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ABSTRACT

Reinforcement learning from human feedback (RLHF) has been widely adopted to
align language models (LMs) with human preference. Prior RLHF works typically
take a bandit formulation, which, though intuitive, ignores the sequential nature
of LM generation and can suffer from the sparse reward issue. While recent
works propose dense token-level RLHF, treating each token as an action may be
oversubtle to proper reward assignment. In this paper, we seek to get the best
of both by training and utilizing a segment-level reward model, which assigns a
reward to each semantically complete text segment that spans over a short sequence
of tokens. For reward learning, our method allows dynamic text segmentation and
compatibility with standard sequence-preference datasets. For effective RL-based
LM training against segment reward, we generalize the classical scalar bandit
reward normalizers into location-aware normalizer functions and interpolate the
segment reward for further densification. With these designs, our method performs
competitively on popular RLHF benchmarks in both reward modeling and LM
policy learning. Ablation studies are conducted to further demonstrate our method.

1 INTRODUCTION

To align language models (LMs, e.g., OpenAI, 2023; Reid et al., 2024) with human values, rein-
forcement learning (RL, Sutton & Barto, 2018) methods have been widely adopted to optimize the
non-differentiable human preference, leading to the paradigm of reinforcement learning from human
feedback (RLHF, Ouyang et al., 2022; Bai et al., 2022b). A prevailing approach in RLHF is to
optimize the LMs by proximal policy optimization (PPO, Schulman et al., 2017) against a bandit
reward model learned from human preference data, with KL regularization towards a pre-specified
target distribution to avoid over-optimization on the reward model (Ziegler et al., 2019; Stiennon
et al., 2020; Castricato et al., 2022). While this bandit approach is easier for reward modeling and has
achieved remarkable success, language generation is intrinsically sequential, rather than simultaneous.
Thus, from the view of optimizing human preference, assigning a bandit reward to entire text sequence
induces the sparse reward (delayed feedback) issue (Andrychowicz et al., 2017; Marbach & Tsitsiklis,
2003), that often hurts RL-based LM training by increasing gradient variance and lowering sample
efficiency (Takanobu et al., 2019; Wang et al., 2020; Guo et al., 2022; Snell et al., 2022).

As efforts to mitigate this sparse reward issue, prior works have developed methods to “ground” the
sequence-level preference label into a dense token-level reward model (Yang et al., 2023; Zhong et al.,
2024). While a dense per-token reward signal reduces the optimization complexity (Laidlaw et al.,
2023), each action, however, is then defined as a single token, i.e., a sub-word that is finer-grained than
a word, especially with the BPE-style tokenizers (Gage, 1994; Sennrich et al., 2016). For instance,
Llama 3.1’s tokenizer (Dubey et al., 2024) has tokens as {Brit,ce,cod,neo,redd,...} that
have less clear semantic meaning per se in any given context. The contribution of those tokens to
the text sequence will inevitably depend on later tokens, making reward/credit assignment harder,
especially under the prevailing RLHF paradigm of implementing the reward model as an off-the-shelf
decoder-only transformer (e.g., Ouyang et al., 2022; Bai et al., 2022b; Menick et al., 2022). Further,
token-level reward implicitly assumes that the basic unit of a text sequence is token, which may not
follow linguistics, where a more meaningful decomposition of text may be phase (including word)
that can be more semantically complete and generally consists of a short sequence of tokens.
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To retain the optimization benefit of dense reward for RLHF, while mitigating its potential reward
assignment issue and linguistic counter-intuition, in this paper, we seek to train and utilize a segment-
level reward model, which assigns a reward to each semantically meaningful segment of text sequence
that constitutes a small amount of (or just one) tokens. With this construction, we define the action
space in RLHF as “text segment,” interpolating between the finest “per token” and the coarsest “full
sequence” and potentially getting the benefit of both worlds: easier RL-based LM training owing to
denser feedback and more accurate training guidance by the semantic completeness of each action.

Technically, we are motivated by prior works (Malinin & Gales, 2018; Li et al., 2024a) to implement
a dynamic text sequence segmentation by thresholding the entropy of LM’s predictive distributions,
under the assumption that tokens within a semantically complete text segment can be more certainly
predicted by prior tokens, while the start of a new segment is not (Wang et al., 2024b). To allow
training the segment-level reward model by the standard sequence-preference labels via Bradley-Terry
(BT, Bradley & Terry, 1952) loss, we differentiably aggregate segment rewards in a text sequence
into a parametrized sequence evaluation. The learned segment-level reward model is then utilized in
PPO-based policy learning, where we observe the unsuitability of classical reward normalizers, i.e.,
the mean and standard deviation (std) of full sequence rewards. We address this issue by generalizing
the classical bandit normalizers of scalar mean and std into a mean and a std function that output the
reward normalizers at arbitrary location of the text sequence. In addition, we enhance PPO training
by within-segment reward interpolation, which further densifies training signal and improves results.

We test our method on the performance of both the learned segment-level reward model and the
subsequent PPO-trained LM policy. On popular RLHF benchmarks for reward modeling and LM
policy learning, our method indicates competitive performance gain against both the classical bandit
reward approach and recent token-level reward approach. We conduct a wide array of ablation studies
to validate our design choices and provide further insight into our method.

2 MAIN METHOD

2.1 NOTATIONS AND BACKGROUND

In this section, we will define generic notations, provide background on the classical bandit RLHF,
and then discuss RL formulation of LM generation underlying recent efforts on dense-reward RLHF.

Generic Notations. Both reward modeling and policy learning require text prompt x and the
corresponding response y. Reward model training turns the supervised fine-tuned model πSFT(· | ·)
(without the final unembedding layer) into a parametrized scalar-output model rϕ(·, ·) with parameter
ϕ that scores its input. The LM policy πθ, parametrized by θ, is then optimized against rϕ .

Bandit Reward Model Training. Reward model training assumes a dataset Dpref = {(x, yw, yl)}
of prompt x and the corresponding winning/chosen response yw and losing/rejected response yl,
where the label of winning/losing comes from human evaluation on the entire text sequence yw and
yl. In the classical bandit RLHF, reward model rϕ is trained by the binary classification BT loss

Lbandit(ϕ) = −E(x,yw,yl)∼Dpref

[
log σ

(
rϕ(x, y

w)− rϕ(x, y
l)
)]

, (1)

where σ(u) = 1/(1 + exp (−u)) denotes the sigmoid function.

PPO-based Bandit Policy Learning. In policy learning, a set Dpol = {x} of text prompts x is
given. The LM policy πθ is trained to generate outputs on Dpol optimizing the bandit reward from
rϕ , with a KL penalty towards πSFT to avoid reward over-optimization. Collectively, the objective is

maxθ Ex∼Dpol,y∼πθ(· | x) [rϕ(x, y)− β × log (πθ(y |x)/πSFT(y |x))] , (2)

where β is the KL coefficient. In practice, for PPO’s training stability, the value of rϕ(x, y) is
de-mean and de-std normalized based on statistics calculated on a calibration dataset, e.g., Dpref .

RL Formulation of LM Generation. By its sequential nature, LM generation is formulated as
an Markov Decision Process (MDP)M = (S,A, P,R, γ) (Sutton & Barto, 2018). Concretely, for
state space S, the state at timestep t, st, consists of the prompt x and all generated tokens so far
a<t =: [a0, . . . , at−1] with a<0 =: ∅, i.e., st =: [x, a<t]. A is the action space, where the action at
at step t is a short-sequence/segment of tokens from the vocabulary in our segment-level reward/policy
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Prompt	𝒙: 
What is the function of roots in plants?

Sampled	Response: 
Roots anchor the plant in the soil and absorb water and nutrients.
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Roots anchor the plant in the soil and absorb water and nutrients.
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RLHF PPO	Training
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Reward
Interpolation )𝒓𝝓 :

Segment-level	Reward	Training PPO-based LM Policy	Learning

+ Segment
by 𝝅!"#

Figure 1: Overview of training and utilizing our segment-level reward model. Numerics in the plot are artificial.
In the figure, each text segment has a different color, and its starting word is underscored.

setting while at is a single token in the token-level reward/policy setting. Transition function P
deterministically appends the newly sampled tokens after the previous ones, i.e., st+1 = [st, at] =
[x, a≤t]. r(s, a) : S× A→ R scores the action choice (segment/token selection) a at state/context s
and is typically substituted by the learned reward model rϕ . γ ∈ [0, 1] is the discount factor.

In what follows, we will focus on our segment-level reward/policy setting where each action at ∈ A
is a semantically complete text segment, consisting of a non-deterministic number of consecutive
tokens. The response y for prompt x then contains a variable number of segments/actions, generically
denoted as y = [a0, . . . , aT−1] where T is the number of segments in y and varies across responses.
When necessary, we denote a single token in y as yi , whose generation context is [x, y<i].

Fig. 1 overviews key components in our method. A detailed algorithm box is deferred to Appendix A.

2.2 REWARD MODEL TRAINING

Overview. In training our segment-level reward model, we follow the data assumption set forth in
Section 2.1, where the dataset Dpref = {(x, yw, yl)} contains only binary sequence-level preference
labels, without any process supervision (Uesato et al., 2022). The reward model rϕ(st, at) is
configured to output a scalar reward for each text segment choice at at the generation context st.
rϕ is trained such that its induced parameterized text sequence evaluations, aggregated from all
segment-level rewards in the respective sequence, align with the preference labels in Dpref . This is
inspired by the imitation learning literature (e.g., Christiano et al., 2017; Brown et al., 2019; 2020)
and prior token-level reward modeling in RLHF (Yang et al., 2023). Collectively, the BT loss for
training our segment-level reward function rϕ is

Lseg(ϕ) = −E(x,yw,yl)∼Dpref
[log σ

(
eϕ(x, y

w)− eϕ(x, y
l)
)
],∀ y ∈ {yw, yl}, eϕ(x, y) = f({rϕ(st, at)}at∈y) , (3)

where eϕ denotes the parameterized sequence evaluation induced by rϕ, constructed by aggregating
all segment-level rewards {rϕ(st, at)}at∈y in the text sequence y by a selected aggregation function
f(·). Below, we discuss in details the segmentation method for text sequence and the choice of f(·).
Entropy-based Segmentation. As discussed in Section 1, we intend to split the given text sequence
y ∈ {yw, yl} into semantically complete segments, so that the reward assignment to each action
(segment) can be easier, especially under the common implementation of the reward model as an
auto-regressive LM. Recent works on LMs (e.g., Li et al., 2024a; Wang et al., 2024b) have noticed
that tokens within a semantically complete segment can be more predictable by the corresponding
generation context, since they are continuation of the designated semantics; while the starting token
of a new segment is comparably less predictable, as its semantic binding with prior words is relatively
weaker. For auto-regressive LMs, the predictability of each token can be conveniently measured by
the entropy of the next-token-prediction distribution from which the token is sampled (Malinin &
Gales, 2018). To make text sequence segmentation a one-time data pre-processing in reward model
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Prompt 𝒙: Do artists/singers earn money from their songs 

being available on Spotify? How?

Chosen Response 𝒚𝒘: 

Yes, they do! Spotify pays them royalties for streaming, 

which are calculated as a percentage of their song plays.  

Spotify tracks a user’s listening activity (the number of 

times a user starts, pauses, and restarts a song) and this 

information is used to calculate the royalty.

Rejected Response 𝒚𝒍 : 
Artists/singers are the owners of copyrights on their songs, 

and can use those copyrights to monetize their music however 

they choose.  Spotify is a “Digital Service Provider” in the 

sense that it takes the rights to a song and acts as an 

intermediary to enable that song to be heard by users.

Prompt 𝒙: What species of trees tend to live the longest?

Chosen Response 𝒚𝒘: 

There’s a lot of literature about this, and I think there’s no 

consensus that all scientists agree on. But it’s likely that the 

bristlecone pines in the Sierra Nevada mountain range 

would be the answer to your question. They are about 4,000 

years old and are the oldest trees on earth.

Rejected Response 𝒚𝒍 : 
There are a lot of variables which influence the length of a 

tree’s life, including what sort of environment it lives in, the 

soil it grows in, and even its genes.  In general, trees that are 

native to cold and dry climates tend to live longer than their 

counterparts in the tropics or southern hemisphere.

Figure 2: Examples of data in our reward training dataset, motivating us to use soft-maximum as the aggregation
function f(·). The key segments distinguishing the chosen response from the rejected one are highlighted in red
color. We note that the choice of f(·) ought to be task and dataset specific, as discussed in Yang et al. (2023).

training, we choose to use the prediction distribution from the supervised fine-tuned model πSFT,
from which the reward model is initialized before training. With a selected entropy cutoff cent, token
yi starts a new segment if the Shannon entropy H(·) of πSFT’s predictive distribution of the i-th
token surpasses cent, i.e.,H(πSFT(· |x, y<i)) > cent, in which case yi−1 ends the previous segment.

Choice of the Aggregation Function f(·). Aggregation function f(·) provides inductive bias on
the relation between the quality of each segment/action and the preferability of overall text sequence.
Since f probes into what kind of text sequences will be preferred, its selection should ideally be task
and dataset specific, to avoid mis-specification and the subsequent unintended bias in reward model
training. While several designs have been proposed in literature (Christiano et al., 2017; Kim et al.,
2023; Yang et al., 2023), after looking into the dataset, in our experiments, we select soft-maximum to
differentiably highlight the contribution of key segments. With this choice of f(·), the parametrized
sequence evaluation eϕ(x, y) in Eq. (3) is constructed as

eϕ(x, y) = f({rϕ(st, at)}at∈y) = τ × log
[∑

at∈y exp(rϕ(st, at)/τ)
]
, (4)

where τ is the temperature controlling the sharpness of the log-sum-exp function. Fig. 2 provides
example data-points from the reward training dataset in our experiments (Section 4), which support
our choice of soft-maximum as the aggregation f(·). Other datasets may require a different f(·).
An Alternative Interpretation. Comparing our segment-level reward training loss Eq. (3) with
the classical bandit loss Eq. (1), one may alternatively interpret eϕ and f({rϕ}) in Eq. (3) as a
re-parametrization of the learned sequence-level feedback that differentiably aggregates the quality/-
contribution of each text segment, and thereby connects a denser evaluation rϕ of each semantically
complete text segment with the information in ground-truth sequence-level preference label.

2.3 PPO-BASED POLICY LEARNING

Overview. In policy learning, we again follow the classical bandit setting in Section 2.1 to optimize
the LM policy πθ on a given prompt set Dpol = {x}. But unlike the bandit objective in Eq. (2), we
adopt the full RL setting (Sutton & Barto, 2018) to maximize πθ’s expected sum of per-segment/step
rewards. This enables directly plugging our segment-level reward model rϕ into most off-the-shelf
RLHF PPO implementation. With this, the policy learning objective for πθ is

maxθ Ex∼Dpol,y∼
∏T−1

t=0 πθ(at | st)

[∑T−1
t=0 rϕ(st, at)− β × log (πθ(y |x)/πSFT(y |x))

]
, (5)

where again, each at is a segment of tokens (chopped by πSFT), st = [x, a0, . . . at−1] is the generation
context at step t, and y = [a0, . . . , aT−1] is the response to prompt x sampled from the learning πθ.

Recall from Section 2.1 that the output values from the reward model rϕ need to be normalized for the
stability of PPO training. With our segment-level reward model, it is no longer suitable to normalize
each rϕ(st, at) by the mean and std of entire sequences’ rewards as in the bandit setting, since the
latter may not be on a proper scale and/or well-defined. Further, the on-policy nature of PPO induces
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an extra complexity: each step of PPO samples new text sequences, whose length, segment lengths,
and segment locations are all stochastic and can differ from the reward calibration dataset, e.g., Dpref .
Below, we discuss our approach to construct the reward value normalizers, followed by interpolating
the segment-level reward into per-token signal to helpfully provide an even denser training guidance.

Location-aware Reward Normalizers via Regression. While the length of the sampled response
y and the lengths and locations of segments {at} in y are all uncontrollable, we know that each at is
somewhere in y. Correspondingly, each input (st, at) to rϕ is linked to a location indicator p ∈ (0, 1]
of y, and p can be simplest defined as t/T , where t is the index of the segment at in y, since PPO
routine has fully sampled y. On each datapoint in the calibration set, location indicator p ∈ (0, 1]
again, with the linked segment-level reward available. Across all datapoints in the calibration set, we
construct a new dataset Dnorm = {(p, µp, σp)}, where p runs over all values of location indicator in
the calibration set, µp and σp respectively denote sample mean and sample std of all segment-level
rewards corresponding to p in the calibration set. With Dnorm, we run a simple linear regression to
estimate the relation between location indicator p and mean/std of segment-level rewards at p, i.e.,

Mean(p) = wµ × p+ bµ, log Std(p) = wσ × p+ bσ → Std(p) = exp(wσ × p+ bσ) , (6)

where regression coefficients (wµ, bµ), (wσ, bσ) can be calculated in closed form.

Note that the classical bandit normalizers of the mean and std of full sequences’ rewards correspond
to evaluate Mean(p) and Std(p) at p = 1.0. In this regard, our mean and std functions in Eq. (6)
generalize the classical scalar normalizers into location-aware functions able to output proper reward
normalizers at an arbitrary location p of the text sequence. With Mean(·) and Std(·) and the
corresponding p, rϕ(st, at) is normalized by rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).

Within-segment Reward Interpolation. Depending on the specific tokenizer in use, we observed
that semantically complete text segments may contain up to around twenty tokens. The corresponding
action space A might still be large and the resulting segment-level design might not sufficiently address
the sample inefficiency issue in the classical bandit RLHF and could again lead to inferior PPO-based
RL training. To further densify the RL training signal, we evenly split the segment-level reward
rϕ(st, at) for a segment at to each token yi ∈ at. This induces a token-level credit assignment that
∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|, where [x, y<i] is the generation context of token yi. r̃ϕ
can then directly substitute rϕ in Eq. (5), since

∑T−1
t=0 rϕ(st, at) =

∑T−1
t=0 (

∑
yi∈at

rϕ(st, at)/|at|).

Note that r̃ϕ is still intrinsically segment level, since all token selections yi within segment at receive
the same feedback, i.e., the average of segment-level reward rϕ(st, at). This is in contrast to prior
works on token-level reward models (Yang et al., 2023; Zhong et al., 2024), where each token
selection is evaluated separately and thus their token-level feedback/rewards vary across each token.

Summary. With the learned segment-level reward model rϕ from Section 2.2, in PPO training of
the LM policy πθ, we first normalize each rϕ(st, at) in the sampled sequence by the corresponding
normalizers Mean(p) and Std(p). Normalized segment-level rewards are then interpolated into the
per-token feedback signal r̃ϕ. Finally, we plug r̃ϕ directly into an off-the-shelf RLHF PPO routine.

3 RELATED WORK

Reward Models in RLHF. In the classical RLHF paradigm, policy LM is optimized against a bandit
reward model trained firstly by binary classification loss on the preference dataset, with KL penalty
to a specified prior distribution to avoid reward over-optimization (Ziegler et al., 2019; Stiennon
et al., 2020; Jaques et al., 2020; Bai et al., 2022a; Ouyang et al., 2022; Castricato et al., 2022).
Under the same bandit formulation, recent works have enhanced the bandit reward model by directly
modeling the probability of one response being preferred over the other (Jiang et al., 2023; Zhao et al.,
2023; Liu et al., 2023; Dong et al., 2024) or factorizing human preference into multiple facets via
multi-objective modeling (Touvron et al., 2023; Wang et al., 2023; 2024c;a). Despite its popularity,
from the angle of RL-based optimization of human preference captured by the reward model, such
a bandit reward may lead to inferior training, due to the sparse reward issue intrinsic to the bandit
formulation of LM generation and credit assignment (e.g., Takanobu et al., 2019; Guo et al., 2022).

Viewing the weakness of bandit RLHF, efforts have been making to densify the reward signal for
RLHF LM training. Yang et al. (2023) and Chan et al. (2024) train token-level reward models by
the binary preference classification loss. Zhong et al. (2024) and Rafailov et al. (2024) use an LM
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trained by DPO (Rafailov et al., 2023) firstly for token-level reward assignment, which is later used in
PPO training or search-based algorithms. Guo et al. (2023), Cao et al. (2024), and Yoon et al. (2024)
assign continuous or fixed fine-grained rewards (e.g., ±1) by accessing an external powerful large
LM or the oracle environmental reward; while Chen et al. (2024) require the extra task and datasets of
erroneous solution rewriting. Apart from potential extra requirements, as discussed in Section 1, the
semantic incompleteness of token in text may challenge the efficacy of per-token credit assignment,
especially with the prevailing implementation of reward model as a decoder-only transformer that
cannot look ahead into later tokens. In contrast, by defining text segment as the basic unit of text
sequence that can be semantically more complete than token, our segment-level reward may provide
more accurate guidance for RL-based LM training, while not losing the benefit of denser feedback.

Close to our segment-level reward, process reward models (PRMs, e.g., Uesato et al., 2022; Lightman
et al., 2023) in reasoning-alike tasks also assign a single reward value to a short sequence of tokens.
The training of PRMs, however, typically requires human annotation on each step of the reasoning-
alike process. This may not be feasible in general text generation tasks, e.g., text summarization or
dialog, where each step/text segment lacks clear human evaluation criterion while the full generations
can be more easily compared or evaluated. By contrast, as seen in Section 2, our method is developed
for the most basic yet general RLHF setting, where human preference is only manifested in a dataset
of binary sequence-level preference. And the dataset is collected from multiple sources and contains
multiple forms of prompt-responses. We discuss a broader set of related works in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS AND IMPLEMENTATION

Datasets. For reward model training, we use the preference-700K dataset1, which is a diverse
collection of open-source preference datasets, such as HH-RLHF (Bai et al., 2022a), Stanford Human
Preferences Dataset (SHP) (Ethayarajh et al., 2022), and HelpSteer (Wang et al., 2023). PPO-based
LM policy training is performed on the Ultrafeedback dataset (Cui et al., 2023), from which we only
use the prompts to sample responses during the PPO training routine.

Benchmarks and Evaluations. We evaluate the reward model performance on the RewardBench
benchmark (Lambert et al., 2024). Each test sample consists of a triplet of a prompt, a chosen response,
and a rejected response. The evaluation metric is the classification accuracy of chosen/rejected label.
For our segment-level reward model, the parameterized sequence evaluation eϕ in Eq. (4) is used as
the classification logit, and similarly for other dense reward models such as the token-level model.

The (PPO-trained) LM policy is evaluated on three popular open-ended instruction-following bench-
marks: AlpacaEval 2.0 (Li et al., 2023), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al.,
2023), where GPT-4o is used as the judge. Our reported scores follow each benchmark’s default
protocol. AlpacaEval 2.0 consists of 805 test cases, on which we report the length control win rate
(LC), raw win rate (WR), and the average response length in number of characters (# char). The LC
metric is specifically designed to be robust against model verbosity. We follow the convention (e.g.,
Dong et al., 2024) to employ alpaca eval gpt4 turbo fn as the annotator for AlpacaEval
2.0. Arena-Hard consists of 500 challenging user queries, and we report both the win rate (WR)
against the reference model GPT-4-0314 and the average number of tokens in the responses (#
token). MT-Bench is a multi-turn dialogue dataset that includes 80 test cases. We report the average
MT-Bench scores for two dialogue turns, using GPT-4o as the judge model.

Implementation. Due to our limited compute resources, we currently implement our method onto
the 3.8B SFT checkpoint of Phi3.1-mini Instruct (Abdin et al., 2024), which we use as the starting
points of both reward model training and PPO-based LM policy learning, in the latter initializing the
models for value function, learning policy, and reference policy. Our implementation is built upon
the open-source RLHF framework OpenRLHF (Hu et al., 2024). We maximally follow the default
hyperparameters in OpenRLHF. For example, in PPO training, we retain the default KL coefficient
value β = 0.01. In both reward model training and LM policy learning, we train the models for one
epoch, i.e., one pass through the dataset, using entropy cutoff cent = 2.0 and temperature τ = 0.5
in the soft-maximum aggregation (Eq. (4)). Section 4.3 presents ablation studies on the choice of

1https://huggingface.co/datasets/hendrydong/preference_700K

6

https://github.com/OpenRLHF/OpenRLHF
https://huggingface.co/datasets/hendrydong/preference_700K


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison among different action definitions, comparing both the resulted reward model
and PPO-trained LM policy. “Avg Acc.” is the average accuracy over the entire RewardBench. # {char, token}
measures the average response length in the benchmark tests. Highest value of each column is in bold.
Action
Definition

RewardBench AlpacaEval 2.0 Arena-Hard MT-Bench

Avg Acc.(%) LC(%) WR(%) # char WR(%) # token GPT-4o

SFT (No RLHF) - 14.93 10.19 1271 14.5 476 7.00

Bandit (Sequence) 81.11 14.98 12.05 1520 17.8 496 7.18
Sentence 84.42 15.79 16.52 2237 18.5 617 6.97
Token 81.20 17.00 14.78 1711 19.0 533 7.24

Segment (Ours) 85.93 19.68 16.15 1622 20.0 518 7.31
Bandit as Segment - 13.86 9.60 1331 13.9 444 7.27
Segment as Bandit - 15.58 13.29 1652 19.1 504 7.23

cent, τ , and aggregation function. Due to space limit, we defer further implementation details to
Appendix C. For reproducibility, our source code and model checkpoints are anonymously released.

4.2 MAIN EXPERIMENTAL COMPARISONS

Baselines. To demonstrate our unique consideration on RLHF’s action space, in the main experiment,
we compare our design of segment-level action space with the coarsest bandit/sequence-level action
space, the coarser sentence-level space, and the finest token-level space, in terms of the performance
of both the reward model and the subsequent PPO-trained LM policy. Unless specified, both the
reward model and the LM policy are trained under the same action definition. The sentence-level
models are implemented by splitting the text sequences by the sentence splitters {".", "!", "?",
"\n", ";", "...", ",", ":"} and/or their foreign language equivalents.

To further illustrate our segment-level reward model and denser segment-level reward assignment, we
additionally compare with two hybrid approaches: (A) using the bandit reward model for segment-
level reward assignment in the PPO training (“Bandit as Segment”); and (B) using the segment-level
reward model only for bandit reward assignment in the PPO training (“Segment as Bandit”), where the
bandit reward is implemented by the parametrized sequence evaluation eϕ in Eq. (4). For all baselines,
we follow the standard training receipts and tune them to the extent of ensuring fair comparison.

Results. Table 1 compares the performance of our segment-level reward model and the resulted
PPO-trained LM policy with those from other definitions of RLHF’s action space, as well as the two
hybrid approaches. The break-down scores of each reward model on each of the four categories in
RewardBench is deferred to Table 5 in Appendix B.1. Our key findings are summarized as follows.

(1) Segment-level action space improves reward modeling. From Table 1’s RewardBench results, it is
clear that our segment-level reward model outperforms reward models from alternative RLHF action
definitions, which we attribute to our design of semantically complete text sequence segmentation and
a targeted choice of aggregation function in reward model training. This is corroborated by the strong
result of sentence-level reward model, which performs a comparatively coarser text segmentation but
otherwise also employs soft-maximum aggregation to highlight key sentences. Since it is coarser
than our segment-level approach, it may not accurately pinpoint the contribution of most important
phases/words, leading to its under-performance to ours. At one end of granularity spectrum, without
finer reward/credit assignment and key phase highlight, the coarsest classical bandit/sequence-level
reward model performs much weaker than both segment- and sentence-level models. On the other
extreme, the recent finest token-level reward model, which ignores the semantic completeness in the
action space definition, suffers from accurate reward assignment/modeling, as discussed in Section 1.

(2) Our segment-level approach improves RLHF training while not suffering from length hacking. As
seen in Table 1, our LM policy performs better than the baselines across all three RLHF policy
evaluation benchmarks: AlpacaEval 2.0 (length control win rate LC), Arena-Hard, and MT-Bench.
Notably, our model’s average response length on AlpacaEval 2.0 and Arena-Hard is not significantly
larger than the baseline models’, in contrast to the LM policy from the sentence-level approach.
Together, these results manifest the merit of our segment-level approach in truly improving the quality
of the generated responses while not cheating the benchmark evaluations by response-length hacking
(Dubois et al., 2024). As discussed in Section 1, we attribute the gain of our segment-level approach
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Prompt: Explain what is Buddhism?

Segment-level Reward Model:

Token-level Reward Model:

Prompt: What causes earthquakes?

Segment-level Reward Model:

Token-level Reward Model:

Figure 3: Examples of dense reward assignment for text sequences encountered in PPO training, comparing our
segment-level reward model and the recent token-level design on normal text (Top) and text with verbosity/repe-
tition (Bottom). Darker color indicates higher reward. In the bottom half, repeated sentences are

::::::::
underlined.

over the baselines to simultaneously achieving both denser reward signals for PPO-based RLHF
training and more accurate reward assignment by the design of semantically complete action space.

(3) Finer action spaces help RLHF training over the classical bandit formulation. Apart from our
denser segment-level approach, in the RLHF policy results in Table 1, we see that the other two finer
action space specifications: per-sentence and per-token, both generally improve over the classical
design of bandit/sequence-level action space. This provides an extra verification to our motivation of
a denser reward signal for RLHF PPO training. Meanwhile, both per-sentence and per-token design
can be further refined, respectively by a more break-down action definition and a multi-token action
space for more complete semantics of each action, leading to our stronger segment-level design.

(4) A segment-level reward model is necessary for segment-level reward assignment, vice versa. One
may wonder if we can use the classical bandit reward model to assign segment-level reward in the
PPO training. As shown by the results of “Bandit as Segment” in Table 1, this approach performs no
better than the classical pure bandit, which in turn under-performs our segment-level design. These
comparisons justify the necessity to train a segment-level reward model for segment-level reward
assignment. Conversely, using our segment-level reward model to provide only bandit feedback in
PPO training (“Segment as Bandit”) leads to only marginal gain over pure bandit design. While this
further verifies the merit of training and utilizing a segment-level reward model, “Segment as Bandit”,
however, does not fully benefit from our proposal of a (consistent) segment-level action space. Its
weaker results again highlight the gain of denser reward assignment in PPO-based RLHF training.

Appendix B.2 provides generation examples from our main LM policy. Table 6 in Appendix B.1
compares the LM policies in Table 1 on tasks on OpenLLM Leaderboard. Both show that our method,
while achieving strong RLHF training, does not suffer from the “alignment tax” (Askell et al., 2021).

4.3 ABLATION STUDY

(a): Can our segment-level reward model reasonably distinguish key segments?

In Fig. 3, we qualitatively compare dense reward assignments from our segment-level reward model
and the recent token-level approach on two text sequences appeared in PPO training, representing
normal text (Top) and broken text with verbosity/repetition (Bottom), where repetitions are underlined.

The color blocks in Fig. 3 first verify that our entropy-based approach chops the text into segments
with meaningful semantics, while a token can be only part of a word. Further, Fig. 3 confirms that our
segment-level reward model assigns higher rewards to key segments in the responses. Meanwhile, we
see that the token-level model does not have consistent reward assignment over even a word – often
less understandably (only) highly rewards the first letter of a word (e.g., “Siddhartha”, “cessation”,
“tectonic”). The benefit of our desideratum of a semantically complete action space is further testified
by the example of repeated sentences in Fig. 3 Bottom, where our model assigns a consistent low
reward to the repeated sentences, effectively refraining the LM from verbosity/repetition. By contrast,
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Table 2: Comparison of different constructions of segment-level reward normalizers. Shown are the results of
the resulted PPO-trained LM policies on AlpacaEval 2.0 and Arena-Hard. Best evaluation results are in bold.

Reward Normalizer AlpacaEval 2.0 Arena-Hard

LC (%) WR (%) # char WR (%) # token

No Reward Normalization 7.27 2.98 448 7.1 263
Global Statistics of All 13.88 8.32 1159 12.5 411
Statistics of the Last Rewards 14.55 9.69 1222 15.5 459

Regression-based (Section 2.3) 19.68 16.15 1622 20.0 518

Table 3: Comparison of different within-segment reward interpolation strategies. Shown are the results of the
resulted PPO-trained LM policies on AlpacaEval 2.0 and Arena-Hard. Highest numeric of each metric is in bold.

Interpolation
strategy

AlpacaEval 2.0 Arena-Hard

LC (%) WR (%) # char WR (%) # token

No Interpolation 15.76 8.70 1132 13.6 428
Repeat Segment Reward 13.64 12.80 1927 15.0 546

Even Split (Section 2.3) 19.68 16.15 1622 20.0 518

due to the semantic incompleteness of each action, the token-level model still assigns high rewards to
several tokens in the repetitions, even in the second repeat, which is undoubtedly undesirable.

(b): How will PPO training perform if we use different constructions of reward normalizers?

Recall that in our PPO training (Section 2.3), we use simple linear regression to fit location-aware
mean and std functions that provide reward normalizers at arbitrary locations of the text sequence. To
study if this design is over-engineering, we compare our main method with three simpler constructions
of segment-level reward normalizers: (A) no reward normalization; (B) using the scalar global mean
and std over all segment-level rewards in the reward calibration dataset; and (C) using the scalar mean
and std over the last segment-level rewards in each response of the calibration set, mimicking the
normalizers in the classical bandit approach. Table 2 compares the resulted LM policies.

As common RLHF PPO practice, in Table 2, we first see a strong call for reward normalization,
without which the training process will be broken. Using global statistics or the statistics of the last
segment-level rewards perform similarly, with the latter being slightly better. While policy training
under these two normalizer constructions does not break, it is however ineffective, indicating that
these two constructions distort the training reward signals to an extent of being (almost) useless. The
significantly better performance of our main method over these alternatives verify the necessity of
normalizing segment-level rewards by location-aware normalizers able to capture the reward statistics
at each arbitrary location (completion portion) of the sampled text sequence, and hence our design of
regression-based mean and std functions. Future work may extend these functions with non-linearity.

(c): What will happen if we use different strategies for within-segment reward interpolation?

Recall from Section 2.3 that, to further densify the learning signal in RLHF for enhancing training,
we interpolate the segment-level rewards by evenly splitting the reward of a segment to each of its
constituting token. We now compare this even-split interpolation strategy with two other intuitive
alternatives: (A) no interpolation on the segment-level rewards, use 0 for technical padding in PPO
(“No Interpolation”); (B) repeat the segment-level reward of a segment to each token in it (“Repeat
Segment Reward”). Table 3 shows the performance of the resulted PPO-trained LM policies.

Aligning with our intuition, Table 3 indicates that without any within-segment reward interpolation,
the raw segment-level rewards may not be a strong-enough learning signal to incentivize the LM to
learn to generate, leading to too-short sequence generations and the subsequent inferior performance.
On the other hand, repeating segment-level reward to each of the constituting token results in a too-
strong learning signal, where each token has interpolated feedback of the same scale as the feedback
to the entire text segment, which has coarser granularity. This undesirable level-up of feedback signal
scale, especially the amplification of positive signals on longer segments, may provide a too-strong
incentive for the LM policy to learn to generate, making it produce excessively long text sequences.
By contrast, the even-split densification strategy in our main method provides interpolated learning
signal of a proper scale, which we attribute to the implicit (segment-)length normalization inherited
from division by segment length in an even split. Future work may design a proper non-even split.
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(a) RewardBench (Avg)
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(b) AlpacaEval 2 (LC)
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(d) Arena-Hard
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(e) MT-Bench

Figure 4: Performance comparison among different entropy cutoffs cent for entropy-based text segmentation,
comparing the performance of both the resulted reward model and PPO-trained LM policy, both under the same
specified cent. For reward models’ performance, we plot the average accuracy over the entire RewardBench.

Table 4: Performance of segment-level reward model on RewardBench when trained by different choices of
aggregation function f(·) and different values of temperature τ in the soft-maximum aggregation Eq. (4). Our
main method uses the soft-maximum aggregation function with temperature τ = 0.5.

Metric Aggregation Function f(·) Temperature τ

Soft-maximum Summation Average 0.3 0.5 0.7

Chat(%) 97.49 97.21 96.65 97.49 97.49 97.77
Chat-hard(%) 55.04 55.70 52.19 56.14 55.04 55.92
Reasoning(%) 93.77 72.61 74.43 92.47 93.77 92.27
Safety(%) 85.90 85.01 84.36 85.95 85.90 84.68

Average(%) 85.93 77.96 77.32 85.53 85.93 85.29

(d): With a different entropy cutoff cent for text segmentation, how will our method perform?

As discussed in Section 4.1, for main results, we use entropy cutoff cent = 2.0 for entropy-based text
segmentation. To investigate the impact of cent, in Fig. 4, we vary the value of cent ∈ {1.5, 2.0, 2.5},
and compare the performance of both the resulted reward models and the PPO-trained LM policies.

As seen in Fig. 4, similar to the discussion of token-level approach in Section 1, a smaller cent = 1.5,
which chops text sequence into finer pieces, may result in semantically less complete segments, in
turn leading to less accurate reward modelling and the subsequent weaker reward model and LM
policy. By chopping text into coarser segments that can be more semantically complete, a larger
cent = 2.5 results in a more accurate reward assignment and thus a higher RewardBench score. Its
policy training, however, may be impaired by the sparse reward issue due to prolonged segments,
making its LM performance inferior to that from an intermediate cent value of 2.0.

(e): What if we use a different aggregation function f(·) in Eq. (4) or another temperature τ?

Recall that we use the soft-maximum aggregation with temperature τ = 0.5 for constructing the
parametrized sequence evaluation Eq. (4) in reward model training. In Table 4 we report the results
of reward models trained under two alternative aggregation functions f(·): summation and average;
and under different values of τ in the soft-maximum aggregation.

As demonstrated in Fig. 2 in Section 2.2, chosen responses in our reward training dataset can typically
be identified by a few key segments. This translates into the performance gain of soft-maximum
aggregation over both summation and average, since the latter two do not highlight the contributions of
key segments, but rather focus on average text quality. Meanwhile, we see that our method is relatively
robust to the value of τ in the soft-maximum aggregation, for example, for τ ∈ {0.3, 0.5, 0.7}.

5 CONCLUSION AND LIMITATIONS

In this paper, we propose to train and utilize a segment-level reward model for improved RLHF in
LMs, motivated by both a denser reward signal in RL-based LM training and semantic completeness
of each action for accurate reward assignment. Our method and insight are validated through extensive
experiments and ablation studies. Nevertheless, as an early effort in reconsidering the action space
in RLHF, our experiments are currently confined to the 3.8B Phi-3 series model, PPO training on a
free-form dialog-alike dataset, and instruction-following benchmark evaluations. Our future work
includes scaling up to even larger LMs, testing our method on other types of tasks such as math
problem solving and code generation, and applying to other RL algorithms, such as REINFORCE.
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ETHICS STATEMENT

On method contributes to the ongoing research on aligning LMs with human preference and values, by
proposing a method that aims at improving the effectiveness and efficiency of RLHF in LMs. These
improvements can translate to more helpful and less harmful LMs and less compute and resource
consumption in model training. Nonetheless, as with previous RLHF works, there is a possibility of
misusing our method to train malicious LMs that align with some ill-intended or unethical preference.
This potential negative societal impact could be diminished by more closely monitoring the datasets
and preference sources where our method is applied.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we elaborate our method in Section 2 and provide a com-
prehensive algorithm box in Appendix A. We provide details in method implementation
and experimental setups in Section 4 and Appendix C. Furthermore, our source code and
model checkpoints are anonymously released at https://anonymous.4open.science/r/
Segment-Reward-Model-For-PPO-Training-1512 .
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A ALGORITHM BOX

Algorithm 1 summarizes our method in Section 2 on training the segment-level reward model and
utilizing it in PPO-based RLHF LM training. Note that all operations in Algorithm 1 can be efficiently
conducted in batch mode, parallel for multiple sample points at once.

Algorithm 1 Training and Utilizing Our Segment-level Reward.

Input: Binary preference dataset Dpref = {(x, yw, yl)} for reward model training, prompt set
Dpol = {x} for policy learning, supervised fine-tuned model πSFT, reward model training steps
Mrew, LM policy training steps Mpol, entropy cutoff cent, temperature τ for the aggregation
function, KL coefficient β for RLHF PPO training.

Initialization: Initialize the segment-level reward model rϕ and LM policy πθ from πSFT, fix
the aggregation function f(·) as the soft-maximum in Eq. (4), initialize other components in the
off-the-shelf RLHF PPO routine as specified.

// Training the segment-level reward model
Use πSFT and cent to split the responses {(yw, yl)} in Dpref = {(x, yw, yl)} into segments.
for iter ∈ {1, . . . ,Mrew} do

Sample a minibatch B = {(xi, y
w
i , y

l
i)}i ∼ Dpref .

With f(·) and τ , calculate eϕ(xi, y
w
i ) and eϕ(xi, y

l
i) by Eq. (4) for (xi, y

w
i , y

l
i) ∈ B.

Optimize reward model rϕ by Eq. (3).
end for

// Utilizing the segment-level reward model in PPO-based LM policy learning
Estimate the reward normalizer functions Mean(p) and Std(p) as described in Section 2.3.
for iter ∈ {1, . . . ,Mpol} do

Sample a minibatch B = {xi}i ∼ Dpol.
Sample a response yi ∼ πθ(· |xi) for each xi ∈ B
Use πSFT and cent to segment each yi; record the completion portion p of each segment.
Use rϕ to assign a segment-level reward to each segment at in each yi
Normalize each segment reward rϕ(st, at) as rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).
Interpolate rϕ(st, at) to each token yi, as ∀ at ∈ y,∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|
With KL coefficient β, optimize policy LM πθ against r̃ϕ by the PPO routine.

end for

B ADDITIONAL RESULTS

B.1 TABULAR RESULTS

Table 5: Break down classification accuracy on RewardBench to test reward model’s quality, comparing the
reward models in our main result table Table 1 in Section 4.2.

Action Definition Average(%) Chat(%) Chat-hard(%) Reasoning(%) Safety(%)

Bandit 81.11 97.77 57.68 77.54 86.00
Sentence 84.42 97.49 55.48 89.35 85.87
Token 81.21 98.04 54.39 79.95 84.03
Segment 85.93 97.49 55.04 93.77 85.90
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Table 6: Evaluation results of downstream tasks on the HuggingFace OpenLLM Leaderboard (Beeching et al.,
2023), comparing LM policies in Table 1.

Action Definition ARC TruthfulQA Winograd HellaSwag MMLU GSM8K Average

SFT (No RLHF) 63.65 51.89 75.06 77.99 70.34 79.50 69.74

Bandit (Sequence) 63.82 52.25 74.51 78.13 70.37 78.90 69.66
Sentence 63.90 52.41 73.48 78.20 70.34 80.10 69.74
Token 63.22 51.71 73.56 78.43 70.28 80.40 69.60

Segment (Ours) 63.82 52.42 74.19 78.27 70.32 79.00 69.67

Bandit as Segment 63.14 51.06 72.38 78.20 70.41 80.40 69.27
Segment as Bandit 63.99 52.47 73.72 78.12 70.51 79.90 69.79

B.2 EXAMPLES OF GENERATED RESPONSES

Below, we provide examples of generated responses from our LM policy in the main results (Table 1)
on the benchmarks AlpacaEval 2.0 (first two examples) and Arena-Hard (last two examples).

Prompt: When are hops added to the brewing process?

Response: Hops are typically added to the brewing process during the boil, which is a critical
phase in beer production. The boiling process plays several important roles in beer making,
including the extraction of hop bitterness, flavor, and aroma compounds, as well as the steriliza-
tion of the wort (the liquid extracted from the mashing process that contains the sugars to be
fermented). Here is a breakdown of when hops are generally added during the boil:

1. Early Boil (First 30 minutes): Hops can be added early in the boil, and this addition typically
contributes more to the bitterness of the beer. The longer the hops are boiled, the more bitterness
they impart, due to the isomerization of alpha acids. Early additions might be used to start the
boiling process and can also contribute to some of the beer’s flavor and aroma.

2. Middle Boil (Later 30 minutes): Hops added during the middle of the boil contribute more
to the beer’s flavor than bitterness. This timing allows for the extraction of essential oils and
resins that provide a range of hop-derived flavors and aromas without overly increasing the
bitterness.

3. Late Boil (Final 10-15 minutes): Hops added in the last 10-15 minutes of the boil contribute
the most to the beer’s aroma. The shorter boil time for these hops reduces the extraction of alpha
acids, minimizing bitterness while maximizing the retention of essential oils and volatile aroma
compounds. This is the stage where many brewers add hops to achieve hoppy aroma profiles in
styles like IPAs, double IPAs, and American pale ales.

4. Dry Hopping (After Fermentation): While not part of the traditional boiling process, dry
hopping is a modern technique used to add aroma and flavor without significantly increasing the
beer’s bitterness. Hops are added to the fermenter after primary fermentation has ceased. This
process enhances the beer’s aromatic qualities by infusing it with the intense, floral, fruity, or
spicy notes that hop varieties offer.

The timing of hops additions is crucial and varies based on the beer style, the desired bitterness
level, and the aromatic profile the brewer aims to achieve. Experimentation and experience play
significant roles in determining the optimal hop schedule for a particular brew.
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Prompt: Introduce the “financial markets and institutions“ by Frederic S. Mishkin.

Response: Frederic S. Mishkin is a prominent economist with significant contributions to the
field of financial markets and institutions. In his influential book, ”The Economics of Money,
Banking, and Financial Markets,” Mishkin delves into the intricate workings of financial markets
and the roles of financial institutions in the economy.

Financial markets encompass the platforms where buyers and sellers of financial assets, such as
stocks, bonds, and derivatives, interact to determine prices and execute trades. These markets
play a crucial role in efficiently allocating resources, facilitating risk management, and providing
a platform for price discovery.

Financial institutions, on the other hand, are intermediaries that facilitate the flow of funds
between borrowers and lenders. They encompass a wide range of entities, including banks,
investment firms, insurance companies, and pension funds. These institutions play a vital role
in the functioning of financial markets by providing various services, such as credit provision,
investment advice, and risk management.

Mishkin emphasizes the importance of a well-functioning financial system in promoting eco-
nomic growth and stability. He highlights the key roles of financial markets and institutions in
promoting savings, investments, and efficient allocation of capital. Furthermore, he explores the
mechanisms through which financial markets and institutions contribute to economic stability
by facilitating liquidity and risk management.

In his work, Mishkin also discusses the potential risks and vulnerabilities in the financial system,
such as asset price bubbles, excessive leverage, and systemic risk. He acknowledges the role of
financial markets and institutions in amplifying these risks and emphasizes the importance of
prudent regulation and oversight to safeguard the stability of the financial system.

Overall, Frederic S. Mishkin’s introduction to financial markets and institutions provides a
comprehensive understanding of the complex dynamics and crucial functions of these entities in
the modern economy. His work serves as an essential resource for economists, policymakers,
and students seeking to grasp the intricacies of financial markets and institutions.
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Prompt: Provide me with a breakfast recipe that is quick to make and is high in protein (at least
30 grams) and has a variety of ingredients.

Response: Here is a quick and high-protein breakfast recipe that includes a variety of ingredi-
ents:

High-Protein Breakfast Quinoa Bowl

Ingredients:

- 1/2 cup quinoa

- 1 cup water

- 1/2 cup Greek yogurt (plain, full-fat)

- 1/4 cup chopped nuts (almonds, walnuts, or pecans)

- 1/4 cup fresh berries (strawberries, blueberries, or raspberries)

- 1 tablespoon chia seeds

- 1 tablespoon honey or maple syrup (optional)

- A pinch of salt

1. Rinse the quinoa under cold water to remove its natural coating, saponin, which can make it
taste bitter or soapy.

2. In a small saucepan, bring the water to a boil. Add the quinoa and a pinch of salt. Reduce
heat to low, cover, and simmer for about 15 minutes, or until the water is absorbed and the
quinoa is fluffy.

3. While the quinoa is cooking, prepare the toppings. Warm the Greek yogurt in the microwave
for about 30 seconds or until it’s at a comfortable temperature.

4. In a bowl, mix the cooked quinoa with the Greek yogurt, ensuring the quinoa is well coated.

5. Add the chopped nuts and fresh berries on top of the quinoa-yogurt mixture.

6. Sprinkle chia seeds over the bowl for an extra protein boost and a dose of omega-3 fatty acids.

7. Drizzle honey or maple syrup over the bowl for a touch of sweetness, if desired.

8. Serve immediately and enjoy your high-protein, nutrient-rich breakfast!

This breakfast bowl provides a good balance of carbohydrates, protein, and healthy fats, making
it a satisfying and nutritious start to the day. The quinoa is a complete protein, meaning it
contains all nine essential amino acids, while the Greek yogurt adds additional protein and
probiotics for gut health. The nuts and berries offer healthy fats, antioxidants, and fiber.
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Prompt: Write a python function that solves a quadratic equation.

Response: To solve a quadratic equation of the form ax2+bx+c = 0, we can use the quadratic
formula:

x =
−b±

√
b2 − 4ac

2a

Here’s a Python function that implements this formula:

import math

def solve_quadratic(a, b, c):
"""
Solves a quadratic equation of the form axˆ2 + bx + c = 0.

Parameters:
a (float): Coefficient of xˆ2
b (float): Coefficient of x
c (float): Constant term

Returns:
tuple: A tuple containing the two solutions (x1, x2)
"""
# Calculate the discriminant
discriminant = b**2 - 4*a*c

# Check if the discriminant is positive, negative, or zero
if discriminant > 0:

# Two real and distinct roots
x1 = (-b + math.sqrt(discriminant)) / (2*a)
x2 = (-b - math.sqrt(discriminant)) / (2*a)
return (x1, x2)

elif discriminant == 0:
# One real root (repeated)
x = -b / (2*a)
return (x,)

else:
# No real roots (complex roots)
real_part = -b / (2*a)
imaginary_part = math.sqrt(-discriminant) / (2*a)
return (complex(real_part, imaginary_part), complex(real_part, -

↪→ imaginary_part))

# Example usage
a, b, c = 1, 5, 6
solutions = solve_quadratic(a, b, c)
print(f"The solutions are: {solutions}")

This function first calculates the discriminant (b2−4ac). Based on the value of the discriminant,
it determines the nature of the roots (real and distinct, real and repeated, or complex) and
calculates the roots accordingly. For complex roots, it returns a tuple of complex numbers.

Remember, the coefficients a, b, and c should be provided as floating-point numbers to handle
cases where they might not be integers.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C MORE IMPLEMENTATION DETAILS

Table 7: Model hyperparameters used in reward model
training.

Hyperparameter Value

Batch Size 128
Training Epochs 1
Max prompt length 1728
Max total length 2048
DeepSpeed ZeRO stage 3
Optimizer Adam
Learning Rate 1e-6
Gradient clipping norm 1.0
Entropy threshold cent 2.0
Soft-maximum temperature τ 0.5

Table 8: Model hyperparameters used in PPO-based
LM policy training.

Hyperparameter Value

Batch Size 128
Rollout batch size 1024
Micro rollout batch size 16
Training Epochs 1
Max prompt length 1024
Max generation length 1024
DeepSpeed ZeRO stage 2
Actor learning rate 5e-7
Critic learning rate 9e-6
Gradient clipping norm 1.0
Entropy threshold cent 2.0
Soft-maximum temperature τ 0.5
Value clipping 0.25
KL coefficient β 0.01

Implementation Details. We tabulate detailed parameter settings in Table 7 and Table 8. Most of
them are the same as the default setting in OpenRLHF. Both the reward model and PPO training
employ the Adam optimizer (Kingma & Ba, 2014), with β1 = 0.9 and β2 = 0.95. To save GPU
memory, we use gradient checkpointing (Chen et al., 2016) and flash attention (Dao et al., 2022).

For reward model training, we set the maximum prompt sequence length as 1792 tokens, with the
total sequence length (including both prompt and response) capped at 2048 tokens. During data
preprocessing, we apply left truncation to the prompt and right truncation to the response. If the
EOS token in the response is truncated, we manually change the last token in the truncated response
to the EOS token. The global mini batch size for reward model training is set to 128, with each
GPU processing a micro batch size of 8. To facilitate distributed training, we utilize DeepSpeed
ZeRO-3. For our segment-level reward model, we set the entropy threshold cent = 2.0. The baseline
bandit reward model is technically implemented as setting the entropy threshold cent = 1000,
restricting reward computation to the EOS token only, while the baseline token-level reward model is
implemented as setting the entropy threshold cent = 0, ensuring that a reward is computed for each
token in the text sequence.

For PPO training, we set the replay buffer size (rollout batch size) to 1024 and the batch size
per GPU for generation (micro rollout batch size) to 16. The maximum prompt sequence
length is set as 1024 tokens, and the maximum generated sequence length is also set to 1024 tokens. In
PPO’s on-policy sampling, for each prompt in the mini-batch, a single response is sampled via top-p
sampling with p = 1.0 and sampling temperature 1.0. We use DeepSpeed ZeRO-2 for distributed
training. The actor learning rate is set to the default value of 5× 10−7, and the critic learning rate
is also the default value of 9 × 10−6. The clipping coefficient for value loss (value clip) is set to
0.25 for PPO training based on segment- and token-level reward model , and as default to 0.2 for
bandit-reward-based PPO training. The clipping coefficient for policy loss (eps clip) is set to 0.2. The
KL coefficient is kept to the default value of β = 0.01.
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Chat Template. Below is the chat template used for PPO training, reward model training, and
evaluation sampling with Phi-3. The original Phi-3-Mini chat template includes an additional EOS
token, which we removed in experiments due to incompatibility, leaving only the <|end|> token.

<|user|>
{the user query} <|end|>
<|assistant|>
{Assistant Response} <|end|>

D MORE RELATED WORK

Learning-from-preference. Learning-from-preference classically takes a two-stage approach
where a reward model is first trained on a dataset of binary or multiple ranking via maximizing the
choice model likelihood (Bradley & Terry, 1952; Plackett, 1975; Luce, 2012), before optimizing the
RL/control policy against the learned reward model by RL algorithms (Akrour et al., 2011; 2012;
Fürnkranz et al., 2012). Earlier application in deep learning mainly focuses on relatively simple
neural-network policy for robotics/control tasks (Christiano et al., 2017; Ibarz et al., 2018; Bıyık
et al., 2019; Brown et al., 2019; 2020; Lee et al., 2021; Shin et al., 2021; Hejna & Sadigh, 2023a;b).
Implanting its success in robotics, in natural language generation, this two-stage learning-from-
preference paradigm has been scaled up and popularized in the post-training stage to align LMs
with specific human values, with applications ranging from text summarization (Ziegler et al., 2019;
Stiennon et al., 2020), prompt generation (Yang et al., 2023), to (task-oriented) conversational agent
(e.g., Ouyang et al., 2022; Bai et al., 2022a; Menick et al., 2022; Feng et al., 2023; OpenAI, 2023).

To alleviate the complexity in fitting an explicit reward model, motivated by the theory of maximum-
entropy control and RL (Ziebart et al., 2008; Ziebart, 2010; Finn et al., 2016), direct preference
optimization methods (DPO, e.g., Rafailov et al., 2023; Tunstall et al., 2023; Azar et al., 2023; Yuan
et al., 2023; Zhao et al., 2023; Ethayarajh et al., 2024; Yin et al., 2024) were recently proposed to
directly train LMs on a preference dataset by using their log-density-ratio as the classification logit,
which have been adapted to train text-to-image diffusion models (e.g., Wallace et al., 2023; Yang
et al., 2024; Li et al., 2024b; Gu et al., 2024).

In this paper, we contribute to the literature of learning-from-preference by re-thinking a suitable
definition of action space in the RL formulation of LM generation and preference alignment. Moti-
vated by semantic completeness in linguistics, we define each action as “text segment”, spanning
across a small amount of tokens and interpolating between prior works’ action space of either the
finest “per token” or the coarsest “full sequence”. With this design, our method may benefit from
both denser reward signal for easier RL-based LM training and the semantic completeness of each
action for more accurate training guidance, as experimentally verified in Section 4.

Training Signals for RL-based Language Model (LM) Training. In RL-based LM fine-tuning, a
classical training signal for adapting LMs to the specific downstream task is the native trajectory-
level downstream test metrics (e.g., Ryang & Abekawa, 2012; Ranzato et al., 2015; Rennie et al.,
2017; Paulus et al., 2017; Shu et al., 2021; Lu et al., 2022). This approach intrinsically uses a bandit
formulation of LM generation that treats the entire generated sequence as a single action. As discussed
in Section 1, ignoring the sequential nature of LM generation, this bandit training signal delays
the feedback to each token/phrase selection, and can thus incur optimization difficulty (Guo et al.,
2022; Snell et al., 2022). With various forms of stronger data or compute requirements, task-specific
per-step training signals have been proposed to mitigate this sparse reward issue. Assuming abundant
golden expert data for supervised (pre-)training, Shi et al. (2018) construct per-step reward via inverse
RL (Russell, 1998); Guo et al. (2018) use a hierarchical approach; Yang et al. (2018) learn LM
discriminators; Lin et al. (2017) and Yu et al. (2017) use the expensive and high-variance Monte
Carlo rollout to estimate per-step reward from a sequence-level adversarial reward function trained in
the first place; while Le et al. (2022) use some rule-based intermediate training signal derived from
the oracle sequence-level evaluation, without explicitly learning per-step reward.

Similarly, in RLHF, to move forward from the classical bandit formulation, methods have recently
been proposed to ground sparse preference labels into dense per-step feedback, with applications
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in task-oriented dialog systems (e.g., Ramachandran et al., 2021; Feng et al., 2023) and variable-
length text-sequence generation (Yang et al., 2023). Our paper seeks to reconcile dense v.s. sparse
training signal in RLHF by distributing feedback to the level of semantically complete “text segment”,
interpolating between the densest “token level” and the sparsest “sequence level” and ideally getting
the benefit of both worlds: easier RL training and accurate optimization signal. Meanwhile, as seen
in Section 2, our method adheres to the classical two-stage RLHF paradigm without requiring extra
data or compute.

Other LM Preference Alignment Methods. Apart from RL methods, strategies have been
developed to align LMs with preference by adding external filters on top of the pretrained LMs,
for safety checking the generations or the training texts (e.g., Xu et al., 2020). Vanilla maximum
likelihood estimation has also been adopted for training LMs on curated datasets (Hancock et al.,
2019; Solaiman & Dennison, 2021; Scheurer et al., 2022), or instruction fine-tuning LMs on massive
highly-curated sets of tasks (Sanh et al., 2022; Chung et al., 2022). With extra requirements on data,
modelling, and/or compute, recent LM works also conduct preference alignment by formulating text
generation as a constraint satisfaction problem on LM’s generation distribution (e.g., Khalifa et al.,
2021; Korbak et al., 2022; Go et al., 2023), or utilizing the preference dataset in LMs’ pre-training
stage (Korbak et al., 2023) .

In this paper, we seek to refine RL-based LM preference alignment by re-thinking the suitable action
space in the RL formulation that allows both denser immediate feedback while not jeopardizing the
feedback accuracy. Our segment-level design is validated through numeric and example in Section 4.

E MORE ON THE REWARD NORMALIZERS IN PPO TRAINING

To center the assigned rewards from the reward model and reduce their variance, in most open-sourced
(bandit) RLHF PPO implementation (e.g., Havrilla et al., 2023; Hu et al., 2024), the bandit reward of
the newly sampled response y is first “Z-score” normalized, before being fed into the PPO routine.
Concretely, for the prompt x and sampled response y, the bandit reward rϕ(x, y) is normalized as
rϕ(x, y) ← (rϕ(x, y) − µ)/σ, where µ and σ are respectively the mean and standard deviation of
(bandit) rewards in the reward calibration dataset. The PPO routine starts by using this normalized
rϕ(x, y), e.g., first subtract it by the KL regularization, and then calculate the advantage estimates
and value function training target, etc.

For the segment-level action space, we will then need to normalize the reward rϕ(st, at) for each
segment at. As shown in Table 2 (“Global Statistics of All”), the most intuitive idea of simply using
the global mean and standard deviation over all segment-level rewards in the reward calibration
dataset does not train a good LM. Looking into the responses sampled in PPO training and in the
reward calibration dataset, we find that, for example, the beginning segments of the responses are
typically greeting alike phases that are less informational and/or essential to respond to the given
prompt, and hence have relatively lower rewards. If we normalize the segment-level rewards of
those early segments by the global mean and standard deviation, those normalized rewards will be
significantly negative, rather than centered around 0. This will undesirably refrain the generation of
necessary greeting alike phases, resulting in an “impolite LM” and thus inferior benchmark results.
More generally, the linguistic structure of the responses leads to certain correlation between the
mean and standard deviation of segment-level reward values and the location of segment in the
response, e.g., in the early/middle/later part. This observation motivates us to design location-aware
reward normalizers that can approximately capture the reward statistics at an arbitrary location of the
response, so that the normalized segment-level rewards can be more centered and less varying. It is
important to have proper reward normalizers at an arbitrary location of the response, because the
response sampled in PPO training will have a stochastic total length, nondeterministic number of
segments, and less-controllable length of each segment. These considerations motivate our design of
the regression-based reward normalizer functions in Section 2.3.

F MORE ON THE EVEN-SPLIT REWARD INTERPOLATION STRATEGY
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In this section, we expand our previous discussion in Section 4.3 (c), on (1) a plausible reason why
no reward interpolation does not work well; and (2) the even-split reward interpolation strategy in
Section 2.3 does not conflict with our segment-level design for LM’s RLHF. For notation simplicity,
all segment-level rewards rϕ(st, at) in this section are after normalization.

As discussed in Section 4.3 (c), for the variant of without reward interpolation, we follow the classical
bandit RLHF implementation to pad 0 for the “reward” of intermediate token within a segment.
Similar to the bandit implementation, the array of KL-regularized RL training-signal under our
segment-level rewards takes the form of, for example,

[−KL1,−KL2, rϕ(s1, a1)−KL3,−KL4, rϕ(s2, a2)−KL5, . . .] ,

where KLi denotes the token-wise factorization of the KL regularization term in the PPO objective.
Since KL(·||·) > 0, KL-regularized RL training-signals are negative for those intermediate tokens
within a segment. Note that, by design, there are more those intermediate tokens than tokens with
a segment-level reward rϕ(st, at). These factors, especially a lot of negative training signals in
generation, can refrain the LM from learn to generate, as seen by the significantly shorter generation
lengths that the “No Interpolation” variant shows in Table 3.

By contrast, with our even-split reward interpolation strategy, the array of KL-regularized RL training-
signal under our segment-level rewards now takes the form of, again for example,[
rϕ(s1,a1)

3 −KL1,
rϕ(s1,a1)

3 −KL2,
rϕ(s1,a1)

3 −KL3,
rϕ(s2,a2)

2 −KL4,
rϕ(s2,a2)

2 −KL5, . . .
]
.

The training signals to intermediate tokens are now rϕ(st, at)/|at|−KLi, which will be positive/less-
negative at least for good segments in the responses (the segments at with high reward rϕ(st, at)),
due to reward normalization. These positive/less-negative training signals could incentivize the LM
to learn to properly generate, as seen by the adequate generation lengths that our main “Even Split”
variant presents in Table 3.

We note that our even-split reward interpolation strategy does not conflict with our segment-level
design: every token within the same segment receives the same “evenly-split reward” rϕ(st, at)/|at|.
By contrast, in the token-level design, every token yi will, in general, have a different reward
r([x, y<i], yi). See Fig. 3 for a pictorial illustration of such a difference in reward assignment. In
Fig. 3, it is clear that the token-level reward assignment can be overly granular — in many cases are
inconsistent even within a word, which is counter-intuitive and less desirable.

To sum up, by the semantic completeness of each action, our design of segment-level MDP facilitates
more accurate and consistent reward assignments, compared to the token-level MDP. This benefit
will not be broken by our even-split reward interpolation strategy. By the previous discussion on KL-
regularized RL training-signal, we regard this strategy as a useful technique to cope with the per-token
KL regularization in RLHF PPO training, which is extraneous to RLHF reward modeling/assignment.

G PPO TRAINING CONVERGED IN ONE EPOCH

Bandit Reward Segment Reward (Ours)

0.0 1.0 1.5 2.0

18

22

26

30

(a) AlpacaEval 2.0 (LC %)
0.0 1.0 1.5 2.0

24

28

32

36

(b) Arena-Hard (LC %)
0.0 1.0 1.5 2.0

7.0

7.2

7.4

7.6

(c) MT-Bench

Figure 5: Training curves of the (PPO-trained) LM policies on the three tested RLHF benchmarks, comparing
training under our segment-level reward model and the classical bandit reward model. Both policies are trained
for two epochs — one epoch more than our main results. x-axis represents the number of training epochs, e.g.,
1.5 represents the performance of the checkpoints after training for 1.5 epochs. y-axis is the benchmark score.
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For our main experiment results (Section 4.2), we follow the default setting in OpenRLHF to train
all models by PPO for one epoch. To verify that the training converged, in Fig. 5, we train the LM
policies under our segment-level reward and the classical bandit reward for two epochs, and evaluate
the intermediate policy checkpoints on the three tested RLHF benchmarks. The backbone model here
is Phi3-mini-4k-instruct.

In accordance with the default in OpenRLHF, in Fig. 5, we see that the training under our segment-
level reward and the classical bandit reward (approximately) converged in one epoch — further
training may in fact deteriorates certain policy performance. In Fig. 5, it is clear that policy training
under our segment-level reward is consistently better than the classical bandit reward, over the entire
training process. Fig. 5 also helps to justify the performance comparison in our main results (Table 1).
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https://github.com/OpenRLHF/OpenRLHF/blob/78e1fbb7f34cb313fe63cc0eb0a6ba5b7ed764a9/openrlhf/cli/train_ppo.py#L298
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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