}$$

Similarly, the mean maximum bit probability at scale k is computed as:

$$P_k = \frac{1}{L_k d} \sum_{l=1}^{L_k} \sum_{i=1}^d p_k^{\prime(l,i)},\tag{10}$$

which reflects the average confidence across all predicted bits at the given scale.

To evaluate the m-th generation trajectory across scales, we define aggregated forms of these metrics over N successive scales as:

$$H^{m} = \frac{1}{N} \sum_{j=k+1}^{k+N} H_{j}^{m}, \tag{11}$$

$$P^{m} = \frac{1}{N} \sum_{j=k+1}^{k+N} P_{j}^{m}.$$
 (12)

These aggregated entropy and confidence measures can be computed for each sampled trajectory during generation. Empirically, we observe that samples with lower entropy or higher average maximum bit probability are more likely to yield higher-quality images. As shown in Fig 11, both metrics exhibit strong linear correlations with the final GenEval scores, suggesting that they can serve as reliable indicators for selecting high-fidelity outputs in the path search procedure.

E MORE RESULTS

We present additional qualitative results for the Infinity-2B model in Fig. 12 and 13, and for the Infinity-8B model in Fig. 14 and 15. In Fig. 12, for the first prompt, our method not only alters the layout of the samples but also their visual style. Fig. 13 offers further comparisons under 2B across additional prompts. Similarly, Fig. 14 and 15 show that under the 8B model, DiverseAR consistently yields substantially more diverse outputs. These examples demonstrate that DiverseAR enhances output variability while preserving high visual fidelity.

F ADDITIONAL RELATED WORK

Diversity Control in AR Models. Autoregressive generation adopts decoding heuristics from language modeling to modulate diversity. Top-k sampling restricts token selection to the k most probable options at each step (Fan et al., 2018; Radford et al., 2019; Keskar et al., 2019; Ramesh et al., 2021), while nucleus (top-p) sampling selects the smallest token set whose cumulative probability exceeds p(Holtzman et al., 2019; Yu et al., 2022; Zhang et al., 2020). Typical sampling filters out tokens with information content deviating from the context's average uncertainty, retaining those within a tolerance range to balance quality and diversity(Meister et al., 2022). Truncation sampling treats the output as a mixture of ideal and smoothed distributions, pruning tokens below an entropy-conditioned threshold (Hewitt et al., 2022; Wang et al., 2023; Hao et al., 2024). Diverse beam search adds inter-beam penalties to mitigate mode collapse (Vijayakumar et al., 2016; Wu et al., 2022; Zhang et al., 2023), while minimum Bayes—risk (MBR) decoding selects outputs minimizing expected task-specific loss (Bertsch et al., 2023; Chang et al., 2022). There is also work (Xie et al., 2024b; Zhu et al., 2024) that adjusts the temperature coefficient to calibrate sampling in large language models. However, our approach is fundamentally different: we focus on smoothing the overly sharp early-stage distributions in bitwise autoregressive models, rather than calibrating LLM sampling.

G LIMITATION AND FUTURE WORK

One limitation of our method is the slight increase in inference time caused by the search over multiple candidate paths. In practice, the overhead remains limited, amounting to approximately 1.12× that of the baseline under the default setting. In future work, we will explore training-time strategies to better address the diversity limitations of the bitwise autoregressive generation model.

H THE USE OF LARGE LANGUAGE MODELS

In this work, we employed large language models (LLMs) to assist with minor vocabulary refinement and formatting adjustments. Specifically, we used LLMs to improve sentence logic, condense paragraph length, and adjust the formatting of tables and figures. We take full responsibility for any consequences arising from the use of LLMs in the preparation of this manuscript.

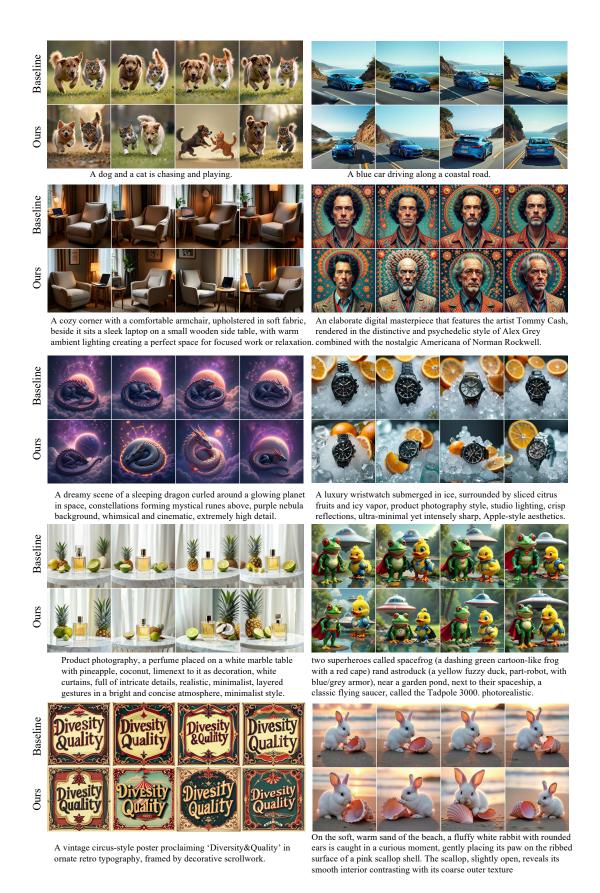


Figure 12: Qualitative T2I comparison between original method and DiverseAR under the 2B model. The first row shows baseline results; the second row shows DiverseAR results.

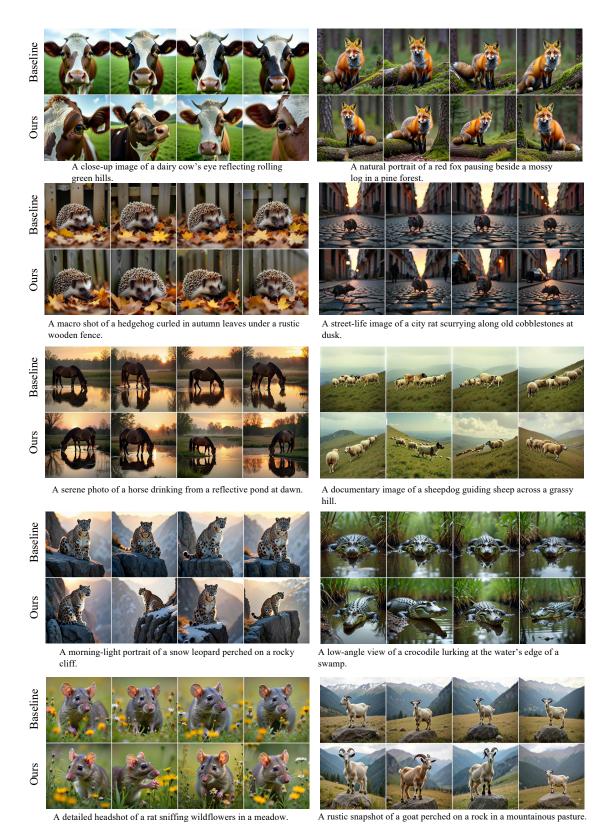


Figure 13: More qualitative T2I comparison between original method and DiverseAR under the 2B model. The first row shows baseline results; the second row shows DiverseAR results.

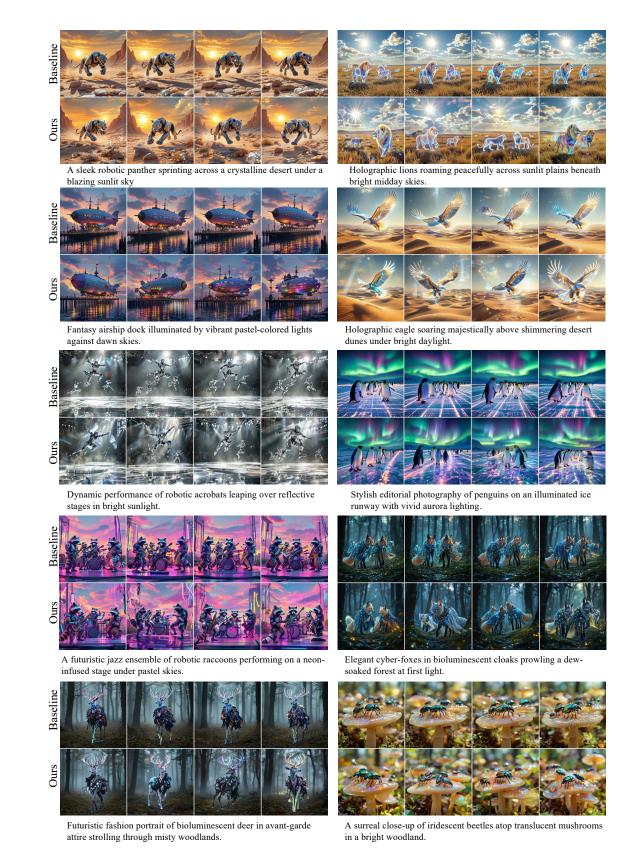


Figure 14: Qualitative T2I comparison between original method and DiverseAR under the 8B model. The first row shows baseline results; the second row shows DiverseAR results.

Figure 15: More qualitative T2I comparison between original method and DiverseAR under the 8B model. The first row shows baseline results; the second row shows DiverseAR results.