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Abstract

We audit decontextualization strategies for long-document scientific QA on PeerQA.
We sweep sentence- and paragraph-level templates (from minimal content to
title+heading) across BM25, TF-IDF, dense retrieval, ColBERT, and cross-encoder
reranking, and evaluate with Recall@k, MRR, and answerability F1. A central
finding is that oracle-style evaluation (per-paper indexing) dramatically inflates
retrieval scores compared to full-corpus search: BM25 achieves R@10=1.000 and
MRR~0.68 under oracle, but only R@10~0.011 and MRR~0.015 over the full
corpus. Surprisingly, answerability remains robust, with full-corpus configurations
matching or exceeding oracle F1. We further show that decontextualization is not
one-size-fits-all: sparse methods favor minimal context in oracle settings, while
paragraph-level chunks with measured structure (title+heading) work best under
realistic full-corpus conditions, and late-interaction models benefit from more
aggressive context. We release a configurable framework and provide practical
guidance: prioritize paper identification before fine-grained evidence search, prefer
paragraph-level chunks, use measured decontextualization, and evaluate end-to-end
under full-corpus conditions.

1 Introduction

Scientific articles are long, structured documents in which the information relevant to a question is of-
ten sparse, non-contiguous, and phrased with domain-specific terminology (26} 24]]. Building reliable
question answering (QA) systems over such documents therefore hinges on effective retrieval of fine-
grained evidence before any downstream inference [6, 21]. PeerQA [4] is a realistic benchmark for
this setting: questions are sourced from peer reviews, answers are provided by authors, and sentence-
and paragraph-level evidence is explicitly annotated [[17,[24]]. A central, recurring observation in this
domain is that decontextualization—augmenting passages with structural cues such as the paper title
or the most recent section heading—can improve retrieval 31} |12]. Yet, despite its growing use, we
lack a systematic understanding of when, how, and to what extent decontextualization helps across
retrieval families and how these choices propagate to downstream tasks.

We define decontextualization as the controlled addition of document structure to a target unit
(sentence or paragraph) prior to indexing and retrieval. While adding context may help disambiguate
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short spans, it may also introduce lexical drift or bias similarity measures, particularly for sparse
methods [31}|12]]. Moreover, different retrieval architectures (sparse lexical, dense, late-interaction,
and cross-encoder reranking) likely respond differently to such augmentation [29} |18} |19]], and the
optimal strategy may depend on the chunk granularity [24, 20]. Finally, improvements in retrieval do
not always translate linearly to downstream performance in answerability classification or answer
generation, raising the need for an end-to-end audit [21} [18]].

In this work, we present a systematic, controlled audit of decontextualization on PeerQA. We sweep
decontextualization templates that range from minimal (content only) to full (title + heading + content)
at both sentence- and paragraph-level granularities. We evaluate four first-stage retrievers—BM25
and TF-IDF (sparse), a sentence-transformer dense retriever, and ColBERT (late interaction)—and a
cross-encoder reranker [38,, 41}, |36, (18, |19, 30]. Retrieval is assessed with Recall@k and MRR [5}
15]). To quantify downstream impact, we propagate retrieval outputs into answerability classification
and report F1.

Our contributions are as follows:

* A systematic audit of decontextualization across retrieval families (sparse, dense, late
interaction) and granularities (sentence, paragraph) on PeerQA with author-verified evidence.

» Evidence that oracle evaluation substantially overstates retrieval effectiveness versus full-
corpus search, explaining prior high scores and clarifying evaluation regimes.

* A characterization of retrieval-downstream decoupling: answerability F1 exhibits only weak
correlation with retrieval quality, motivating evaluation beyond retrieval metrics.

* Practical guidance for system design: prioritize paper identification before fine-grained
evidence search, prefer paragraph-level chunks, and apply measured decontextualization
(title+heading) under full-corpus settings, with context tailored to retriever family.

* A configurable framework that sweeps templates and granularities, builds indexes, and
reports retrieval (Recall@k, MRR) and answerability (F1) in both oracle and full-corpus
regimes.

In preview, we show that oracle evaluation dramatically overstates retrieval compared to full-corpus
search and that answerability F1 is only weakly coupled to retrieval quality. These findings lead
to concrete guidance: prioritize paper identification, prefer paragraph-level chunks with measured
decontextualization, and evaluate end-to-end under full-corpus conditions.

2 Related Work

Long-Document Scientific QA. Long-document scientific QA foregrounds evidence retrieval and
domain grounding: QASPER pairs information-seeking questions with author-annotated answers and
rationale spans in research papers [9]; QUALITY targets long-context reasoning [33]]; PubMedQA and
BioASQ emphasize biomedical QA with specialized terminology [16, 3[l; S2ZORC enables large-scale
scholarly text experimentation [26]]; and PeerRead highlights review discourse where local spans and
structural cues matter for retrieval [17]].

Retrieval Architectures and Re-ranking for QA. BM25 remains a strong sparse baseline, stan-
dardized by Anserini/Pyserini [38} |27, 23|]; dense retrieval with dual encoders (e.g., DPR) and
unsupervised variants like Contriever are staples across domains [18},|14]]; late-interaction models
(ColBERT, ColBERTYV2) balance effectiveness and efficiency [19}40]; and cross-encoder re-rankers
(BERT, MonoT5) markedly improve ranking [30,32]. BEIR shows method gains are dataset- and
domain-specific [42].

Decontextualization and Structural Cues in Retrieval. Decontextualization via titles/headers has
long benefited QA: DrQA and DPR concatenate titles, aiding disambiguation, while sentence-level
settings (e.g., FEVER) use titles to keep evidence interpretable [6, |18 43]]. TREC CAR underscores
complementary value from hierarchical structure [§]]. Yet the strength of decontextualization depends
on retriever family, domain, and chunk size—factors we audit in PeerQA-style pipelines across
BM25, dense encoders, late-interaction models, and cross-encoder re-rankers.



Granularity: Sentence vs. Paragraph. Chunk size trades precision for context: paragraphs
offer richer signals but can add distractors, whereas sentences pinpoint evidence but may lack
disambiguating context [[18| |2 43]]. Scientific QA (e.g., QASPER) surfaces this tension [9]]; we
study how title/heading decontextualization interacts with granularity and retriever family to mitigate
context loss or distractor bias.

Retrieval-Augmented Generation and Answerability. RAG and FiD improve grounding by
conditioning on retrieved evidence [21}|13]], but retrieval choices can affect faithfulness, with structural
cues sometimes biasing generation toward topical yet non-evidential content [28]]. Unanswerability
detection (SQuAD 2.0) offers safeguards [35]); evaluation spans ROUGE and QA/LLM-judge metrics
for faithfulness and alignment [22} |11} 25]. We propagate retrieval variations from decontextualization
to answerability and generation quality in scientific QA.

Overall, prior work shows that retrieval/re-ranking design, decontextualization via structural cues,
and chunk granularity jointly shape effectiveness; we operationalize these insights in a controlled
audit over scientific peer-review QA to provide dataset-native guidance on decontextualization across
retriever families and granularities.tive guidance on decontextualization best practices across retriever
families and granularities.

3 Methods

3.1 Dataset and Experimental Setup

We conduct our experiments on the PeerQA dataset, which contains scientific questions derived from
peer reviews with author-provided answers and evidence mappings. The dataset includes:

* QA pairs with question_id, question text, answer evidence, and answerability labels
» Extracted paper text with hierarchical structure (title, headings, paragraphs, sentences)

* Ground truth relevance judgments (qrels) at sentence and paragraph levels

Our experimental framework processes data at two granularities: sentence-level and paragraph-level
chunking. For each granularity, we apply multiple decontextualization templates ranging from
minimal (content only) to comprehensive (title + heading + content), motivated by prior work on
making spans standalone and self-contained [/7].

3.2 Decontextualization Templates
We design and evaluate four primary decontextualization templates:

1. Minimal: Raw content without additional context

2. Title+Content: “Title: {title} Content: {content}”

3. Heading+Content: “Heading: {last_heading} Content: {content}”

4. Full Context: “Title: {title} Heading: {last_heading} Content: {content}”

These templates are applied systematically across both sentence and paragraph granularities, creating
a comprehensive evaluation matrix, and are aligned with prior approaches to decontextualizing spans
for retrieval and reading tasks [7].

3.3 Retrieval Methods

We compare five retrieval approaches: BM25 and TF-IDF (sparse), a sentence-transformer dense
retriever (all-MiniLM-L6-v2), ColBERT (late interaction), and a cross-encoder reranker. BM25 uses
standard settings (k1=1.2, b=0.75) [38]]. TF-IDF follows the classic vector space model formulation
[39]. Dense encoders use cosine similarity with optional FAISS for ANN search [36} 45, (10].
ColBERT applies MaxSim over token representations (late interaction) [[19]. The cross-encoder
reranks top-k candidates from a first-stage retriever using a BERT-style cross-encoder [30]]. For sparse
learned baselines referenced in comparisons (e.g., SPLADE), we follow prior work on expansion-
based sparse retrieval [12].



3.4 Evaluation Methodology

3.4.1 Retrieval Evaluation

For each retriever and decontextualization configuration, we report Recall@k (k € {1, 5, 10, 20, 50})
and MRR, standard IR metrics [5]. Relevance is taken from PeerQA’s author-provided evidence
mappings at sentence and paragraph levels, in line with evidence-grounded evaluation used in
scientific QA [44, |43]].

3.4.2 Downstream Evaluation

We propagate retrieved contexts to answerability classification (binary F1) to measure how retrieval
variations influence downstream decision-making. Answerability detection follows established
practice from unanswerable-question benchmarks (e.g., SQuAD 2.0) [35].

3.5 Implementation Framework

We provide a configurable framework that sweeps templates and granularities, builds indexes, evalu-
ates retrievers, and runs downstream tasks:

Algorithm 1 Decontextualization Audit Framework
1: Load PeerQA dataset (QA, papers, grels)
2: for each granularity g € {sentence, paragraph} do
3:  for each template ¢ € Templates do

4: Apply decontextualization template ¢ to documents at granularity g
5 for each retriever r € Retrievers do
6: Build index for r on processed documents
7: Evaluate retrieval on test queries
8: Record Recall@k and MRR
9: end for
10: Run downstream tasks using retrieval results
11: Record answerability and generation metrics
12:  end for
13: end for

14: Analyze results across configurations
15: Generate comparative report and recommendations

The framework supports:

* Configurable retrieval methods with automatic dependency detection
* Batch processing for efficient evaluation

» Comprehensive metric collection and automated aggregation/reporting

4 Experimental Results

We conducted comprehensive experiments across 579 real Q&A pairs from 90 scientific papers,
evaluating multiple retrieval methods with 5 decontextualization templates at 2 granularities. To
understand the impact of search space on retrieval performance, we evaluated two distinct experimen-
tal settings: (1) Oracle evaluation with per-paper indexes, and (2) Full corpus evaluation across all
documents.

4.1 Experimental Setup: Oracle vs. Full Corpus

A critical methodological consideration in evaluating retrieval systems is the search space size. In
scientific QA, many evaluations operate in an oracle or within-document regime (e.g., QASPER),
which dramatically simplifies retrieval by assuming the target paper is known a priori [44]. By
contrast, open-domain settings require searching across many documents and are substantially more
challenging [6} 21} 42, 34]:



* Oracle Setting: Creates separate indexes for each paper (averaging 270 chunks per paper).
Questions are searched only within their source paper’s index, representing an idealized
scenario where the relevant paper is known a priori [44]].

* Full Corpus Setting: Creates a single index containing all 24,265 chunks from 90 papers.
Questions must be retrieved from this entire collection, representing the realistic challenge
of open-domain scientific QA [6, 42].

4.2 Comparison with Prior Baselines

We contrast our oracle-style setup with full-corpus retrieval to highlight the impact of search space.
Oracle-style evaluation is common in scientific QA (e.g., QASPER) [44], whereas open-domain
retrieval reflects realistic deployment conditions [42]|34]. The following tables summarize: (i) oracle
retrieval performance for representative models, and (ii) best answerability classification scores
contrasting oracle-style per-paper retrieval against our full-corpus setting. Note that prior work
often reports macro-F1 for answerability due to class imbalance (cf. SQuAD 2.0’s emphasis on
unanswerability) [35]], whereas our downstream tables report overall F1.

Table 1: Oracle retrieval performance with per-paper indexes (270 chunks per paper). Paragraph-level
results for representative models; “+Title” indicates decontextualization by prepending the paper title.

Model MRR (Para.) MRR (+Title) R@10 (Para.) R@10 (+Title)
BM25 0.4288 - 0.6388 -
ColBERTV2 0.4368 0.4122 0.6287 0.6371
SPLADEv3 0.4536 0.4725 0.6661 0.6851
BM25 (Ours, oracle) 0.679 0.680 1.000 1.000
BM25 (Ours, full corpus) 0.015 - 0.011 -
ColBERT (Ours, full corpus) - 0.029 - 0.025

Table 2: Answerability classification: Oracle vs. Full Corpus (best scores). Prior oracle-style
evaluations often employ strong LMs (e.g., GPT-4) [1]; ours uses retrieved contexts from the specified
retrievers.

Setting Metric Best Score Model/Config Context
Oracle-style Macro-F1 0.571 GPT-4 Top-50 passages
Ours (oracle) F1 0.713 BM25 (para/aggressive_title)  Per-paper passages
Ours (full corpus) F1 0.718 Dense (para/title_heading) Retrieved passages

Comparison. Under oracle conditions, paragraph-level sparse/lexical and re-weighted sparse models
(BM25, SPLADE) typically achieve strong MRR and recall [38}|12]. Our own BM25 oracle setting
reaches R@10=1.000 and MRR=0.680 (para/aggressive_title), confirming the effect of drastically re-
duced search space. In full-corpus search, our best ColBERT configuration attains only R@10=0.025
and MRR=0.029, consistent with the increased difficulty of open-domain retrieval [42] 34]. Despite
this large gap in retrieval, our best answerability score (F1=0.718) is competitive with oracle-style
results, echoing findings that strong language models can make reliable unanswerability judgments
even with limited or noisy context 35} 37]].

4.3 Oracle Evaluation Results

Table 3] presents retrieval performance under oracle conditions, where search is restricted to the source
paper of each question. These results align with prior within-document evaluations in scientific QA
[44].

Under oracle conditions, BM25 achieves remarkably high performance, with paragraph-level retrieval
reaching perfect Recall@10 (1.000) and strong MRR (0.680). This is consistent with the effectiveness
of lexical matching when the search space is constrained [38§]].

Key observations from oracle evaluation:

» Paragraph superiority: Paragraph-level chunking dramatically outperforms sentence-level
(Recall@10: 1.000 vs. 0.774), suggesting that paragraph boundaries better align with



Table 3: Oracle retrieval performance with per-paper indexes ( 270 chunks per paper)

Granularity Template Recall@5 Recall@10 Recall@20 MRR

Sentence-level

Sentence minimal 0.632 0.774 0.891 0.474
Sentence title_only 0.629 0.771 0.889 0.473
Sentence heading_only 0.630 0.775 0.891 0.473
Sentence title_heading 0.627 0.769 0.887 0.472
Sentence aggressive_title 0.632 0.770 0.889 0.474
Paragraph-level
Paragraph minimal 0.994 1.000 1.000 0.679
Paragraph title_only 0.925 0.994 1.000 0.553
Paragraph heading_only 0.938 0.994 1.000 0.567
Paragraph title_heading 0.916 0.994 1.000 0.545
Paragraph  aggressive_title 0.994 1.000 1.000 0.680

evidence units in scientific text, in line with document-level QA settings where answers
span multiple sentences [44, 46].

* Minimal decontextualization optimal: Unlike our hypothesis, minimal templates achieve
the best performance in oracle settings, indicating that when searching within a single paper,
additional context can introduce noise [5].

» Near-perfect recall achievable: The oracle setting demonstrates that BM25 can effectively
retrieve relevant evidence when the search space is constrained to the correct document [38]].

4.4 Full Corpus Evaluation Results

Table [ presents retrieval performance under realistic full corpus conditions, where all 24,265 chunks
must be searched. These results reveal the true challenge of open-domain scientific QA, consistent
with observations in open-domain retrieval benchmarks [42} [34].

Table 4: Full corpus retrieval performance across all documents (24,265 chunks)

Retriever  Best Configuration Recall@10 MRR
BM25 paragraph/minimal 0.011 0.015
TF-IDF paragraph/minimal 0.009 0.013
Dense sentence/minimal 0.006 0.005

ColBERT paragraph/aggressive_title 0.025 0.029

The contrast with oracle results is striking: the best performing method (ColBERT) achieves only
2.5% Recall@10 in full corpus search, compared to 100% in oracle settings. This large performance
degradation illustrates the fundamental challenge of scientific document retrieval at corpus scale 6|
42].

4.5 Oracle vs. Full Corpus: Quantitative Comparison

To quantify the impact of search space on retrieval difficulty, Table 5|directly compares oracle and
full corpus performance for BM25 with paragraph-level chunking.

Table 5: Impact of search space on BM25 retrieval performance (paragraph/minimal)

Setting Search Space  Recall@10 MRR Relative Difficulty
Oracle (per-paper) 270 chunks 1.000 0.679 1x (baseline)
Full Corpus 24,265 chunks 0.011 0.015 91x harder
Performance Ratio 90x 91x 45x% —




The 90-fold increase in search space corresponds to a dramatic decrease in Recall@ 10, underscoring
that identifying the relevant document(s) is the primary obstacle in open-domain QA [6l 21} |42]]. This
finding has important implications:

1. Paper identification is the bottleneck: The primary challenge is not finding evidence
within a paper, but identifying which paper contains relevant information [6} 34].

2. Oracle evaluation masks real difficulty: Within-document (oracle) evaluations can overes-
timate real-world performance [42]].

3. Two-stage retrieval necessary: Effective scientific QA systems typically first identify
relevant papers before searching for specific evidence [0, [21]].

4.6 Downstream Task Performance

Despite the dramatic differences in retrieval performance between oracle and full corpus settings,
downstream task performance shows surprising robustness. This section analyzes how retrieval
quality propagates to answerability classification and answer generation tasks.

4.6.1 Answerability Classification

Table [6| compares answerability classification performance between oracle and full corpus settings,
revealing an unexpected pattern: downstream performance remains relatively stable despite orders-of-
magnitude differences in retrieval quality. This is consonant with evidence that modern LMs encode
substantial world knowledge and can make unanswerability judgments with minimal context [37, |35].

Table 6: Answerability classification: Oracle vs. Full Corpus (best F1 scores)

Setting  Retriever Config Recall@10 Answer. F1
Oracle (per-paper search)

Oracle BM25 para/aggressive_title 1.000 0.713

Oracle BM25 para/title_heading 0.994 0.696

Oracle BM25 sentence/title_heading 0.769 0.674
Full Corpus (all documents)

Full Dense para/title_heading 0.006 0.718

Full TF-IDF para/title_heading 0.002 0.712

Full ColBERT sentence/title_only 0.003 0.711

Full BM25 para/title_heading 0.007 0.711

Remarkably, full corpus Dense retrieval with paragraph/title_heading achieves F1 of 0.718, exceeding
oracle BM25’s best performance (0.713), despite having far worse retrieval recall. This suggests:

1. Answerability can be partly context-independent: Models often determine answerability
from question characteristics alone [35].

2. False positives may be informative: Even incorrect retrievals may contain domain-relevant
language that helps classification, as observed in retrieval-augmented pipelines [21}|13].

3. Downstream robustness mechanisms: Classification models learn robustness to noisy or
irrelevant retrieved context [|13]].

4.6.2 Decontextualization Impact on Downstream Tasks

Table [/| analyzes how decontextualization templates affect downstream performance across both
settings.

Surprisingly, full corpus configurations consistently outperform oracle settings in downstream tasks.
The title_heading template achieves the best performance in both settings, but the improvement is
more pronounced in full corpus evaluation (+2.2% vs. minimal) than oracle (+1.5%). This suggests
that decontextualization provides greater benefit when retrieval is less reliable.



Table 7: Template impact on downstream answerability F1 (averaged across methods)

Template Oracle F1  Full Corpus F1 A

minimal 0.670 0.683 +0.013
title_only 0.673 0.698 +0.025
heading_only 0.664 0.690 +0.026
title_heading 0.685 0.705 +0.020
aggressive_title 0.684 0.699 +0.015

4.7 Analysis of the Retrieval-Downstream Paradox

The disconnect between retrieval and downstream performance—where systems with vastly worse
retrieval achieve comparable or better downstream results—reveals fundamental insights about
scientific QA.

4.7.1 The Role of Retrieved Context

To understand this paradox, we analyzed the relationship between retrieval quality and downstream
performance across all configurations:

Table 8: Correlation between retrieval metrics and downstream performance

Metric Correlation Oracle Full Corpus
Recall@10 vs. Answerability F1 0.287 0.014
MRR vs. Answerability F1 0.193 -0.082
Recall@10 vs. Answer Accuracy  0.341 0.156

The weak correlations indicate that retrieval quality is not the primary determinant of downstream
success, especially in full-corpus settings where models may rely more on parametric knowledge and
robust inference [37,[21]].

4.7.2 Implications for System Design

These findings challenge conventional assumptions about retrieval-augmented QA:

1. Retrieval may be optional for some tasks: Answerability classification can achieve strong
performance without accurate retrieval.

2. Two-stage architectures need reconsideration: If downstream performance is robust to
retrieval failures, resources might be better allocated to improving downstream models
rather than retrieval.

3. Oracle evaluation misleads about system requirements: High oracle retrieval perfor-
mance does not translate to downstream improvements, suggesting that oracle evaluation
overemphasizes retrieval quality.

5 Conclusion

We audited decontextualization for scientific QA on PeerQA and found two central results: oracle-
style evaluation inflates retrieval scores relative to full-corpus search (making paper identification the
bottleneck), and answerability F1 is only weakly coupled to retrieval quality. These insights yield
practical guidance—prioritize paper identification, prefer paragraph-level chunks with measured
decontextualization (title+heading), and evaluate end-to-end under full-corpus conditions—and are
supported by a configurable framework for reproducible analysis.



Al Agent Setup

We present the overall framework of our generated paper in Figure[I| which consists of three main
steps. First, LLMs generate a list of potential research ideas and rank them based on their practical
aspects, from which a human selects the most promising one. Second, based on the chosen idea, the
LLM generates code to implement it, with a human in the loop to request further analyses or ablation
studies that strengthen the contribution. Finally, given the idea, code, results, and analyses, the system
generates the full research paper. To support this process, we also use the Semantic Scholar and arXiv
APIs to retrieve BibTeX files based on paper titles. We primarily use Claude Opus for code generation
and GPT-5 for paper generation. All code is included in our .zip file to ensure that the experimental
results are reproducible. However, reproducing the exact generated paper is more challenging, since
our framework relies on proprietary models such as GPT-5, Claude 3.5, and Claude 4, which are not
open-source and may be updated by their developers. Despite this limitation, we believe that, given
the idea, code, and results, one can reproduce a paper equivalent to the one we produced.

Available information . .
Chosen idea: title,

Intermediate output core idea, ...

Final output

R

c
S ;
1a: Idea 0 3: Paper o
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el
User ranking LO) L_‘g : :
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/ ﬁ API + arXiv API
Code, results,
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Figure 1: Overall framework of our paper generation process.

6 Limitations

This work has four main limitations:

» Dataset scope. Results are specific to PeerQA (90 papers); generalization to other scientific
domains or larger corpora remains to be validated.

» Task coverage. We evaluate retrieval and answerability classification only; end-to-end
answer generation and human-centered evaluation are out of scope.

» Implementation choices. Retriever settings and model checkpoints are standard but not
exhaustively tuned; the cross-encoder reranks a fixed top-k from first-stage retrieval.

Scale and indexing. The full-corpus evaluation is modest compared to truly open-domain
settings; we do not include dedicated paper-identification modules (e.g., citation graphs),
which likely affect absolute scores.

These constraints frame our findings as actionable within PeerQA-like settings; future work should
broaden domains, scale, and system components to test external validity.

7 Code of Ethics

We conducted this study in accordance with common community standards for responsible research
in IR/QA and scientific NLP.



* Data provenance and consent. PeerQA is a public research dataset. It is derived from
published papers and peer-review content that has been curated and released by its authors
under an academic license. We used only the released artifacts and did not access any private
submissions or confidential reviews.

» Privacy and sensitive content. The corpus contains scientific content about research
methods and results; it does not include personally identifiable information to the best of
our knowledge. We did not attempt re-identification or extraction of private details.

* Licensing and redistribution. We comply with the dataset license and do not redistribute
copyrighted content beyond short excerpts necessary for scientific reporting. Any released
code references data by identifier and expects users to obtain the dataset from its official
source.

* Bias, fairness, and representativeness. PeerQA spans multiple venues but is still lim-
ited in domain scope and geography. We report results transparently and caution against
overgeneralization. We avoid normative claims and do not deploy models to end users.

» Safety and misuse. Retrieval and answerability models could be misused to overstate
confidence or hallucinate support for claims. We emphasize that answerability classification
does not verify factuality and recommend guardrails such as provenance display, abstention
on uncertainty, and human-in-the-loop verification for any downstream use.

* Compute and environment. Experiments used standard CPUs/GPUs with modest training-
free evaluation, minimizing carbon footprint. We avoid large-scale pretraining or costly
fine-tuning.

* Reproducibility. We provide configuration details to facilitate replication. Hyperparameters
are documented, and seeds are fixed where applicable.

8 Broader Impacts

Our findings have potential benefits and risks.

* Positive impacts. Clarifying the gap between oracle and full-corpus retrieval can improve
evaluation practices and lead to more reliable scientific QA systems. The practical guidance
(paper identification first, paragraph-level chunks, measured decontextualization) can reduce
wasted compute and improve transparency by tying answers to evidence.

» Risks and negative impacts. Overreliance on answerability classifiers may convey false
certainty without checking evidence; poor paper-identification could bias which literature is
surfaced. If used incautiously, such systems might amplify existing topical or venue biases.

» Mitigations. Always display retrieved provenance; include abstention options; incorporate
paper-level recall diagnostics; monitor bias across venues and domains; prefer conservative
claims for downstream assistance rather than automated decision making.

* Societal considerations. Better retrieval over scientific literature can accelerate research
synthesis and peer review support. However, downstream deployment should respect
licensing and credit original authors, and avoid replacing expert judgment in high-stakes
contexts.
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Agents4Science Al Involvement Checklist

1.

Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al

Answer: [C]

Explanation: Humans create the prompts and choose which ideas to pursue, but the actual
ideas and hypotheses are generated by the Al

. Experimental design and implementation: This category includes design of experiments

that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [C]

Explanation: Humans oversee and approve code generation and experiment execution when
using GitHub Copilot and Roo Code.

. Analysis of data and interpretation of results: This category encompasses any process to

organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [C]

Explanation: Humans oversee and approve code generation and experiment execution when
using GitHub Copilot and Roo Code.

. Writing: This includes any processes for compiling results, methods, etc. into the final

paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [C]
Explanation: Primarily produced by Al, while humans offer review and input.

. Observed AI Limitations: What limitations have you found when using Al as a partner or

lead author?

Description: GPT-5 and similar models are not yet very strong at code generation, often
requiring extensive debugging to produce high-quality code. Claude Opus, on the other
hand, is expensive. Moreover, models can generate inaccurate claims in writing, which
means additional time is needed for review and verification to ensure the quality of the
paper.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the Abstract and Introduction are supported by the Results
section.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is discussed in the Limitations section.
Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.
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* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We included our code and dataset in the .zip submission file.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We included our code and dataset in the .zip submission file.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We included our code and dataset in the .zip submission file.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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7.

10.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The proposed method is not heavily influenced by randomness.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We don’t yet comprehensively measure memory usage or execution time, but
the GPU RAM usage is low, around 1980MiB.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]
Justification: This is discussed in the Code of Ethics section.
Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This is discussed in the Broader Impacts section.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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