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ABSTRACT

Federated learning (FL) has gained widespread adoption due to its ability to jointly
train models by only uploading gradients while retaining data locally. Recent re-
search has revealed that gradients can expose the private training data of the client.
However, these recent attacks were either powerless against the gradient computed
on high-resolution data of large batch size or often relied on the strict assump-
tion that the adversary could control and ensure unique labels for each sample
in the attacked batch. These unrealistic settings and assumptions create the il-
lusion that data privacy is still protected in real-world FL training mechanisms.
In this paper, we propose a novel gradient leakage attack named RGLA, which
effectively recovers high-resolution data of large batch size from gradients while
considering duplicate labels, making it applicable in realistic FL scenarios. The
key to RGLA is to invert the cross-entropy loss function to obtain the model out-
put corresponding to the private model inputs. Next, RGLA directly computes the
feature map inputted into the last fully-connected layer leveraging the obtained
model output. Finally, a previous generative feature inversion model is used to
invert the feature map of each sample to model input space. Extensive experimen-
tal results demonstrate that RGLA can reconstruct 224×224 pixels images with a
batch size of 256 while considering duplicate labels. Our source code is available
at https://github.com/AnonymousGitHub001/RGLA.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Shokri & Shmatikov, 2015) safeguards the privacy
of client data by only uploading gradients without sharing the actual data. However, the emergence
of Gradient Leakage Attacks (GLAs) shredded the good impression of FL by stealing clients’ private
data. Broadly, GLAs can be classified into two main types: optimization-based attacks (Zhu et al.,
2019; Geiping et al., 2020) and analytics-based attacks (Phong et al., 2017; Zhu & Blaschko, 2020;
Fowl et al., 2021; Xue et al., 2023). The former optimizes the dummy data and dummy label to
minimize the distance between its gradient and the observed gradient. When this distance is small
enough, the dummy data can be considered as reconstructed data. The latter directly derives the
reconstructed data from the gradient through a series of analytical equations.

However, these two types of GLAs may struggle to work in realistic FL settings. Optimization-
based attacks are limited to unrealistic small-batch or low-resolution data. In fact, high-resolution
data of large batch size is more common in FL. Nevertheless, as heightened by Zhu et al. (2019),
high resolution or large batch size makes the optimization more difficult for there are more variables
to solve during optimization. Additionally, we notice that analytics-based attacks frequently rely
on unrealistic assumptions, such as the gradient computed on a single sample (Zhao et al., 2020a;
Phong et al., 2017) and each label in a batch is unique (Zhu & Blaschko, 2020; Xue et al., 2023).
Unfortunately, as highlighted by recent studies, executing GLAs on data containing duplicate labels
presents a significant challenge (Zhu & Blaschko, 2020; Fowl et al., 2021). For instance, Fowl et al.
(2021) emphasizes that analytics-based attacks fail to attack once the duplicate labels occur. Fig. 1
illustrates the ineffectiveness of optimization-based methods, represented by Geiping et al. (2020),
and analytics-based methods, represented by Xue et al. (2023), in such a simple FL setting.

To address the above challenges, we introduce Reverse Gradient Leakage Attack (RGLA), a novel
GLA that effectively reconstructs high-resolution data of large batch size without assuming any
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Original batch of 224×224 pixels, ground-truth RGLA(Ours), PSNR↑=19.91, time:14.89(s)

IG(NeurIPS’20), PSNR↑=12.06, time:4993.16(s) FGLA(INFOCOM'23), PSNR↑=13.91, time:1.21(s)

Figure 1: Visualization of RGLA and other state-of-the-art GLAs on high-resolution data in a setting
containing duplicate labels. The data in the red boxes have the same labels.
specific label distribution. The RGLA is inspired by the observation that gradients can leak the
model output corresponding to the model input, and subsequently, the leaked model output reveals
the data itself (Zhu & Blaschko, 2020). RGLA consists of three steps. Specifically, we first propose
three innovative optimization objectives, inverting the cross-entropy loss function of the target model
to reconstruct the corresponding model output logits for each sample through optimization. Next,
the reconstructed logits are used in an analytical attack to directly compute the feature map inputted
into the last fully-connected layer (FCL) of the target model for each data input. Finally, prior work
(Xue et al., 2023) is employed to generate the data based on their feature maps with no effort.

Compared to optimization-based methods, RGLA requires less than 1
200 of their time, demonstrates

robustness to high resolution, and can tackle any batch size providing that the number of classes is
higher than the batch size. Compared to analytics-based methods, RGLA is the first to be able to
handle label duplication. Our contributions can be summarized as follows:

• We propose RGLA for performing a gradient leakage attack in FL. RGLA establishes equa-
tions for every value in the original model output and optimizes the model output, thus
addressing the challenge of reconstructing private data with duplicate labels. As a result,
RGLA pushes the boundary of GLAs towards more practical FL scenarios.

• RGLA optimizes the model output, with its output being positively correlated only with the
batch size and the number of classes, independent of pixel size. This enables achieving a
more efficient optimization within a smaller optimization space. Consequently, it addresses
the challenge of reconstructing high-resolution data.

• Extensive experiments show that RGLA outperforms state-of-the-art methods and exhibits
robustness to various defenses, label distributions, and batch sizes. RGLA can rapidly
reconstruct data batch of 224× 224 pixels images in a batch size of 256 within 30 seconds,
thereby proving that gradients can still leak information in more complex FL settings.

2 RELATED WORKS

Existing GLAs for reconstructing private data can be broadly classified into two categories:
optimization-based attacks and analytics-based attacks. Table 1 briefly compares RGLA with exist-
ing methods and showcases RGLA’s superior performance across these assessed parameters.

Optimization-based methods optimize dummy data for the generated gradient to be as close as
possible to the observed gradient. In more recent studies, regular terms may be added to the dummy
data. Zhu et al. (2019) introduced DLG (Deep Leakage from Gradients), the first reconstruction
of the private data, but only works on low-resolution images of 32×32 pixels and batch sizes of
8. Zhao et al. (2020a) improved DLG by revealing the ground-truth label through FCL gradient
signs but only works on a single data. Geiping et al. (2020) (Inverting Gradients, IG) used cosine
similarity as a distance metric and total variation regularization for image reconstruction. Yin et al.
(2021) further improved DLG using multiple optimization terms, including the standard image pri-
ors (Mahendran & Vedaldi, 2015; Mordvintsev et al., 2015) that penalize the total variance and l2
norm of the dummy image as well as using strong priors BatchNorm statistics. Jeon et al. (2021)
optimized low-dimensional features and generator to fully utilize a pre-trained generative model to
invert gradient. Based on Jeon et al. (2021), Li et al. (2022) only optimized low-dimensional features
to invert the gradient. Yang et al. (2022) (Highly Compressed Gradients Leakage Attack, HCGLA)
investigated new dummy data initialization for better quality. Yue et al. (2022) explored an image
reconstruction attack at a semantic level and measured the corresponding image privacy leakage. Wu
et al. (2023) trained a model to learn the mapping between the gradient and corresponding inputs.
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Table 1: A comparison of RGLA with existing methods based on criteria such as batch size, image
size, the number of classes C, speed, defense mechanisms, and data label with duplicate label.

Max Batch Size
× Image Size

Class Count
> 2

Fast
Speed

Strict
Defense1

Data with
Duplicate Label

Zhu et al. (2019) 8 × (32 × 32) ! ✗ ✗ !
Geiping et al. (2020) 100 × (32 × 32) ! ✗ ✗ !

Jeon et al. (2021) 48 × (64 × 64) ! ✗ ✗ !
Yang et al. (2022) 1 × (32 × 32) ! ✗ ✗ !

Li et al. (2022) 1 × (224 × 224) ! ✗ ✗ !
Phong et al. (2017) 1 × (32 × 32) ! ! ✗ ✗

Fan et al. (2020) 8 × (32 × 32) ! ! ✗ ✗
Zhu & Blaschko (2020) 1 × (32 × 32) ✗ ! ✗ ✗

Fowl et al. (2021) 64 × (224 × 224) ! ! ✗ ✗
Xue et al. (2023) 256 × (224 × 224) ! ! ✗ ✗

RGLA(Ours) (C+1) × (224 × 224) ! ! ! !
1 Strict defense refers to a highly compressed gradient with a compression ratio of 99.9%, noisy gradient

with σ = 0.01, and clipped gradient with C = 4.

Analytics-based methods compute private data directly using analytical formulas associated with
the gradient. Phong et al. (2017) introduced a formula f ′ = ∇θW

L /∇θb
L to recover training data,

where∇θW
L denotes the gradient of the weight term in Lth layer (also FCL) in the model and∇θb

L

denotes the gradient of the bias term in Lth layer in the model. Fan et al. (2020) expanded the
method of Phong et al. (2017). to handle multiple-layer perceptions. R-GAP (Zhu & Blaschko,
2020) provided a closed-form recursive procedure to recover data from gradients. Fowl et al. (2021)
retrieved portions of data of batch size 64 by modifying the model structure, but it can be easily
detected. Boenisch et al. (2021) proposed the ”trap weights” method to augment the number of
neurons in the model, enhancing the possibility of directly computing training data from the gradient.
Xue et al. (2023) (Fast Gradient Leakage Attacks, FGLA) used an analytical method to separate the
feature map of original data from gradients and fed it into a pre-trained generator, enabling rapid
reconstruction of a data batch. More recent work (Cocktail Party Attack (Kariyappa et al., 2023),
CPA) treats the gradient inversion as a Blind Source Separation (BSS) problem and then CPA uses
independent component analysis (ICA) to address the BSS problem.

3 THREAT MODEL

Consider an FL system consisting of two entities, a parameter server A, and multiple clients. An
honest but curious parameter server A is assumed to be an adversary who aims to steal the client’s
data while following the FL protocol. The target model in our attack is the convolutional neural net-
work with the fully-connected layer as the last layer and trained by the cross-entropy loss function,
as such setting is widely adopted for image classification and widely assumed as the target model in
most existing methods (Zhu & Blaschko, 2020; Fowl et al., 2021; Xue et al., 2023). Similar to most
existing works (Yin et al., 2021; Xue et al., 2023), our attack primarily occurs during the initializa-
tion or pre-training phase of model training and focuses on the gradient of one iteration. As a server,
A has access to the parameters of the global model, including weights (θW ) and biases (θb), as well
as the gradients uploaded by each client during training. A is assumed to have access to auxiliary
datasets as it is widely used by the prior works (Liu et al., 2021; Zhao et al., 2020b; Li et al., 2022;
Xue et al., 2023). Previous research (Wainakh et al., 2021; Ma et al., 2022) has demonstrated that the
label information can be independently recovered with high accuracy (up to 100%), so it is assumed
that A can obtain the ground-truth labels. Similar to Xue et al. (2023), the target model is assumed
to omit global pooling layers for more information from the gradient. Finally, considering a realistic
FL scenario, A is assumed not to get access to batch norm statistics of the client’s data.

4 REVERSE GRADIENT LEAKAGE ATTACK

4.1 MOTIVATATION: REVERSE DISAGGREGATION AND FAST GENERATION

To better understand our approach, let’s look at two simple examples that inspired us. Let us begin
by understanding the common processing data flow of a convolutional neural network. A data
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CIFAR-100, PSNR↑:20.74278 SSIM↑:0.78900 LPIPS↓:0.31538

CelebA, PSNR↑:19.41555 SSIM↑:0.62176 LPIPS↓:0.42613

CNN

𝒇:

ෝ𝒚
Cross-
Entropy

𝒚

𝒍𝒐𝒔𝒔

Victim Client

𝒈ෝ𝒚′𝒇′:generator

Invert Cross-EntropyInvert FCL
Generate

Attacker

𝒙

𝒙′

FCL

Figure 2: Left: The overview of our proposed RGLA. Right: The statistical metric and visualization
of reconstruction results on the CIFAR-100 and CelebA datasets.
Algorithm 1 Private data leakage from the captured gradients.

Input: θ: the global model parameters; ∇θ: gradients calculated by training data; Daux: the
auxiliary dataset to train the generator; Ground-truth label: y.

Output: private training data x′

1: procedure RGLA(θ,∇θ, y, Daux)
2: ŷ′

1 ← N (0, 1) ▷ Initialize dummy model outputs ŷ′.
3: for i← 1 to Epochs do
4: Lossitotal ← α1Lw(ŷ

′
i) + α2Lb(ŷ

′
i) + α3Lloss(ŷ

′
i)

5: y′
i+1 ← y′

i − η∇y′
i
Lossitotal ▷ Update the dummy model outputs ŷ′.

6: end for
7: f ′ = (∂l (ŷ′,y)/∂ŷ′)

−1 · ∇θW
L ▷ Compute the dummy feature map f ′.

8: G ← Train a generator by inputting feature maps and outputs corresponding images using
model parameters θ and auxiliary dataset Daux.

9: x′ ← G(f ′) ▷ Generate the reconstructed data.
10: return x′

11: end procedure

batch x ∈ RB×Channel×Hight×Width input into the convolutional neural network is first processed by
a convolutional layer of the network, producing a feature map f ∈ RB×H . f is then processed
by a FCL using the equation ŷ = f · θW

L + θb
L thus yielding a model output logits ŷ ∈ RB×C .

Finally, the model output ŷ and the ground-truth labels y ∈ RB×1 are input into the cross-entropy
loss function to get the loss. Where ·, B, H , and C denote the matrix multiplication, batch size, the
number of neurons in the input layer, and the number of classes, respectively.

As demonstrated by Zhu & Blaschko (2020); Fowl et al. (2021); Wainakh et al. (2021); Xue et al.
(2023), the feature map f input into the last FCL can be revealed approximately by:

fy(i) ≈ ∇θW
L y(i)/∇θ

b
Ly(i) (1)

where i is the index of the sample within the input batch and i ∈ [1, B]. After disaggregating
the feature map of each data individually, the private data can be generated quickly by inputting
the disaggregated feature map into the generator (Xue et al., 2023), which is trained by inputting
the feature maps (generated by feeding the data from the auxiliary dataset into the target model)
and generating the corresponding data from the auxiliary dataset. FGLA (Xue et al., 2023) can
reconstruct private data quickly since it only requires analytical disaggregation and generation, thus
simplifying the reconstruction data problem to a feature map extraction problem.

However, this analytical disaggregation in Eq. 1 may be ineffective for the data with the same
labels. Actually, the feature map from the disaggregation in Eq. 1 is a linear combination of the
feature maps of all the data individually entered into the model (Fowl et al., 2021), and the data with
the same label will resolve the same feature map. For example, for data samples xi and xj with the
same label in batch x, we can have y(i) = y(j), and thus we arrive at fy(i) = fy(j) through Eq. 1.
Therefore, we have to resolve to another feature map extraction method.

We observe that more previous work (Zhu & Blaschko, 2020) utilized Eq. 2 to analytically invert
the cross-entropy loss function to obtain the model output ŷ for the input batch, and then derived
the original private data recursively through the gradient. This method inspired the idea that we can
disaggregate the feature map by first leaking the model output and then disaggregating it. However,
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this method only works in a limited setting of a batch size of 1, and a number of classes of 2.

∇θW
L · θW

L =
∂l(ŷ,y)

∂ŷ
· ŷ (2)

4.2 DATA LEAKAGE FROM GRADIENTS

Nevertheless, such fast data reconstruction by disaggregating the feature maps still attracts us to
explore the feature map disaggregation methods in a more generic FL setting. To this end, we
propose three innovative equations to disaggregate the model outputs and hence the feature maps,
finally generating the original data, which overcomes the above problems while maintaining the
superior reconstruction capabilities of the above methods. Algorithm 1 and Fig. 2 outline the flow
of our algorithm.

Considering a generic FL setting of batch size > 1, and the number of classes > 2, we improve Eq.
2 as Proposition 1:

Proposition 1. ∇θW
L · θW

L =
∂l(ŷ,y)

∂ŷ
· (ŷ − θb

L), where θW
L indicates the weights of FCL, θb

L

indicates the bias of FCL, ŷ denotes the model output for private data, y denotes the ground-truth
label, and l(·, ·) denotes the cross-entropy loss function.

Proof. See Appendix A.1 for a detailed proof.

Since ∇θW
L , θW

L , θb
L, and y are known to the attacker, we can obtain the model output ŷ through

Proposition 1. It can be observed that Proposition 1 establishes C ×C equations through the matrix
∇θW

L · θW
L of size C × C on the left side of the Proposition 1. Then, to fully utilize the data

information embedded in the gradient of the bias and establish more equations, we establish the
second equation:

∇θb
L =

∂l(ŷ,y)

∂ŷ
·
∂ŷ(:,j)

∂θb
Lj

=
∂l(ŷ,y)

∂ŷ
· I (3)

where the I ∈ RB×1 and Ii = 1, 1 < i < B. Since the ∇θb
L, and y is available to the attacker, we

can obtain the model output through Eq. 3, which provides C equations. Given there are no appro-
priate mathematical techniques to analytically solve for model output ŷ directly through the system
of equations provided by Proposition 1 and Eq. 3, we choose to employ an optimization technique
to search for model output ŷ. First, we initialize the ŷ randomly, which we call it dummy model
output ŷ′ and then continuously adjust and optimize it so that it satisfies the equations established
in Proposition 1 and Eq. 3. Accordingly, we establish the following objective:

L1 (ŷ
′) = α1

Proposition1:Lw︷ ︸︸ ︷∥∥∥∥∇θW
L · θW

L −
∂l (ŷ′,y)

∂ŷ′ ·
(
ŷ′ − θb

L

)∥∥∥∥2 +α2

Eq.3:Lb︷ ︸︸ ︷∥∥∥∥∇θb
L −

∂l(ŷ′,y)

∂ŷ′ · I
∥∥∥∥2 (4)

After obtaining a dummy model output ŷ′, we can analytically disaggregate the feature map input
into the last FCL through the right part of the Eq. 5:

∇θW
L =

∂l(ŷ,y)

∂ŷ
· ∂ŷ

∂θW
L

=
∂l(ŷ,y)

∂ŷ
· f =⇒ f ′ =

(
∂l (ŷ′,y)

∂ŷ′

)−1

· ∇θW
L (5)

Since ŷ′ can be obtained by optimizing with the objective in Eq. 4, and y and ∇θW
L is available

to the attacker, we can compute a dummy feature map f ′ directly through Eq. 5. Considering that
matrix ∂l (ŷ′,y)/∂ŷ′ may not have a corresponding inverse matrix, we employ the ”Moore-Penrose
inverse” (Moore, 1920; Penrose, 1955) method to obtain its pseudo-inverse as it is the most widely
known generalization of the inverse matrix (Ben-Israel & Greville, 2003; Campbell & Meyer, 2009).
After obtaining the feature map, we feed it into the generator to invert the feature map to input space,
and the training details of the generator are described in Subsection 4.1. Notably, the optimization
results of the dummy model output ŷ′ will directly affect the reconstruction results as the Eq. 5 for
feature map computation is almost lossless.
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ℒ1 ො𝑦′ 𝑎𝑛𝑑ℒ1 ො𝑦′′ 𝑙 ො𝑦′, 𝑦 𝑎𝑛𝑑 ො𝑦′′, 𝑦

Figure 3: Left: PSNR values vs L1(ŷ
′) for right data and PSNR values vs L1(ŷ

′′) for twin data.
Right: PSNR vs l(ŷ′,y) for right data and PSNR vs l(ŷ′′,y) for twin data.

However, model output ŷ is not always perfectly recovered through the optimization objective in Eq.
4. Proposition 1 and Eq. 3 provide a total of C ×C +C equations, and the number of variables we
need to search for the model output ŷ is B × C. Thus the client’s batch size B directly determines
the feasibility of recovering ŷ through the above equations as the number of classes C for a selected
target model is given. When B > C + 1, the established system of equations is underdetermined
with the number of variables greater than the number of equations, thus we cannot recover unique
ŷ. We include increasing B to greater than C + 1 into the limitation of our approach, as detailed in
Section 6. When B ≤ C, the established system of equations allows for the recovery of unique ŷ.
Unfortunately, there may be multiple solutions in the situation of B ≤ C, of which only one is the
right solution, and the remaining solutions are referred to in prior work R-GAP (Zhu & Blaschko,
2020) as the twin solutions due to the non-monotonicity of ∂l(ŷ,y)/∂ŷ (Zhu & Blaschko, 2020).
Therefore, when B <= C, we need to observe the difference between the right solution and the
twin solutions and use this difference to guide the optimization toward the right solution.

To find out the difference between the right data with higher PSNR values (a metric assessing the
similarity between reconstructed and actual data) and the twin data with lower PSNR values, we
conduct experiments and collect 100 batches of right data and 100 batches of twin data. The left of
Fig. 3 shows their PSNR values vs L1. Unexpectedly, the twin data instead had lower L1 values.
Considering that the reconstruction results depend only on the reconstructed dummy model outputs,
our intuition suggests that the reconstructed dummy model outputs ŷ′′ of twin data are not close to
the actual model outputs but are close to the ground-truth labels y, which results in a much smaller
l(ŷ′′,y) of twin data than that of right data. So the gradient of the twin data is much smaller than
that of the right data. Thus the gradient as well as ∂l(ŷ,y)/∂ŷ involved in L1 computation of the
twin data is smaller, thus allowing the twin data to achieve a smaller L1 even without matching with
the actual data. To verify our intuition, we show l(ŷ′,y) for 100 batches right data and l(ŷ′′,y) for
100 batches twin data in the right of Fig. 3, which proves our intuition. Therefore, we can guide
the optimization towards the right data by constraining the cross-entropy loss between the dummy
model output ŷ′ and the ground-truth label y. We have the following Proposition for approximating
the cross-entropy loss of the attacked batch to guide the optimization of the dummy model output:

Proposition 2. l(ŷ,y) ≈ − 1
B

∑B
i=1 ln

(
∇θb

Ly(i)
+ λy(i)

/B
)

. Where y indicates the ground-truth

label, y(i) indicates the ground-truth label for the ith sample in a batch,∇θb
L represents the gradi-

ent of the bias term in the FCL, and λj indicates the occurrence number of label j in the y.

Proof. See Appendix A.2 for a detailed proof.

Appendix A.3 provides an approximation error analysis and discussion about when and why ap-
proximations in Proposition 2 hold. Proposition 2 regularizes the established system of equations,
guiding the optimization towards the right solution, even though it only offers one equation. Based
on Proposition 2, we can have a new optimization objective:

Lloss(ŷ
′) =

∥∥∥∥∥l(ŷ′,y)− [− 1

B

B∑
i=1

ln(∇θb
Ly(i) +

λy(i)

B
)]

∥∥∥∥∥
2

(6)

Therefore, the total optimization objective for optimizing the dummy model output is:
Ltotal(ŷ

′) = α1Lw(ŷ
′) + α2Lb(ŷ

′) + α3Lloss(ŷ
′) (7)
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Batch size: 8 16 32 64 128 256

Time: 14.31(s) 14.48(s) 14.52(s) 14.78(s) 14.80(s) 19.43(s)

Original

Batch sizeDuplicate Labels Proportion

Figure 4: Left: When batch size is 8, the effect of the number of data sharing duplicate labels in a
batch on the attack methods. Right: The curve of the effect of batch size on reconstruction result.
RGLA is able to reconstruct the original data even when the batch size is 256.
Appendix A.4 shows that the model output reconstructed through the total optimization objective is
close to the actual model output. Compared to optimization-based methods, our method searches
the model output (O(B ·C)), which is independent of the resolution size of the input data and has far
fewer variables than the number of variables in the model input (O(B ·Channel ·Height ·Width))
and not sensitive to initialization (refer to Appendix A.5). Moreover, our method is not affected by
the duplicate label, whereas analytics-based methods cannot reconstruct data with duplicate labels.

5 EXPERIMENTS

Setup. We evaluate our RGLA on a hardware platform equipped with a 3.9GHz CPU i9-12900K,
128GB RAM, an NVIDIA 3090 GPU, and a deep learning environment with Python 3.8, CUDA
11.6, cuDNN 8.3.02, and PyTorch 1.13.1. We choose four classic datasets as user training datasets:
ImageNet (Deng et al., 2009), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and CelebA (Liu et al.,
2014) and take ImageNet dataset as default auxiliary dataset. All images are scaled to 224×224
pixels. We use the pre-trained ResNet50 network provided by Pytorch as the default global model
for image classification in FL. We employ the Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.001 to optimize the dummy output with a total iterations of 20000 and set α1 = 10000,
α2 = 1, and α3 = 100, which were adjusted based on experiment experience. The generator
model’s structure can be found in Xue et al. (2023). We measure the similarity between the original
and reconstructed data using three commonly-used metrics: peak signal-to-noise ratio (PSNR↑),
structural similarity (SSIM↑), and perceptual image similarity score (LPIPS↓) (Zhang et al., 2018).
In our experiment, the default batch size is 8, and the default label distribution within a batch is
randomly assigned. This random selection ensures diversity as we sample the batch from the dataset.

5.1 COMPARISON WITH THE STATE-OF-THE-ART METHODS

We compare RGLA with the state-of-the-art methods including optimization-based methods, DLG
(Zhu et al., 2019), IG (Geiping et al., 2020), Generative Gradient Leakage (GGL) (Li et al., 2022)
and analytics-based attack FGLA (Xue et al., 2023) in terms of reconstructing batch data with in-
creasing proportions of duplicate labels. To ensure fairness in comparison, RGLA and all other
state-of-the-art methods involved in the comparison use ground-truth labels for their attacks. The
left figure of Fig. 4 illustrates that the performance of other methods deteriorates as the proportion of
duplicate label data in the batch increases. When the proportion of data with duplicate labels is high,
these methods fail to recover private data. The possible reason for this phenomenon is that FGLA
cannot reconstruct data with duplicate labels, as described in Section 4. Moreover, the entanglement
in the gradient rows of the data with the same labels complicates the optimization process of DLG,
IG, and GGL, leading to a degradation in the quality of the reconstructed results. This phenomenon
is also described in the prior work (Qian & Hansen, 2020). In contrast, RGLA demonstrates robust
performance even with a high proportion of data containing duplicate labels. We provide the tabular
form of the left figure in Fig. 4 and the visual comparison results on one batch in Appendix A.6.

5.2 EVALUATION ON INCREASING BATCH SIZES AND DIFFERENT DATASETS

To assess the effect of batch size on RGLA, we conduct experiments with increasing batch size from
8 to 256. The reported results averaged on the outcomes of 100 batches in Fig. 4 reveal a gradual
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Figure 5: Left: Ground truth batch of 256 client images. Right: visual reconstructed results.

decline in performance as the batch size increases. This decline can be attributed to the increased
complexity resulting from a greater number of variables in the model output. The visual example
illustrated in Fig. 5 demonstrates that our method can still work even with a batch size of 256. Given
that FGLA (Xue et al., 2023) presents an outperformance over other state-of-the-art methods with
increasing batch size and other state-of-the-art methods perform poorly with a batch size of 8 as
present in the left of Fig. 4, we compare the performance of RGLA with the performance of FGLA
with the increasing batch size and the experiment results can be found in Appendix A.8.

In order to verify the generalizability of our method, we validate our RGLA on the CelebA dataset
(face classification task with 10177 categories) and the CIFAR-100 dataset. The right of Fig. 2
presents the experimental results on CIFAR-100 and CelebA datasets, including the metrics averaged
over 100 data batches and a visual example. These results effectively showcase the outstanding
performance of our method across diverse datasets, emphasizing the robustness and generalizability
of RGLA. Despite the blurry reconstructed results on the CelebA facial dataset, there are still some
attributes of the attacked images exposed, such as background, hair color, skin tone, and facial
contours. It’s essential to note that in the real-world FL system, the adversary might not always have
precise knowledge about the client’s dataset. Therefore, it is important for GLA attacks to be robust
when the auxiliary dataset is different from the target dataset.

5.3 EVALUATION AGAINST POSSIBLE DEFENSE STRATEGIES

We assess the effectiveness of our RGLA and other state-of-the-art methods against three relatively
strict defense mechanisms, similar to the ones used in the prior study (Li et al., 2022), which include
(1) Noisy gradient, where Gaussian noise N (0, σ2) is added to the gradients (Sun et al., 2020); (2)
Gradient Clipping, where the gradient values are clipped with a bound C (Geyer et al., 2017); and (3)
Gradient Compression, where gradients with smaller magnitudes are set to zero (Zhu et al., 2019).
Specifically, we add noise to the gradient with σ = 0.01 (Sun et al., 2020), clip the gradients with
C = 4 (Abadi et al., 2016), and compress the gradient (Zhu et al., 2019) with a compression ratio of
99.9%. Table 2 compares the performance of our proposed RGLA method and the state-of-the-art
GLA methods under these strict defense settings. Our method performs well even under these three
strict defense mechanisms, particularly in defending against gradient compression, while gradient
compression is frequently employed in FL systems to reduce bandwidth (Lin et al., 2017). This is

Table 2: The comparison of the performance of our RGLA and the state-of-the-art GLA methods
under three relatively strict defense mechanisms.

Method
Noisy gradient (Sun et al., 2020) Gradient Clipping (Geyer et al., 2017) Gradient Compression (Zhu et al., 2019)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
DLG (Zhu et al., 2019) 11.90780 0.09130 1.11990 9.94580 0.10090 1.17470 11.19410 0.07190 1.23530

IG (Geiping et al., 2020) 14.25990 0.44350 0.57790 12.55480 0.42270 0.54570 12.45969 0.44249 0.80062
GGL (Li et al., 2022) 11.26461 0.32251 0.56769 10.19317 0.27268 0.56417 10.55477 0.27966 0.60754

FGLA (Xue et al., 2023) 18.84118 0.48547 0.55527 17.43373 0.46835 0.63645 10.45432 0.26430 0.88357
RGLA(Ours) 18.90560 0.52940 0.51770 16.13298 0.41319 0.68246 16.28875 0.48409 0.60309
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Optimization objectives PSNR↑ SSIM↑ LPIPS↓

Lw 14.55934 0.38931 0.71797
Lw+Lloss 19.16308 0.50066 0.57047
Lw+Lb 14.55934 0.38931 0.71797

Lw+Lb+Lloss 19.24153 0.50948 0.55870

Table 3: Comparison of average outcomes
across 100 batches for different optimization
objectives combinations.

Batch size PSNR↑ SSIM↑ LPIPS↓

B=64 20.67648 0.79191 0.328131
B=128 7.852459 0.316369 0.929359

Table 4: Comparison of reconstruction quality
metrics for two scenarios B × C < C × (C +
1) + 1 (B = 64, C = 100) and B × C > C ×
(C + 1) + 1 (B = 128, C = 100).

because all three defense methods only produce changes to some parts of the gradient. For example,
additive Gaussian noise adds Gaussian noise 0 to a portion of the gradient, gradient clipping retains
gradients below a certain bound, and gradient compression retains gradients with large absolute
values. RGLA leverages these unchanged gradients to leak the model output and further leak the
original private data. One unexpected finding is that adding noise to the gradient and clipping the
gradient had little effect on the FGLA method. This is because the clipping defense is an operation
on a gradient: ∇θ′ ← C

∥∇θ∥ · ∇θ. The FGLA method extracts the feature map by f ′ ≈ ∇θW
L

′

∇θb
L

′ =

∇θW
L · C

∥∇θ∥

∇θb
L· C

∥∇θ∥
, thus eliminating the clipping defense. See Appendix A.10 for the visual reconstruction

example of RGLA and other state-of-the-art methods under these three defense mechanisms.

5.4 ABLATION STUDY

Next, we perform ablation experiments to explore the functionality of the three optimization objec-
tives. Given Lw provides the maximum number of equations C × C, we regard Lw as paramount
among the three optimization objective components. To assess the feasibility of relying solely on
Lw, and discern the auxiliary roles of Lb and Lloss for the optimization, we execute experiments
with different optimization objective combinations as shown in Table 3, while keeping other settings
consistent. A comparison of the first and fourth rows in Table 3 reveals that relying solely on Lw is
insufficient for model output recovery. A comparative analysis between the first and third rows, and
the second and fourth rows, suggests that Lb seemingly plays an insignificant role. This is because
the dataset is ImageNet with C = 1000 thus the number of equations provided by Lw (C×C) vastly
overshadows that provided by Lb (C). However, when the magnitude of C diminishes, Lb manifests
its utility. Specifically, when the batch size increases to C × C + 1 < B × C < C × (C + 1) + 1,
Lb plays a decisive role in the success of reconstruction. Additionally, from Table 3, we can also
see that Lloss regularizes Lw and Lb, meaning that Lloss distinguishes between right data and twin
data, guiding the optimization towards the right solution.

6 CONCLUSION AND FUTURE WORK

Our RGLA tackles the challenge of high-resolution data and duplicate labels in GLAs, expand-
ing the boundaries of gradient leakage attacks. Through optimizing the model output of the batch,
RGLA successfully disaggregates the original model output of each sample within a batch from the
averaged gradient, enabling disaggregation of each original input by utilizing the isolated original
model output. Extensive experiments demonstrate the outstanding performance of RGLA compared
to existing state-of-the-art methods, exhibiting robustness to label distribution, batch size, possible
defense mechanisms, and initialization methods. Finally, we emphasize the importance of continu-
ously exploring and improving privacy-preserving mechanisms in distributed machine learning.

Limitation. The proposed method does not work when the batch size B is larger than C+1 since
there are more the variables of model output (B×C) than the number of equations (C×(C+1)+1)
provided by our optimization objectives. To show this limitation, we evaluate our method in the
following two scenarios: 1) B ×C < C × (C + 1) + 1 and 2) B ×C > C × (C + 1) + 1. To this
end, we take the CIFAR-100 with the number of classes C of 100 and successively set the batch size
to 64 and 128. From the experiment results in Table 4, we can see that our method performs well
when B × C < C × (C + 1) + 1, but it performs poorly when the number of variables of model
output is more than C × (C + 1) + 1. We hope that future research will be able to successfully
extend this effective attack to scenarios where B > C + 1.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition. ∇θW
L · θW

L =
∂l(ŷ,y)

∂ŷ
· (ŷ − θb

L), where θW
L indicates the weights of FCL, θb

L

indicates the bias of FCL, ŷ denotes the model output for private data, y denotes the ground-truth
label, and l(·, ·) denotes the cross-entropy loss function.

Proof. The forward propagation of FCL can be written as ŷ = f · θW
L + θb

L, thus we can have:

∂ŷ

∂θW
L

= f , (8)

based on the chain rule of derivation, we can have the following:

∇θW
L · θW

L =
∂l(ŷ,y)

∂ŷ
· ∂ŷ

∂θW
L

· θW
L , (9)

we substitute
∂ŷ

∂θW
L

in Eq. (9) with its expression from Eq. (8) as follows:

∇θW
L · θW

L =
∂l(ŷ,y)

∂ŷ
· ∂ŷ

∂θW
L

· θW
L =

∂l(ŷ,y)

∂ŷ
· f · θW

L =
∂l(ŷ,y)

∂ŷ
· (ŷ − θb

L) (10)

A.2 PROOF OF PROPOSITION 2

Proposition. l(ŷ,y) ≈ − 1
B

∑B
i=1 ln

(
∇θb

Ly(i)
+ λy(i)

/B
)

. Where y indicates the ground-truth

label, y(i) indicates the ground-truth label for the ith sample in a batch,∇θb
L represents the gradi-

ent of the bias term in the FCL, and λj indicates the occurrence number of label j in the y.

Proof. In a classification task with a cross-entropy loss function, the loss function can be defined as
Eq.11 (Wainakh et al., 2021):

l(ŷ,y) = − 1

B

B∑
i=1

ln
eŷ(i,y(i))∑C
j=1 e

ŷ(i,j)

, (11)

where ŷ indicates the model output, which is also the output of the FCL and ŷ(i,j) indicates the logit
value for jth class when ith sample in a batch is given as input to the model. Based on the prior
work (Wainakh et al., 2021), we can write the gradient value ∇θb

Lj w.r.t. the bias connected to the
jth output representing the jth class confidence in the output layer as following Eq.12:

∇θb
Lj = ∇ŷ(:,j) ·

∂ŷ(:,j)

∂θb
Lj

= ∇ŷ(:,j) · I = −
λj

B
+

1

B

B∑
i=1

eŷ(i,y(i))∑C
t=1 e

ŷ(i,t)

, (12)

when the j in Eq. (12) equal to y(k∗), then we have Eq.13 (Wainakh et al., 2021):

∇θb
Ly(k∗) = −

λy(k∗)

B
+

1

B

B∑
i=1

eŷ(i,y(i∗))∑C
j=1 e

ŷ(i,j)

, (13)

where k∗ ∈ [1, B] denotes the index of a specific sample within a batch. In the initialization or
pre-training phase of model training, all logit values in the model output ŷ are similar, due to the
model’s lack of discriminative ability over the input samples. This phenomenon can be expressed
as:

ŷ(i, j) ≈ ŷ(k, t), (14)
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Figure 6: The curve of the effect of the accuracy of the model and batch size on the L2 error of the
approximation

where i, k ∈ [1, B] indicate the index of the sample within the input batch, and j, t ∈ [1, C] indicate
the index of the classes. Based on this observation and the Eq.13, we can further formulate the
following equation:

eŷ(k∗,y(k∗))∑C
j=1 e

ŷ(k∗,j)

≈ 1

B

B∑
i=1

eŷ(i,y(k∗))∑C
j=1 e

ŷ(i,j)

= ∇θb
Ly(k∗) +

λy(k∗)

B
, (15)

Then, we replace e
ŷ(i,y(i))∑C
j=1 e

ŷ(i,j)
in Eq. (11) with the expression from Eq. 15, as follows:

l(ŷ,y) = − 1

B

B∑
i=1

ln
eŷ(i,y(i))∑C
j=1 e

ŷ(i,j)

≈ − 1

B

B∑
i=1

ln

(
∇θb

Ly(i)
+

λy(i)

B

)
(16)

A.3 APPROXIMATION ERROR ANALYSIS

From the theoretical proof in A.2 of the approximation in Proposition 2, we learn that the validity
of the approximation relies heavily on the similarity of the logit values in the model output of the
low-accuracy model as stated in Eq. 14. This raises a number of questions: how does the accuracy
of the model relate to the validity of the approximation in Proposition 2? At what point does this
approximation not hold?

Table 5: Average L2 errors of approximation at the models with different accuracies and different
batch sizes

Batch size 8 16 32 64 128 256

Model with 1% accuracy 0.1044 0.0826 0.0677 0.0615 0.0663 0.0594
Model with 10% accuracy 0.5764 0.7175 0.8448 0.9321 0.9553 0.9680
Model with 30% accuracy 1.3572 1.9977 2.5959 2.9827 3.2270 3.4328
Model with 50% accuracy 2.7877 3.1090 4.3454 6.4839 7.5381 8.5707
Model with 70% accuracy 3.4399 5.8314 8.1713 10.2586 11.9053 13.1496
Model with 90% accuracy 4.0387 7.0818 10.6421 14.1113 17.1310 19.2156

To answer these questions, we first train the models on CIFAR-100 with accuracies of 1%, 10%,
30%, 50%, 70%, and 90%. Then, we conduct experiments with data batch of batch sizes 8, 16, 32,
64, 128, and 256 and compute the average approximation L2 errors over 100 batches. The exper-
iment results in Table 5 and Fig. 6 show the approximation L2 error is small, confirming that the
approximation in our Proposition 2 is reliable. From Fig. 6, we also observe that the approximation
error increases with batch size, which is because larger batch sizes make it more difficult to estimate
the L2 loss of an attacked batch. In addition, the increase in model accuracy also results in an in-
crease in approximation error because higher accuracy models are better able to distinguish between
different samples in a batch, resulting in dissimilar logit values in the corresponding model outputs,
which increases the error in Eq. 14 and further amplifies the final approximation error. Therefore,
our attack primarily occurs during the initialization or pre-training phase during the model training
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because, during these stages, the model exhibits lower accuracy and weaker sample discrimination
capabilities, resulting in a smaller approximation error. It needs to be emphasized that regardless of
the stage at which the attack occurs, as long as it can successfully leak data, it is something we need
to pay attention to and guard against.

A.4 EVALUATION OF THE ABILITY TO LEAK THE MODEL OUTPUT

As discussed and analyzed in the previous Section 4, inverting the cross-entropy loss function for
model output disaggregation is the most important part of our method. To assess the difference
between the optimized model output and the actual model output, we conduct experiments and
compute the L2 distance between the dummy model outputs and the actual model outputs at batch
sizes of 8, 16, 32, 64, 128, and 256. The experimental results in Table 6 show that our method can
accurately disaggregate the model output. Fig. 7 shows that the image generated by the feature
map derived from the dummy model output closely resembles the image generated by the feature
map derived from the actual model output. This further demonstrates that our method is able to
accurately capture the model output and accurately reconstruct the private data.

Original data 224×224 pixels, ground-truth

ො𝑦′ PSNR=20.51, SSIM=0.61, LPIPS=0.47, Time=14.01(s)

ො𝑦 PSNR=20.53, SSIM=0.66, LPIPS=0.45, Time=0.82 (s)

Figure 7: The comparison between the results reconstructed by the optimized model output ŷ′ and
that by the actual model output ŷ indicates the similarity between the reconstructed data of the
optimized model output and that of the real model output. This similarity demonstrates the accuracy
of our method in leaking the model output, and therefore, the model input.

Remark 1. After the model output is exposed, any model inversion attack (Fredrikson et al., 2015;
Wang et al., 2022; Nguyen et al., 2023) can be utilized to reveal the model input. Our proposed
optimization method for the model output disaggregation has the ability to utilize all model inversion
attacks to launch gradient leak attacks, thereby making the gradient more vulnerable.

Table 6: The L2 error between the optimized dummy model output and the actual model output at
different batch sizes

Batch size 8 16 32 64 128 256

∥ŷ′ − ŷ∥2 8.78E-05 0.0002 0.0007 0.0013 0.0032 0.0036

A.5 EVALUATION OF THE DIFFERENT INITIALIZATION METHODS FOR THE DUMMY MODEL
OUTPUT

Existing optimization-based methods are often sensitive to dummy data initialization (Zhu &
Blaschko, 2020; Yang et al., 2022), and inappropriate initialization may lead to the failure of these
methods. So, a natural question arises: is our method also sensitive to the initialization of the
dummy model outputs? To explore this, we employed six different initialization methods for the
dummy model outputs: uniform distribution in the range [0, 1] (implemented using the torch.rand()
function), standard normal distribution (implemented using torch.randn()), zero matrix initialization
(implemented using torch.zeros()), one matrix initialization (implemented using torch.ones()), as
well as initialization with model outputs for natural images and initialization with model outputs for
the reconstruction results of FGLA (Xue et al., 2023). The experimental results in Table 7 clearly
demonstrate that regardless of the initialization method used, our attack can successfully reconstruct
the original data, and the results obtained from these different initialization methods are similar.
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Original data 224×224 pixels, ground-truth

Torch.randn()

Torch.rand()

Torch.zeros()

Torch.ones()

Model output for 

natural images

Model output for FGLA 

reconstruction results

Figure 8: Visual examples of data reconstructions produced by various initialization methods. Our
method consistently produces good reconstructions, showcasing its robustness to different initializa-
tion methods.

Figure 9: The effect of different initialization methods on the optimization convergence speed. Zero
matrix initialization as well as using the model output for the reconstruction results of the FGLA as
initialization requires fewer iterations to reach convergence.

This indicates that our method is not sensitive to initialization. Visual examples of one batch recon-
structions using different initialization methods are shown in Fig. 8. Fig. 9 shows how the Ltotal

varies with the number of iterations when optimizing using different initialization methods. It is
clear from Fig. 9 that despite using different initialization methods, all of them eventually converge
to the same minimum value. Moreover, using the zero matrix initialization or using the result of
FGLA reconstruction as the initialization allows the optimization process to start closer to the final
minimum point. This means that with these initialization methods, fewer iterations are required,
which significantly reduces the time for the optimization to reach convergence.
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Table 7: Comparison of our attack with different initialization methods for the dummy model out-
puts. The results demonstrate the insensitivity of our method to initialization.

Initialization method PSNR↑ SSIM↑ LPIPS↓
Torch.randn() 19.24153 0.50948 0.55870
Torch.rand() 19.24152 0.50948 0.55869
Torch.zeros() 19.24153 0.50948 0.55869
Torch.ones() 19.24153 0.50948 0.55869

Model output for natural images 19.24152 0.50948 0.55869
Model output for FGLA reconstruction results 19.24152 0.50948 0.55869

A.6 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Duplicate Labels Duplicate Labels

Original batch 224×224 pixels, ground-truth

DLG(NeurIPS'19)      PSNR↑:11.15801, SSIM↑: 0.06277, LPIPS↓:1.20764, time:42309.6(s)

IG(NeurIPS’20)          PSNR↑:12.50009, SSIM↑: 0.40511, LPIPS↓:0.65508, time:7451.25(s)

GGL(CVPR’22)                PSNR↑:8.59042, SSIM↑:0.2325, LPIPS↓:0.64244, time:4778.84(s)

FGLA(INFOCOM’23)    PSNR↑:15.55296, SSIM↑:0.47725, LPIPS↓:0.69800, time:1.93(s)

RGLA(Ours)                  PSNR↑:19.43525, SSIM↑:0.54743, LPIPS↓:0.55886, time:14.35(s)

Figure 10: An example comparison of our method with the state-of-the-art GLA methods.

Table 8: When batch size is 8, the effect of the number of data sharing duplicate labels in a batch on
the reconstruction results metric (PSNR↑) of the attack methods.

Duplicate Labels Proportion DLG IG GGL FGLA RGLA(Ours)

0/8 11.53908 15.21782 11.78704 18.77932 19.24153
2/8 11.25802 14.31178 11.18857 16.96259 18.93582
4/8 10.97666 13.93340 10.93248 15.18163 18.55615
6/8 10.61047 12.10551 10.53121 12.80531 18.17758
8/8 10.24716 12.20067 9.59926 10.74843 17.84458

We provide the tabular form of the left of Fig. 4 in Table 8 and reconstruction example of RGLA
and the stat-of-the-art GLAs in Fig. 10. As depicted in Fig. 10, existing optimization-based at-
tacks face challenges in reconstructing high-resolution data, while the analysis-based attacks face
challenges in reconstructing samples with duplicated labels within a batch. In contrast, RGLA ef-
fectively reconstructs data that closely resemble the original data in terms of evaluation metrics and

17



Under review as a conference paper at ICLR 2024

visual appearance. Among the existing methods, FGLA (Xue et al., 2023) demonstrates the fastest
reconstruction time but fails to differentiate data with duplicate labels. The reason for this limitation
is explained in Section 4. On the other hand, GGL (Li et al., 2022) generates high-quality data
but struggles to accurately reconstruct the original data due to misclassification caused by duplicate
labels. Moreover, optimization-based methods require at least 200 times more time to execute than
our approach. Such methods optimize dummy inputs through gradient matching, which involves in-
putting dummy data into the model to obtain the dummy gradient and align it with the true gradient.
That process is time-consuming.

A.7 COMBINATION WITH PREVIOUS LABEL INFERENCE TECHNOLOGY

To better align our experiments with real-world scenarios, we combine our proposed RGLA attack
with the state-of-the-art label inference technology (Ma et al., 2022), Instance-Level Reverse Gradi-
ent (iLRG) (Ma et al., 2022). We conducted experiments on CIFAR-100 and ResNet50 models and
Table 9 shows the average results of data reconstruction on 100 batches. Notably, iLRG achieved a
100% accuracy rate in our experiments, though the order of the reconstructed labels differed from
that of the actual ground-truth labels. As shown in Table 9, the reconstructed results obtained using
ground-truth labels and those reconstructed results using the iLRG (Ma et al., 2022) are remark-
ably similar, albeit the label inference process required additional time. Fig. 11 provides visual
reconstruction results, illustrating that both ground-truth labels and inferred labels can successfully
reconstruct visual outcomes, except that using inferred labels causes the reconstructed data to be in
a different order from the original data.

Table 9: Comparison of data reconstruction quality and time efficiency between ground-Truth label
+ RGLA and iLRG (Ma et al., 2022) + RGLA.

PSNR↑ SSIM↑ LPIPS↓ Time↓
Ground-truth label + RGLA 19.24153 0.50947 0.55870 14.35000

iLRG (Ma et al., 2022) + RGLA 19.22677 0.49973 0.56795 91.66502

Original batch 224×224 pixels, ground-truth

Ground-truth labels + RGLA(Ours)

Inferred labels by iLRG + RGLA(Ours)

Figure 11: Visual reconstruction outcomes using ground-truth and inferred labels.

Table 10: Tabular form for the right figure in Fig. 4 and comparison with FGLA.

Batch size
RGLA(Ours) FGLA

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
8 19.24153 0.50948 0.55870 18.43037 0.45977 0.60400

16 19.07956 0.49951 0.56184 18.42008 0.46021 0.61498
32 18.92351 0.49798 0.56576 18.41045 0.46034 0.66107
64 18.74563 0.49443 0.57093 18.33128 0.44717 0.69969
128 18.69326 0.49366 0.58253 18.17242 0.43765 0.71969
256 18.56861 0.49253 0.59527 18.08894 0.42596 0.74001

A.8 EVALUATION ON INCREASING BATCH SIZES

We include the tabular form of the right figure of Fig. 4, along with a comparison to FGLA in Table
10. RGLA’s attack performance slightly deteriorates and FGLA’s attack performance worsens as the
batch size increases. Our intuition for this phenomenon is that RGLA’s method for disaggregating
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the model output is optimization technology, and as the batch size increases, there are more variables
to optimize, leading to poorer reconstruction. From Table 10, we can also observe that RGLA’s
performance against increasing batch sizes is superior to that of FGLA.

A.9 EVALUATION ON HIGHER PIXELS RESOLUTIONS

Next, we evaluate the performance of the proposed attack on the image data of higher pixels
336×336. Apart from the difference in image resolution, all other experiment settings remain the
same, including the target model of the ResNet50 model, the target dataset of the ImageNet dataset,
and the batch size of 8. The experiment results in Table 11 show that our method is able to recon-
struct the original private data regardless of whether the original data is under 224×224 pixels or
336×336 pixels. The decrease in the quality of the reconstruction results for the original data of
336×336 pixels can be attributed to the fact that the 336×336 pixels image is more complex and
poses a greater challenge to the reconstruction capability of the generator. As a result, the intricate
details of such complex images cannot be accurately captured during the reconstruction process,
leading to overall quality degradation. Fig. 12 shows the visual reconstruction results of the same
batch of images of different resolutions. These visualizations clearly show that our method main-
tains its effectiveness in reconstructing the visual appearance of an image despite the higher pixel
sizes, demonstrating the robustness of our method at higher pixels.

Table 11: Performance metrics of RGLA on image data with resolutions of 224×224 and 336×336
pixels.

PSNR↑ SSIM↑ LPIPS↓ Time↓
RGLA(224×224) 18.80249 0.49666 0.58802 14.89383
RGLA(336×336) 16.75473 0.46615 0.38059 14.98800

Original data 224×224 pixels, ground-truth Original data 336×336 pixels, ground-truth

PSNR=18.66, SSIM=0.45, LPIPS=0.63 PSNR=16.80, SSIM=0.42, LPIPS=0.39

Figure 12: Visual reconstruction comparisons at different resolutions.

Original data 224×224 pixels, ground-truth

DLG

(NeurIPS’19)

IG

(NeurIPS’20)

GGL

(CVPR’22)

FGLA

(INFOCOM’23)

RGLA(Ours)

Figure 13: Comparison of the reconstruction results of RGLA and several state-of-the-art GLAs
methods under privacy defense of additive noise σ = 0.01.

A.10 EVALUATION AGAINST POSSIBLE DEFENSE STRATEGIES

This section contains the visual reconstruction comparison of RGLA and the state-of-the-art GLA
attacks under noisy gradient, clipped gradient, and compressed gradient. From the visual compari-
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son results presented in Fig. 13, Fig. 14, and Fig. 15, it is evident that adding noise to the gradients
and clipping gradients has a negligible effect on FGLA and RGLA. However, gradient compression,
which is a commonly used technique to reduce the bandwidth in the federated learning system, dis-
ables FGLA from recovering the original data. Conversely, RGLA can still reconstruct data that is
similar to the original data even under gradient compression with a compression ratio of 99.9%. The
data reconstructed by the GGL method is of high quality, owing to the bigger generator BigGAN
(Brock et al., 2018), but it does not resemble the original data. Despite revealing some information
about the original data, DLG and IG struggle to reconstruct it visually.

Given that FGLA has demonstrated a highly effective attack against compressed gradients compared
to other state-of-the-art GLAs, we exclusively focus on conducting a comparative analysis between
RGLA and FGLA under different levels of gradient compression. Table 12 shows the average PSNR
values of the reconstructed results of the RGLA and FGLA methods on 100 batches as the gradient
compression increases. From Table 12, we can see that both RGLA and FGLA remain equally ef-
fective until the gradient compression rate of 99.9%, but when the gradient compression reaches up
to 99.9%, FGLA fails to reconstruct the original data, whereas RGLA retains the ability to recon-
struct the original data. Fig. 16 provides the reconstruction results of the FGLA and RGLA attack
visualizations as the compression rate increases.

Original data 224×224 pixels, ground-truth

DLG

(NeurIPS’19)

IG

(NeurIPS’20)

GGL

(CVPR’22)

FGLA

(INFOCOM’23)

RGLA(Ours)

Figure 14: Comparison of the reconstruction results of RGLA and several state-of-the-art GLAs
methods under privacy defense of clipping C = 4.

Original data 224×224 pixels, ground-truth

DLG

(NeurIPS’19)

IG

(NeurIPS’20)

GGL

(CVPR’22)

FGLA

(INFOCOM’23)

RGLA(Ours)

Figure 15: Comparison of the reconstruction results of RGLA and several state-of-the-art GLAs
under gradient compression ratio 99.9%. Our RGLA was the only method whose reconstructed
results resembled the original data even under gradient compression of compression ratio 99.9%.
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Table 12: Average PSNR Values for RGLA and FGLA Methods under different gradient compres-
sion ratios.

0% 80% 90% 99% 99.90%

RGLA 18.79353 18.79237 18.79329 18.79325 17.00678
FGLA(Xue et al., 2023) 18.77932 18.77535 18.77598 18.77587 10.43223

Varying Compression Ratio

Original 0% 80% 90% 99% 99.9%

RGLA

FGLA

Figure 16: Visual reconstruction results of RGLA and FGLA under different gradient compression
ratios.

A.11 ABLATION STUDY

We provide a visual reconstruction example of different optimization objective combinations in Fig.
17.

Original data 224×224 pixels, ground-truth

ℒ𝑤

ℒ𝑤+ℒ𝑙𝑜𝑠𝑠

ℒ𝑤+ℒ𝑏

ℒ𝑤+ℒ𝑏+ℒ𝑙𝑜𝑠𝑠

Figure 17: A visual reconstruction example of different optimization objective combinations.
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