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Abstract
A diverse array of reasoning strategies has been001
proposed to elicit the capabilities of large lan-002
guage models. However, in this paper, we003
point out that traditional evaluations which fo-004
cus solely on performance metrics miss a key005
factor: the increased effectiveness due to addi-006
tional compute. By overlooking this aspect, a007
skewed view of strategy efficiency is often pre-008
sented. This paper introduces a framework that009
incorporates the compute budget into the eval-010
uation, providing a more informative compar-011
ison that takes into account both performance012
metrics and computational cost. In this budget-013
aware perspective, we find that complex reason-014
ing strategies often don’t surpass simpler base-015
lines purely due to algorithmic ingenuity, but016
rather due to the larger computational resources017
allocated. When we provide a simple base-018
line like chain-of-thought self-consistency with019
comparable compute resources, it frequently020
outperforms reasoning strategies proposed in021
the literature. In this scale-aware perspective,022
we find that unlike self-consistency, certain023
strategies such as multi-agent debate or Reflex-024
ion can become worse if more compute budget025
is utilized.026

1 Introduction027

The arena of large language models (LLMs) such028

as GPT-4 (OpenAI, 2023; Touvron et al., 2023;029

Team, 2023; Jiang et al., 2023a) has seen a prolif-030

eration of diverse reasoning strategies. However,031

comparing these strategies fairly and comprehen-032

sively has proven to be a challenging task due to033

their varied computational requirements. For in-034

stance, strategies like tree of thoughts (ToT) neces-035

sitate branching out into multiple sequences and036

incorporating self-evaluation, making them more037

compute-intensive than others. Therefore, an eval-038

uation framework that only accounts for perfor-039

mance metrics may miss crucial practical factors040

such as computational cost.041

In this paper, we propose the inclusion of the 042

compute budget into the performance measurement 043

of different reasoning strategies. This budget-aware 044

comparison yields a more balanced perspective on 045

the effectiveness of reasoning strategies, account- 046

ing for both the quality of the output and the com- 047

putational resources expended. 048

Our empirical research uncovers a significant 049

correlation between the performance and the com- 050

pute budget. We find that a straightforward baseline 051

strategy, chain-of-thought reasoning coupled with 052

self-consistency, can be remarkably competitive. 053

When scaled to match the compute resources of 054

more sophisticated methods such as Multi-Agent 055

Debate (MAD) (Liang et al., 2023), Reflexion 056

(Shinn et al., 2023), Plan and Solve (Wang et al., 057

2023), Least to Most Prompting (Zhou et al., 2022), 058

Progressive Hint Prompting (Zheng et al., 2023), 059

this baseline strategy often outperforms them in 060

achieving the best trade-off between performance 061

and budget. We further investigate the reasons 062

behind the gap from simple CoT SC and other rea- 063

soning strategies by providing both empirical and 064

theoretical evidence. 065

Then we scrutinize the influence of two spe- 066

cific types of budgets on performance: (1) the an- 067

swer generation budget, and (2) the evaluation bud- 068

get. The success of reasoning strategies that lever- 069

age self-evaluation is model/dataset-dependent and 070

strongly correlated with calibration. 071

This work provides a robust framework for com- 072

paring a wide array of reasoning strategies and 073

illuminates the significance of self-evaluation in 074

these models. We hope this sets the stage for more 075

focused research on efficient budget utilization and 076

paves the way for the development of even more 077

effective reasoning strategies. 078

Concretely, our contributions are 079

• We introduce a budget-aware evaluation 080

framework spanning three dimensions: 081
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Figure 1: (1) Comparison of reasoning approaches multi-agent debate (MAD) against the SC baseline, considering
both scale-agnostic and scale-aware evaluation, with published scores and our reproductions on the GSM8K and
MATH dataset. The scale-aware evaluation furnishes more comprehensive insights into the influence of scale on
reasoning strategies and offers a fairer method of comparison. (2) The scale-aware comparison between Reflexion
and SC also illustrates the artifact of scale on performance. For both datasets, we show both budgets, the number of
total tokens, and the number of queries. All results were obtained from GPT-3.5.

queries, tokens, and monetary cost, advocat-082

ing for the token-based metric as the most083

holistic. This metric adeptly captures both084

the latency and financial implications of085

computational tasks.086

• We present a comprehensive evaluation of087

seven LLM reasoning strategies across five088

datasets using five models including GPT-4.089

Our analysis reveals that traditional evaluation090

metrics often overlook a critical aspect: the091

performance gains achievable through addi-092

tional computational resources. This observa-093

tion is strongly supported by CoT SC matches094

or even exceeds more complex strategies in095

effectiveness.096

• We explore the dynamics of reasoning strate-097

gies, highlighting that MAD underperforms098

as diversity diminishes with each round. Con-099

versely, Self-Consistency excels due to the100

independence of samples boosting diversity101

and its effectiveness in scenarios where the102

likelihood of being correct exceeds 50%.103

• We conduct ablation studies on ToT and Re-104

flexion by segregating the budget into answer105

generation and evaluation budgets. We found106

that self-evaluation is promising at increasing107

performance while being cost-effective but108

currently LLM can’t self-evaluate well. 109

2 Related Work 110

2.1 Reasoning strategies for LLMs 111

An early work in the area was to prompt the lan- 112

guage model to generate its Chain-of-Thought 113

(CoT) (Wei et al., 2022) which led to significant 114

improvements in the model’s problem-solving abil- 115

ities. Later work has involved prompting the lan- 116

guage model to come up with plans for solving 117

problems (Jiang et al., 2023b), using CoT and ask 118

the model to critique and revise its solution (feed- 119

back) (Madaan et al., 2023; Scheurer et al., 2023; 120

Chen et al., 2023a; Bai et al., 2022; Kim et al., 121

2023), generating multiple chain-of-thoughts and 122

combining them using LLM (Yoran et al., 2023), 123

setting up a tree search for chain-of-thought (Tree 124

of Thoughts - ToT) (Yao et al., 2023), aggregating 125

LLM generated feedback into guidelines that can 126

improve future generation (Chen et al., 2023b), and 127

using multiple LLMs as debating agents to refine 128

a solution (Du et al., 2023). However, they are all 129

evaluated on different datasets, and whether the 130

baselines are computed or cost-matched is rarely 131

considered. Notable exception is Huang et al. 132

(2023) where they found MAD is doing an unfair 133

comparison to SC. 134
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Figure 2: Overview of reasoning strategies. Green cell indicates question prompt, including system prompt and
few-shot prompting. The orange cell indicates the answer. Blue cell indicates evaluation or critique.

2.2 LLM output evaluation135

There has been considerable work on evaluating136

the output of LLMs via ranker or self-evaluation.137

In Uesato et al. (2022); Yang et al. (2022), they138

train an evaluator for each step in a reasoning139

chain and rerank using the combined score. In Li140

et al. (2023), they weight the self-consistency by141

the trained verifier confidence. There has also142

been work recently on LLM to self-evaluate its143

own generations. In Bai et al. (2022), they use144

LLMs to do pairwise comparisons between gen-145

erations achieving high accuracy. In Ling et al.146

(2023), self-consistency for every step is used to147

evaluate how to correct a deductive step is, but148

they failed at improving performance using that149

signal. Tian et al. (2023) examine multiple strate-150

gies for eliciting calibrated LLM self-evaluation.151

The self-refine (Madaan et al., 2023) approach uses152

LLMs to get detailed self-evaluation to improve153

the next generation. The Tree-of-Thoughts (Yao154

et al., 2023) paper uses LLM self-evaluation to155

rank which node to explore next. Our work con-156

ducts analysis on self-evaluation budget and access157

whether it is worth it to do self-evaluation.158

3 Inference Budget of Reasoning159

Strategies160

While the raw performance of different prompt-161

ing or reasoning strategies for LLMs is a com-162

mon topic, how different strategies perform when163

budget-aware is less well-studied. However, tak-164

ing budget into account can be critical when using165

LLMs. In this section, we describe different usage166

scenarios that a user could be interested in and what167

budgetary metrics would be relevant to those sce-168

narios. We further describe how different reasoning169

strategies can scale wotj each budget.170

3.1 Budget 171

We examine various budgetary metrics for LLMs. 172

Given that the number of input and output tokens 173

often feature prominently across these metrics, we 174

designate them as nI and nO respectively. 175

API monetary cost is generally represented as 176

c = α1 ·nI +α2 ·nO. Here, nI and nO correspond 177

to the number of input and output tokens. The co- 178

efficients α1 and α2 are specific to the LLM API 179

in use. It’s worth noting that in scenarios involv- 180

ing parallel sampling of multiple outputs with a 181

singular input, nI is counted once. 182

Total number of tokens a straightforward met- 183

ric, is described by t = nI + nO. This becomes 184

pertinent when α1 = α2, which is true for many 185

LLM APIs and is also reflective of the compute 186

cost. Its simplicity ensures it doesn’t inherently 187

favor any specific model or API provider. 188

Number of queries of planned API calls can be 189

a rough proxy for the budget. Such numbers can 190

be determined before inference, which gives us 191

rough guidance before action. Note that in case we 192

want to sample multiple outputs from the LLM, we 193

count those as separate queries 194

4 A Critical Evaluation in Budget-Aware 195

Environments 196

This section explores key components that can 197

make reasoning strategies successful from the 198

budget-aware perspective. First, we show that the 199

inference budget is often overlooked but is one of 200

the primary indicators of the success of a reasoning 201

strategy. We show that the budget-aware evaluation 202

perspective, CoT (or variants of it like Plan and 203

Solve, Least to Most) self-consistency, for instance, 204
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Figure 3: Performance@Number of Queries and Performance@Number of Tokens Plots for all 5 datasets. All three
methods CoT SC, MAD, and Reflexion are plotted on two models (more models in Appendix G). All experiments
here are run until at least 10k tokens or 20 queries. CoT with SC consistently beat other reasoning strategies across
all 5 datasets with significantly less budget. The budget difference is even more drastic when counting the number
of tokens. The MAD result is shown non-round-wise.

is a strong baseline that can outperform or match205

many proposed reasoning strategies in the literature206

given the same level of budget.207

Experiement Setup We use existing reasoning208

strategies in literature to perform this study, namely209

Multi-Agent Debate (MAD) (Liang et al., 2023),210

Reflexion (Shinn et al., 2023), Plan and Solve211

(Wang et al., 2023), Least to Most Prompting (Zhou212

et al., 2022), Progressive Hint Prompting (Zheng213

et al., 2023), and Tree-of-Thoughts (Yao et al.,214

2023). We conducted our experiments across a215

diverse range of reasoning tasks, utilizing math216

reasoning datasets such as GSM8k (Cobbe et al.,217

2021), MATH (Hendrycks et al., 2021), and Theo-218

remQA (Chen et al., 2023c), along with the com-219

monsense reasoning task CSQA (Talmor et al.,220

2019), and multi-hop reasoning task HotpotQA 221

(Yang et al., 2018) (see Appendix A.1). Addition- 222

ally, we performed an in-depth analysis of the puz- 223

zle game Game24 (Yao et al., 2023). For models, 224

we use Mistral-7B-Instruct, LLaMA-2-70b-chat, 225

Mixtral-8x7B-Instruct GPT-3.5, and GPT-4. (See 226

Appendix A.1 for more details about model hyper- 227

parameters) 228

4.1 Inference budget unveils superiority of 229

self-consistency baseline over MAD & 230

Reflexion 231

We present that the observed improvements in per- 232

formance for various reasoning methods may be 233

strongly influenced by the use of a higher infer- 234

ence budget, rather than the intrinsic merit of the 235

techniques themselves. 236
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Figure 4: GPT-3.5-0301 Performance@Number of Tokens for all 5 datasets using three other strategies: Plan and
Solve, Least to Most, Progressive Hints.

Results in Figure 3 elucidate the efficacy of rea-237

soning techniques, including MAD and Reflexion,238

in contrast with the SC baseline. For MAD, we239

set the number of agents to six and the number240

of rounds to three which resulted in exactly 18241

queries. For Reflxion, we set it to reflect a max-242

imum of 10 trials (10 proposals 9 reflections for243

a total of 19 queries). We demonstrate two bud-244

getary metrics which were discussed in Section245

3.1: a) Performance@Number of Queries b) Per-246

formance@Number of Tokens. As illustrated in247

Figure 1 and 3, aligning the inference budgets re-248

veals that the perceived advantages of novel strate-249

gies diminish. The SC baseline generally surpasses250

more complex methods with equal budgets on all251

datasets, except HotpotQA where it remains com-252

petitive. Reflexion consistently underperforms the253

other strategies, which we will explore further.254

Solely depending on scale-independent evaluations,255

as seen in previous studies, can yield incomplete or256

misleading results.257

4.2 Plan and Solve, Least to Most, Progressive258

Hints performance gain primarily from259

increased budget260

In this study, we assess the efficacy of the pro-261

posed budget-aware metrics across three additional262

reasoning strategies: Plan and Solve, Least to263

Most, and Progressive Hints, as depicted in Fig-264

ure 4. Among these strategies, chain-of-thought265

self-consistency (CoT SC) emerges as a competi-266

tive approach in most scenarios. Plan and Solve,267

when coupled with self-consistency, surpasses CoT268

SC on HotpotQA. It’s pertinent to recognize Plan269

and Solve and Least to Most as specialized itera-270

tions of the CoT approach. Specifically, Plan and271

Solve directs the LMs to strategize prior to resolv-272

ing the query, whereas Least to Most deconstructs273

the question before answering. Thus, both strate-274

gies with SC can be conceptualized as nuanced275

versions of CoT SC. Conversely, Progressive Hints, 276

which leverages sequential answers as cues for sub- 277

sequent questions, exhibit the least effective perfor- 278

mance. This comparative analysis underscores that 279

the observed improvements in performance are pri- 280

marily attributable to increased budget allocations 281

rather than the inherent advantages of the method- 282

ologies. Evaluations on more datasets and types of 283

budget as well as details about each strategy can be 284

found in Appendix G.2. 285

4.3 Tree-of-Thoughts is competitive with a 286

caveat 287

We evaluated the Tree-of-Thoughts strategy in a 288

budget-aware manner on the logical game Game 289

of 24. Notable discrepancies emerged in the behav- 290

ior of the model when transitioning to GPT-4 and 291

we modified our budget-aware metric slightly to 292

further scrutinize GPT-4. 293

A strong model is needed to perform better than 294

baseline In Figure 5, we show the performance 295

of GPT-3.5 with the Tree-of-Thoughts reasoning 296

strategy on Game of 241. The performance of Tree- 297

of-Thoughts lags that of a simple SC by a con- 298

siderable margin. This is in stark contrast to the 299

GPT-4 results with Tree-of-thoughts where CoT SC 300

plateau very early and Tree-of-Thoughts beats it by 301

a big margin, even when we account for the budget 302

(query or token). However, Tree-of-Thoughts re- 303

quires a significant budget commitment to deliver 304

such a performance. On weaker models than GPT- 305

4, it is still better to use CoT SC which outperforms 306

ToT by a considerable margin (Figure 5). 307

5 What Makes Reasoning Strategies 308

Work 309

We provide a detailed analysis of reasoning strate- 310

gies. Specifically, we examine the causes of the 311

1We used a modified thought evaluation prompt for GPT-
3.5 that gave much better results than the default one
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Figure 5: ToT vs. CoT SC for both GPT-3.5 and GPT-4
on Game of 24. The dotted lines represent the perfor-
mance of ToT. For ToT, results for three settings are
included. CoT SC results are on 100 samples.

performance gaps identified in our budget-aware312

evaluations among strategies such as MAD, Re-313

flexion, and self-consistency in Section 5.1. In314

Section 5.2, we analyze the components of tree-of-315

thoughts. Finally Section 5.4 assesses the role of316

self-evaluation in the reasoning loop.317

5.1 Reasoning strategies do not benefit318

equally from higher inference budget319

The budget-aware perspective clearly guides which320

reasoning strategies are viable. A strategy is321

deemed effective only if it outperforms a baseline322

with an equivalent budget; otherwise, the additional323

cost isn’t justified if the baseline achieves better re-324

sults considering FLOPs, latency, monetary cost,325

or other relevant metrics. This raises the question326

of whether continuously increasing the budget can327

maximize capabilities.328

As seen in Figure 3, we find that the CoT SC329

exhibits a smooth increase in scores with budget.330

However, such a trend does not always hold. For331

instance, with MAD, an augmented inference bud-332

get eventually experiences a performance plateau.333

For the MAD setting with 6 agents, the graph for334

MAD and CoT SC overlaps up to six queries. Af-335

ter six queries, the MAD strategy switches to the336

second round where the performance gain notice-337

ably lessens compared to self-consistency. But,338

the amount of tokens required for each subsequent339

round increases drastically since previous conversa-340

tions are encoded. The lowered performance may341

arise because subsequent rounds of MAD may in-342

cite a cascading effect of cumulative mistakes, or343

snowballed hallucinations Zhang et al. (2023).344
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Figure 6: The diversity measure of the answers proposed
by GPT-3.5 of MAD for each round.
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Figure 7: Calibration result binned by answer percent-
ages. If an answer appears more times within all the
samples, that answer is more likely to be correct.

5.1.1 Dependent sampling can hurt response 345

diversity 346

Multi-agent debate conditions on the previous 347

round’s answers to sample new answers. We posit 348

another reason MAD performs worse is due to re- 349

duced response diversity, hence more likely to tun- 350

nel on the wrong answer. To show this, we com- 351

pared the entropy of the solutions generated at each 352

round for MAD vs. SC. As shown in Figure 6, 353

the entropy consistently declines for MAD as each 354

round suggesting exactly the kind of cascading ef- 355

fect we hypothesized. By contrast, CoT SC does 356

not suffer such negative consequences and even 357

increases its solution diversity since the responses 358

are generated independently. 359

5.1.2 Effectiveness of independent sampling 360

with chain-of-thought prompting 361

Next, we outline a framework that helps explain 362

what makes self-consistency successful. We first 363

empirically verified that the higher the occurrence 364

of an answer, the more likely it is the correct answer 365

(Figure 7). Self-consistency can capitalize on this 366

and improve performance with more budget. 367

We model the answer generation process by LMs 368
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as a binomial distribution where each problem has369

an inherent probability pi of being answered cor-370

rectly. This analysis reveals several insights:371

1. Convergence: The probability of a correct372

majority vote converges to 0 or 1 as the num-373

ber of trials increases, depending on whether374

the probability of a correct answer pi is less375

or greater than 0.5.376

2. Speed of Convergence: Convergence is fast377

for extreme values of pi (closer to 1 or 0), but378

slow if pi is near 0.5.379

3. Distribution of Correctness: By placing a380

prior on pi (for instance, with a beta distri-381

bution), the aggregate score over the entire382

dataset converge to non-extreme values, re-383

sembling the behavior observed in our results.384

That is, self-consistency performance increases385

smoothly over time is due to the artifact of a model386

consistently answering plausible answers that tend387

to be more correct than not. The alternative can388

happen otherwise (Figure 9). In Appendix C, we389
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Figure 10: Ablation Study of the effect of evaluator on
Reflexion with GPT-4.

detail the analysis with extension to a multinomial 390

setting with Dirichlet priors. 391

5.2 Tree-of-thoughts 392

In this section, we investigate the factors that con- 393

tribute to the enhanced performance of the tree- 394

of-thoughts strategy compared to CoT SC. ToT 395

mainly has two components: a proposer and a 396

self-evaluator. The proposer proposes intermediate 397

steps or answers and the evaluator decides whether 398

to prune or continue on current branches. Hence 399

we further divide the budget into the proposer bud- 400

get and the evaluator budget. We aim to answer 401

questions like how much of the performance can 402

be attributed to self-evaluation ability. 403

For the ablation study, we compare four setups 404

for tree-of-thoughts on the Game of 24: 1) The stan- 405

dard ToT where we use GPT-4 to evaluate the new 406

thoughts; 2) The standard tree-of-thoughts strat- 407

egy except we now do an evaluation only once as 408

opposed to three times; 3) Using a weaker model 409

(GPT-3.5) as the evaluator while using GPT-4 as 410

the proposer; 4) Random evaluator, where we ran- 411

domly select the subset of thoughts to prune. 412
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Evaluator quality has a non-trivial impact As413

observed in Figure 8, a random evaluator leads414

to a very steep performance drop for ToT for both415

best@k as well as total accuracy. Results imply that416

an evaluator has a non-trivial impact. Evaluation is417

done only once per thought as opposed to multiple418

times also leads to performance drops.419

Cost-efficiency of evaluator Using a weaker420

evaluator like GPT-3.5 allows us to maintain most421

of the performance cost-effectively. For instance,422

employing GPT-4 as the proposer and GPT-3.5 as423

the evaluator for 100 instances of Game24 costs424

$33.53 with 72% accuracy. In contrast, using GPT-425

4 as both proposer and evaluator raises the cost426

nearly fivefold to $159.87, with only a slight in-427

crease in accuracy to 76%.428

More effective use of budget for proposer Em-429

ploying a GPT-3.5 proposer with a GPT-4 evaluator430

resulted in markedly lower accuracy (38%) com-431

pared to using GPT-4 for both roles (76%). While432

this discussion does not extensively explore the433

role of the proposer, since most reasoning strate-434

gies involve one, we emphasize its importance. For435

further ablation results, refer to Appendix Table 3.436

5.3 Reflexion ablation study437

In an experiment shown in Figure 10, we compared438

various Reflexion configurations: standard, with439

oracle, with self-consistency, with a random evalu-440

ator, and with a GPT-4 evaluator. Results indicate441

that while Reflexion with an oracle significantly442

outperforms the self-consistency model, Reflex-443

ion with a GPT-4 evaluator lags behind the self-444

consistency version. This underscores the vast dif-445

ference between an ideal and a practical evaluator,446

suggesting substantial potential for improvement447

in LLM self-evaluation capabilities.448

5.4 Self-evaluation is a promising449

budget-efficient improvement but is450

currently lacking451

Self-evaluation usually involves very few tokens452

generated since evaluation is short. This can be453

potentially very cost-effective since prefilling is454

cheaper and faster. In this section, we investigate455

further how a self-evaluator can benefit the reason-456

ing process in a budget-aware setting and demon-457

strate why there may still be a long way to go.458

Self-evaluation abilityWe first benchmarked459

three types of evaluations: Yes or No, Score 1-460

Dataset Correct Accuracy Incorrect Accuracy Total Accuracy

GSM8K 0.992 0.156 0.937
MATH 0.911 0.461 0.707

TheoremQA 0.945 0.232 0.547
HotpotQA 0.994 0.029 0.675

CSQA 0.987 0.06 0.901

Table 1: Self-evaluation accuracy on five datasets. Cor-
rect accuracy denotes self-evaluation accuracy for an-
swers that turn out to be correct and vice versa. All
numbers are obtained with GPT-4-0613.

10, and Probability between 0 to 1. We found Yes 461

or No to be the most calibrated. More details and 462

results in Appendix D. 463

Table 1 shows the self-evaluation accuracy for 464

GPT-4 for multiple datasets. The self-evaluation 465

accuracy turns out to be dependent on the dataset. 466

On harder tasks like TheoremQA, GPT-4’s accu- 467

racy is close to random. This means LLMs have a 468

long way to go before they are reliable evaluators. 469

Self-Confident Self-Consistency (SC2) As an 470

investigation of using self-evaluation to improve 471

reasoning procedure, we propose to weigh the SC 472

by the confidence the model has in its answer, de- 473

rived from self-evaluation. We call this score the 474

Self-Confident Self-Consistency (SC2) score. We 475

showed that SC2 beats self-consistency on GSM8k 476

and MATH while fall behind on the other three as 477

shown in Figure 15.2 This shows that although 478

theoretically, self-evaluation is promising (shown 479

with oracle results in Figure 10), it is still lacking 480

in practice due to low accuracy. 481

6 Conclusion 482

In this paper, we examined the performance of 483

seven reasoning strategies on the often overlooked 484

metric of budget. We used budget metrics of 485

queries and tokens to reflect various ways LLMs 486

are used (LLM APIs or self-host). We identified 487

self-evaluation as an important aspect of many rea- 488

soning strategies and analyzed different prompting 489

strategies to have the model evaluate its genera- 490

tions. We then evaluated self-evaluation and found 491

that although self-evaluation could be promising at 492

improving performance while being cost-effective, 493

current LLMs are mostly incapable of doing that. 494

With the current popularity of reasoning strategies, 495

we think this more balanced budget-aware metric 496

is beneficial for the community and helps set the 497

correct trajectory for future LLM research. 498

2More details can be found at Appendix D.3.
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7 Limitations499

Our goal in the paper was to highlight the impor-500

tance of different aspects of the generation bud-501

get for LLMs that are often ignored in the recent502

spate of reasoning strategies for LLMs. To that end,503

we chose some representative reasoning strategies504

and evaluated them on some common reasoning505

tasks. However, due to both monetary and time con-506

straints, we could not include even more reasoning507

strategies or tasks. A more exhaustive evaluation508

might reveal additional nuances which would be509

interesting to explore.510
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A Model/Dataset Details695

A.1 Datasets696

Here we describe the datasets we used in our ex-697

periments.698

GSM8K GSM8K consists of 8.5K grade school699

math problems. There are 7.5K examples in the700

training set and 1K in the testing set. Each prob-701

lem is expressed in natural language and usually702

involves multi-hop reasoning.703

MATH MATH dataset collects 12.5K (7.5K704

training, 5K testing) high-school level competitive705

math problems in natural languages. This dataset706

is considerably harder than GSM8K.707

TheoremQA Theorem QA annotated 800 QA708

pairs covering over 300 theorems spanning across709

Math, EE&CS, Physics and Finance. We focus on710

math reasoning hence we only used the subset that711

covers math problems which contains 442 ques-712

tions. This dataset is even harder than GSM8K713

since these questions are college-level and involve714

using theorems.715

CSQA CSQA sourced commonsense reasoning716

questions from crowd workers based on Concept-717

Net. It has a total of 12,247 examples (9741,718

1140,1140 for the size of train, dev, and test set719

respectively).720

HotpotQA HotpotQA collects 113K question-721

answer pairs that require multi-hop reasoning.722

There are 7,405 pairs in the test set.723

Game of 24 Game of 24 is a mathematical724

reasoning challenge, where the goal is to use 4725

numbers and 4 arithmetic operations (+-*/) to726

obtain 24. (Yao et al., 2023) collects 100 problems727

from 4num.com which are ranked 901-1000 (it728

is ranked from easy to hard, so these 100 are729

relatively hard).730

731

For each dataset above, we randomly sampled732

100 samples from the test set for all of our experi-733

ments. For Game of 24, since there are exactly 100734

problems, we just use the same 100 problems as in735

(Yao et al., 2023).736

A.2 Model Hyperparameters737

Since we want to maintain the diversity of reason-738

ing processes, most of the results are obtained with739

a temperature of 1 for GPT-3.5 and GPT-4. In our740

preliminary study, we also tested with a tempera- 741

ture of 0.7 and 0.5 and observed the same conclu- 742

sion. The GPT-3.5 version we used is 0301. The 743

GPT-4 version we used is 0613. 744

For open-source models, we use a temperature 745

of 1 as well. 746

B Additional Result for Budget-aware 747

Performance Metrics 748

B.1 Budget Metrics on All Datasets 749

Budget metrics on all datasets are shown in Figure 750

3 and Appendix G. 751

B.2 Detailed description of Reasoning 752

strategies 753

1. Tree of thoughts generates a search tree to 754

search through possible chains of thought. It 755

maintains a chain of thought. At each node 756

in the tree, it generates a list of candidate 757

thoughts to be added to the chain and does 758

an evaluation to select the next thought to add. 759

It concludes by generating an answer at a leaf 760

node of the tree. The path in the tree from the 761

root to the leaf node forms a single chain of 762

thought, with each node corresponding to a 763

single thought. If the answer is deemed incor- 764

rect (as per another evaluator), it backtracks 765

to a previous node of the tree (unwinding the 766

chain of thought along the way) and selects 767

the next thought out of the candidate list of 768

thoughts to add to the chain of thought. 769

B.3 Self-Evaluation with CoT 770

All of our self-evaluations are done without CoT. 771

For both evaluation calibration and weighted con- 772

fidence self-consistency, we only generated one 773

token "yes" or "no" or one number. One may be 774

interested in whether CoT can improve the self- 775

evaluation performance and further boost the re- 776

sults. We tested this by extracting 160 CoT an- 777

swers from 80 questions from GPT-3.5, where 778

each question we extract 1 correct CoT answer 779

and 1 incorrect CoT answer. We then compared 780

the performance of direct evaluation versus CoT 781

then evaluation. For GPT-3.5-turbo-0301, the ac- 782

curacy increased from 50.625% to 54.375%. For 783

GPT-4-0613, the accuracy increased from 78.75% 784

to 79.375%. For GPT-4 the benefit from CoT is 785

very mariginal and we concluded that it is not worth 786

the extract cost from CoT. Hence we use the direct 787

evaluation for all of our self-evaluations. 788
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Figure 10 that investigates the Reflexion tech-789

nique (Shinn et al., 2023) reveals a similar trend790

compared to the multi-agent debate with respect to791

inference scale. We find that Reflexion relies heav-792

ily on the oracle that helps the model determine793

when the correct answer is encountered and stops794

the generation early and returns that answer. This795

is in contrast to strategies like SC. We demonstrate796

the performance of Reflexion including baselines797

that have access to oracle and without. For direct798

comparison, it is more fair to compare strategies799

within the group with access to an oracle, or with-800

out. We find that in each group, inference scale is801

a strong prediction on the performance.802

C Mathematical Framework for803

Self-Consistency804

In many real-world reasoning tasks and decision-805

making processes, the use of SC has emerged as a806

powerful and often robust technique. Whether it’s807

human experts forming a consensus or ensemble808

methods in machine learning, the idea of aggregat-809

ing multiple opinions to reach a final decision has810

proven to be effective. The empirical success of811

SC in various domains, such as classification, re-812

gression, and human-driven decision-making, mo-813

tivates a deeper examination into the underlying814

principles that make it work so well.815

For instance, in complex reasoning tasks where816

individual models or experts might be uncertain,817

the wisdom of the crowd often leads to improved818

accuracy. SC can act as a regularization method,819

mitigating the effects of overfitting or biases that820

might be present in individual models. By combin-821

ing multiple models or opinions, SC captures the822

common patterns among them, enhancing general-823

ization to unseen data.824

In this work, we seek to understand what makes825

SC an effective strategy, especially in the context826

of reasoning tasks. We aim to analyze the mathe-827

matical properties and probabilistic behavior that828

underlie this mechanism, considering various sce-829

narios such as binary choices or multi-choice prob-830

lems. Through rigorous analysis, simulations, and831

real-world datasets, we hope to derive insights that832

explain why SC often leads to consistent improve-833

ment and under what conditions it might fail.834

The following section explores the mathemat-835

ical explanation of SC, beginning with a simple836

binomial distribution model and gradually extend-837

ing to more complex multinomial and Dirichlet838

distributions. By understanding the mathematical 839

characteristics of these distributions, we hope to 840

explain the empirical results observed in real-world 841

reasoning tasks, thereby contributing to the ongo- 842

ing efforts to harness the power of SC in a wide 843

range of applications. 844

C.1 Self-Consistency Results on Reasoning 845

Tasks 846

In our exploration of SC strategies applied to rea- 847

soning tasks, we conducted several experiments to 848

analyze the effectiveness and behavior of different 849

approaches. Figure 3 and Appendix G illustrate our 850

findings, including the results for different tasks. 851

The convergence patterns and the improvement 852

as the number of trials increases are shown for each 853

task, highlighting the impact of SC. 854

These visualizations demonstrate the potential of 855

SC in enhancing reasoning tasks, leading to more 856

robust and accurate solutions. In this section, we 857

will provide a theoretical framework that could 858

explain the gains from SC. Note that we use Self- 859

Consistency (SC) and Majority-Vote (MV) inter- 860

changeably. 861

C.2 Binomial 862

We seek to analyze the behavior of parallel sam- 863

pling with n trials with self-consistency or SC. In 864

this setup, given a set of problems {xi}, each prob- 865

lem’s answer prediction (whether it is correct or 866

not) can be modeled as a binomial distribution, as- 867

suming two choices (yes or no). Mathematically, 868

the probability mass function for each problem’s 869

answer is given by: 870

f(Xi = k) =

(
n

k

)
pki (1− pi)

n−k, (1) 871

where Xi corresponds to the correct answer of the 872

binomial distribution and pi represents the proba- 873

bility of a correct answer for the i-th problem. 874

We can calculate the probability that SC yields 875

the correct solution over n trials by calculating the 876

probability that Xi yields a value that is at least 877

n/2. This is expressed as: 878

P (MV correct|xi) =
n∑

k=⌈n/2⌉

(
n

k

)
pki (1− pi)

n−k.

(2) 879

By plotting the probability of MV being correct 880

as a function of n, we observe that as n increases, 881

P (MV correct|xi) either goes to 0 or 1, depending 882
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Figure 11: Convergence of self consistency under different beta distributions. Here, a Beta distribution that peaks at
high p indicates that there are a lot of data examples where the model can solve with high probabilities, which leads
to higher average self-consistency scores.

on whether pi > 0.5 or pi < 0.5 for this particular883

problem. This is evident in the synthetic experi-884

ment shown in Figure 12.885

If pi is extreme (closer to 1 or 0), then the con-886

vergence is fast, and the probability function can887

be described as:888

lim
n→∞

P (MV correct|xi) =

{
1 if pi > 0.5,

0 if pi < 0.5.
(3)889

Figure 12: Probability of self consistency being correct
for a given problem with varying p.

On the other hand, if pi is close to 0.5, the conver-890

gence is slow, reflecting the uncertainty associated891

with an answer that is nearly equally likely to be892

correct or incorrect.893

Over the set of all problems we consider, we894

place a beta distribution over pi and integrate895

P (MV correct|xi) over the set of all problems896

to obtain P (MV correct). This can be expressed897

mathematically as:898

P (MV correct) 899

=

∫ 1

0
P (MV correct|pi) · f(pi|α, β) dpi, (4) 900

where f(pi|α, β) is the probability density function 901

of the beta distribution with parameters α and β. 902

If we select a beta distribution where the mode 903

peaks beyond 0.5, then we find that P (MV correct) 904

increases as a function of n, albeit to a value less 905

than 1 as you can see in Figure 11. This behavior 906

explains our observation in real datasets directly. 907

This also implies that for datasets where major- 908

ity vote leads to consistent improvement, the dis- 909

tribution of pi needs to be peaked greater than 0.5. 910

There would also exist a set of problems where self- 911

consistency leads to lowered performance, specifi- 912

cally for the set of problems where pi < 0.5. 913

By carefully selecting the parameters of the beta 914

distribution, we can control the characteristics of 915

the majority voting process and gain insights into 916

the behavior of parallel sampling across various 917

datasets. This mathematical framework provides a 918

powerful tool for understanding and optimizing the 919

majority vote process in practical applications. 920

C.3 Generalization to multinomial 921

We can further generalize this setup by considering 922

each problem as being modeled by a multinomial 923

distribution with K choices. In this more general- 924

ized scenario, the distribution of probabilities over 925

problems can also be modeled by a Dirichlet distri- 926

bution. 927

Let p = (p1, p2, . . . , pK) be the probabili- 928

ties associated with the K choices, and let α = 929

(α1, α2, . . . , αK) be the parameters of the corre- 930

sponding Dirichlet distribution. The probability 931

of obtaining a correct majority vote for a given 932

13
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Figure 13: Convergence of self consistency under different Dirichlet distributions with K = 3

problem is then:933

P (MV correct|p) =
n∑

k=⌈n/2⌉

multinomial(k;n, p),

(5)934

where the sum is taken over all combinations of k935

votes that would result in a majority for the correct936

choice.937

The overall probability of obtaining a correct938

majority vote, integrating over all problems, can be939

expressed as:940

P (MV correct) =
∫

P (MV correct|p)·f(p|α) dp,
(6)941

where f(p|α) is the probability density function,942

which can be modeled by the Dirichlet distribution.943

Following a similar simulation to the binary944

case, we find that the conclusions hold (see Fig-945

ure 13). Specifically, if the mode of the Dirichlet946

distribution is biased towards the correct choices,947

the probability of the majority vote being correct948

increases with n, and the set of problems where949

self-consistency leads to lowered performance can950

be characterized by the subset where the correct951

choice probabilities are below certain thresholds.952

This generalization to multinomial and Dirichlet953

distributions adds complexity but also additional954

flexibility in modeling the majority voting process,955

making it applicable to a broader range of practical956

scenarios.957
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Figure 14: Calibration result for the math reasoning
datasets. Three different self-evaluation methods are
calibrated here.

Method Correct Accuracy Incorrect Accuracy Total Accuracy

Yes or NO 0.911 0.461 0.707
Score 1-10 0.995 0.149 0.613

Probability 0.0-1.0 0.886 0.115 0.537

Table 2: Self-evaluation accuracy on MATH with three
methods

D Self-Evaluation958

D.1 Self-Evaluation Method959

Given an answer, there are multiple ways we can960

prompt the LLM to evaluate that answer. Here we961

examine 3 possibilities for self-evaluation962

1. Binary3 - we ask the model to output Yes/No963

as to whether the answer is correct. We do this964

multiple times and take the fraction of times965

the model answers Yes as the confidence of966

the model in the answer.967

2. Numerical confidence - we ask the model to968

output a score between 1 and 10 to indicate its969

confidence in the answer. We do this multiple970

times and take the average as the confidence971

of the model in the answer.972

3. Confidence probability - similar to the previ-973

ous strategy except now we prompt the model974

to output a confidence between 0.0 and 1.0975

and average it.976

The evaluation result is shown in Figure 14 and977

Table 2. The binary Yes or No is the most well978

calibrated.979

3We also investigate a variant where we ask the model to
think step by step before evaluating. While we see a small
increase in performance for such a strategy, it also necessitates
a big increase in the token budget. Further analysis is in the
Supplement.

D.2 Self-evaluation is correlated with problem 980

difficulty 981

To get an understanding of whether models found 982

it easier to evaluate answers to easier problems, we 983

computed the following metric for a 100 problem 984

subset of the GSM8K dataset. For each problem 985

i, let aij be the jth answer. We had 20 sampled 986

answers per problem. We computed the fraction ci 987

of answers that were correct. Our assumption was 988

that ci indicates the difficulty of the problem – the 989

higher the value, the easier the problem. For each 990

answer aij , we obtained the binary self-evaluation 991

confidence as described in the beginning of this 992

section (we sampled the evaluation 5 times). We 993

then computed the correlation ρi between the self- 994

evaluation confidence for the answers aij and the 995

binary vector indicating whether the answers were 996

correct or not. We then computed the correlation 997

between ρi and ci. We obtained a correlation of 998

0.347 with a p-value of 0.00026 – a clear indication 999

that an increase in the problem difficulty results in 1000

the self-evaluation becoming more noisy. We re- 1001

peated this experiment for MATH and TheoremQA 1002

and obtained correlations of 0.31 and 0.42 with 1003

p-values of 0.02 and 0.0025 respectively. 1004

D.3 Self-Confident Self-Consistency (SC2) 1005

Details 1006

We take the answer which has the highest SC score 1007

as the predicted answer. Formally the definition is 1008

SC2
a =

∑
ai=a

confidence(ai) (7) 1009

1010
where confidence(ai) =

∑
vj

I(vj=Yes)

m where m 1011

denotes the number of Binary evaluations vj sam- 1012

pled. We apply this strategy to the MATH, Theo- 1013

remQA (integer answer subset), TheoremQA (ran- 1014

dom subset), and HotpotQA datasets. SC2 is con- 1015

sistently on par or better than a simple majority 1016

vote. The results are in Figure 16. SC2 achieves 1017

non-trivial gain for math reasoning tasks but the 1018

overall costs increase quite a bit. This prompts us 1019

to inquire whether the achieved performance boost 1020

justifies the additional costs incurred. However, 1021

if we have the option to cache, then during self- 1022

evaluation, previous questions and answers can be 1023

cached and don’t need to be encoded again. This 1024

can save a lot of budget and the new results would 1025

look like Figure 15. We see non-trivial gains for the 1026

math reasoning datasets. However, for TheoremQA 1027

we see markedly smaller gains. We hypothesize 1028

that the reason for this is that TheoremQA is a 1029
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Figure 15: SC2 with total tokens being the budget if caching is enabled.
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Figure 16: SC2 with total tokens being the budget. There are sizable improvements in using our method SC2 on
math reasoning tasks.
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Figure 17: Separate proposer budget and evaluation budget on the dataset of MATH.

harder dataset for the model. As we showed in the1030

previous section, self-evaluation ability decreases1031

as problem difficulty increases. GPT-4 shows a1032

self-evaluation ability of no better than random for1033

TheoremQA and thus we observe very small im-1034

provement. Overall, a budget-aware comparison of1035

reasoning methods is a healthy approach to com-1036

pare among vastly different methods.1037

D.3.1 Budget-efficiency1038

The strategy requires only a handful of extra tokens1039

(m additional tokens per answer corresponding to1040

the Yes/No) to execute (Figure 17). However, it1041

does require more encoded tokens (We can sample1042

all of the m additional tokens as part of a single1043

query). Thus if one is self-hosting the model, this1044

strategy has only marginal additional cost.1045

D.3.2 Query vs Token budget 1046

While we have discussed both query and token 1047

budget in this paper, token budget has some notable 1048

advantages as a metric. 1049

Theoretical aspects Equivalence in the number 1050

of queries can be arbitrarily far from the equiva- 1051

lence in the amount of compute. Merrill and Sab- 1052

harwal (2023) and Pérez et al. (2021) both show 1053

that the expressive power of transformers can be 1054

greatly enhanced by generating intermediate steps 1055

in the computation (colloquially called chain of 1056

thought). Merrill and Sabharwal (2023) shows that 1057

without any bound in the number of steps, an 1058

encoder-decoder architecture with only one en- 1059

coder and three decoder layers can simulate a Tur- 1060

ing Machine and thus a single query to such a Trans- 1061

former can perform computations with arbitrarily 1062
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Method Top1 Best out of all Total Accuracy
ToT b=5 (GPT-4,GPT-4) 0.74 0.76 0.4
ToT b=3 (GPT-4,GPT-4) 0.77 0.77 0.49
ToT b=1 (GPT-4,GPT-4) 0.65 0.65 0.65

ToT eval once (GPT-4,GPT-4) 0.73 0.75 0.352
CoT 100 times (GPT-4) 0.17 0.56 0.0756

ToT Random Eval (GPT-4) 0.0 0.04 0.008
ToT b=5 (GPT-3.5,GPT-3.5) 0.25 0.35 0.11

CoT 100 times (GPT-3.5) 0.04 0.46 0.0252
ToT b=5 (GPT-4,GPT-3.5) 0.68 0.72 0.302
ToT b=5 (GPT-3.5,GPT-4) 0.3 0.38 0.156

Table 3: Various results on Game of 24. ToT refers to Tree-of-Thoughts. For ToT, the first model name in the
parenthesis refers to the model used to generate the candidate thoughts, while the second model name refers to the
model used to evaluate the candidate thoughts.

large amount of compute. Pérez et al. (2021) shows1063

that even for decoder-only transformers, allowing1064

for polynomial-sized chains of thought makes it1065

powerful enough to do, in a single query, any com-1066

putation a Turing Machine can do in polynomial1067

time. While the number of queries metric fails to1068

capture this, by contrast, the number of tokens met-1069

ric which is novel to our paper, does capture this1070

aspect as it by definition includes the length of the1071

generated thought as part of the compute.1072

Practical aspects The above is not just a theoret-1073

ical consideration. In Figure 18a we demonstrate, a1074

custom reasoning strategy that at first glance, seems1075

to outperform self-consistency – based on the num-1076

ber of queries metric. However, when we properly1077

take the holistic compute budget into account via1078

the number of tokens metric, we can see that self-1079

consistency is more token-efficient (Figure 18b).1080

That is, the number of tokens as a metric of bud-1081

get captures the nuances of resources required for1082

LLM reasoning more properly.1083

E More Ablation Results for Tree of1084

Thought1085

In Table 3 you can see more ToT results on the task1086

of Game of 24. Most of the results are shown in the1087

Figure 8. The table mainly shows the ablation for1088

when using GPT-3.5 as the proposer and GPT-4 as1089

the evaluator. We see that the performance is better1090

than using a GPT-3.5 as the evaluator but far below1091

the performance of using GPT-4 as the proposer.1092

F Terms and Licenses1093

GSM8K, MATH, TheoremQA, CSQA are under1094

the MIT license. HotpotQA is under the CC BY-1095

SA 4.0 License. All the datasets and models are1096

used for their intended use.1097
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Figure 18: We evaluated this custom reasoning strategy
on MATH with GPT-3.5-Turbo-0125 for 15 queries, so
in theory it should generate 15*4=60 responses. Here
is the result based on the number of queries metric (we
name the custom reasoning strategy AggregateCoT).
We can find that it never outperforms Chain-of-Thought
Self-Consistency with same amount of tokens. The
"improvement" previously was an unfair comparision
because the custome reasoning strategy will use much
more tokens per query.
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G Results From More Models1098

G.1 MAD & Reflexion1099

Here we extend the results to a variety of models: GPT-3.5-Tubo-0125, Mistral-7B-Instruct-v0.2 (Jiang1100

et al., 2023a), LLaMA-2-70b-chat(Touvron et al., 2023), and Mixtral-8x7B-Instruct-v0.1. Overall, we1101

find similar trends that self-consistency is extremely competitive compared to multi-agent debate and1102

reflexion, when evaluated in a budget-aware manner.1103

We observed that it is very consistent that CoT with self-consistency beat other reasoning strategies1104

across models with various sizes/training procedures. Multi-agent debate and Reflexion often decrease1105

performances with more budget. This is not surprising considering our analysis in Section 5. Note that1106

for LLaMA-2-70b-chat, we can’t run Mad and Reflexion to the same amount of budget as CoT with1107

self-consistency due to the context limit of around 4k. But the trend stays similar.1108
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Figure 19: GPT-3.5-0125: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Performance@Number
of Tokens for all 5 datasets.
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Figure 20: Mistral-7B-Instruct-v0.2: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.
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Figure 21: LLaMA-2-70b-chat: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.
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Figure 22: Mixtral-8x7B-Instruct-v0.1: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.
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G.2 Three Other Reasoning Strategies 1109

In this section, we will evaluate on three other reasoning strategies in the self-consistency family: Plan and 1110

Solve (Wang et al., 2023), Least to Most Prompting (Zhou et al., 2022), and Progressive Hint Prompting 1111

(Zheng et al., 2023). 1112

Plan and Solve It asks LLMs to do some planning before solving a question. It is like an extension to 1113

CoT. 1114

Least to Most Prompting This strategy prompts the model to decompose a question first and then 1115

answer each subquestion before aggregating them to the final answer. 1116

Progressive Hint Prompting This strategy uses previous answers as hints to generate next answer. 1117

All three new strategies here can be integrated with self-consistency seamlessly, since they are mostly 1118

just variants of chain-of-thought. Based on the plots, it seems that normal self-consistency is still very 1119

competitive, but different prompting styles can make a big difference. For some models and some datasets, 1120

a strategy other than CoT converges to a higher performance. This is strong evidence that self-consistency 1121

is a really budget-effective strategy. 1122
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Figure 23: GPT-3.5-0301: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Performance@Number
of Tokens for all 5 datasets.
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Figure 24: GPT-3.5-0125: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Performance@Number
of Tokens for all 5 datasets.
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Figure 25: Mistral-7B-Instruct-v0.2: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.
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Figure 26: LLaMA-2-70b-chat: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.
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Mixtral-8x7B-Instruct-v0.1:
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Figure 27: Mixtral-8x7B-Instruct-v0.1: (a) Performance@Number of Queries Plots for all 5 datasets. (b) Perfor-
mance@Number of Tokens for all 5 datasets.
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