
Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

Hongzhi Wang 1 Tanveer Syeda-Mahmood 1

Abstract
For vector data, a sorting transformation sorts
the elements of a vector by permuting the loca-
tions of its elements. It can be shown that among
all permutation transformations, the sorting trans-
formation minimizes L2 distance and maximizes
similarity measures such as cosine similarity and
Pearson correlation for vector data. Applying sort-
ing transformation with vector/product quantiza-
tion can substantially reduce compression errors
when the same codebook size is applied, with
a mild storage overhead for saving the sorting
permutations for each compressed vector. For
nearest neighbor search, the sorting transforma-
tion may produce false positive nearest neighbors
when directly applied with the product quantiza-
tion search algorithm. This problem was initially
addressed via a re-ranking approach. In this work,
we gave more in depth analysis to show that the re-
ranking approach may be inadequate, especially
for evenly distributed data. To address this prob-
lem, we adapted the lookup table approach for
nearest neighbor search using sorting transforma-
tion based product quantization and showed its
effectiveness on both real and simulated data.

1. Introduction
A sorting transformation is a permutation transformation
that permutes a vector such that the elements of the per-
muted vector are in sorted order. Among all permutation
transformations, the sorting transformation minimizes L2
distance and maximizes similarity measures such as cosine
similarity and Pearson correlation for vector data (Wang &
Syeda-Mahmood, 2024).

Vector quantization is a commonly used compression
method based on nearest neighbor representation (Gray,
1984; Arya & Mount, 1993; Li & Salari, 1995). This tech-

1IBM Almaden Research Center. Correspondence to: Hongzhi
Wang <hongzhiw@us.ibm.com>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

nique divides a vector space into clusters, e.g. via K-means
clustering, and the centroid of each cluster is used to rep-
resent every sample within that cluster. Each centroid is
called a codeword and the collection of codewords is called
a codebook. Given a sample to be compressed, its nearest
neighbor codeword is chosen to represent the sample. The
compression error produced by vector quantization can be
quantified as the distance between the original sample and
its nearest neighbor codeword.

Since sorted vectors have smaller distances comparing to
their unsorted counterparts, sorting transformation based
vector quantization can achieve comparable compression
performance as standard vector quantization, but with sub-
stantially smaller codebooks. As a result, it substantially
improves compression and decompression speeds compar-
ing to standard vector quantization. The speed improvement
comes at a cost of mild storage overhead for storing sort-
ing permutations for compressed data, which as shown in
(Wang & Syeda-Mahmood, 2024) is an overall beneficial
tradeoff.

A key advantage of vector quantization is its high efficiency
in approximate nearest neighbor search, e.g. through the
product quantization method (Jegou et al., 2010; Ge et al.,
2013), which has been widely used for retrieval-based ap-
plications (Lewis et al., 2020; Radford et al., 2021). When
directly applying sorting transformation with product quan-
tization for nearest neighbor search, the sorting transfor-
mation produces false positive nearest neighbors as near-
est neighbor vectors obtained after sorting transformation
may not be actual nearest neighbors in their original form.
To address this problem, a re-ranking method was applied
such that the retrieved nearest neighbors are inversely trans-
formed back to the unsorted format and compared with
original query vector to remove false positive nearest neigh-
bors (Wang & Syeda-Mahmood, 2024). In this work, we
show the weakness of the re-ranking approach and propose
to adapt the lookup table method for nearest neighbor search
using sorting transformation based product quantization.

Note that previous works on vector quantization have made
progress on optimizing codebook generation (Qian, 2006;
Ge et al., 2013; Kalantidis & Avrithis, 2014; Karri & Jena,
2016) and reducing the searching cost (Arya & Mount, 1993;
Li & Salari, 1995). The sorting transformation approach

1

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

complements these methods and can be applied jointly with
them.

2. Method
To be self-contained, we first describe sorting transformation
and its application to product quantization for compression
and search. In section 2.3, we describe the weakness in re-
ranking based search and adapt the lookup table method for
nearest neighbor search using sorting transformation based
product quantization.

2.1. Reducing Vector Distance by Sorting
Transformation

Let Xi = {x1
i , ..., x

d
i } be a vector of size d. The L2 norm

between two vectors is:

|Xi −Xj |2 =

d∑
k=1

(
xk
i − xk

j

)2
(1)

To reduce the distance between two vectors, we consider
applying a permutation transformation to each vector. Let
(x

πi(1)
i , ..., x

πi(d)
i) and (x

πj(1)
j , ..., x

πj(d)
j) be a permuted

version of Xi and Xj , respectively. Under this considera-
tion, (1) is a special case with identity permutation. Our goal
is to find the permutation transformations that minimize the
distance, i.e.

π∗
i , π

∗
j = argminπi,πj

∑
m

[
x
πi(m)
i − x

πj(m)
j

]2
(2)

Note that the distance can be minimized by permuting one
vector and keeping the other vector unchanged. However,
the optimal permutation will be based on the unchanged vec-
tor. For more general and simpler discussion, we consider
applying permutations on both vectors.

It can be proven that the sorting permutations minimizes
the above L2 distance (Wang & Syeda-Mahmood, 2024).
A sorting permutation for a vector sorts the members of
the vector. Without loss of generality, we only consider
ascending sorting as the sorting permutation. Let π be the
ascending sorting permutation for X. Then Xπ(k) ≤ Xπ(m)

for k < m.

Sorting transformation reduces vector distance by projecting
vectors from the space of unsorted vectors into a smaller
space of sorted vectors. For a d-dimensional vector with
no duplicated values, a sorted vector can be produced from
sorting d! unique vectors. Hence, the volume of sorted
vectors is 1

d! of the volume of unsorted vectors. Fig. 1
illustrates the space of sorted vectors for 2D and 3D data.

Figure 1. Illustrations of the space of sorted vectors in 2D (a) and
3D (b). For variables in [0, 1], regular vectors are distributed in a
square and a cube for 2D and 3D, respectively. In contrast, sorted
vectors are distributed in the shaded triangle and pyramid for 2D
and 3D, respectively.

Algorithm 1 SortPQ - Codebook Generation
Input: training data {xi}Ni=1, segment size dm, number
of segments M, codebook encoding bit nb

for i = 1 to N do
for m = 1 to M do

Sort mth segment of xi.
end for

end for
for each segment m=1 to M do

Apply K-means to produce 2nb codewords using all
sorted training data. Let Cm be the resulting codebook.

end for
Output: {Cm}Mm=1

2.2. Sorting Transformation based Product
Quantization

Since sorting transformation can greatly reduce vector dis-
tance, applying it to vector quantization can improve the
compression accuracy. Here we apply it to product quanti-
zation. Product quantization is a variant of vector quantiza-
tion that applies Cartesian product to generate codewords
efficiently for high dimensional vectors. In an algorithm
view, it divides high dimensional vectors into multiple low-
dimensional segments and applies vector quantization to
compress each vector segment independently (Jegou et al.,
2010).

Algorithm 1, 2, 3 show how codebook generation, encoder
and decoder work when applying sorting transformation
with product quantization (SortPQ). The key difference from
the standard product quantization (PQ) algorithm is that
both training and testing data need to be sorted within each
vector segment prior to codebook generation or encoding.
Furthermore, the sorting permutations are stored as part of
compression encoding for data compression.

2

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

Algorithm 2 SortPQ - Encoder
Input: vector x and codebooks {Cm}Mm=1.
for each segment m=1 to M do

Step 1 Sort mth segment of x, let pm(x) be the sorting
permutation.
Step 2 Find the closest codeword cm(x) for the sorted
segment of x from Cm.

end for
Output: {cm(x), pm(x)}Mm=1

Algorithm 3 SortPQ - Decoder
Input: {cm(x), pm(x)}Mm=1

for each segment m=1 to M do
Inversely permute codeword cm(x) using pm(x). Let
the result be x̂m.

end for
Output: x̂ = {x̂m}Mm=1

The encoding cost for the sorting permutation of a vec-
tor segment of size dm is bounded by ⌈log2 (dm!)⌉ ∼
dmlog2(dm), which is an extra storage cost over stan-
dard PQ. Hence, applying SortPQ works best for low-
dimensional segment sizes. As shown in (Wang & Syeda-
Mahmood, 2024), the overhead for storing sorting permuta-
tions is well compensated by performance improvement for
compression.

2.3. Nearest Neighbor Search with SortPQ

Algorithm 4 shows how data should be ingested for nearest
neighbor search using SortPQ. Again, the key difference
from standard PQ ingestion is that all ingested data are
sorted within each segment and the sorting permutations are
stored.

Re-ranking Search When both query and searched vec-
tors are sorting transformed, the nearest neighbors in the
sorted format may not be the nearest neighbors in the origi-
nal unsorted format. Hence, applying sorting transformation
may introduce false positive nearest neighbors. To address
this problem, a re-ranking approach was applied in (Wang
& Syeda-Mahmood, 2024), as shown in Algorithm 5. First,
an initial set of nearest neighbors are retrieved for a sorting

Algorithm 4 SortPQ - Ingestion
Input: vector set {xi}Ni=1 and codebooks {Cm}Mm=1.
for i = 1 to N do

Encode xi using algorithm 2 and obtain encoding
{cm(xi), pm(xi)}Mm=1.

end for
Output: {{cm(xi), pm(xi)}Mm=1}Ni=1

Algorithm 5 SortPQ - Re-ranking Search
Input: vector x, codebooks {Cm}Mm=1 and ingested data
{{cm(xi), pm(xi)}Mm=1}Ni=1, k and l.
Step 1 Sort each segment of x and let the result be
s(x,m).
Step 2 Retrieve the top l nearest neighbors
{ns(x)1, ..., ns(x)l} for s(x,m) from the ingested
data using standard PQ search.
Step 3
for i = 1 to l do

Decode ns(x)i using algorithm 3 and recalculate its
distance to x using the decoded vector.

end for
Output: Top k nearest neighbors obtained in Step 3.

Algorithm 6 SortPQ - Lookup Table Search
Input: vector x, codebooks {Cm}Mm=1 and ingested data
{{cm(xi), pm(xi)}Mm=1}Ni=1, k.
for m = 1 to M do

Create a table of size 2nb × dm! to store the distance
between mth segment of x and each permutation of
every codeword for segment m.

end for
for i = 1 to N do

Calculate the distance between x and xi by summing
up distances retrieved from corresponding lookup ta-
bles using {cm(xi), pm(xi)}Mm=1.

end for
Output: Top k nearest neighbors based on the calculated
distances.

transformed query vector. Then, the decoded vectors of the
initially retrieved nearest neighbors are used to re-calculate
their actual distances to the original unsorted query vector,
from which the top nearest neighbors are returned.

Drawback of the re-ranking approach The re-ranking
approach worked well for top-1 nearest neighbor search for
SIFT and GIST datasets (Wang & Syeda-Mahmood, 2024).
However, as shown below it is not an efficient solution for
data that are evenly distributed in the vector space.

For a d-dimensional vector with 1 segment, let V be the
entire vector space. Recall that the space of sorted vectors
is 1

d! of the entire vector space. In other words, the entire
vector space can be evenly divided into d! equal volume
subspaces, where each of the d! subspaces corresponds to
a unique permutation for a d-dimensional vector (see Fig.
1 for examples with d = 2, 3). Let {V1, ..., Vd!} be the d!
subspaces and V1 be the sorted vector subspace for a query
vector. The sorting transformation establishes a one-to-
one map between each of the d! subspaces and V1, through
which a one-to-one map is formed for each pair of subspaces

3

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

as well. Let q and Vq be a query vector and the original
subspace it belongs to, respectively. Let a(q, k) ∈ Vq be q’s
kth nearest neighbor1. Let b(q, k) be the hyper-ball centered
at q with radius equal to the distance between q and its
kth nearest neighbor. The sorting transformation maps d!
hyper-balls from all subspaces to b(q, k). Since k neighbors
fall into b(q, k), if vectors are evenly distributed across the
entire vector space, the expected number of vectors falling
in each hyper-ball that matches b(q, k) is k as well. Since all
those vectors are transformed into b(q, k) through sorting
transformation, to retrieve the top k nearest neighbor for
a query vector, the initially retrieved list for re-ranking is
expected to include k(d!− 1) false nearest neighbors.

For a vector of size d containing m equal size segments, i.e.
segment size dm = d

m , since sorting is performed within
each segment, the vector space is divided into (d

m !)m equal
volume subspaces and each pair of such subspaces form a
one-to-one map through the sorting transformation. To re-
trieve the top k nearest neighbors for a query vector from the
sorted vector space, the initially retrieved list for re-ranking
is expected to include k((d

m !)m − 1) false nearest neigh-
bors, which grows exponentially with respect to segment
size and the number of segments. Due to the large num-
ber of false positive nearest neighbors produced by sorting
transformations, the re-ranking approach is inefficient for
evenly distributed datasets.

Lookup Table Search To address the false positive near-
est neighbor problem caused by sorting transformation, we
adapt the lookup table approach. In the standard PQ search,
one lookup table is created for each segment to store the
distance between a query vector and each codeword in that
segment. Let nc = 2nb be the size of each codebook. Then
all lookup tables contain mnc precomputed values. Since
each ingested vector in the searched dataset is represented
by the nearest codeword in each segment, its distance to the
query vector can be calculated by summing up the distances
between its codewords to the query vector using the lookup
tables. The lookup table approach is efficient and has been
adapted by variants of vector quantization methods such as
(Jegou et al., 2010; Babenko & Lempitsky, 2014) for nearest
neighbor search.

In SortPQ, each vector in the ingested dataset is represented
by the nearest codeword, which is sorted, and its sorting
permutation in each segment (see Algorithm 2). A vector
can be represented by inversely applying its sorting permu-
tations to its nearest codewords (see Algorithm 3). Hence,
to efficiently calculate the distance between a query vector
and all ingested sorting transformed vectors, a lookup table

1Without loss of generality, we assume that top nearest neigh-
bors live in the same subspace as the query vector for simple
discussion.

can be created for each segment by storing the distance be-
tween the query vector and all permuted versions of each
codeword (as shown in Fig. 2). The lookup table for each
segment contains dm!nc values and all lookup tables con-
tain mdm!nc values. The lookup table search algorithm is
summarized in Algorithm 6.

Figure 2. Illustration of the lookup tables for vector distance com-
putation using SortPQ encoding.

Computational Complexity PQ search has three compo-
nents: 1) creating lookup tables; 2) calculating distances
to each vector in the ingested dataset; 3) nearest neighbors
retrieval based on the calculated distances. For SortPQ,
the computational complexity for the three components are
O(mdm!nc), O(mN), and O(N + klogN), respectively 2.
N is the number of ingested vectors and k is the number of
retrieved nearest neighbors. The standard PQ has the same
computational cost for the last two components, but has
lower complexity of O(mnc) for lookup table creation. In
practice, usually small segment size dm and large ingested
dataset size N are employed, which makes the additional
computational cost by SortPQ in creating the lookup tables
a small fraction of the overall computational cost.

Furthermore, the computational cost for lookup table cre-
ation for SortPQ can be reduced by using another lookup
table process. For L2 distance (1), calculating the dis-
tance between two vectors of size dm needs 2dm − 1 ad-
dition/subtraction operations and dm multiplications. The
total number of variables stored in lookup tables for SortPQ
is mdm!nc. Directly computing such lookup tables using (1)
needs dmmdm!nc multiplications and (2dm − 1)mdm!nc

addition/subtraction operations. However, for each code-

2The complexity for nearest neighbor retrieval is based on heap
sort. The complexity for building a heap is O(N). The complexity
for retrieving the top k nearest neighbors and re-heapify the heap
after each neighbor is retrieved is O(klogN).

4

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

word produced by SortPQ, dm! vectors are derived from
applying permutations to it for lookup table generation.
There are substantial repeated computations in calculat-
ing the distances between the dm! derived codewords with
the same query vector. To avoid such repeated computa-
tions, tij =

(
wi − qj

)2
can be precomputed and stored

for reuse for 0 ≤ i, j ≤ dm. w is a codeword produced
by SortPQ and q is the corresponding vector segment of
a query vector. With this approach, The lookup tables
can be created for SortPQ with d2mmnc multiplications
and d2mmnc + (dm − 1)mdm!nc addition/subtraction op-
erations in total, which uses 1

(dm−1)! multiplications and
half addition/subtraction operations of the method without
reusing repeated calculations. Hence, reusing the lookup
table {ti,j}dm

i,j=1, the computational cost can be reduced by
more than 50%. Given the fact that the best multiplication
algorithm (Harvey & Van Der Hoeven, 2021) has complex-
ity of O(blogb) for numbers with b-bit representation and
has complexity of O(b) for addition/subtraction, the actual
reduction of computation can be greatly over 50%.

3. Experiments
3.1. Data

We tested our method using the SIFT and GIST descriptor
data (Jegou et al., 2010). Both data sets were derived from
natural images. Each SIFT sample has dimension of 128,
while each GIST sample has dimension of 960. Both data
sets have one million vectors for training. SIFT and GIST
have 10000 and 1000 samples for query testing, respectively,
In addition to the above two datasets derived from real
data, we also generated a simulated random dataset with
1000000 vectors for training and 1000 vectors for testing.
The random vectors have dimension of 384. The values of
the vectors were randomly generated with value range in
[0, 1). Unlike the SIFT and GIST data, the random vectors
are evenly distributed in the vector space.

3.2. False positive nearest neighbor analysis for SortPQ

The analysis in section 2.3 shows the expected number of
false positive nearest neighbors produced by applying sort-
ing transformations to evenly distributed data. In this sec-
tion, we conducted experimental study to demonstrate such
effects.

Given a testing vector and a training dataset from which the
nearest neighbors are retrieved for the testing query vector,
we define that the nearest neighbors retrieved for a query
vector using the original uncompressed data are the ground
truth nearest neighbors for the query data. To test the ef-
fect of sorting transformation at a specific segment size on
nearest neighbor retrieval, sorting transformations were ap-
plied to both testing and training data such that the elements

within each segment are sorted. For each testing vector,
the nearest neighbor ranking position of its ground truth
kth nearest neighbor after applying sorting transformation
indicates the number of false positive nearest neighbors that
have lower ranks than the ground truth neighbor. Table 1
shows the average nearest neigbor ranking positions of the
top 10 ground truth nearest neighbors for all testing data
after applying sorting transformations. For this study, we
tested with segment sizes 2 and 4, respectively.

Consistent with our earlier analysis, more false positive
nearest neighbors were produced with the larger segment
size 4 for all three datasets. For evenly distributed random
data, the sorting transformation produced many false pos-
itive nearest neighbors. For segment size 2, on average
there are over 1136 false positives for the top 1 nearest
neighbor and there are over 3600 false positives for the 10th
nearest neighbor. For segment size 4, the number of false
positives increased substantially. There were over 27000
false positives for top 1 nearest neighbor and over 46000
false positives for 10th nearest neighbor. These results show
that the re-ranking search approach will not work well for
SortPQ nearest neighbor search on this evenly distributed
dataset.

On the other hand, for real dada, i.e. SIFT and GIST, the sort-
ing transformation only mildly produced false positive near-
est neighbors. This result indicates that these two datasets
are far away from being evenly distributed. It is consis-
tent with the nearest neighbor search performance produced
by re-ranking based sortPQ search reported in (Wang &
Syeda-Mahmood, 2024).

3.3. Nearest neighbor retrieval

To test the performance of nearest neighbor retrieval, for
each testing query data, its top nearest neighbors among the
training data set were retrieved using the following three
methods: 1) original values used for both query and in-
gested samples; 2)-3) original values used for query samples,
while the ingested samples are compressed using product
quantization (PQ) and sorting transformation based product
quantization (SortPQ), respectively. For SortPQ, both the
re-ranking based search (SortPQ-rerank) and the lookup ta-
ble search (SortPQ-lookup) were tested. For SortPQ-rerank,
l = 128 was applied for initially retrieved set for re-ranking.
Our SortPQ method was implemented based on the PQ
implementation (Matsui, 2023).

To obtain a complete performance profile, combinations
of various segment sizes and codebook sizes were tested.
Since large segment sizes usually lead to large compression
errors, and poor nearest neighbor retrieval performance, we
focused our test on small segment sizes {2, 4}. For code-
book size, we tested {64, 128, 256, 512, 1024, 2048, 4096},
which correspond to {6, 7, 8, 9, 10, 11, 12} bits codeword

5

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

Table 1. The average nearest neighbor rankings of top k ∈ [1, 10] nearest neighbors after applying sorting transformations, which sort the
data with each segment. The tested segment sizes are either 2 or 4, which is shown after the dataset name.

TOP-1 TOP-2 TOP-3 TOP-4 TOP-5 TOP-6 TOP-7 TOP-8 TOP-9 TOP-10

SIFT-2 2.1 4.9 7.6 10.7 12.9 17.1 18.0 21.4 22.7 26.7
SIFT-4 38.4 75.2 110.6 117.0 134.4 186.0 185.8 239.7 260.4 234.8
GIST-2 7.2 12.6 18.1 22.8 33.9 37.7 37.9 43.2 47.3 51.5
GIST-4 164.5 182.5 255.9 303.2 450.5 454.7 491.9 451.2 514.7 516.4
RANDOM-2 1137.1 1626.2 2299.1 2404.2 2809.9 2762.1 3273.9 3509.9 3267.5 3625.1
RANDOM-4 27096.1 29960.3 39090.0 41336.5 40559.1 43569.3 45543.9 43413.5 43768.2 46877.7

encoding cost for each segment, respectively.

For evaluation, the retrieval results produced by PQ meth-
ods were respectively compared with the retrieval results
produced using original data, under the assumption that
better retrievals should have higher overlaps with retrievals
produced on original data.

Figure 3. Distortion (mean absolute distance) produced by PQ and
SortPQ. The x-axis shows the codebook size for each segment in
bit/segment.

Fig. 3 summarizes the compression accuracy produced by
each method. Since the two variants of the SortPQ methods
share the same compression algorithm, they produced sim-
ilar compression distortions, which are consistently better
than those produced by PQ. Please refer to (Wang & Syeda-

Mahmood, 2024) for in-depth discussion on the trade-off
between computational and storage cost for SortPQ and PQ.
In summary, the storage overhead of SortPQ for storing
sorting permutations is well compensated by the reduction
of computational cost.

Figure 4. Nearest neighbors retrieval results for the SIFT dataset.
Overlaps between retrieval on original data and retrieval using PQ
and SortPQ, respectively.

Fig.4 shows the nearest neighbor retrieval results for the
SIFT dataset. When segment size 2 was applied, both re-
ranking search and lookup table search produced compara-
ble results for both top-1 and top-10 nearest neighbor search
results. This result is consistent with the results reported
in Table 1 as only a small number of false positives were
introduced by sorting transformation. Using l = 128 for
re-ranking is adequate for removing false positives. When
segment size 4 was applied, lookup table search showed
clear advantage over re-ranking search, with more substan-
tial advantage for top-10 neighbor search. SortPQ with
re-ranking search upderperformed PQ search when segment
size 4 and at least 8-bit codebook encoding were used.

6

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

Figure 5. Nearest neighbors retrieval results for the GIST dataset.
Overlaps between retrieval on original data and retrieval using PQ
and SortPQ, respectively.

Fig.5 shows the nearest neighbor retrieval results for the
GIST dataset. When segment size 2 was applied, both re-
ranking search and lookup table search produced compara-
ble results for top-1 neighbor search. However, lookup table
search outperformed re-ranking search for top 10 neighbor
search. Again, lookup table search showed clear advantage
over re-ranking search when segment size 4 was applied.

Fig.6 shows the nearest neighbor retrieval results for the
simulated random dataset. As expected, for evenly dis-
tributed, SortPQ with re-ranking search substantially under-
performed PQ and SortPQ with lookup table search. For all
three datasets, SortPQ with lookup table search consistently
outperformed PQ search and SortPQ with re-ranking search.

4. Conclusions
We showed that the number of false positive neighbors pro-
duced by applying sorting transformation to vectors grows
exponentially with respect to the segment size and number
of segments for evenly distributed data. The re-ranking
approach is not the most effective means to remove such
false positive nearest neighbors. To address this problem,
we adapted the lookup table approach that can completely
avoid the false positive neighbor problem. Our experiments
on both real data and simulated random data showed that
the lookup table approach consistently improved over re-
ranking based search. Our work further demonstrates the
advantage of applying sorting transformation to vector data
search.

Figure 6. Nearest neighbors retrieval results for the random dataset.
Overlaps between retrieval on original data and retrieval using PQ
and SortPQ, respectively.

Impact Statement
This paper presents work with the goal to advance the field
of vector database search. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arya, S. and Mount, D. M. Algorithms for fast vector quan-

tization. In [Proceedings] DCC93: Data Compression
Conference, pp. 381–390. IEEE, 1993.

Babenko, A. and Lempitsky, V. Additive quantization for
extreme vector compression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 931–938, 2014.

Ge, T., He, K., Ke, Q., and Sun, J. Optimized product
quantization. IEEE transactions on pattern analysis and
machine intelligence, 36(4):744–755, 2013.

Gray, R. Vector quantization. IEEE Assp Magazine, 1(2):
4–29, 1984.

Harvey, D. and Van Der Hoeven, J. Integer multiplication in
time o(nlog\,n). Annals of Mathematics, 193(2):563–617,
2021.

Jegou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence, 33(1):117–128, 2010.

Kalantidis, Y. and Avrithis, Y. Locally optimized product
quantization for approximate nearest neighbor search. In

7

Efficient Vector Data Search Using Sorting Transformation with Lookup Tables

Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2321–2328, 2014.

Karri, C. and Jena, U. Fast vector quantization using a bat
algorithm for image compression. Engineering Science
and Technology, an International Journal, 19(2):769–781,
2016.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459–9474, 2020.

Li, W. and Salari, E. A fast vector quantization encoding
method for image compression. IEEE Transactions on
Circuits and Systems for Video Technology, 5(2):119–123,
1995.

Matsui, Y. Nano product quantization (nanopq). https:
//github.com/matsui528/nanopq, 2023.

Qian, S.-E. Fast vector quantization algorithms based on
nearest partition set search. IEEE transactions on image
processing, 15(8):2422–2430, 2006.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Wang, H. and Syeda-Mahmood, T. Vector quantization
with sorting transformation. In 2024 IEEE International
Conference on Big Data (BigData), pp. 2384–2389. IEEE,
2024.

8

https://github.com/matsui528/nanopq
https://github.com/matsui528/nanopq

