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ABSTRACT

Unsupervised domain adaptation (UDA) methods usually assume data from mul-
tiple domains can be put together for centralized adaptation. Unfortunately, this
assumption impairs data privacy, which leads to the failure of traditional methods
in practical scenarios. To cope with the above issue, we present a new approach
named Adversarial Examples Guided Pseudo-label Refinement for Decentralized
Domain Adaptation (AGREE), which conducts target adaptation in an iterative
training process during which only models can be delivered across domains. More
specifically, to train a promising target model, we leverage Adversarial Examples
(AEs) to filter out error prone predictions of source models towards each target
sample based on both robustness and confidence, and then treat the most frequent
prediction as the pseudo-label. Besides, to improve central model aggregation,
we introduce Knowledge Contribution (KC) to compute reasonable aggregation
weights. Extensive experiments conducted on several standard datasets verify the
superiority of the proposed AGREE. Especially, our AGREE achieves the new
state-of-the-art performance on the DomainNet and Office-Caltech10 datasets.
The implementation code will be publicly available.

1 INTRODUCTION

Deep Learning has drawn surging attention over the past decade. To solve the problem that deep
models usually suffer from significant performance degradation when applied to an unseen target
domain due to domain shift, unsupervised domain adaptation (UDA) (Long et al., 2015} [Tzeng
et al., 2017; Zhang et al., 2017) has been introduced to transfer knowledge from a fully labeled
source domain to an unlabeled target domain. UDA has enabled several advances in various ap-
plications, such as image classification (Chen et al.| |2020), object detection (Zhang et al., [2021b)),
semantic segmentation (Zhang et al., [2021a)), and so on. A common strategy in domain adaptation
is to minimize the distribution discrepancy across domains by matching the statistical moments of
distributions (Chen et al.;[2020)). Another popular paradigm employs adversarial training to lead the
learned source and target features to be indistinguishable from each other (Ganin et al., 2016;|Dong
et al.}2020a). However, most current UDA methods assume that source data are merely drawn from
a single domain, which neglects the more practical scenarios where labeled samples are typically
collected from multiple domains, e.g., different weather or lighting conditions, different visual cues,
different modalities, etc. Therefore, Multi-Source Domain Adaptation (MSDA) (L1 et al.l 2018;
Zhao et al.,|2019; Lin et al.} |2020) is proposed to transfer knowledge from multiple distinct domains
to one unlabeled target domain. Specifically, MSDA explores complementarily transferable knowl-
edge from the multi-source domains for target prediction (Zhao et al.| 2018; |Peng et al., [2019; Bai
et al.,[2021). For instance, |Peng et al.|(2019) matches the features across domains and then quantifies
the contributions of source domains.

Unfortunately, many MSDA methods (Li et al. |2021; Russo et al.l 2019) work under the strict
condition that source data are always available when adapting source domains to the target domain.
However, such a condition could make them unpractical in real-world applications where source data
from different domains cannot be shared for joint training, due to data privacy policies and storage
or transmission concerns. To this end, in this paper, we study the recently introduced problem of
decentralized UDA (Peng et al., | 2020), which aims to perform decentralized domain adaptation with
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Figure 1: Identification of target samples in the source boundary area. For image classification, the
predicted label of the adversarial example is different from that of the original sample when they are
fed into the same network, which means that the original sample is located in the decision boundary
area of the model. If the adversarial attack is easy to succeed, the prediction is not robust.

non-shared data from multiple domains. Up to now, some works (Feng et al., 2021; |Wu & Gong,
2021) have been researched for decentralized UDA, resorting to federated learning and pseudo-
labeling. Nevertheless, they do not take robustness into account when generating pseudo-labels.
Moreover, the importance of target model weight has been overlooked during the global model
aggregation to some extent in KD3A (Feng et al.| [2021).

To effectively tackle the decentralized UDA problem, we propose an alternative solution, Adver-
sarial Examples Guided Pseudo-label Refinement for Decentralized Domain Adaptation (AGREE),
which conducts target adaptation in an iterative training process during which only models can be
delivered across domains. Specifically, we leverage adversarial examples to filter out error prone
predictions of source models towards each target sample and then treat the most frequent prediction
as the pseudo-label in the remaining predictions for the optimization of target model. Adversarial
examples refer to the images which are added with small noise that cannot be perceived by human
but make the outputs of neural network change explicitly (Szegedy et al.|[2013)), and are commonly
used in optimizing the adversarial robustness of neural networks (Goodfellow et al., |2014) despite
being originally utilized to attack neural networks. As we all know, boundary samples are more eas-
ily misclassified (Han et al.| 2005)), which will be aggravated by domain shift. Therefore, we exploit
adversarial examples to identify boundary samples (see Figure[I)) and then eliminate the predictions
of boundary samples. Instead of adopting the same attack intensity for all source models, we im-
pose stronger attacks on models with low confidence to take both robustness and confidence into
consideration. Furthermore, we introduce a knowledge contribution mechanism to facilitate global
model aggregation. Especially, the target model weight is determined based on degree of domain
bias between source and target domains, which is reflected by the quantity of pseudo-labels. The
main contributions of this work are summarized as follows:

* We propose a novel approach called AGREE to tackle the decentralized UDA problem in a
privacy-preserving way, in which all the data and computations on source domains are kept
decentralized during the whole adaptation process.

* We present an adversarial examples guided refinement strategy for producing confident
pseudo-labels on top of robustness and confidence to train a promising target model.

* We introduce knowledge contribution to generate reasonable target and source model
weights for promoting global model aggregation.

* We conduct extensive experiments on three benchmarks verifying the efficacy of our ap-
proach. In particular, our AGREE achieves the new state-of-the-art performance on the
DomainNet and Office-Caltech10 datasets.
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2 RELATED WORK

Unsupervised Domain Adaptation. Unsupervised domain adaptation (UDA) aims to bridge the
domain gap between labeled source samples and unlabeled target samples. There are two prevalent
strategies: adversarial learning-based methods (Ganin et al.,[2016; [Dong et al., |2020b} Zhang et al.,
2021c¢; |Chi et al., 2021) have been proposed to perform adaptation in feature space or pixel space,
and moment matching-based methods (Chen et al., [2020; |[Fang et al., [2020; Liu et al., 2020) are
proposed to reduce the distribution discrepancy by matching the statistical moments of different
orders. In addition, the methods based on reconstruction (Bousmalis et al., |2016} |Ghifary et al.,
2016), classifier discrepancy (Saito et al., 2018} [Lee et al., |2019) and batch normalization (Wang
et al., 2019) are also designed to address the domain discrepancy. If there are multiple source
domains, the main idea is to incorporate and transfer the knowledge learned from different source
domains to the target domain (Peng et al.| [2019; [Hotfman et al., [2018; |Li et al., 2018}, [Lin et al.,
2020). Upon this, all these methods follow a centralized training paradigm with sharing source data
across domains, which poses a threat to data privacy.

Federated Learning. Federated learning (FL) (Konecny et al.||2016; McMahan et al.,|2017; Wang
et al.,[2020) is a distributed machine learning paradigm for optimizing a global model across multiple
decentralized datasets without sharing local data. Federated average (FedAvg) (McMahan et al.
2017) is the most representative federated learning method, which iteratively aggregates the updates
of models from different clients to build a global model that is hereafter distributed to selected
clients for the next communication round if requisite. Under the limited communication costs,
FedAvg enables decentralized training in a privacy-preserving way. In sharp contrast with different
data partitions from the same dataset in FedAvg, source data in our AGREE are separately collected
from different domains with various domain shifts.

Federated Domain Adaptation. In recent years, there are some works (Peng et al., 20205 [Feng
et al., 2021; [Wu & Gong, 2021) studying decentralized UDA problem. FADA (Peng et al., [2020)
introduces feature disentanglement to resolve domain shift without accessing data. KD3A (Feng
et al.|[2021) is a knowledge distillation based decentralized UDA method with pronounced commu-
nication efficiency. COPA (Wu & Gong, 2021) aims at optimizing a generalized target model for
decentralized UDA via collaborative optimization and aggregation. Besides, there are some one-
shot federated domain adaptation approaches (Ahmed et al., 2021} Dong et al., |2021} |[Liang et al.,
2022), which can be broadly categorized into reconstruction-based (L1 et al., |2020; [Kurmi et al.,
2021) and self-training (Huang et al.l 2021} |Liang et al., 2020). As self-explanatory by the name,
one-shot federated domain adaptation allows only one communication round, which is also known
as multi-source-free domain adaptation (Ahmed et al., [2021]).

3 METHODOLOGY

Problem Setting. In decentralized UDA problem, we are given n source domains { D%} ; where
each source domain contains NV; labeled samples for K classes as D% = (XJ’:, y;)}j\[: 1 with y; €

{1, ..., K} and a target domain D7 with N7 unlabeled samples as Dy = {XJT }§V:T1 The goal is to
learn a promising model on the target domain without sharing data from each domain.

Overview. As shown in Figure [2| we illustrate an overview of the proposed approach. Specifi-
cally, our base model is composed of a feature extractor F' and a classifier C. We train each source
model {F{, C;} separately on each source domain DY for several local epochs. Then source mod-
els are uploaded to target domain for adaptation and global aggregation. To distill knowledge of
source domains, we employ source models to produce pseudo-labels refined by Adversarial Exam-
ples techniques for target samples. To facilitate model aggregation, we obtain source weights via
their respective contributions in the process of producing pseudo-labels. For target weight, we ac-
quire it through degree of domain shift between source and target domains measured by the quantity
of pseudo-labels. After training target model { i, Cr} on the target domain Dt with pseudo-labels
for several epochs, the feature extractors { F%}7 ; and Fr are aggregated to construct a global fea-
ture extractor F;, which is used to update { F£}? ; and Fr for the next round of training.
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Figure 2: An overview of the proposed approach to decentralized unsupervised domain adaptation
(UDA) problem. Note that, due to data privacy and storage or transmission limitations, data from
different domains are non-shared and only models can be delivered. AEs: Adversarial Examples.

3.1 MODEL OPTIMIZATION SEPARATELY ON EACH SOURCE DOMAIN

We optimize each source model {(F, C%)} on the corresponding source domain DY with the cross-
entropy loss as follows:

Lee = ~Exicpy[7;log o(C5(F5(X;)))], ey

where gj;'. is a one-hot vector of y; and o () is the softmax operation. After learning each source
model separately for R local epochs, we send them to the target domain for adaptation and central
aggregation. In decentralized UDA, the setting of local epochs R is paramount. We must aggregate
model at the appropriate frequency since the different source models have different convergence
rates. Similar to[Feng et al.|(2021)), we set R = 1 by default.

3.2 TARGET ADAPTATION AND GLOBAL AGGREGATION

Adversarial Examples Guided Refinement. After receiving source models, we employ them to
respectively produce prediction p’ for each sample XJT in Dy as:

Pl = a(C4(F&(X)))). )

Next we use adversarial examples to filter out some potential noisy predictions. Specifically, based
on prediction p%, we generate the corresponding adversarial example via the projected gradient
descent (PGD) (Madry et al, 2017) as follows:

il = HB[:EO} (xt + nsgn(Vztﬁ({Q}, lc},l't,g;))) s 3)

where 20 denotes the original example X, ¢/ is the most confident class of p’, {6}, 0} denotes

the model parameters of {F%, C%} and p[0) (-) is the projection function. Though PGD is a

multi-step method, it is more than enough that we only attack one step in all experiments. Instead

of adopting the same attack intensity for all source models, we impose stronger attacks on models
with low confidence. Therefore, we set 7 as follows:

¢ (1-8)

= 4

77 T 4)

Where € gradually increases from low (e.g., %) to high (e.g., %) in the training process and

p; refers to the confidence score of the i-th source model towards the target sample X jT . When

the prediction of {F§, C%} towards the adversarial example of X]-T conflicts with p’, we abandon
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Figure 3: The graphical illustration of Adversarial Examples Guided Refinement. Adversarial ex-
amples make the predictions of some source models diverge. We filter out error prone predictions
towards a target sample and then treat the most frequent prediction as the pseudo-label.

the predictions of {F%, C%L} for XjT and its adversarial example. In other words, predictions with
low confidence in "width’ minima are likely to be retained and predictions with high confidence in
’sharp’ minima are likely to be discarded. In the remaining predictions, we take the prediction with
the highest frequency as a pseudo-label of XjT. We depict the workflow of adversarial examples
guided pseudo-label refinement in Figure [3] If there is more than one prediction with the highest

frequency or no prediction left, we do not generate pseudo-label for the target sample.

Knowledge Contribution. During the adversarial examples guided refinement, we record the con-
tribution of each source model with ); which is zero initially: If a prediction of the ¢ — th source
model overcomes adversarial attack and is consistent with the pseudo label, then we add 1 to Q);.
Meanwhile, we denote the number of pseudo-labels as Z. Since the process of generating pseudo-
labels is the same, we utilize the number of pseudo-labels to measure degree of domain shift between
source and target domains. Specifically, less pseudo-labels means larger domain bias. When encoun-
tering large domain bias, we assign a relatively large weight to the target model and relatively small
weights to the source models. First, we compute the target weight ar as

A
=~ (1= = 5
ar =7 ( Ny )7 5
where 7 is set to 1 by default. In practice, we only obtain Z in the first communication round and
gradually increase o from %, where N = n +1,t0 7y - (1 — -Z) in the training process. Then we

Nt
compute the source weights as

e
Z?:l e’

where @Z = Z"QiQ After pseudo-label refinement, we optimize the target model with pseudo-
j=1%J

(6)

oy =(1—ar)-

labels and perform model aggregation as follows:

0F < ar-0p + ) _ a0, )
i=1
where 0 denotes the parameters of Fr. Ultimately, {F£}" ; and Fr are updated via 6% for the
next round of training.

To summarize, our approach works out decentralize UDA iteratively without collecting data from
different domains together for centralized training. The complete process of the proposed method is
shown in Algorithm [T}



Under review as a conference paper at ICLR 2023

Algorithm 1 The Training Process of Our Method

1: Input: Labeled source data {D%}?_,; Unlabeled target data Dy; Target model { Fir, Cr}
2: fori=1tondo
3: {Fé,Cé} — {FT,CT}
end for
: fore=1to Edo
: fori =1tondo
Train {F%, CL} on D

end for

9:  Upload {F%, C%L} to the target domain
10: Obtain pseudo-labels for D
11: Compute aggregation weights ap and {a%}7
12: Train {Frp, Cr} on Dp with pseudo-labels

13: Construct Fg via aggregating { F§}? | and Frp
14: for i =1tondo

15: Fi+ Fg
16: end for

17: Fr < Fg

18: end for

19: Return F and Cr

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets. We perform experiments on three datasets including Digit-Five (Peng et al.l[2019)), Office-
Caltech10 (Gong et al.l [2012), DomainNet (Peng et al., 2019). Digit-Five is a digit classification
dataset containing five domains: MNIST (mt), MNIST-M (mm), SVHN (sv), SYN (sy), USPS (up).
Office-Caltech10 consists of ten object categories from four domains, namely Amazon (A), Caltech
(C), DSLR (D) and Webcam (W), with 2,533 images in total. DomainNet is a relatively large-scale
dataset which contains 345 classes and six domains, i.e. Clipart (Clp), Infograph (Inf), Painting
(Pnt), Quickdraw (Qdr), Real (Rel) and Sketch (Skt). Following previous methods (Peng et al.,
2019; |2020), we fix one of the domains as the target domain with unlabeled training data and the
rest as the source domains with labeled training data.

Implementation Details. Following (Peng et all 2019), we utilize a 3-layer CNN as backbone
for Digit-Five while ResNet-101 for Office-Caltech10 and DomainNet. For Digit-Five and Office-
Caltech10, We set batch size to 64 and global epoch £ = 50. For DomainNet, we set batch size to
48 and global epoch £ = 80. To make each source domain comparable in sample size, we randomly
choose 30000 images from each domain for training on DomainNet in each epoch. We apply SGD
with momentum as the optimizer and decay learning rate from high (i.e., 0.05 for Digit-Five and
0.002 for Office-Caltech10 and DomainNet) to zero with a cosine annealing rule. Following (Wu &
Gongl [2021)), We report top—1 accuracy averaged over five runs for each experiment.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Baseline Methods. To evaluate the efficiency of the proposed method, we conduct extensive
comparison experiments with the state-of-the-art centralized or decentralized approaches. Con-
cretely, centralized approaches include DAN (Long et all 2015), MDAN (Zhao et al. [2018),
MCD (Saito et all [2018), M3SDA (Peng et al., 2019), DANN (Ganin & Lempitsky, 2015,
DCTN (Xu et al., [2018), MoE (Guo et al., 2018), DSBN (Chang et al., 2019), CMSS (Yang et al.,
2020), CMSDA (Scalbert et al.| [2021), MOST (Nguyen et al.| [2021a) and STEM (Nguyen et al.,
2021b), and decentralized approaches comprise FADA (Peng et al., 2020), SHOT (Liang et al.,
2020), KD3A (Feng et al, 2021)) and COPA (Wu & Gongl 2021)). Furthermore, two baselines with-
out domain adaptation are reported, namely oracle that directly performs supervised learning on
target domains and source-only that naively combines source domains to train a single model.
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Table 1: Comparison with state-of-the-art UDA methods on Digit-Five (the left part) using a convo-
lutional backbon and on Office-Caltech10 (the right part) using ResNet-101. Our AGREE achieves
competitive performance with SOTA methods in terms of average overall accuracy on Digit-Five
and new state-of-the-art results on Office-Caltech10. Paradigm, Decentralized and Source-only are
abbreviated as Pa., Decentra. and Src-only due to space limitations.

Digit-Five Office-Caltech10
mt mm sV sy up  Avg A C D W Avg

Oracle 99.5 954 923 987 992 97.0 997 984 99.8 99.7 994
Src-only 923 63.7 715 834 90.7 803 887 854 982 99.1 929

DAN 963 63.8 725 854 942 824 916 892 99.1 995 948
MDAN  98.0 695 692 874 925 833 954 918 98.6 989 96.1
MCD 99.2 80.7 819 954 983 911 921 915 99.1 995 95.6

Pa. Method

3 M3SDA 984 728 813 89.6 962 877 945 922 992 99.5 96.4
.5 DANN 976 713 635 854 923 821 926 913 99.1 994 95.6
& DCTN 96.2 705 776 86.8 928 848 932 915 99.1 992 957
5 MoE 97.1 708 787 876 952 858 941 958 99.1 99.6 972
©  DSBN 972 716 779 887 96.1 863 932 91.6 989 993 958

CMSS 99.0 753 884 937 977 908 960 937 993 99.6 972

MOST 99.6 915 909 964 984 954 964 960 100 100 98.1

STEM 994 89.7 899 975 984 950 984 942 100 100 98.2
o FADA 925 645 635 828 91.7 79.0 842 887 87.1 881 &7.1
= SHOT 98.2 80.2 845 91.1 97.1 902 964 962 985 99.7 977
g KD3A 992 873 856 894 985 920 974 964 984 99.7 979
A COPA 994 898 91.0 975 992 954 958 946 99.6 998 975

AGREE 99;5 92:0 889 929 984 943 99.0 964 100 100 98:9

Digit-Five. As shown in the left of Table [I} our method achieves competitive performance with
SOTA methods in terms of average overall accuracy. Moreover, the proposed approach achieves the
oracle performance on MNIST and outperforms all the baselines when MNIST-M as target.

Office-Caltech10. As summarized in the right of Table I} our AGREE outperforms both central-
ized and decentralized methods, and achieves new state-of-the-art results on Office-Caltech10. In
particular, when adapting to DSLR (D) and Webcam (W), AGREE yields 100% accuracy.

DomainNet. From Table[2] we can clearly observe that our approach achieves new state-of-the-art
results across all tasks on DomainNet, and even outperforms all compared centralized methods in
the light of mean overall accuracy, although the DomainNet dataset is evidently challenging.

4.3 ABLATION STUDY

Component Effectiveness. As shown in the bottom of Table 2] without any component, the perfor-
mance will markedly decline, while Adversarial Examples Guided Refinement has a major impact.
It is noteworthy that without using Knowledge Contribution, our method still outperforms all com-
pared decentralized methods and is comparable to the state-of-the-art centralized method.

Effect of Pseudo-Labels. In Figure we present the quantities of pseudo-labels and correct
pseudo-labels in each task on DomainNet. In Figure we show the quantity and correct rate of
pseudo-labels and the relationship between them and adaptation performance. Apparently, the test
accuracy is positively related to the quantity and correct rate of pseudo-labels.

Target Weight Analysis. As shown in Table 3| we evaluate the influence of target weight. Different
from setting a fixed value, our strategy can adaptively determine an appropriate target weight, which
provides better performance. Too small a target weight will affect the protection of knowledge in
the target domain, while too large will hinder the learning of knowledge in the source domains.
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Table 2: Comparison with state-of-the-art UDA methods on DomainNet using ResNet-101. Our
AGREE achieves new state-of-the-art results on the DomainNet dataset. Component effectiveness
evaluation results in the bottom two lines show that every proposed component contributes to the
adaptation performance in all target domains. AGREE w/o AEs: AGREE without Adversarial Ex-
amples Guided Refinement and AGREE w/o KC: AGREE without Knowledge Contribution.

Paradigm Method —Clp —Inf —Pnt —Qdr —Rel —Skt Avg
W/o DA Oracle 69.3 34.5 66.3 66.8 80.1 60.7 63.0
Source-only 47.6 13.0 38.1 13.3 51.9 337 329
DAN 48.4 14.8 40.2 153 539 340 345
- M3SDA 58.6 26.0 523 6.3 62.7 49.5 426
9 DANN 52.5 11.1 42.0 14.7 529 38.1 352
= DCTN 48.6 23.5 48.8 7.2 53.5 473 382
g MoE 55.8 21.3 46.2 9.2 63.3 46.3 404
3 DSBN 572 25.6 523 6.5 62.7 47.6 420
CMSDA 71.0 26.6 57.6 21.3 68.1 59.5 504
STEM 72.0 28.2 61.5 25.7 72.6 60.2 534
2 FADA 523 16.3 41.9 13.9 52.7 36.8 357
N SHOT 58.8 19.8 49.9 9.7 66.0 463 413
g KD3A 72.5 234 60.9 16.4 72.7 60.6 51.1
5 AGREE 74.5 27.7 63.0 26.1 74.5 62.3 547
Q
o AGREE w/o AEs  69.0 214 56.0 18.6 68.9 58.1 487

AGREE w/o KC 73.9 26.6 62.0 23.1 73.7 61.1 53.4
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Figure 4: Quantitative comparison of pseudo-labels in the last communication round on DomainNet.
(a) We present the quantities of pseudo-labels and correct pseudo-labels in each task. (b) we show
the quantity and correct rate of pseudo-labels and the relationship between them and accuracy.

Source Weights and Convergence Performance. From Figure |[5(a)l we can see that the source
weights properly reflect which source model performs better on the target domain. In Figure[5(b)} we
evaluate convergence performance of our method on DomainNet. Note that the proposed approach
converges to a stable value with small fluctuations.

Variants of Ensemble. As presented in Table [ without combining source models, the average
overall accuracies decrease slightly, which means that there may be some knowledge in the source
models that has not been learned by the target model. Even though ensemble methods employ
multiple models to predict, our global model still performs best.
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Table 3: Evaluation of different target weights on DomainNet. Here, Adaptive denotes our strategy
that sets a large target weight when encountering large domain shift and vice versa.

Target Weight —Clp —Inf —Pnt — Qdr —Rel — Skt Avg

[% : %] 74.2 26.8 62.5 23.2 73.9 61.7 537
] 74.5 27.4 63.0 25.0 74.5 622 544
] 72.4 27.1 62.1 26.0 74.2 60.8 538
[+ : Adaptive] 74.5 277 630 261 745 623 547
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Figure 5: Analysis of source weights and convergence performance. (a) The source weights obtained
by our method on DomainNet correlates positively with each source model performance. (b) Our
method converges to a stable state with small fluctuations.

Table 4: Comparison with ensemble methods on DomainNet. Here, T'S ensemble refers to using
the weighted logit ensemble of target and source models as the prediction, T'G ensemble refers to
using the average logit ensemble of target and global models as the prediction and global model
consists of the global feature extractor Fiz and the target classifier Cr.

Component —Clp —Inf —Pnt —Qdr —Rel — Skt Avg
Target model 73.6 27.6 62.4 25.9 73.8 61.9 542

TS ensemble 74.1 27.5 62.1 26.0 73.8 622 543
TG ensemble 74.3 27.7 62.7 26.0 74.3 62.1 545
Global model (ours) 74.5 27.7 63.0 26.1 74.5 62.3 547

5 CONCLUSION AND FUTURE WORK

In this paper, we propose an effective approach to address decentralized UDA problem. To be
specific, we filter out noisy predictions with adversarial examples to produce confident pseudo-
labels for the optimization of target model. Furthermore, a knowledge contribution mechanism is
introduced to generate reasonable model aggregation weights. Extensive experiments on three UDA
benchmark datasets demonstrate the effectiveness of our method. Since the adaptation performance
depends heavily on the quality of pseudo-labels and there are still some noisy pseudo-labels after
refinement, we will manage to find a more effective pseudo-label calculation strategy in the future.
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