
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEGMENTING TEXT AND LEARNING THEIR REWARDS
FOR IMPROVED RLHF IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning from human feedback (RLHF) has been widely adopted to
align language models (LMs) with human preference. Prior RLHF works typically
take a bandit formulation, which, though intuitive, ignores the sequential nature
of LM generation and can suffer from the sparse reward issue. While recent
works propose dense token-level RLHF, treating each token as an action may be
oversubtle to proper reward assignment. In this paper, we seek to get the best
of both by training and utilizing a segment-level reward model, which assigns a
reward to each semantically complete text segment that spans over a short sequence
of tokens. For reward learning, our method allows dynamic text segmentation and
compatibility with standard sequence-preference datasets. For effective RL-based
LM training against segment reward, we generalize the classical scalar bandit
reward normalizers into location-aware normalizer functions and interpolate the
segment reward for further densification. With these designs, our method performs
competitively on popular RLHF benchmarks in both reward modeling and LM
policy learning. Ablation studies are conducted to further demonstrate our method.

1 INTRODUCTION

To align language models (LMs, e.g., OpenAI, 2023; Reid et al., 2024) with human values, rein-
forcement learning (RL, Sutton & Barto, 2018) methods have been widely adopted to optimize the
non-differentiable human preference, leading to the paradigm of reinforcement learning from human
feedback (RLHF, Ouyang et al., 2022; Bai et al., 2022b). A prevailing approach in RLHF is to
optimize the LMs by proximal policy optimization (PPO, Schulman et al., 2017) against a bandit
reward model learned from human preference data, with KL regularization towards a pre-specified
target distribution to avoid over-optimization on the reward model (Ziegler et al., 2019; Stiennon
et al., 2020; Castricato et al., 2022). While this bandit approach is easier for reward modeling and has
achieved remarkable success, language generation is intrinsically sequential, rather than simultaneous.
Thus, from the view of optimizing human preference, assigning a bandit reward to entire text sequence
induces the sparse reward (delayed feedback) issue (Andrychowicz et al., 2017; Marbach & Tsitsiklis,
2003), that often hurts RL-based LM training by increasing gradient variance and lowering sample
efficiency (Takanobu et al., 2019; Wang et al., 2020; Guo et al., 2022; Snell et al., 2022).

As efforts to mitigate this sparse reward issue, prior works have developed methods to “ground” the
sequence-level preference label into a dense token-level reward model (Yang et al., 2023; Zhong et al.,
2024). While a dense per-token reward signal reduces the optimization complexity (Laidlaw et al.,
2023), each action, however, is then defined as a single token, i.e., a sub-word that is finer-grained than
a word, especially with the BPE-style tokenizers (Gage, 1994; Sennrich et al., 2016). For instance,
Llama 3.1’s tokenizer (Dubey et al., 2024) has tokens as {Brit,ce,cod,neo,redd,...} that
have less clear semantic meaning per se in any given context. The contribution of those tokens to
the text sequence will inevitably depend on later tokens, making reward/credit assignment harder,
especially under the prevailing RLHF paradigm of implementing the reward model as an off-the-shelf
decoder-only transformer (e.g., Ouyang et al., 2022; Bai et al., 2022b; Menick et al., 2022). Further,
token-level reward implicitly assumes that the basic unit of a text sequence is token, which may not
follow linguistics, where a more meaningful decomposition of text may be phase (including word)
that can be more semantically complete and generally consists of a short sequence of tokens.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To retain the optimization benefit of dense reward for RLHF, while mitigating its potential reward
assignment issue and linguistic counter-intuition, in this paper, we seek to train and utilize a segment-
level reward model, which assigns a reward to each semantically meaningful segment of text sequence
that constitutes a small amount of (or just one) tokens. With this construction, we define the action
space in RLHF as “text segment,” interpolating between the finest “per token” and the coarsest “full
sequence” and potentially getting the benefit of both worlds: easier RL-based LM training owing to
denser feedback and more accurate training guidance by the semantic completeness of each action.

Technically, we are motivated by prior works (Malinin & Gales, 2018; Li et al., 2024a) to implement
a dynamic text sequence segmentation by thresholding the entropy of LM’s predictive distributions,
under the assumption that tokens within a semantically complete text segment can be more certainly
predicted by prior tokens, while the start of a new segment is not (Wang et al., 2024b). To allow
training the segment-level reward model by the standard sequence-preference labels via Bradley-Terry
(BT, Bradley & Terry, 1952) loss, we differentiably aggregate segment rewards in a text sequence
into a parametrized sequence evaluation. The learned segment-level reward model is then utilized in
PPO-based policy learning, where we observe the unsuitability of classical reward normalizers, i.e.,
the mean and standard deviation (std) of full sequence rewards. We address this issue by generalizing
the classical bandit normalizers of scalar mean and std into a mean and a std function that output the
reward normalizers at arbitrary location of the text sequence. In addition, we enhance PPO training
by within-segment reward interpolation, which further densifies training signal and improves results.

We test our method on the performance of both the learned segment-level reward model and the
subsequent PPO-trained LM policy. On popular RLHF benchmarks for reward modeling and LM
policy learning, our method indicates competitive performance gain against both the classical bandit
reward approach and recent token-level reward approach. We conduct a wide array of ablation studies
to validate our design choices and provide further insight into our method.

2 MAIN METHOD

2.1 NOTATIONS AND BACKGROUND

In this section, we will define generic notations, provide background on the classical bandit RLHF,
and then discuss RL formulation of LM generation underlying recent efforts on dense-reward RLHF.

Generic Notations. Both reward modeling and policy learning require text prompt x and the
corresponding response y. Reward model training turns the supervised fine-tuned model πSFT(· | ·)
(without the final unembedding layer) into a parametrized scalar-output model rϕ(·, ·) with parameter
ϕ that scores its input. The LM policy πθ, parametrized by θ, is then optimized against rϕ .

Bandit Reward Model Training. Reward model training assumes a dataset Dpref = {(x, yw, yl)}
of prompt x and the corresponding winning/chosen response yw and losing/rejected response yl,
where the label of winning/losing comes from human evaluation on the entire text sequence yw and
yl. In the classical bandit RLHF, reward model rϕ is trained by the binary classification BT loss

Lbandit(ϕ) = −E(x,yw,yl)∼Dpref

[
log σ

(
rϕ(x, y

w)− rϕ(x, y
l)
)]

, (1)

where σ(u) = 1/(1 + exp (−u)) denotes the sigmoid function.

PPO-based Bandit Policy Learning. In policy learning, a set Dpol = {x} of text prompts x is
given. The LM policy πθ is trained to generate outputs on Dpol optimizing the bandit reward from
rϕ , with a KL penalty towards πSFT to avoid reward over-optimization. Collectively, the objective is

maxθ Ex∼Dpol,y∼πθ(· | x) [rϕ(x, y)− β × log (πθ(y |x)/πSFT(y |x))] , (2)

where β is the KL coefficient. In practice, for PPO’s training stability, the value of rϕ(x, y) is
de-mean and de-std normalized based on statistics calculated on a calibration dataset, e.g., Dpref .

RL Formulation of LM Generation. By its sequential nature, LM generation is formulated as
an Markov Decision Process (MDP)M = (S,A, P,R, γ) (Sutton & Barto, 2018). Concretely, for
state space S, the state at timestep t, st, consists of the prompt x and all generated tokens so far
a<t =: [a0, . . . , at−1] with a<0 =: ∅, i.e., st =: [x, a<t]. A is the action space, where the action at
at step t is a short-sequence/segment of tokens from the vocabulary in our segment-level reward/policy

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0.5

𝒓𝝓(𝒔𝟏, 𝒂𝟏) 𝒓𝝓(𝒔𝟐, 𝒂𝟐) 𝒓𝝓(𝒔𝟑, 𝒂𝟑) 𝒓𝝓(𝒔𝟒, 𝒂𝟒)

Aggregation	Function	𝒇 " : Soft-maximum

𝒆𝝓(𝒙, 𝒚𝒘) 𝒆𝝓(𝒙, 𝒚𝒍)

Loss: 𝓛!"# 𝝓

Prompt	𝒙:
What is the function of roots in plants?

Sampled	Response:
Roots anchor the plant in the soil and absorb water and nutrients.

Policy	LM	𝝅𝜽	

Roots anchor the plant in the soil and absorb water and nutrients.

Reward	Model	𝒓𝝓

𝒓𝝓(𝒔𝟏, 𝒂𝟏) 𝒓𝝓(𝒔𝟐, 𝒂𝟐) 𝒓𝝓(𝒔𝟑, 𝒂𝟑)
𝝁𝟏, 𝝈𝟏

𝒓𝝓 𝒔𝟐, 𝒂𝟐 : 	𝟏. 𝟒

𝝁𝟐, 𝝈𝟐

𝒓𝝓 𝒔𝟑, 𝒂𝟑 : 𝟏. 𝟔

𝝁𝟑, 𝝈𝟑
Reward

Normalization

Roots anchor the plant in the soil and absorb water and nutrients.

𝒓𝝓 𝒔𝟏, 𝒂𝟏 : 	𝟎. 𝟓

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4

RLHF PPO	Training

A banana is both a fruit with seed and a herb with a soft pseudostem.

Reward
Interpolation)𝒓𝝓 :

Segment-level	Reward	Training PPO-based LM Policy	Learning

+ Segment
by 𝝅!"#

Figure 1: Overview of training and utilizing our segment-level reward model. Numerics in the plot are artificial.
In the figure, each text segment has a different color, and its starting word is underscored.

setting while at is a single token in the token-level reward/policy setting. Transition function P
deterministically appends the newly sampled tokens after the previous ones, i.e., st+1 = [st, at] =
[x, a≤t]. r(s, a) : S× A→ R scores the action choice (segment/token selection) a at state/context s
and is typically substituted by the learned reward model rϕ . γ ∈ [0, 1] is the discount factor.

In what follows, we will focus on our segment-level reward/policy setting where each action at ∈ A
is a semantically complete text segment, consisting of a non-deterministic number of consecutive
tokens. The response y for prompt x then contains a variable number of segments/actions, generically
denoted as y = [a0, . . . , aT−1] where T is the number of segments in y and varies across responses.
When necessary, we denote a single token in y as yi , whose generation context is [x, y<i].

Fig. 1 overviews key components in our method. A detailed algorithm box is deferred to Appendix A.

2.2 REWARD MODEL TRAINING

Overview. In training our segment-level reward model, we follow the data assumption set forth in
Section 2.1, where the dataset Dpref = {(x, yw, yl)} contains only binary sequence-level preference
labels, without any process supervision (Uesato et al., 2022). The reward model rϕ(st, at) is
configured to output a scalar reward for each text segment choice at at the generation context st.
rϕ is trained such that its induced parameterized text sequence evaluations, aggregated from all
segment-level rewards in the respective sequence, align with the preference labels in Dpref . This is
inspired by the imitation learning literature (e.g., Christiano et al., 2017; Brown et al., 2019; 2020)
and prior token-level reward modeling in RLHF (Yang et al., 2023). Collectively, the BT loss for
training our segment-level reward function rϕ is

Lseg(ϕ) = −E(x,yw,yl)∼Dpref
[log σ

(
eϕ(x, y

w)− eϕ(x, y
l)
)
],∀ y ∈ {yw, yl}, eϕ(x, y) = f({rϕ(st, at)}at∈y) , (3)

where eϕ denotes the parameterized sequence evaluation induced by rϕ, constructed by aggregating
all segment-level rewards {rϕ(st, at)}at∈y in the text sequence y by a selected aggregation function
f(·). Below, we discuss in details the segmentation method for text sequence and the choice of f(·).
Entropy-based Segmentation. As discussed in Section 1, we intend to split the given text sequence
y ∈ {yw, yl} into semantically complete segments, so that the reward assignment to each action
(segment) can be easier, especially under the common implementation of the reward model as an
auto-regressive LM. Recent works on LMs (e.g., Li et al., 2024a; Wang et al., 2024b) have noticed
that tokens within a semantically complete segment can be more predictable by the corresponding
generation context, since they are continuation of the designated semantics; while the starting token
of a new segment is comparably less predictable, as its semantic binding with prior words is relatively
weaker. For auto-regressive LMs, the predictability of each token can be conveniently measured by
the entropy of the next-token-prediction distribution from which the token is sampled (Malinin &
Gales, 2018). To make text sequence segmentation a one-time data pre-processing in reward model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prompt 𝒙: Do artists/singers earn money from their songs

being available on Spotify? How?

Chosen Response 𝒚𝒘:

Yes, they do! Spotify pays them royalties for streaming,

which are calculated as a percentage of their song plays.

Spotify tracks a user’s listening activity (the number of

times a user starts, pauses, and restarts a song) and this

information is used to calculate the royalty.

Rejected Response 𝒚𝒍 :
Artists/singers are the owners of copyrights on their songs,

and can use those copyrights to monetize their music however

they choose. Spotify is a “Digital Service Provider” in the

sense that it takes the rights to a song and acts as an

intermediary to enable that song to be heard by users.

Prompt 𝒙: What species of trees tend to live the longest?

Chosen Response 𝒚𝒘:

There’s a lot of literature about this, and I think there’s no

consensus that all scientists agree on. But it’s likely that the

bristlecone pines in the Sierra Nevada mountain range

would be the answer to your question. They are about 4,000

years old and are the oldest trees on earth.

Rejected Response 𝒚𝒍 :
There are a lot of variables which influence the length of a

tree’s life, including what sort of environment it lives in, the

soil it grows in, and even its genes. In general, trees that are

native to cold and dry climates tend to live longer than their

counterparts in the tropics or southern hemisphere.

Figure 2: Examples of data in our reward training dataset, motivating us to use soft-maximum as the aggregation
function f(·). The key segments distinguishing the chosen response from the rejected one are highlighted in red
color. We note that the choice of f(·) ought to be task and dataset specific, as discussed in Yang et al. (2023).

training, we choose to use the prediction distribution from the supervised fine-tuned model πSFT,
from which the reward model is initialized before training. With a selected entropy cutoff cent, token
yi starts a new segment if the Shannon entropy H(·) of πSFT’s predictive distribution of the i-th
token surpasses cent, i.e.,H(πSFT(· |x, y<i)) > cent, in which case yi−1 ends the previous segment.

Choice of the Aggregation Function f(·). Aggregation function f(·) provides inductive bias on
the relation between the quality of each segment/action and the preferability of overall text sequence.
Since f probes into what kind of text sequences will be preferred, its selection should ideally be task
and dataset specific, to avoid mis-specification and the subsequent unintended bias in reward model
training. While several designs have been proposed in literature (Christiano et al., 2017; Kim et al.,
2023; Yang et al., 2023), after looking into the dataset, in our experiments, we select soft-maximum to
differentiably highlight the contribution of key segments. With this choice of f(·), the parametrized
sequence evaluation eϕ(x, y) in Eq. (3) is constructed as

eϕ(x, y) = f({rϕ(st, at)}at∈y) = τ × log
[∑

at∈y exp(rϕ(st, at)/τ)
]
, (4)

where τ is the temperature controlling the sharpness of the log-sum-exp function. Fig. 2 provides
example data-points from the reward training dataset in our experiments (Section 4), which support
our choice of soft-maximum as the aggregation f(·). Other datasets may require a different f(·).
An Alternative Interpretation. Comparing our segment-level reward training loss Eq. (3) with
the classical bandit loss Eq. (1), one may alternatively interpret eϕ and f({rϕ}) in Eq. (3) as a
re-parametrization of the learned sequence-level feedback that differentiably aggregates the quality/-
contribution of each text segment, and thereby connects a denser evaluation rϕ of each semantically
complete text segment with the information in ground-truth sequence-level preference label.

2.3 PPO-BASED POLICY LEARNING

Overview. In policy learning, we again follow the classical bandit setting in Section 2.1 to optimize
the LM policy πθ on a given prompt set Dpol = {x}. But unlike the bandit objective in Eq. (2), we
adopt the full RL setting (Sutton & Barto, 2018) to maximize πθ’s expected sum of per-segment/step
rewards. This enables directly plugging our segment-level reward model rϕ into most off-the-shelf
RLHF PPO implementation. With this, the policy learning objective for πθ is

maxθ Ex∼Dpol,y∼
∏T−1

t=0 πθ(at | st)

[∑T−1
t=0 rϕ(st, at)− β × log (πθ(y |x)/πSFT(y |x))

]
, (5)

where again, each at is a segment of tokens (chopped by πSFT), st = [x, a0, . . . at−1] is the generation
context at step t, and y = [a0, . . . , aT−1] is the response to prompt x sampled from the learning πθ.

Recall from Section 2.1 that the output values from the reward model rϕ need to be normalized for the
stability of PPO training. With our segment-level reward model, it is no longer suitable to normalize
each rϕ(st, at) by the mean and std of entire sequences’ rewards as in the bandit setting, since the
latter may not be on a proper scale and/or well-defined. Further, the on-policy nature of PPO induces

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

an extra complexity: each step of PPO samples new text sequences, whose length, segment lengths,
and segment locations are all stochastic and can differ from the reward calibration dataset, e.g., Dpref .
Below, we discuss our approach to construct the reward value normalizers, followed by interpolating
the segment-level reward into per-token signal to helpfully provide an even denser training guidance.

Location-aware Reward Normalizers via Regression. While the length of the sampled response
y and the lengths and locations of segments {at} in y are all uncontrollable, we know that each at is
somewhere in y. Correspondingly, each input (st, at) to rϕ is linked to a location indicator p ∈ (0, 1]
of y, and p can be simplest defined as t/T , where t is the index of the segment at in y, since PPO
routine has fully sampled y. On each datapoint in the calibration set, location indicator p ∈ (0, 1]
again, with the linked segment-level reward available. Across all datapoints in the calibration set, we
construct a new dataset Dnorm = {(p, µp, σp)}, where p runs over all values of location indicator in
the calibration set, µp and σp respectively denote sample mean and sample std of all segment-level
rewards corresponding to p in the calibration set. With Dnorm, we run a simple linear regression to
estimate the relation between location indicator p and mean/std of segment-level rewards at p, i.e.,

Mean(p) = wµ × p+ bµ, log Std(p) = wσ × p+ bσ → Std(p) = exp(wσ × p+ bσ) , (6)

where regression coefficients (wµ, bµ), (wσ, bσ) can be calculated in closed form.

Note that the classical bandit normalizers of the mean and std of full sequences’ rewards correspond
to evaluate Mean(p) and Std(p) at p = 1.0. In this regard, our mean and std functions in Eq. (6)
generalize the classical scalar normalizers into location-aware functions able to output proper reward
normalizers at an arbitrary location p of the text sequence. With Mean(·) and Std(·) and the
corresponding p, rϕ(st, at) is normalized by rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).

Within-segment Reward Interpolation. Depending on the specific tokenizer in use, we observed
that semantically complete text segments may contain up to around twenty tokens. The corresponding
action space A might still be large and the resulting segment-level design might not sufficiently address
the sample inefficiency issue in the classical bandit RLHF and could again lead to inferior PPO-based
RL training. To further densify the RL training signal, we evenly split the segment-level reward
rϕ(st, at) for a segment at to each token yi ∈ at. This induces a token-level credit assignment that
∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|, where [x, y<i] is the generation context of token yi. r̃ϕ
can then directly substitute rϕ in Eq. (5), since

∑T−1
t=0 rϕ(st, at) =

∑T−1
t=0 (

∑
yi∈at

rϕ(st, at)/|at|).

Note that r̃ϕ is still intrinsically segment level, since all token selections yi within segment at receive
the same feedback, i.e., the average of segment-level reward rϕ(st, at). This is in contrast to prior
works on token-level reward models (Yang et al., 2023; Zhong et al., 2024), where each token
selection is evaluated separately and thus their token-level feedback/rewards vary across each token.

Summary. With the learned segment-level reward model rϕ from Section 2.2, in PPO training of
the LM policy πθ, we first normalize each rϕ(st, at) in the sampled sequence by the corresponding
normalizers Mean(p) and Std(p). Normalized segment-level rewards are then interpolated into the
per-token feedback signal r̃ϕ. Finally, we plug r̃ϕ directly into an off-the-shelf RLHF PPO routine.

3 RELATED WORK

Reward Models in RLHF. In the classical RLHF paradigm, policy LM is optimized against a bandit
reward model trained firstly by binary classification loss on the preference dataset, with KL penalty
to a specified prior distribution to avoid reward over-optimization (Ziegler et al., 2019; Stiennon
et al., 2020; Jaques et al., 2020; Bai et al., 2022a; Ouyang et al., 2022; Castricato et al., 2022).
Under the same bandit formulation, recent works have enhanced the bandit reward model by directly
modeling the probability of one response being preferred over the other (Jiang et al., 2023; Zhao et al.,
2023; Liu et al., 2023; Dong et al., 2024) or factorizing human preference into multiple facets via
multi-objective modeling (Touvron et al., 2023; Wang et al., 2023; 2024c;a). Despite its popularity,
from the angle of RL-based optimization of human preference captured by the reward model, such
a bandit reward may lead to inferior training, due to the sparse reward issue intrinsic to the bandit
formulation of LM generation and credit assignment (e.g., Takanobu et al., 2019; Guo et al., 2022).

Viewing the weakness of bandit RLHF, efforts have been making to densify the reward signal for
RLHF LM training. Yang et al. (2023) and Chan et al. (2024) train token-level reward models by
the binary preference classification loss. Zhong et al. (2024) and Rafailov et al. (2024) use an LM

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

trained by DPO (Rafailov et al., 2023) firstly for token-level reward assignment, which is later used in
PPO training or search-based algorithms. Guo et al. (2023), Cao et al. (2024), and Yoon et al. (2024)
assign continuous or fixed fine-grained rewards (e.g., ±1) by accessing an external powerful large
LM or the oracle environmental reward; while Chen et al. (2024) require the extra task and datasets of
erroneous solution rewriting. Apart from potential extra requirements, as discussed in Section 1, the
semantic incompleteness of token in text may challenge the efficacy of per-token credit assignment,
especially with the prevailing implementation of reward model as a decoder-only transformer that
cannot look ahead into later tokens. In contrast, by defining text segment as the basic unit of text
sequence that can be semantically more complete than token, our segment-level reward may provide
more accurate guidance for RL-based LM training, while not losing the benefit of denser feedback.

Close to our segment-level reward, process reward models (PRMs, e.g., Uesato et al., 2022; Lightman
et al., 2023) in reasoning-alike tasks also assign a single reward value to a short sequence of tokens.
The training of PRMs, however, typically requires human annotation on each step of the reasoning-
alike process. This may not be feasible in general text generation tasks, e.g., text summarization or
dialog, where each step/text segment lacks clear human evaluation criterion while the full generations
can be more easily compared or evaluated. By contrast, as seen in Section 2, our method is developed
for the most basic yet general RLHF setting, where human preference is only manifested in a dataset
of binary sequence-level preference. And the dataset is collected from multiple sources and contains
multiple forms of prompt-responses. We discuss a broader set of related works in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS AND IMPLEMENTATION

Datasets. For reward model training, we use the preference-700K dataset1, which is a diverse
collection of open-source preference datasets, such as HH-RLHF (Bai et al., 2022a), Stanford Human
Preferences Dataset (SHP) (Ethayarajh et al., 2022), and HelpSteer (Wang et al., 2023). PPO-based
LM policy training is performed on the Ultrafeedback dataset (Cui et al., 2023), from which we only
use the prompts to sample responses during the PPO training routine.

Benchmarks and Evaluations. We evaluate the reward model performance on the RewardBench
benchmark (Lambert et al., 2024). Each test sample consists of a triplet of a prompt, a chosen response,
and a rejected response. The evaluation metric is the classification accuracy of chosen/rejected label.
For our segment-level reward model, the parameterized sequence evaluation eϕ in Eq. (4) is used as
the classification logit, and similarly for other dense reward models such as the token-level model.

The (PPO-trained) LM policy is evaluated on three popular open-ended instruction-following bench-
marks: AlpacaEval 2.0 (Li et al., 2023), Arena-Hard (Li et al., 2024c), and MT-Bench (Zheng et al.,
2023), where GPT-4o is used as the judge. Our reported scores follow each benchmark’s default
protocol. AlpacaEval 2.0 consists of 805 test cases, on which we report the length control win rate
(LC), raw win rate (WR), and the average response length in number of characters (# char). The LC
metric is specifically designed to be robust against model verbosity. We follow the convention (e.g.,
Dong et al., 2024) to employ alpaca eval gpt4 turbo fn as the annotator for AlpacaEval
2.0. Arena-Hard consists of 500 challenging user queries, and we report both the win rate (WR)
against the reference model GPT-4-0314 and the average number of tokens in the responses (#
token). MT-Bench is a multi-turn dialogue dataset that includes 80 test cases. We report the average
MT-Bench scores for two dialogue turns, using GPT-4o as the judge model.

Implementation. Due to our limited compute resources, we currently implement our method onto
the 3.8B SFT checkpoint of Phi3.1-mini Instruct (Abdin et al., 2024), which we use as the starting
points of both reward model training and PPO-based LM policy learning, in the latter initializing the
models for value function, learning policy, and reference policy. Our implementation is built upon
the open-source RLHF framework OpenRLHF (Hu et al., 2024). We maximally follow the default
hyperparameters in OpenRLHF. For example, in PPO training, we retain the default KL coefficient
value β = 0.01. In both reward model training and LM policy learning, we train the models for one
epoch, i.e., one pass through the dataset, using entropy cutoff cent = 2.0 and temperature τ = 0.5
in the soft-maximum aggregation (Eq. (4)). Section 4.3 presents ablation studies on the choice of

1https://huggingface.co/datasets/hendrydong/preference_700K

6

https://github.com/OpenRLHF/OpenRLHF
https://huggingface.co/datasets/hendrydong/preference_700K

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison among different action definitions, comparing both the resulted reward model
and PPO-trained LM policy. “Avg Acc.” is the average accuracy over the entire RewardBench. # {char, token}
measures the average response length in the benchmark tests. Highest value of each column is in bold.
Action
Definition

RewardBench AlpacaEval 2.0 Arena-Hard MT-Bench

Avg Acc.(%) LC(%) WR(%) # char WR(%) # token GPT-4o

SFT (No RLHF) - 14.93 10.19 1271 14.5 476 7.00

Bandit (Sequence) 81.11 14.98 12.05 1520 17.8 496 7.18
Sentence 84.42 15.79 16.52 2237 18.5 617 6.97
Token 81.20 17.00 14.78 1711 19.0 533 7.24

Segment (Ours) 85.93 19.68 16.15 1622 20.0 518 7.31
Bandit as Segment - 13.86 9.60 1331 13.9 444 7.27
Segment as Bandit - 15.58 13.29 1652 19.1 504 7.23

cent, τ , and aggregation function. Due to space limit, we defer further implementation details to
Appendix C. For reproducibility, our source code and model checkpoints are anonymously released.

4.2 MAIN EXPERIMENTAL COMPARISONS

Baselines. To demonstrate our unique consideration on RLHF’s action space, in the main experiment,
we compare our design of segment-level action space with the coarsest bandit/sequence-level action
space, the coarser sentence-level space, and the finest token-level space, in terms of the performance
of both the reward model and the subsequent PPO-trained LM policy. Unless specified, both the
reward model and the LM policy are trained under the same action definition. The sentence-level
models are implemented by splitting the text sequences by the sentence splitters {".", "!", "?",
"\n", ";", "...", ",", ":"} and/or their foreign language equivalents.

To further illustrate our segment-level reward model and denser segment-level reward assignment, we
additionally compare with two hybrid approaches: (A) using the bandit reward model for segment-
level reward assignment in the PPO training (“Bandit as Segment”); and (B) using the segment-level
reward model only for bandit reward assignment in the PPO training (“Segment as Bandit”), where the
bandit reward is implemented by the parametrized sequence evaluation eϕ in Eq. (4). For all baselines,
we follow the standard training receipts and tune them to the extent of ensuring fair comparison.

Results. Table 1 compares the performance of our segment-level reward model and the resulted
PPO-trained LM policy with those from other definitions of RLHF’s action space, as well as the two
hybrid approaches. The break-down scores of each reward model on each of the four categories in
RewardBench is deferred to Table 5 in Appendix B.1. Our key findings are summarized as follows.

(1) Segment-level action space improves reward modeling. From Table 1’s RewardBench results, it is
clear that our segment-level reward model outperforms reward models from alternative RLHF action
definitions, which we attribute to our design of semantically complete text sequence segmentation and
a targeted choice of aggregation function in reward model training. This is corroborated by the strong
result of sentence-level reward model, which performs a comparatively coarser text segmentation but
otherwise also employs soft-maximum aggregation to highlight key sentences. Since it is coarser
than our segment-level approach, it may not accurately pinpoint the contribution of most important
phases/words, leading to its under-performance to ours. At one end of granularity spectrum, without
finer reward/credit assignment and key phase highlight, the coarsest classical bandit/sequence-level
reward model performs much weaker than both segment- and sentence-level models. On the other
extreme, the recent finest token-level reward model, which ignores the semantic completeness in the
action space definition, suffers from accurate reward assignment/modeling, as discussed in Section 1.

(2) Our segment-level approach improves RLHF training while not suffering from length hacking. As
seen in Table 1, our LM policy performs better than the baselines across all three RLHF policy
evaluation benchmarks: AlpacaEval 2.0 (length control win rate LC), Arena-Hard, and MT-Bench.
Notably, our model’s average response length on AlpacaEval 2.0 and Arena-Hard is not significantly
larger than the baseline models’, in contrast to the LM policy from the sentence-level approach.
Together, these results manifest the merit of our segment-level approach in truly improving the quality
of the generated responses while not cheating the benchmark evaluations by response-length hacking
(Dubois et al., 2024). As discussed in Section 1, we attribute the gain of our segment-level approach

7

https://anonymous.4open.science/r/Segment-Reward-Model-For-PPO-Training-1512

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Prompt: Explain what is Buddhism?

Segment-level Reward Model:

Token-level Reward Model:

Prompt: What causes earthquakes?

Segment-level Reward Model:

Token-level Reward Model:

Figure 3: Examples of dense reward assignment for text sequences encountered in PPO training, comparing our
segment-level reward model and the recent token-level design on normal text (Top) and text with verbosity/repe-
tition (Bottom). Darker color indicates higher reward. In the bottom half, repeated sentences are

::::::::
underlined.

over the baselines to simultaneously achieving both denser reward signals for PPO-based RLHF
training and more accurate reward assignment by the design of semantically complete action space.

(3) Finer action spaces help RLHF training over the classical bandit formulation. Apart from our
denser segment-level approach, in the RLHF policy results in Table 1, we see that the other two finer
action space specifications: per-sentence and per-token, both generally improve over the classical
design of bandit/sequence-level action space. This provides an extra verification to our motivation of
a denser reward signal for RLHF PPO training. Meanwhile, both per-sentence and per-token design
can be further refined, respectively by a more break-down action definition and a multi-token action
space for more complete semantics of each action, leading to our stronger segment-level design.

(4) A segment-level reward model is necessary for segment-level reward assignment, vice versa. One
may wonder if we can use the classical bandit reward model to assign segment-level reward in the
PPO training. As shown by the results of “Bandit as Segment” in Table 1, this approach performs no
better than the classical pure bandit, which in turn under-performs our segment-level design. These
comparisons justify the necessity to train a segment-level reward model for segment-level reward
assignment. Conversely, using our segment-level reward model to provide only bandit feedback in
PPO training (“Segment as Bandit”) leads to only marginal gain over pure bandit design. While this
further verifies the merit of training and utilizing a segment-level reward model, “Segment as Bandit”,
however, does not fully benefit from our proposal of a (consistent) segment-level action space. Its
weaker results again highlight the gain of denser reward assignment in PPO-based RLHF training.

Appendix B.2 provides generation examples from our main LM policy. Table 6 in Appendix B.1
compares the LM policies in Table 1 on tasks on OpenLLM Leaderboard. Both show that our method,
while achieving strong RLHF training, does not suffer from the “alignment tax” (Askell et al., 2021).

4.3 ABLATION STUDY

(a): Can our segment-level reward model reasonably distinguish key segments?

In Fig. 3, we qualitatively compare dense reward assignments from our segment-level reward model
and the recent token-level approach on two text sequences appeared in PPO training, representing
normal text (Top) and broken text with verbosity/repetition (Bottom), where repetitions are underlined.

The color blocks in Fig. 3 first verify that our entropy-based approach chops the text into segments
with meaningful semantics, while a token can be only part of a word. Further, Fig. 3 confirms that our
segment-level reward model assigns higher rewards to key segments in the responses. Meanwhile, we
see that the token-level model does not have consistent reward assignment over even a word – often
less understandably (only) highly rewards the first letter of a word (e.g., “Siddhartha”, “cessation”,
“tectonic”). The benefit of our desideratum of a semantically complete action space is further testified
by the example of repeated sentences in Fig. 3 Bottom, where our model assigns a consistent low
reward to the repeated sentences, effectively refraining the LM from verbosity/repetition. By contrast,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Comparison of different constructions of segment-level reward normalizers. Shown are the results of
the resulted PPO-trained LM policies on AlpacaEval 2.0 and Arena-Hard. Best evaluation results are in bold.

Reward Normalizer AlpacaEval 2.0 Arena-Hard

LC (%) WR (%) # char WR (%) # token

No Reward Normalization 7.27 2.98 448 7.1 263
Global Statistics of All 13.88 8.32 1159 12.5 411
Statistics of the Last Rewards 14.55 9.69 1222 15.5 459

Regression-based (Section 2.3) 19.68 16.15 1622 20.0 518

Table 3: Comparison of different within-segment reward interpolation strategies. Shown are the results of the
resulted PPO-trained LM policies on AlpacaEval 2.0 and Arena-Hard. Highest numeric of each metric is in bold.

Interpolation
strategy

AlpacaEval 2.0 Arena-Hard

LC (%) WR (%) # char WR (%) # token

No Interpolation 15.76 8.70 1132 13.6 428
Repeat Segment Reward 13.64 12.80 1927 15.0 546

Even Split (Section 2.3) 19.68 16.15 1622 20.0 518

due to the semantic incompleteness of each action, the token-level model still assigns high rewards to
several tokens in the repetitions, even in the second repeat, which is undoubtedly undesirable.

(b): How will PPO training perform if we use different constructions of reward normalizers?

Recall that in our PPO training (Section 2.3), we use simple linear regression to fit location-aware
mean and std functions that provide reward normalizers at arbitrary locations of the text sequence. To
study if this design is over-engineering, we compare our main method with three simpler constructions
of segment-level reward normalizers: (A) no reward normalization; (B) using the scalar global mean
and std over all segment-level rewards in the reward calibration dataset; and (C) using the scalar mean
and std over the last segment-level rewards in each response of the calibration set, mimicking the
normalizers in the classical bandit approach. Table 2 compares the resulted LM policies.

As common RLHF PPO practice, in Table 2, we first see a strong call for reward normalization,
without which the training process will be broken. Using global statistics or the statistics of the last
segment-level rewards perform similarly, with the latter being slightly better. While policy training
under these two normalizer constructions does not break, it is however ineffective, indicating that
these two constructions distort the training reward signals to an extent of being (almost) useless. The
significantly better performance of our main method over these alternatives verify the necessity of
normalizing segment-level rewards by location-aware normalizers able to capture the reward statistics
at each arbitrary location (completion portion) of the sampled text sequence, and hence our design of
regression-based mean and std functions. Future work may extend these functions with non-linearity.

(c): What will happen if we use different strategies for within-segment reward interpolation?

Recall from Section 2.3 that, to further densify the learning signal in RLHF for enhancing training,
we interpolate the segment-level rewards by evenly splitting the reward of a segment to each of its
constituting token. We now compare this even-split interpolation strategy with two other intuitive
alternatives: (A) no interpolation on the segment-level rewards, use 0 for technical padding in PPO
(“No Interpolation”); (B) repeat the segment-level reward of a segment to each token in it (“Repeat
Segment Reward”). Table 3 shows the performance of the resulted PPO-trained LM policies.

Aligning with our intuition, Table 3 indicates that without any within-segment reward interpolation,
the raw segment-level rewards may not be a strong-enough learning signal to incentivize the LM to
learn to generate, leading to too-short sequence generations and the subsequent inferior performance.
On the other hand, repeating segment-level reward to each of the constituting token results in a too-
strong learning signal, where each token has interpolated feedback of the same scale as the feedback
to the entire text segment, which has coarser granularity. This undesirable level-up of feedback signal
scale, especially the amplification of positive signals on longer segments, may provide a too-strong
incentive for the LM policy to learn to generate, making it produce excessively long text sequences.
By contrast, the even-split densification strategy in our main method provides interpolated learning
signal of a proper scale, which we attribute to the implicit (segment-)length normalization inherited
from division by segment length in an even split. Future work may design a proper non-even split.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

cent = 1.5 cent = 2 cent = 2.5

82

84

86

(a) RewardBench (Avg)

14

16

18

20

(b) AlpacaEval 2 (LC)
10

12

14

16

(c) AlpacaEval 2 (WR)

14

16

18

20

(d) Arena-Hard
6.0

6.5

7.0

7.5

(e) MT-Bench

Figure 4: Performance comparison among different entropy cutoffs cent for entropy-based text segmentation,
comparing the performance of both the resulted reward model and PPO-trained LM policy, both under the same
specified cent. For reward models’ performance, we plot the average accuracy over the entire RewardBench.

Table 4: Performance of segment-level reward model on RewardBench when trained by different choices of
aggregation function f(·) and different values of temperature τ in the soft-maximum aggregation Eq. (4). Our
main method uses the soft-maximum aggregation function with temperature τ = 0.5.

Metric Aggregation Function f(·) Temperature τ

Soft-maximum Summation Average 0.3 0.5 0.7

Chat(%) 97.49 97.21 96.65 97.49 97.49 97.77
Chat-hard(%) 55.04 55.70 52.19 56.14 55.04 55.92
Reasoning(%) 93.77 72.61 74.43 92.47 93.77 92.27
Safety(%) 85.90 85.01 84.36 85.95 85.90 84.68

Average(%) 85.93 77.96 77.32 85.53 85.93 85.29

(d): With a different entropy cutoff cent for text segmentation, how will our method perform?

As discussed in Section 4.1, for main results, we use entropy cutoff cent = 2.0 for entropy-based text
segmentation. To investigate the impact of cent, in Fig. 4, we vary the value of cent ∈ {1.5, 2.0, 2.5},
and compare the performance of both the resulted reward models and the PPO-trained LM policies.

As seen in Fig. 4, similar to the discussion of token-level approach in Section 1, a smaller cent = 1.5,
which chops text sequence into finer pieces, may result in semantically less complete segments, in
turn leading to less accurate reward modelling and the subsequent weaker reward model and LM
policy. By chopping text into coarser segments that can be more semantically complete, a larger
cent = 2.5 results in a more accurate reward assignment and thus a higher RewardBench score. Its
policy training, however, may be impaired by the sparse reward issue due to prolonged segments,
making its LM performance inferior to that from an intermediate cent value of 2.0.

(e): What if we use a different aggregation function f(·) in Eq. (4) or another temperature τ?

Recall that we use the soft-maximum aggregation with temperature τ = 0.5 for constructing the
parametrized sequence evaluation Eq. (4) in reward model training. In Table 4 we report the results
of reward models trained under two alternative aggregation functions f(·): summation and average;
and under different values of τ in the soft-maximum aggregation.

As demonstrated in Fig. 2 in Section 2.2, chosen responses in our reward training dataset can typically
be identified by a few key segments. This translates into the performance gain of soft-maximum
aggregation over both summation and average, since the latter two do not highlight the contributions of
key segments, but rather focus on average text quality. Meanwhile, we see that our method is relatively
robust to the value of τ in the soft-maximum aggregation, for example, for τ ∈ {0.3, 0.5, 0.7}.

5 CONCLUSION AND LIMITATIONS

In this paper, we propose to train and utilize a segment-level reward model for improved RLHF in
LMs, motivated by both a denser reward signal in RL-based LM training and semantic completeness
of each action for accurate reward assignment. Our method and insight are validated through extensive
experiments and ablation studies. Nevertheless, as an early effort in reconsidering the action space
in RLHF, our experiments are currently confined to the 3.8B Phi-3 series model, PPO training on a
free-form dialog-alike dataset, and instruction-following benchmark evaluations. Our future work
includes scaling up to even larger LMs, testing our method on other types of tasks such as math
problem solving and code generation, and applying to other RL algorithms, such as REINFORCE.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

On method contributes to the ongoing research on aligning LMs with human preference and values, by
proposing a method that aims at improving the effectiveness and efficiency of RLHF in LMs. These
improvements can translate to more helpful and less harmful LMs and less compute and resource
consumption in model training. Nonetheless, as with previous RLHF works, there is a possibility of
misusing our method to train malicious LMs that align with some ill-intended or unethical preference.
This potential negative societal impact could be diminished by more closely monitoring the datasets
and preference sources where our method is applied.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we elaborate our method in Section 2 and provide a com-
prehensive algorithm box in Appendix A. We provide details in method implementation
and experimental setups in Section 4 and Appendix C. Furthermore, our source code and
model checkpoints are anonymously released at https://anonymous.4open.science/r/
Segment-Reward-Model-For-PPO-Training-1512 .

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pp. 12–27. Springer, 2011.

Riad Akrour, Marc Schoenauer, and Michèle Sebag. April: Active preference learning-based
reinforcement learning. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part II 23, pp.
116–131. Springer, 2012.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani,
Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open LLM leaderboard. Hugging Face,
2023.

Erdem Bıyık, Daniel A Lazar, Dorsa Sadigh, and Ramtin Pedarsani. The green choice: Learning
and influencing human decisions on shared roads. In 2019 IEEE 58th conference on decision and
control (CDC), pp. 347–354. IEEE, 2019.

11

https://anonymous.4open.science/r/Segment-Reward-Model-For-PPO-Training-1512
https://anonymous.4open.science/r/Segment-Reward-Model-For-PPO-Training-1512

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pp. 330–359. PMLR,
2020.

Meng Cao, Lei Shu, Lei Yu, Yun Zhu, Nevan Wichers, Yinxiao Liu, and Lei Meng. Drlc: Reinforce-
ment learning with dense rewards from llm critic. arXiv preprint arXiv:2401.07382, 2024.

Louis Castricato, Alexander Havrilla, Shahbuland Matiana, Michael Pieler, Anbang Ye, Ian Yang,
Spencer Frazier, and Mark Riedl. Robust preference learning for storytelling via contrastive
reinforcement learning. arXiv preprint arXiv:2210.07792, 2022.

Alex J Chan, Hao Sun, Samuel Holt, and Mihaela van der Schaar. Dense reward for free in
reinforcement learning from human feedback. arXiv preprint arXiv:2402.00782, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Junchen Wan, Fuzheng Zhang, Di Zhang, and Ji-Rong
Wen. Improving large language models via fine-grained reinforcement learning with minimum
editing constraint. arXiv preprint arXiv:2401.06081, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

T Dao, DY Fu, S Ermon, A Rudra, and C Flashattention Ré. Fast and memory-efficient exact attention
with io-awareness. URL https://arxiv. org/abs/2205.14135, 2022.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. Understanding dataset difficulty with
V-usable information. In International Conference on Machine Learning, pp. 5988–6008. PMLR,
2022.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Yihao Feng, Shentao Yang, Shujian Zhang, Jianguo Zhang, Caiming Xiong, Mingyuan Zhou, and
Huan Wang. Fantastic rewards and how to tame them: A case study on reward learning for task-
oriented dialogue systems. In The Eleventh International Conference on Learning Representations,
2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chelsea Finn, Paul Francis Christiano, P. Abbeel, and Sergey Levine. A connection between
generative adversarial networks, inverse reinforcement learning, and energy-based models. ArXiv,
abs/1611.03852, 2016.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-based
reinforcement learning: a formal framework and a policy iteration algorithm. Machine learning,
89:123–156, 2012.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
man. Aligning language models with preferences through f-divergence minimization. arXiv
preprint arXiv:2302.08215, 2023.

Yi Gu, Zhendong Wang, Yueqin Yin, Yujia Xie, and Mingyuan Zhou. Diffusion-rpo: Aligning
diffusion models through relative preference optimization. arXiv preprint arXiv:2406.06382, 2024.

Geyang Guo, Ranchi Zhao, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Beyond imitation:
Leveraging fine-grained quality signals for alignment. arXiv preprint arXiv:2311.04072, 2023.

Han Guo, Bowen Tan, Zhengzhong Liu, Eric Xing, and Zhiting Hu. Efficient (soft) q-learning for
text generation with limited good data. Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 6969–6991, 2022.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via
adversarial training with leaked information. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning from
dialogue after deployment: Feed yourself, chatbot! arXiv preprint arXiv:1901.05415, 2019.

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung, Aman Tiwari, Jonathan Tow, Stella Biderman,
Quentin Anthony, and Louis Castricato. trlX: A framework for large scale reinforcement learning
from human feedback. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 8578–8595, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.530. URL https://aclanthology.org/
2023.emnlp-main.530.

Donald Joseph Hejna and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop rl. In
Conference on Robot Learning, pp. 2014–2025. PMLR, 2023a.

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. arXiv preprint arXiv:2305.15363, 2023b.

Jian Hu, Xibin Wu, Weixun Wang, Xianyu, Dehao Zhang, and Yu Cao. Openrlhf: An easy-to-use,
scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143, 2024.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Shane Gu, and Rosalind Picard. Human-centric dialog training via offline
reinforcement learning. arXiv preprint arXiv:2010.05848, 2020.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
text generation. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=jWkw45-9AbL.

13

https://aclanthology.org/2023.emnlp-main.530
https://aclanthology.org/2023.emnlp-main.530
https://openreview.net/forum?id=jWkw45-9AbL
https://openreview.net/forum?id=jWkw45-9AbL

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Preference
transformer: Modeling human preferences using transformers for RL. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Peot1SFDX0.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2014.

Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement learning
and distribution matching for fine-tuning language models with no catastrophic forgetting. arXiv
preprint arXiv:2206.00761, 2022.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L Buckley, Jason Phang,
Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences. arXiv
preprint arXiv:2302.08582, 2023.

Cassidy Laidlaw, Stuart Russell, and Anca Dragan. Bridging rl theory and practice with the effective
horizon. arXiv preprint arXiv:2304.09853, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
Rewardbench: Evaluating reward models for language modeling, 2024.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Kimin Lee, Laura M. Smith, and P. Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In International Conference
on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:
235377145.

Bolian Li, Yifan Wang, Ananth Grama, and Ruqi Zhang. Cascade reward sampling for efficient
decoding-time alignment. arXiv preprint arXiv:2406.16306, 2024a.

Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Aligning
diffusion models by optimizing human utility. arXiv preprint arXiv:2404.04465, 2024b.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E Gonzalez, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, 2024c.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adversarial ranking for
language generation. Advances in neural information processing systems, 30, 2017.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023.

Ximing Lu, Sean Welleck, Liwei Jiang, Jack Hessel, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning. arXiv
preprint arXiv:2205.13636, 2022.

R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2012.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances in
neural information processing systems, 31, 2018.

14

https://openreview.net/forum?id=Peot1SFDX0
https://openreview.net/forum?id=Peot1SFDX0
https://api.semanticscholar.org/CorpusID:235377145
https://api.semanticscholar.org/CorpusID:235377145

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Peter Marbach and John N Tsitsiklis. Approximate gradient methods in policy-space optimization of
markov reward processes. Discrete Event Dynamic Systems, 13:111–148, 2003.

Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chadwick,
Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, et al. Teaching
language models to support answers with verified quotes. arXiv preprint arXiv:2203.11147, 2022.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. arXiv preprint arXiv:1705.04304, 2017.

Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 24(2):193–202, 1975.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=HPuSIXJaa9.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q∗: Your language model is
secretly a Q-function. arXiv preprint arXiv:2404.12358, 2024.

Govardana Sachithanandam Ramachandran, Kazuma Hashimoto, and Caiming Xiong. Causal-aware
safe policy improvement for task-oriented dialogue. arXiv preprint arXiv:2103.06370, 2021.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level training
with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7008–7024, 2017.

Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pp. 101–103, 1998.

Seonggi Ryang and Takeshi Abekawa. Framework of automatic text summarization using re-
inforcement learning. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pp. 256–
265, Jeju Island, Korea, July 2012. Association for Computational Linguistics. URL https:
//aclanthology.org/D12-1024.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,
Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training
enables zero-shot task generalization. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan, Angelica Chen, Kyunghyun Cho, and Ethan
Perez. Training language models with language feedback, 2022.

15

https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://aclanthology.org/D12-1024
https://aclanthology.org/D12-1024
https://openreview.net/forum?id=9Vrb9D0WI4

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162.
URL https://aclanthology.org/P16-1162.

Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward diverse text generation with
inverse reinforcement learning. arXiv preprint arXiv:1804.11258, 2018.

Daniel Shin, Daniel S Brown, and Anca D Dragan. Offline preference-based apprenticeship learning.
arXiv preprint arXiv:2107.09251, 2021.

Raphael Shu, Kang Min Yoo, and Jung-Woo Ha. Reward optimization for neural machine translation
with learned metrics. arXiv preprint arXiv:2104.07541, 2021.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

Irene Solaiman and Christy Dennison. Process for adapting language models to society (PALMS) with
values-targeted datasets. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=k-ghaB9VZBw.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize from human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang. Guided dialog policy learning: Reward estimation
for multi-domain task-oriented dialog. arXiv preprint arXiv:1908.10719, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. arXiv preprint arXiv:2311.12908, 2023.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024a.

Huimin Wang, Baolin Peng, and Kam-Fai Wong. Learning efficient dialogue policy from demon-
strations through shaping. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 6355–6365, 2020.

Xinpeng Wang, Bolei Ma, Chengzhi Hu, Leon Weber-Genzel, Paul Röttger, Frauke Kreuter, Dirk
Hovy, and Barbara Plank. ” my answer is c”: First-token probabilities do not match text answers
in instruction-tuned language models. arXiv preprint arXiv:2402.14499, 2024b.

16

https://aclanthology.org/P16-1162
https://openreview.net/forum?id=k-ghaB9VZBw
https://openreview.net/forum?id=k-ghaB9VZBw

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, et al. Helpsteer: Multi-attribute
helpfulness dataset for steerlm. arXiv preprint arXiv:2311.09528, 2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models. arXiv preprint arXiv:2406.08673, 2024c.

Jing Xu, Da Ju, Margaret Li, Y-Lan Boureau, Jason Weston, and Emily Dinan. Recipes for safety in
open-domain chatbots. arXiv preprint arXiv:2010.07079, 2020.

Shentao Yang, Shujian Zhang, Congying Xia, Yihao Feng, Caiming Xiong, and Mingyuan Zhou.
Preference-grounded token-level guidance for language model fine-tuning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=6SRE9GZ9s6.

Shentao Yang, Tianqi Chen, and Mingyuan Zhou. A dense reward view on aligning text-to-image
diffusion with preference. In Forty-first International Conference on Machine Learning, 2024.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised text
style transfer using language models as discriminators. Advances in Neural Information Processing
Systems, 31, 2018.

Yueqin Yin, Zhendong Wang, Yi Gu, Hai Huang, Weizhu Chen, and Mingyuan Zhou. Relative
preference optimization: Enhancing llm alignment through contrasting responses across identical
and diverse prompts. arXiv preprint arXiv:2402.10958, 2024.

Eunseop Yoon, Hee Suk Yoon, SooHwan Eom, Gunsoo Han, Daniel Wontae Nam, Daejin Jo, Kyoung-
Woon On, Mark A Hasegawa-Johnson, Sungwoong Kim, and Chang D Yoo. Tlcr: Token-level
continuous reward for fine-grained reinforcement learning from human feedback. arXiv preprint
arXiv:2407.16574, 2024.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. RRHF:
Rank responses to align language models with human feedback. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=EdIGMCHk4l.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets ppo:
Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024.

Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proc. AAAI, pp. 1433–1438, 2008.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

17

https://openreview.net/forum?id=6SRE9GZ9s6
https://openreview.net/forum?id=6SRE9GZ9s6
https://openreview.net/forum?id=EdIGMCHk4l
https://openreview.net/forum?id=EdIGMCHk4l

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

2 Main Method 2

2.1 Notations and Background . 2

2.2 Reward Model Training . 3

2.3 PPO-based Policy Learning . 4

3 Related Work 5

4 Experiments 6

4.1 Experimental Setups and Implementation . 6

4.2 Main Experimental Comparisons . 7

4.3 Ablation Study . 8

5 Conclusion and Limitations 10

A Algorithm Box 19

B Additional Results 19

B.1 Tabular Results . 19

B.2 Examples of Generated Responses . 20

C More Implementation Details 24

D More Related Work 25

E More on the Reward Normalizers in PPO Training 26

F More on the Even-split Reward Interpolation Strategy 26

G PPO Training Converged in One Epoch 27

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A ALGORITHM BOX

Algorithm 1 summarizes our method in Section 2 on training the segment-level reward model and
utilizing it in PPO-based RLHF LM training. Note that all operations in Algorithm 1 can be efficiently
conducted in batch mode, parallel for multiple sample points at once.

Algorithm 1 Training and Utilizing Our Segment-level Reward.

Input: Binary preference dataset Dpref = {(x, yw, yl)} for reward model training, prompt set
Dpol = {x} for policy learning, supervised fine-tuned model πSFT, reward model training steps
Mrew, LM policy training steps Mpol, entropy cutoff cent, temperature τ for the aggregation
function, KL coefficient β for RLHF PPO training.

Initialization: Initialize the segment-level reward model rϕ and LM policy πθ from πSFT, fix
the aggregation function f(·) as the soft-maximum in Eq. (4), initialize other components in the
off-the-shelf RLHF PPO routine as specified.

// Training the segment-level reward model
Use πSFT and cent to split the responses {(yw, yl)} in Dpref = {(x, yw, yl)} into segments.
for iter ∈ {1, . . . ,Mrew} do

Sample a minibatch B = {(xi, y
w
i , y

l
i)}i ∼ Dpref .

With f(·) and τ , calculate eϕ(xi, y
w
i) and eϕ(xi, y

l
i) by Eq. (4) for (xi, y

w
i , y

l
i) ∈ B.

Optimize reward model rϕ by Eq. (3).
end for

// Utilizing the segment-level reward model in PPO-based LM policy learning
Estimate the reward normalizer functions Mean(p) and Std(p) as described in Section 2.3.
for iter ∈ {1, . . . ,Mpol} do

Sample a minibatch B = {xi}i ∼ Dpol.
Sample a response yi ∼ πθ(· |xi) for each xi ∈ B
Use πSFT and cent to segment each yi; record the completion portion p of each segment.
Use rϕ to assign a segment-level reward to each segment at in each yi
Normalize each segment reward rϕ(st, at) as rϕ(st, at)← (rϕ(st, at)−Mean(p))/Std(p).
Interpolate rϕ(st, at) to each token yi, as ∀ at ∈ y,∀ yi ∈ at, r̃ϕ([x, y<i], yi) = rϕ(st, at)/|at|
With KL coefficient β, optimize policy LM πθ against r̃ϕ by the PPO routine.

end for

B ADDITIONAL RESULTS

B.1 TABULAR RESULTS

Table 5: Break down classification accuracy on RewardBench to test reward model’s quality, comparing the
reward models in our main result table Table 1 in Section 4.2.

Action Definition Average(%) Chat(%) Chat-hard(%) Reasoning(%) Safety(%)

Bandit 81.11 97.77 57.68 77.54 86.00
Sentence 84.42 97.49 55.48 89.35 85.87
Token 81.21 98.04 54.39 79.95 84.03
Segment 85.93 97.49 55.04 93.77 85.90

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Evaluation results of downstream tasks on the HuggingFace OpenLLM Leaderboard (Beeching et al.,
2023), comparing LM policies in Table 1.

Action Definition ARC TruthfulQA Winograd HellaSwag MMLU GSM8K Average

SFT (No RLHF) 63.65 51.89 75.06 77.99 70.34 79.50 69.74

Bandit (Sequence) 63.82 52.25 74.51 78.13 70.37 78.90 69.66
Sentence 63.90 52.41 73.48 78.20 70.34 80.10 69.74
Token 63.22 51.71 73.56 78.43 70.28 80.40 69.60

Segment (Ours) 63.82 52.42 74.19 78.27 70.32 79.00 69.67

Bandit as Segment 63.14 51.06 72.38 78.20 70.41 80.40 69.27
Segment as Bandit 63.99 52.47 73.72 78.12 70.51 79.90 69.79

B.2 EXAMPLES OF GENERATED RESPONSES

Below, we provide examples of generated responses from our LM policy in the main results (Table 1)
on the benchmarks AlpacaEval 2.0 (first two examples) and Arena-Hard (last two examples).

Prompt: When are hops added to the brewing process?

Response: Hops are typically added to the brewing process during the boil, which is a critical
phase in beer production. The boiling process plays several important roles in beer making,
including the extraction of hop bitterness, flavor, and aroma compounds, as well as the steriliza-
tion of the wort (the liquid extracted from the mashing process that contains the sugars to be
fermented). Here is a breakdown of when hops are generally added during the boil:

1. Early Boil (First 30 minutes): Hops can be added early in the boil, and this addition typically
contributes more to the bitterness of the beer. The longer the hops are boiled, the more bitterness
they impart, due to the isomerization of alpha acids. Early additions might be used to start the
boiling process and can also contribute to some of the beer’s flavor and aroma.

2. Middle Boil (Later 30 minutes): Hops added during the middle of the boil contribute more
to the beer’s flavor than bitterness. This timing allows for the extraction of essential oils and
resins that provide a range of hop-derived flavors and aromas without overly increasing the
bitterness.

3. Late Boil (Final 10-15 minutes): Hops added in the last 10-15 minutes of the boil contribute
the most to the beer’s aroma. The shorter boil time for these hops reduces the extraction of alpha
acids, minimizing bitterness while maximizing the retention of essential oils and volatile aroma
compounds. This is the stage where many brewers add hops to achieve hoppy aroma profiles in
styles like IPAs, double IPAs, and American pale ales.

4. Dry Hopping (After Fermentation): While not part of the traditional boiling process, dry
hopping is a modern technique used to add aroma and flavor without significantly increasing the
beer’s bitterness. Hops are added to the fermenter after primary fermentation has ceased. This
process enhances the beer’s aromatic qualities by infusing it with the intense, floral, fruity, or
spicy notes that hop varieties offer.

The timing of hops additions is crucial and varies based on the beer style, the desired bitterness
level, and the aromatic profile the brewer aims to achieve. Experimentation and experience play
significant roles in determining the optimal hop schedule for a particular brew.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt: Introduce the “financial markets and institutions“ by Frederic S. Mishkin.

Response: Frederic S. Mishkin is a prominent economist with significant contributions to the
field of financial markets and institutions. In his influential book, ”The Economics of Money,
Banking, and Financial Markets,” Mishkin delves into the intricate workings of financial markets
and the roles of financial institutions in the economy.

Financial markets encompass the platforms where buyers and sellers of financial assets, such as
stocks, bonds, and derivatives, interact to determine prices and execute trades. These markets
play a crucial role in efficiently allocating resources, facilitating risk management, and providing
a platform for price discovery.

Financial institutions, on the other hand, are intermediaries that facilitate the flow of funds
between borrowers and lenders. They encompass a wide range of entities, including banks,
investment firms, insurance companies, and pension funds. These institutions play a vital role
in the functioning of financial markets by providing various services, such as credit provision,
investment advice, and risk management.

Mishkin emphasizes the importance of a well-functioning financial system in promoting eco-
nomic growth and stability. He highlights the key roles of financial markets and institutions in
promoting savings, investments, and efficient allocation of capital. Furthermore, he explores the
mechanisms through which financial markets and institutions contribute to economic stability
by facilitating liquidity and risk management.

In his work, Mishkin also discusses the potential risks and vulnerabilities in the financial system,
such as asset price bubbles, excessive leverage, and systemic risk. He acknowledges the role of
financial markets and institutions in amplifying these risks and emphasizes the importance of
prudent regulation and oversight to safeguard the stability of the financial system.

Overall, Frederic S. Mishkin’s introduction to financial markets and institutions provides a
comprehensive understanding of the complex dynamics and crucial functions of these entities in
the modern economy. His work serves as an essential resource for economists, policymakers,
and students seeking to grasp the intricacies of financial markets and institutions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompt: Provide me with a breakfast recipe that is quick to make and is high in protein (at least
30 grams) and has a variety of ingredients.

Response: Here is a quick and high-protein breakfast recipe that includes a variety of ingredi-
ents:

High-Protein Breakfast Quinoa Bowl

Ingredients:

- 1/2 cup quinoa

- 1 cup water

- 1/2 cup Greek yogurt (plain, full-fat)

- 1/4 cup chopped nuts (almonds, walnuts, or pecans)

- 1/4 cup fresh berries (strawberries, blueberries, or raspberries)

- 1 tablespoon chia seeds

- 1 tablespoon honey or maple syrup (optional)

- A pinch of salt

1. Rinse the quinoa under cold water to remove its natural coating, saponin, which can make it
taste bitter or soapy.

2. In a small saucepan, bring the water to a boil. Add the quinoa and a pinch of salt. Reduce
heat to low, cover, and simmer for about 15 minutes, or until the water is absorbed and the
quinoa is fluffy.

3. While the quinoa is cooking, prepare the toppings. Warm the Greek yogurt in the microwave
for about 30 seconds or until it’s at a comfortable temperature.

4. In a bowl, mix the cooked quinoa with the Greek yogurt, ensuring the quinoa is well coated.

5. Add the chopped nuts and fresh berries on top of the quinoa-yogurt mixture.

6. Sprinkle chia seeds over the bowl for an extra protein boost and a dose of omega-3 fatty acids.

7. Drizzle honey or maple syrup over the bowl for a touch of sweetness, if desired.

8. Serve immediately and enjoy your high-protein, nutrient-rich breakfast!

This breakfast bowl provides a good balance of carbohydrates, protein, and healthy fats, making
it a satisfying and nutritious start to the day. The quinoa is a complete protein, meaning it
contains all nine essential amino acids, while the Greek yogurt adds additional protein and
probiotics for gut health. The nuts and berries offer healthy fats, antioxidants, and fiber.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompt: Write a python function that solves a quadratic equation.

Response: To solve a quadratic equation of the form ax2+bx+c = 0, we can use the quadratic
formula:

x =
−b±

√
b2 − 4ac

2a

Here’s a Python function that implements this formula:

import math

def solve_quadratic(a, b, c):
"""
Solves a quadratic equation of the form axˆ2 + bx + c = 0.

Parameters:
a (float): Coefficient of xˆ2
b (float): Coefficient of x
c (float): Constant term

Returns:
tuple: A tuple containing the two solutions (x1, x2)
"""
Calculate the discriminant
discriminant = b**2 - 4*a*c

Check if the discriminant is positive, negative, or zero
if discriminant > 0:

Two real and distinct roots
x1 = (-b + math.sqrt(discriminant)) / (2*a)
x2 = (-b - math.sqrt(discriminant)) / (2*a)
return (x1, x2)

elif discriminant == 0:
One real root (repeated)
x = -b / (2*a)
return (x,)

else:
No real roots (complex roots)
real_part = -b / (2*a)
imaginary_part = math.sqrt(-discriminant) / (2*a)
return (complex(real_part, imaginary_part), complex(real_part, -

↪→ imaginary_part))

Example usage
a, b, c = 1, 5, 6
solutions = solve_quadratic(a, b, c)
print(f"The solutions are: {solutions}")

This function first calculates the discriminant (b2−4ac). Based on the value of the discriminant,
it determines the nature of the roots (real and distinct, real and repeated, or complex) and
calculates the roots accordingly. For complex roots, it returns a tuple of complex numbers.

Remember, the coefficients a, b, and c should be provided as floating-point numbers to handle
cases where they might not be integers.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C MORE IMPLEMENTATION DETAILS

Table 7: Model hyperparameters used in reward model
training.

Hyperparameter Value

Batch Size 128
Training Epochs 1
Max prompt length 1728
Max total length 2048
DeepSpeed ZeRO stage 3
Optimizer Adam
Learning Rate 1e-6
Gradient clipping norm 1.0
Entropy threshold cent 2.0
Soft-maximum temperature τ 0.5

Table 8: Model hyperparameters used in PPO-based
LM policy training.

Hyperparameter Value

Batch Size 128
Rollout batch size 1024
Micro rollout batch size 16
Training Epochs 1
Max prompt length 1024
Max generation length 1024
DeepSpeed ZeRO stage 2
Actor learning rate 5e-7
Critic learning rate 9e-6
Gradient clipping norm 1.0
Entropy threshold cent 2.0
Soft-maximum temperature τ 0.5
Value clipping 0.25
KL coefficient β 0.01

Implementation Details. We tabulate detailed parameter settings in Table 7 and Table 8. Most of
them are the same as the default setting in OpenRLHF. Both the reward model and PPO training
employ the Adam optimizer (Kingma & Ba, 2014), with β1 = 0.9 and β2 = 0.95. To save GPU
memory, we use gradient checkpointing (Chen et al., 2016) and flash attention (Dao et al., 2022).

For reward model training, we set the maximum prompt sequence length as 1792 tokens, with the
total sequence length (including both prompt and response) capped at 2048 tokens. During data
preprocessing, we apply left truncation to the prompt and right truncation to the response. If the
EOS token in the response is truncated, we manually change the last token in the truncated response
to the EOS token. The global mini batch size for reward model training is set to 128, with each
GPU processing a micro batch size of 8. To facilitate distributed training, we utilize DeepSpeed
ZeRO-3. For our segment-level reward model, we set the entropy threshold cent = 2.0. The baseline
bandit reward model is technically implemented as setting the entropy threshold cent = 1000,
restricting reward computation to the EOS token only, while the baseline token-level reward model is
implemented as setting the entropy threshold cent = 0, ensuring that a reward is computed for each
token in the text sequence.

For PPO training, we set the replay buffer size (rollout batch size) to 1024 and the batch size
per GPU for generation (micro rollout batch size) to 16. The maximum prompt sequence
length is set as 1024 tokens, and the maximum generated sequence length is also set to 1024 tokens. In
PPO’s on-policy sampling, for each prompt in the mini-batch, a single response is sampled via top-p
sampling with p = 1.0 and sampling temperature 1.0. We use DeepSpeed ZeRO-2 for distributed
training. The actor learning rate is set to the default value of 5× 10−7, and the critic learning rate
is also the default value of 9 × 10−6. The clipping coefficient for value loss (value clip) is set to
0.25 for PPO training based on segment- and token-level reward model , and as default to 0.2 for
bandit-reward-based PPO training. The clipping coefficient for policy loss (eps clip) is set to 0.2. The
KL coefficient is kept to the default value of β = 0.01.

24

https://github.com/OpenRLHF/OpenRLHF
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Chat Template. Below is the chat template used for PPO training, reward model training, and
evaluation sampling with Phi-3. The original Phi-3-Mini chat template includes an additional EOS
token, which we removed in experiments due to incompatibility, leaving only the <|end|> token.

<|user|>
{the user query} <|end|>
<|assistant|>
{Assistant Response} <|end|>

D MORE RELATED WORK

Learning-from-preference. Learning-from-preference classically takes a two-stage approach
where a reward model is first trained on a dataset of binary or multiple ranking via maximizing the
choice model likelihood (Bradley & Terry, 1952; Plackett, 1975; Luce, 2012), before optimizing the
RL/control policy against the learned reward model by RL algorithms (Akrour et al., 2011; 2012;
Fürnkranz et al., 2012). Earlier application in deep learning mainly focuses on relatively simple
neural-network policy for robotics/control tasks (Christiano et al., 2017; Ibarz et al., 2018; Bıyık
et al., 2019; Brown et al., 2019; 2020; Lee et al., 2021; Shin et al., 2021; Hejna & Sadigh, 2023a;b).
Implanting its success in robotics, in natural language generation, this two-stage learning-from-
preference paradigm has been scaled up and popularized in the post-training stage to align LMs
with specific human values, with applications ranging from text summarization (Ziegler et al., 2019;
Stiennon et al., 2020), prompt generation (Yang et al., 2023), to (task-oriented) conversational agent
(e.g., Ouyang et al., 2022; Bai et al., 2022a; Menick et al., 2022; Feng et al., 2023; OpenAI, 2023).

To alleviate the complexity in fitting an explicit reward model, motivated by the theory of maximum-
entropy control and RL (Ziebart et al., 2008; Ziebart, 2010; Finn et al., 2016), direct preference
optimization methods (DPO, e.g., Rafailov et al., 2023; Tunstall et al., 2023; Azar et al., 2023; Yuan
et al., 2023; Zhao et al., 2023; Ethayarajh et al., 2024; Yin et al., 2024) were recently proposed to
directly train LMs on a preference dataset by using their log-density-ratio as the classification logit,
which have been adapted to train text-to-image diffusion models (e.g., Wallace et al., 2023; Yang
et al., 2024; Li et al., 2024b; Gu et al., 2024).

In this paper, we contribute to the literature of learning-from-preference by re-thinking a suitable
definition of action space in the RL formulation of LM generation and preference alignment. Moti-
vated by semantic completeness in linguistics, we define each action as “text segment”, spanning
across a small amount of tokens and interpolating between prior works’ action space of either the
finest “per token” or the coarsest “full sequence”. With this design, our method may benefit from
both denser reward signal for easier RL-based LM training and the semantic completeness of each
action for more accurate training guidance, as experimentally verified in Section 4.

Training Signals for RL-based Language Model (LM) Training. In RL-based LM fine-tuning, a
classical training signal for adapting LMs to the specific downstream task is the native trajectory-
level downstream test metrics (e.g., Ryang & Abekawa, 2012; Ranzato et al., 2015; Rennie et al.,
2017; Paulus et al., 2017; Shu et al., 2021; Lu et al., 2022). This approach intrinsically uses a bandit
formulation of LM generation that treats the entire generated sequence as a single action. As discussed
in Section 1, ignoring the sequential nature of LM generation, this bandit training signal delays
the feedback to each token/phrase selection, and can thus incur optimization difficulty (Guo et al.,
2022; Snell et al., 2022). With various forms of stronger data or compute requirements, task-specific
per-step training signals have been proposed to mitigate this sparse reward issue. Assuming abundant
golden expert data for supervised (pre-)training, Shi et al. (2018) construct per-step reward via inverse
RL (Russell, 1998); Guo et al. (2018) use a hierarchical approach; Yang et al. (2018) learn LM
discriminators; Lin et al. (2017) and Yu et al. (2017) use the expensive and high-variance Monte
Carlo rollout to estimate per-step reward from a sequence-level adversarial reward function trained in
the first place; while Le et al. (2022) use some rule-based intermediate training signal derived from
the oracle sequence-level evaluation, without explicitly learning per-step reward.

Similarly, in RLHF, to move forward from the classical bandit formulation, methods have recently
been proposed to ground sparse preference labels into dense per-step feedback, with applications

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

in task-oriented dialog systems (e.g., Ramachandran et al., 2021; Feng et al., 2023) and variable-
length text-sequence generation (Yang et al., 2023). Our paper seeks to reconcile dense v.s. sparse
training signal in RLHF by distributing feedback to the level of semantically complete “text segment”,
interpolating between the densest “token level” and the sparsest “sequence level” and ideally getting
the benefit of both worlds: easier RL training and accurate optimization signal. Meanwhile, as seen
in Section 2, our method adheres to the classical two-stage RLHF paradigm without requiring extra
data or compute.

Other LM Preference Alignment Methods. Apart from RL methods, strategies have been
developed to align LMs with preference by adding external filters on top of the pretrained LMs,
for safety checking the generations or the training texts (e.g., Xu et al., 2020). Vanilla maximum
likelihood estimation has also been adopted for training LMs on curated datasets (Hancock et al.,
2019; Solaiman & Dennison, 2021; Scheurer et al., 2022), or instruction fine-tuning LMs on massive
highly-curated sets of tasks (Sanh et al., 2022; Chung et al., 2022). With extra requirements on data,
modelling, and/or compute, recent LM works also conduct preference alignment by formulating text
generation as a constraint satisfaction problem on LM’s generation distribution (e.g., Khalifa et al.,
2021; Korbak et al., 2022; Go et al., 2023), or utilizing the preference dataset in LMs’ pre-training
stage (Korbak et al., 2023) .

In this paper, we seek to refine RL-based LM preference alignment by re-thinking the suitable action
space in the RL formulation that allows both denser immediate feedback while not jeopardizing the
feedback accuracy. Our segment-level design is validated through numeric and example in Section 4.

E MORE ON THE REWARD NORMALIZERS IN PPO TRAINING

To center the assigned rewards from the reward model and reduce their variance, in most open-sourced
(bandit) RLHF PPO implementation (e.g., Havrilla et al., 2023; Hu et al., 2024), the bandit reward of
the newly sampled response y is first “Z-score” normalized, before being fed into the PPO routine.
Concretely, for the prompt x and sampled response y, the bandit reward rϕ(x, y) is normalized as
rϕ(x, y) ← (rϕ(x, y) − µ)/σ, where µ and σ are respectively the mean and standard deviation of
(bandit) rewards in the reward calibration dataset. The PPO routine starts by using this normalized
rϕ(x, y), e.g., first subtract it by the KL regularization, and then calculate the advantage estimates
and value function training target, etc.

For the segment-level action space, we will then need to normalize the reward rϕ(st, at) for each
segment at. As shown in Table 2 (“Global Statistics of All”), the most intuitive idea of simply using
the global mean and standard deviation over all segment-level rewards in the reward calibration
dataset does not train a good LM. Looking into the responses sampled in PPO training and in the
reward calibration dataset, we find that, for example, the beginning segments of the responses are
typically greeting alike phases that are less informational and/or essential to respond to the given
prompt, and hence have relatively lower rewards. If we normalize the segment-level rewards of
those early segments by the global mean and standard deviation, those normalized rewards will be
significantly negative, rather than centered around 0. This will undesirably refrain the generation of
necessary greeting alike phases, resulting in an “impolite LM” and thus inferior benchmark results.
More generally, the linguistic structure of the responses leads to certain correlation between the
mean and standard deviation of segment-level reward values and the location of segment in the
response, e.g., in the early/middle/later part. This observation motivates us to design location-aware
reward normalizers that can approximately capture the reward statistics at an arbitrary location of the
response, so that the normalized segment-level rewards can be more centered and less varying. It is
important to have proper reward normalizers at an arbitrary location of the response, because the
response sampled in PPO training will have a stochastic total length, nondeterministic number of
segments, and less-controllable length of each segment. These considerations motivate our design of
the regression-based reward normalizer functions in Section 2.3.

F MORE ON THE EVEN-SPLIT REWARD INTERPOLATION STRATEGY

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

In this section, we expand our previous discussion in Section 4.3 (c), on (1) a plausible reason why
no reward interpolation does not work well; and (2) the even-split reward interpolation strategy in
Section 2.3 does not conflict with our segment-level design for LM’s RLHF. For notation simplicity,
all segment-level rewards rϕ(st, at) in this section are after normalization.

As discussed in Section 4.3 (c), for the variant of without reward interpolation, we follow the classical
bandit RLHF implementation to pad 0 for the “reward” of intermediate token within a segment.
Similar to the bandit implementation, the array of KL-regularized RL training-signal under our
segment-level rewards takes the form of, for example,

[−KL1,−KL2, rϕ(s1, a1)−KL3,−KL4, rϕ(s2, a2)−KL5, . . .] ,

where KLi denotes the token-wise factorization of the KL regularization term in the PPO objective.
Since KL(·||·) > 0, KL-regularized RL training-signals are negative for those intermediate tokens
within a segment. Note that, by design, there are more those intermediate tokens than tokens with
a segment-level reward rϕ(st, at). These factors, especially a lot of negative training signals in
generation, can refrain the LM from learn to generate, as seen by the significantly shorter generation
lengths that the “No Interpolation” variant shows in Table 3.

By contrast, with our even-split reward interpolation strategy, the array of KL-regularized RL training-
signal under our segment-level rewards now takes the form of, again for example,[
rϕ(s1,a1)

3 −KL1,
rϕ(s1,a1)

3 −KL2,
rϕ(s1,a1)

3 −KL3,
rϕ(s2,a2)

2 −KL4,
rϕ(s2,a2)

2 −KL5, . . .
]
.

The training signals to intermediate tokens are now rϕ(st, at)/|at|−KLi, which will be positive/less-
negative at least for good segments in the responses (the segments at with high reward rϕ(st, at)),
due to reward normalization. These positive/less-negative training signals could incentivize the LM
to learn to properly generate, as seen by the adequate generation lengths that our main “Even Split”
variant presents in Table 3.

We note that our even-split reward interpolation strategy does not conflict with our segment-level
design: every token within the same segment receives the same “evenly-split reward” rϕ(st, at)/|at|.
By contrast, in the token-level design, every token yi will, in general, have a different reward
r([x, y<i], yi). See Fig. 3 for a pictorial illustration of such a difference in reward assignment. In
Fig. 3, it is clear that the token-level reward assignment can be overly granular — in many cases are
inconsistent even within a word, which is counter-intuitive and less desirable.

To sum up, by the semantic completeness of each action, our design of segment-level MDP facilitates
more accurate and consistent reward assignments, compared to the token-level MDP. This benefit
will not be broken by our even-split reward interpolation strategy. By the previous discussion on KL-
regularized RL training-signal, we regard this strategy as a useful technique to cope with the per-token
KL regularization in RLHF PPO training, which is extraneous to RLHF reward modeling/assignment.

G PPO TRAINING CONVERGED IN ONE EPOCH

Bandit Reward Segment Reward (Ours)

0.0 1.0 1.5 2.0

18

22

26

30

(a) AlpacaEval 2.0 (LC %)
0.0 1.0 1.5 2.0

24

28

32

36

(b) Arena-Hard (LC %)
0.0 1.0 1.5 2.0

7.0

7.2

7.4

7.6

(c) MT-Bench

Figure 5: Training curves of the (PPO-trained) LM policies on the three tested RLHF benchmarks, comparing
training under our segment-level reward model and the classical bandit reward model. Both policies are trained
for two epochs — one epoch more than our main results. x-axis represents the number of training epochs, e.g.,
1.5 represents the performance of the checkpoints after training for 1.5 epochs. y-axis is the benchmark score.

27

https://github.com/OpenRLHF/OpenRLHF/blob/3b116caf1931bfabb6fa2e6425e794a0da6a666d/openrlhf/models/utils.py#L55

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

For our main experiment results (Section 4.2), we follow the default setting in OpenRLHF to train
all models by PPO for one epoch. To verify that the training converged, in Fig. 5, we train the LM
policies under our segment-level reward and the classical bandit reward for two epochs, and evaluate
the intermediate policy checkpoints on the three tested RLHF benchmarks. The backbone model here
is Phi3-mini-4k-instruct.

In accordance with the default in OpenRLHF, in Fig. 5, we see that the training under our segment-
level reward and the classical bandit reward (approximately) converged in one epoch — further
training may in fact deteriorates certain policy performance. In Fig. 5, it is clear that policy training
under our segment-level reward is consistently better than the classical bandit reward, over the entire
training process. Fig. 5 also helps to justify the performance comparison in our main results (Table 1).

28

https://github.com/OpenRLHF/OpenRLHF/blob/78e1fbb7f34cb313fe63cc0eb0a6ba5b7ed764a9/openrlhf/cli/train_ppo.py#L298
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct

	Introduction
	Main Method
	Notations and Background
	Reward Model Training
	PPO-based Policy Learning

	Related Work
	Experiments
	Experimental Setups and Implementation
	Main Experimental Comparisons
	Ablation Study

	Conclusion and Limitations
	Algorithm Box
	Additional Results
	Tabular Results
	Examples of Generated Responses

	More Implementation Details
	More Related Work
	More on the Reward Normalizers in PPO Training
	More on the Even-split Reward Interpolation Strategy
	PPO Training Converged in One Epoch

