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Abstract

We propose a novel stochastic bandit algorithm that employs reward estimates using
a tree ensemble model. Specifically, our focus is on a soft tree model, a variant
of the conventional decision tree that has undergone both practical and theoretical
scrutiny in recent years. By deriving several non-trivial properties of soft trees, we
extend the existing analytical techniques used for neural bandit algorithms to our
soft tree-based algorithm. We demonstrate that our algorithm achieves a smaller
cumulative regret compared to the existing ReLU-based neural bandit algorithms.
We also show that this advantage comes with a trade-off: the hypothesis space of
the soft tree ensemble model is more constrained than that of a ReLU-based neural
network.

1 Introduction

The stochastic bandit framework is a powerful tool for addressing sequential decision-making tasks
in uncertain environments. A significant challenge in applying stochastic bandits is managing
large action spaces. For example, in recommendation systems, there is often a vast action space
generated by various combinations of users and items [38]. Standard algorithms designed for finite-
armed bandits are inadequate in these scenarios. Consequently, numerous studies have focused on
structurally modeling the reward process and using limited observed data to estimate rewards for
unobserved actions. These approaches include algorithms that employ estimation methods such as
linear models [3, 5, 12], kernel regression [11, 32], and neural networks [30, 41], which are referred
to as linear bandit (LB), kernel bandit (KB), and neural bandit (NB) respectively. The effectiveness
of these algorithms largely depends on the accuracy of the underlying reward models. Therefore,
developing the bandit algorithms that leverage suitable reward estimation models is crucial.

Motivated by these considerations, this paper explores the stochastic bandit algorithm using tree
ensembles, a model type that has gained popularity following neural networks but remains relatively
underexplored in the bandit context. Specifically, we focus on the soft tree ensemble model, which
has recently been the subject of both practical and theoretical investigations and has demonstrated
strong empirical performance on tabular data [18, 21, 22, 25, 28]. Unlike hard trees, which update
decision rules greedily and sequentially, soft trees employ gradient descent to update decision rules
for the entire tree. This characteristic of soft trees facilitates the extension of existing analyses of NB
and ensures a no-regret performance under suitable assumptions.

Related works. In the field of stochastic bandits, prior research has established various structural
assumptions about underlying rewards. For instance, the assumption of Lipschitz continuity of
rewards is explored in Lipschitz bandits [8], linearity of rewards is examined in LB [3, 5, 12], and
more generally, the assumption that rewards lie in a known reproducing kernel Hilbert space (RKHS)
is studied in KB [11, 32].
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Our paper studies a type of bandit algorithm that employs a tree structure model, a topic with limited
prior exploration. Féraud et al. [15] proposed a bandit algorithm using random forests, but the theory
of their algorithm exhibits linear dependence on the number of actions, making it unsuitable for large
action spaces. Elmachtoub et al. [14] introduced a Thompson sampling-style algorithm utilizing
decision trees; however, their algorithm’s construction relies on heuristics and does not provide a
regret guarantee.

Additionally, our theory is closely related to NB. Zhou et al. [41] proposed an upper confidence
bound (UCB) algorithm using a deep neural net (DNN) regressor, and Zhang et al. [40] extended
this analysis to Thompson sampling. Their analysis yields a regret upper bound of Õ(d̃

√
T ),

where d̃ denotes the effective dimension of the problem, and Õ(·) represents an order notation that
ignores logarithmic dependence. However, generally, DNNs employing ReLU activation functions
lead to d̃ = Õ(T (d−1)/d), resulting in super-linear growth of O(d̃

√
T ) regret, which becomes

meaningless [23]. Several studies address this issue by employing algorithms in the form of a
sup-variant of UCB [37] or phased elimination-style algorithms [7, 26], proving a regret upper bound
of Õ(T (2d−1)/(2d)) [23, 24, 30]. These studies combine theoretical analysis via the neural tangent
kernel (NTK) [4, 19] for DNN regression with regret analysis techniques from KB, constructing
algorithms and performing regret analysis. Our proposed algorithm can be seen as a generalization of
NB theory using a soft-tree regressor from DNN.

Contributions. Our contributions are as follows:

• In Sec. 3.1, we introduce a new UCB-based algorithm: soft tree-based upper confidence
bound (ST-UCB), which leverages the soft tree ensemble model. This algorithm can be
considered an extension of the existing NN-UCB algorithm [41], incorporating the theory
of the tree neural tangent kernel (TNTK) in soft trees [21, 22]. To our knowledge, this paper
represents the first effort to extend the theory of NB to a tree-based structural model.

• In Sec. 3.2, we derive several non-trivial properties of the soft tree ensemble model. These
include the decay rates of eigenvalues of the TNTK (Lemma 3.1), concentration properties
of TNTK (Lemma 3.2), and upper bounds on the spectral norm of the Hessian matrix
(Lemma 3.3). Leveraging these results, we demonstrate that the ST-UCB algorithm achieves
a regret of Õ(

√
T ) under appropriate regularity conditions.

• In Sec. 4, we elucidate the distinctions in properties and assumptions between the existing
NN-UCB and ST-UCB algorithms. Specifically, while NN-UCB generally lacks a no-regret
guarantee in general action (or context) spaces, ST-UCB consistently offers a no-regret
guarantee across general action spaces. Additionally, we examine the relation between
the hypothesis spaces induced by the TNTK and those induced by the NTK using ReLU
activation. This comparison reveals that the hypothesis space derived from soft trees,
although more constrained, may lead to lower regret.

2 Preliminaries

Problem setting. We consider a sequential decision-making problem whose goal is to maximize the
total reward under bandit feedback. Let f : X → R be an unknown reward function, where X ⊂ Rd
is a finite set of action candidates. At each time step t, the environment reveals an action set Xt ⊂ X ;
thereafter, the learner chooses an action xt and receives the corresponding reward yt = f(xt) + ϵt,
where ϵt is a noise random variable whose mean is zero. As a performance metric, we adopt the
pseudo cumulative regret RT :=

∑T
t=1 [f(x

∗
t )− f(xt)], where x∗

t ∈ arg maxx∈Xt
f(x). In our

problem setup, the action set Xt is allowed to change at each step t. In addition to the standard
bandit setup that assumes Xt = X , this formulation includes a contextual bandit setup by setting
Xt = {(ct,a) | a ∈ A(ct)}, where ct is a context vector at step t, and A(ct) is the corresponding
action set.

Soft tree ensemble. At each time step t, our algorithm constructs a soft tree-based estimator of
the reward function f . We describe the definition of soft trees based on Kanoh and Sugiyama [21].
Now, let us consider M ∈ N+ perfect binary trees whose depths are D ∈ N+. Note that each tree has
N := 2D − 1 internal nodes and L := 2D leaf nodes. Furthermore, for technical reasons, we assume
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Figure 1: An illustrative image of a soft tree structure with D = 3. As shown in the left plot,
we have N := 2D − 1 internal nodes (green) and L := 2D leaf nodes (orange), indexed using
breadth-first ordering. The right plot shows an illustrative example where a soft tree calculates the
weight probabilities pl(·) for the leaf nodes.

that M is an even number. Let w(m)
n ∈ Rd and π

(m)
l ∈ R be the parameters of the n-th internal and

l-th leaf node of the m-th tree, respectively. We index these parameters according to breadth-first
ordering, as described in the left plot of Fig. 1. Moreover, we also denote all internal and leaf node
parameters as w(m) := (w

(m)⊤
1 , . . . ,w

(m)⊤
N )⊤ ∈ RNd and π(m) := (π

(m)
1 , . . . , π

(m)
L )⊤ ∈ RL. The

output of a standard decision tree is obtained as the parameter of some leaf node, which is chosen
deterministically based on the hard-splitting rules of internal nodes. On the other hand, the output of
the soft tree is given by replacing the hard-splitting operation of the standard decision tree with a
probabilistic one. Specifically, given parameters θ(m) := (w(m)⊤,π(m)⊤)⊤ and any input x ∈ X ,
the corresponding output h̃(x;θ(m)) of the m-th soft tree is defined as

h̃(x;θ(m)) =

L∑
l=1

π
(m)
l pl(x;w

(m)), where pl(x;w) =

N∏
n=1

σ(w⊤
n x)

1ll↙n
[
1− σ(w⊤

n x)
]1ln↘l

.

Here, 1ll↙n and 1ln↘l are indicator functions. If the l-th leaf node belongs to the left (resp. right)
sub-tree whose root is the n-th internal node, 1ll↙n (resp. 1ln↘l) is one; otherwise, zero. Furthermore,
σ(·) : R→ [0, 1] is a soft decision function. The right plot of Fig. 1 shows an illustrative image of
the calculation of pl(·). As with [21], we use the scaled error function σ(w⊤

n x) :=
1
2erf(αw⊤

n x)+
1
2

with some pre-specified scaling parameter α ≥ 0, where erf(b) = 2√
π

∫ b
0
exp(−z2)dz for any b ∈ R.

By aggregating M soft trees, the whole output h(x;θ) of the soft tree ensemble model is defined
as h(x;θ) =

∑M
m=1 h̃(x;θ

(m))/
√
M , where θ := (θ(1)⊤, . . . ,θ(M)⊤)⊤ ∈ RM(dN+L). Under the

model structures as described above, the training of the model parameters θ is conducted based on
the gradient descent optimizer, which aims to minimize some pre-specified loss functions. In our
algorithm, we adopt a regularized square loss, whose detailed definition is given in Sec. 3.1.

Neural tangent kernel theory for overparameterized model. The neural tangent kernel
(NTK) [19] is an effective theoretical tool for understanding the learning properties of overpa-
rameterized neural networks. Let hNN(·;θ) : Rd → R be a feed-forward neural network with
a ReLU activation function, L hidden layers whose width is M , and network parameters θ.
Given any fixed inputs x, x̃ ∈ Rd, and θ̃0 ∼ N (0, I), it has been shown that the inner prod-
uct ⟨∇θhNN(x; θ̃0),∇θhNN(x̃; θ̃0)⟩ of gradients converges to a fixed kernel function kNTK(x, x̃)

(i.e., ⟨∇θhNN(x; θ̃0),∇θhNN(x̃; θ̃0)⟩
p−→ kNTK(x, x̃) as M → ∞). The kernel function kNTK is

called the NTK. Moreover, in the overparameterized regime, hNN(x;θ) trained with gradient descent
with an infinitesimally small learning rate coincides with the kernel ridge-less regressor hNTK(x),
whose kernel function is kNTK [4]. This property motivates us to analyze NB problems by bridging
original NB to KB problems whose underlying kernel function is the NTK. Indeed, some existing
works [23, 24, 30, 41] show the regret upper bound of NB problems by carefully combining NTK
theory with existing theoretical tools of KB. In our paper, we consider soft tree variants of these
existing works.

Recently, Kanoh and Sugiyama [21] generalized the NTK theory to the soft tree ensemble model.
Let g(x,θ) := ∇θh(x;θ) ∈ Rp be the gradient vector of the soft tree ensemble model at parameter
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Algorithm 1 The soft tree-based upper confidence bound (ST-UCB) algorithm
Input: X ⊂ Sd−1, D ∈ N+, J ∈ N+, η > 0, ρ > 0, α > 0, M ∈ N+, T ∈ N+, β > 0.

1: Initialize θ0 randomly as described in Sec. 3.1.
2: Define G0 = 0 ∈ Rp.
3: for t = 1, . . . , T do
4: Obtain Xt.
5: Calculate σ̃2

t−1(x) := g(x;θ0)
⊤ (Ip + ρ−1Gt−1G

⊤
t−1

)−1
g(x;θ0) on Xt.

6: xt ← arg max
x∈Xt

[h(x;θt−1) + βσ̃t−1(x)].

7: Obtain yt = f(xt) + ϵt.
8: θt ← TrainST(t,θ0, (xi, yi)i∈[t], J, η, ρ,D, α,m).
9: Define Gt = [g(x1;θ0), . . . , g(xt;θ0)] ∈ Rp×t

10: end for

Algorithm 2 TrainST (t,θ0, (xi, yi)i∈[t], J, η,D, α,M)

1: θt;0 ← θ0
2: for j = 1, . . . , J do
3: Calculate gradient of Lt(θt;j−1) :=

∑t
i=1 [h(xi;θt;j−1)− yi]

2
+ ρ∥θt;j−1 − θ0∥22.

4: Update parameter: θt;j ← θt;j−1 − η∇θLt(θt;j−1).
5: end for
6: return θt;J .

θ ∈ Rp, where p := M(dN + L) denotes the total number of parameters. Then, given fixed
inputs x, x̃ ∈ X and θ̃0 ∼ N (0, Ip), the inner product ⟨g(x, θ̃0), g(x̃, θ̃0)⟩ has also been shown to
converge in probability to some kernel function kTNTK(x, x̃) as the number of ensemble models M
grows infinitely (see Theorem 1 in [21]). This limiting kernel kTNTK is called the tree neural tangent
kernel (TNTK) as an analogy to the NTK and is defined as follows:

kTNTK(x, x̃) = 2Dx⊤x̃(T (x, x̃))D−1Ṫ (x, x̃) + (2T (x, x̃))D, (1)

where:

T (x, x̃) = 1

2π
arcsin

(
α2x⊤x̃√

(α2x⊤x+ 0.5)(α2x̃⊤x̃+ 0.5)

)
+

1

4
, (2)

Ṫ (x, x̃) = α2

π

1√
(1 + 2α2x⊤x)(1 + 2α2x̃⊤x̃)− 4α4(x⊤x̃)2

. (3)

It should be noted that even if we follow the existing NTK-based techniques of NB, generalizing the
result of Kanoh and Sugiyama [21] to the analysis of sequential decision-making tasks is non-trivial.
Specifically, the existing analysis of NB heavily relies on the following results of ReLU-based NTK:
i) non-asymptotic bounds of NTK [4], ii) the spectral properties of the Hessian matrix around the
initial model parameters [27], and iii) the upper bounds of maximum information gain (MIG) of
NTK [35], which measure the complexity of the KB problem depending on the underlying kernel.
These results are unique to DNN architectures with a ReLU-based activation function and are not
applicable to the soft tree ensemble model.

3 UCB strategy based on soft tree ensemble model

3.1 Proposed algorithm: ST-UCB

The pseudo-code of our proposed algorithm, soft tree-based UCB (ST-UCB), is shown in Algorithm 1.
ST-UCB is interpreted as the soft tree-based variant of NN-UCB [41]. We summarize each part of
ST-UCB below.
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Initialization. ST-UCB first chooses the initial parameter θ0 ∈ Rp for the gradient descent
method as follows. Let θbase ∼ N (0, Ip/2) be a base initial parameter, with p = M(dN + L).
Using θbase, we set the initial parameters θ0 as θ0 = (θ⊤

0+,θ
⊤
0−)

⊤, where θ0+ ∈ Rp/2

and θ0− ∈ Rp/2 are defined as θ0+ = (w
(1)⊤
base ,π

(1)⊤
base , . . . ,w

(M/2)⊤
base ,π

(M/2)⊤
base )⊤ and θ0− =

(w
(M/2+1)⊤
base ,−π(M/2+1)⊤

base , . . . ,w
(M)⊤
base ,−π(M)⊤

base )⊤ , respectively. This initialization procedure
ensures that the initial model output is 0 (i.e., h(x;θ0) = 0 for all x ∈ X ), which is essential for our
theoretical analysis.

Learning. At each step t, ST-UCB learns the model parameter θt based on a regularized squared
loss Lt(θ) :=

∑t
i=1(h(xi;θ)− yi)

2 + ρ∥θ − θ0∥22, where ρ > 0 is a regularization parameter.

UCB-based selection of xt. At each step t, ST-UCB selects xt as follows:
xt ∈ arg max

x∈Xt

[h(x;θt−1) + βσ̃t−1(x)], (4)

where σ̃2
t−1(x) = g(x;θ0)

⊤ (Ip + ρ−1Gt−1G
⊤
t−1

)−1
g(x;θ0) with g(x;θ) := ∇θh(x;θ) ∈ Rp

and Gt−1 := (g(x1;θ0), . . . , g(xt−1;θ0)) ∈ Rp×t. In ST-UCB, the quantity σ̃2
t−1(x) quantifies the

uncertainty of the model output h(x;θt) and is essential for the construction of confidence bounds.
Furthermore, the quantity σ̃2

t−1(x) is interpreted as the predictive variance of a Bayesian linear
regression whose feature map is the gradient of the initial model output h(x;θ0). We note that a
similar quantity is leveraged in existing NB algorithms [23, 30, 41].

3.2 Theory of ST-UCB

Assumptions for theoretical analysis. We make the following assumptions for our theory:
Assumption 3.1. (i) The output noise ϵt is conditionally σ-sub-Gaussian for some σ > 0. Specifically,
E[exp(λϵt) | Ht−1] ≤ exp(λ2σ2/2) holds for any t ∈ [T ] := {1, . . . , T} and any historyHt−1 :=
(x1, y1, . . . ,xt−1, yt−1). (ii) The input space X ⊂ Rd is a subset of the hyper-sphere Sd−1 := {x ∈
Rd | ∥x∥2 = 1}. (iii) The underlying reward function f is an element of the RKHS corresponding to
kTNTK, where kTNTK is the TNTK induced by the same soft tree structure used in ST-UCB. (iv) The
RKHS norm of f is bounded by a known constant B < ∞. That is, ∥f∥TNTK ≤ B holds, where
∥ · ∥TNTK denotes the RKHS norm corresponding to kTNTK.
Remark 3.1. In Assumption 3.1, (i) is the standard assumption for the stochastic bandit problem and
is quite mild. For example, Bernoulli, Gaussian, and any bounded reward models are included in this
assumption. Assumption (ii) is often assumed in existing NB literature [23, 24, 30, 40, 41] and holds
without loss of generality by transforming the original input space through a bijection map. For
example, given any original input space X̃ ⊂ Rd, we can construct a new input space X on the hyper

sphere Sd as X =

{(
l
−1

x̃⊤, (1− ∥x̃∥22l
−2

)1/2
)⊤
| x̃ ∈ X̃

}
⊂ Sd, where l = maxx̃∈X̃ ∥x̃∥2.

Assumptions (iii) and (iv) are similar to those in existing NB works [23, 24, 30]. The only difference
is that we use TNTK instead of NTK to define the hypothesis space (RKHS) to which f belongs. We
omit the basic definition and properties of RKHS; see, e.g., [20] for details. In Sec. 4, we further
discuss the relationship between the RKHSs corresponding to NTK and TNTK.

Similar to NB with ReLU, our theoretical guarantees rely on two crucial tools in the context of KB.
The first is the maximum information gain (MIG) [32], which quantifies the complexity of the problem
in the context of kernel-based sequential decision-making tasks. MIGs depend on the underlying
kernels, and their upper bounds have been provided when using well-known kernels, including the
NTK corresponding to NNs with ReLU [23, 35, 36]. We show the upper bound of MIG when the
underlying kernel is TNTK. The second tool is the confidence bound. Constructing valid confidence
bounds is crucial for obtaining meaningful regret bounds in stochastic bandit algorithms. These two
elements are not only essential for the theoretical analysis of ST-UCB but also of independent interest
in general sequential decision-making problems. Hereafter, we present our MIG and confidence
bounds results for our ST-UCB algorithm, concluding with the regret upper bound for ST-UCB.

Maximum information gain (MIG) of TNTK. Let us define the quantity γT as

γT =
1

2
max

x1,...,xT∈X
ln det

(
IT + ρ−1KT

)
, (5)
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where KT is the T × T kernel matrix whose (i, j)-th entry is kTNTK(xi,xj). This γT is called
the maximum information gain (MIG) since the quantity 0.5 ln det(IT + ρ−1KT ) is equal to the
information gain from T observations in a Gaussian process regression model, characterized by the
covariance function kTNTK and the noise variance parameter ρ [32]. The following Theorem 3.1 is
our main result about MIG, which shows that γT grows logarithmically.

Theorem 3.1 (Upper bound of MIG of TNTK). Fix any α ∈ (0,∞), d ≥ 2,D ∈ N+, and X ⊂ Sd−1.
Then, γT = O(lnd T ). Here, the implied constant depends on d, α, and D.

The proof of Theorem 3.1 is given in Appendix A.2. The analysis of MIG is well-studied in existing
KB literature [32, 36]. The key component to quantify the upper bound of MIG is the decaying rate
of the eigenvalues of the underlying kernel. The following lemma gives the decay rate of TNTK
eigenvalues, which plays a central role in the proof of Theorem 3.1.

Lemma 3.1 (Eigendecomposition of TNTK). Fix any d ≥ 2, α ∈ (0,∞), andD ∈ N+. Furthermore,

let us define Nd,n as Nd,n = 2n+d−2
n

(
n+ d− 3
d− 2

)
, for any n ∈ N, where

(
a
b

)
:= a!

b!(a−b)! is a

binomial coefficient. Then, for any x, x̃ ∈ Sd−1, the TNTK corresponding to α and D satisfies

kTNTK(x, x̃) =
∞∑
n=0

Nd,n∑
j=1

λnYn,j(x)Yn,j(x̃), (6)

where (λn)n∈N and (Yn,j)n∈N,j∈[Nd,n] are eigenvalues and eigenfunctions of (the integral operator
of) TNTK that satisfy λ0 ≥ λ1 ≥ · · · ≥ 0. In addition, for any n ∈ N, the eigenvalue λn satisfies

λn ≤ C
(1)
α,D exp

(
−nD ln

(
1 +

1

4α2

))
, (7)

where C
(1)
α,D > 0 is a constant, which depends on α and D.

Remark 3.2. The eigenfunctions (Yn,j)j∈[Nd,n] are known as spherical harmonics of degree n with
multiplicity Nd,n (see, e.g., [13]). Furthermore, on the hyper-sphere Sd−1, the kernels that have
rotationally invariant form can be represented in the form of Eq. (6). TNTK and NTK with ReLU
activation function are included in the rotationally invariant class of kernels; therefore, NTK can
also be decomposed as Eq. (6) [35], while corresponding eigenvalues differ from those of TNTK.

The proof of Lemma 3.1 is given in Appendix A.1. Lemma 3.1 demonstrates the exponential
eigenvalue decay of TNTK, in contrast to the polynomial eigenvalue decay of NTK with ReLU
activation [6, 35]. This difference leads to faster convergence of ST-UCB compared to NN-UCB,
albeit with a smaller corresponding RKHS of TNTK. We discuss more details in Sec. 4.

Confidence bound. The following shows the confidence bounds for the soft tree-based model.

Theorem 3.2 (Confidence bounds based on the soft tree ensemble model). Suppose Assumption 3.1
holds. Fix any δ ∈ (0, 1), ρ > 0, α ≥ 1, and D ≥ 2. Let KTNTK(X ) := [kTNTK(x, x̃)]x,x̃∈X ∈
R|X |×|X| and λ0 = λmin(KTNTK(X )) > 0 be the kernel matrix over X × X and the minimum
eigenvalue of KTNTK(X ), respectively. If the number of soft tree ensemble models M is sufficiently
large to satisfy M ≥ Poly(T, ρ−1, B, α, 2D, λ−1

0 , |X |, ln(1/δ)) and the learning rate η satisfies
η ≤ O((T 224Dα2 ln(M/δ) + ρ)−1), then, the following event holds with probability at least 1− δ:

∀t ∈ [T ],∀x ∈ X , |f(x)− h(x;θt−1)| ≤ O
(
T 2(lnT )2(lnM)√

M

)
+ βσ̃t−1(x), (8)

where:

β = O

(√
γT +

T 3/2

M1/2
+

T 3(lnT )(lnM3/2)√
M

+ T 3/2(lnT )(lnM)(1− 2ηρ)J/2

)
. (9)

Remark 3.3. The minimum eigenvalue λ0 of the kernel matrix of TNTK is guaranteed to be strictly
positive if X ⊂ Sd−1. See Proposition 1 in [21].
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We provide the proof of Theorem 3.2 in Appendix B.3 with the precise conditions about M and the
dependence of constant factors. Our proof strategy for Theorem 3.2 follows the existing analysis
of confidence bounds in NB works; however, the application of their proof techniques to the soft
tree regressor is not straightforward. Specifically, the existing proof of the confidence bounds in NB
depends on the concentration results of NTK (Theorem 3.1 in [4]), and the spectral norm bounds of
the Hessian matrix of NN (Theorem 3.2 in [27]). To prove Theorem 3.2, we provide the following
soft tree versions of their results.

Lemma 3.2 (Concentration to TNTK). Fix any x, x̃ ∈ Sd−1, δ ∈ (0, 1), and ϵ ∈ (0, C
(2)
α,D) with

C
(2)
α,D = 22D+2α2C. If M ≥ C̃max{C(2)2

α,D , 22D}ϵ−2 ln(16/δ), then,

P(|kTNTK(x, x̃)− ⟨g(x,θ0), g(x̃,θ0)⟩ | ≤ 4ϵ) ≥ 1− δ, (10)

where θ0 is the initial parameter of ST-UCB, and C, C̃ > 0 are absolute constants.

Lemma 3.3 (Spectral norm upper bound). For any δ ∈ (0, 1) and α ≥ 1, with probability at least
1− δ, the following holds for any R > 0, θ ∈ Rp, and x ∈ Sd−1:

∥θ − θ0∥2 ≤ R⇒ ∥H(x,θ)∥ ≤
C

(3)
α,D(R+

√
2)2

√
M

ln
2D+2M

δ
, (11)

where H(x,θ) := ∇2
θh(x;θ) ∈ Rp×p is the Hessian matrix of the model output, and C

(3)
α,D =√

6α222D. Furthermore, for any A ∈ Rp×p, ∥A∥ := maxz∈Sp−1 ∥Az∥2 denotes the spectral norm.

The proofs of Lemma 3.2 and Lemma 3.3 are given in Appendix B. By carefully combining
Lemma 3.2 and Lemma 3.3 with the existing proof strategy of NB, we derive Theorem 3.2. The
overview of the proof is summarized in Appendix B.3.1.

Regret upper bound of ST-UCB. By combining Theorem 3.1 and Theorem 3.2 with the standard
proof technique of the kernelized UCB algorithm, we obtain the Õ(

√
T ) regret upper bound for

ST-UCB as stated in the following theorem. The proof is provided in Appendix C.

Theorem 3.3. Suppose that Assumption 3.1 holds. Fix any δ ∈ (0, 1), α ≥ 1, ρ > 0, and D ≥ 2.
Furthermore, assume that the confidence width parameter β satisfies Eq. (9). If the number of
soft tree ensemble models M and the total step size J of the gradient descent are sufficiently
large to satisfy M ≥ Poly(T, ρ−1, B, α, 2D, λ−1

0 , |X |, ln(1/δ)), and the learning rate η satisfies
η ≤ O((T 224Dα2 ln(M/δ) + ρ)−1), then, the following holds with probability at least 1− δ:

RT ≤ 1 +

(
√
2B + 1 +

σ
√
ρ

√
2

(
γT + 1 + ln

6

δ

))√
8T (γT + 1)

ln(1 + ρ−2)
= O

(√
T lnd T

)
. (12)

4 Comparison of NN-UCB and ST-UCB

Comparison of regret. In the existing NN-UCB algorithm [41], a regret upper bound of O(d̃
√
T )

is provided, where d̃ represents the effective dimension of ReLU-based NTK. It is generally known
that the worst-case bound of the effective dimension and MIG are equivalent up to logarithmic
dependencies [37]. Considering the upper bound on MIG of NTK, γ(NTK)

T = Õ(T (d−1)/d) [23,
35], the regret of NN-UCB becomes Õ(T (d−1)/d+1/2)(= Õ(γ(NTK)

T

√
T )). This results in a super-

linear regret, and meaningful guarantees for NN-UCB are not achievable without further restricted
assumptions on the input set Xt (e.g., see the discussion in Appendix D in [40]). To address these
issues in a general setting, it is necessary to construct more complex algorithms that incorporate
concepts such as a sup-variant of UCB [23, 30] or phased elimination [24], yielding a regret upper

bound of O(
√

γ
(NTK)
T T ). In contrast, due to Theorem 3.1, the MIG of TNTK γ

(TNTK)
T diverges

on a logarithmic scale. Therefore, ST-UCB achieves a regret bound of Õ(
√
T ) without requiring

additional assumptions on the input set Xt, maintaining a simple UCB-style algorithmic structure.
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Comparison of hypothesis space. In our analysis, we assume in Assumption 3.1 that the reward
function f belongs to the RKHSHTNTK associated with TNTK. Conversely, in existing NB research,
it is assumed that f belongs to the RKHS HNTK associated with NTK. By combining Lemma 3.1
with the well-known Mercer’s representation theorem (e.g., Theorem 4.51 in [33]), we derive the
following lemma, which describes the relationship betweenHTNTK andHNTK.
Lemma 4.1. Fix any α ≥ 0 and D ∈ N+, and define the corresponding TNTK as kTNTK :
Sd−1 × Sd−1 → R. Let kNTK : Sd−1 × Sd−1 → R be an NTK corresponding to a ReLU-based
L-layer neural network structure, where L is any natural number. Then, HTNTK ⊂ HNTK holds,
whereHNTK andHTNTK are RKHSs corresponding to kNTK and kTNTK, respectively.

The proof of Lemma 4.1 is provided in Appendix D. Lemma 4.1 indicates that the regret upper bound
of ST-UCB is guaranteed in a more constrained hypothesis space compared to NN-UCB. While
NN-UCB generally does not guarantee a no-regret property, the Õ(

√
T ) guarantee in ST-UCB can be

interpreted as being due to focusing on a more constrained hypothesis space.

It should be noted that whether this property is specific to the tree structure of the model or depends on
the choice of the soft-decision function is unknown. We constructed and analyzed our algorithm based
on the definition of soft trees from [21]; however, we conjecture that by using a more non-smooth
soft decision function, although the regret may degrade to a level similar to NN-UCB, we can align
the hypothesis spaces used in NN-UCB and ST-UCB to be almost the same. We leave the detailed
analysis to future work.

5 Numerical experiments

In this section, we compare ST-UCB and NN-UCB to empirically demonstrate the usefulness of the
tree-based model. Additionally, to evaluate the characteristics of UCB-based algorithms, we include
ϵ-greedy based ST-greedy and NN-greedy as comparative methods.

Real-world dataset. We use Energy Efficiency dataset [34] registered in UCI Machine Learning
Repository [1]. This dataset provides the load required to maintain comfortable indoor air conditions
for each of the 768 residential buildings – two types of data are provided as non-negative real
values: heating load (HL) and cooling load (CL). For each building, eight types of context are
included as explanatory variables. We randomly sample residential buildings without replacement
to create a dataset of K̃ ≤ 768 arms, where K̃ is a hyperparameter. The inputs are denoted as
x = (x̃building, x̃) ∈ X , where x̃building is a K̃-dimensional one-hot vector used to identify the
arms, and x̃ is a vector that aggregates the eight types of context. In most real-world data, the
rewards depend not only on the observable context x̃ but also on other information. To account for
arm-specific characteristics that cannot be represented by x̃ alone, we use x̃building as part of the input.

We consider each arm of the multi-armed bandit problem as an individual residential building, and
we define the reward of the arm selected in each round as ft = −(HLt + CLt). Additionally, we
standardize the rewards across K̃ arms to have a mean of 0 and a standard deviation of 1.

Synthetic dataset. We evaluate the algorithms using synthetic data similar to that used in [41].
Here, the number of arms is set to 20, and the dimension of the input vector x for each arm is
set to 50. Additionally, the input vectors are chosen uniformly at random from the unit ball. We
consider the three reward functions: (i) f (1)(x) = 10(x⊤a)2, (ii) f (2)(x) = x⊤A⊤Ax, and (iii)
f (3)(x) = cos(3x⊤a) where a ∈ R50 is randomly generated from uniform distribution over unit
ball, and each entry of A ∈ R50×50 is randomly generated from standard normal distribution. Similar
to the real-world dataset, we standardize the rewards across all arms.

Setup. We define the cumulative regret up to round T as RT =
∑T
t=1 f

∗ − ft where f∗ represents
the maximum reward among all arms. We assume that the response used for training the machine
learning model is generated from yt = ft+ ϵt where ϵt is randomly drawn from a normal distribution
with mean 0 and standard deviation σnoise = 0.2. Since the rewards are standardized, this setting of
σnoise effectively acts as noise.

In this experiment, we will use an ϵ-greedy based algorithm as an additional comparative method;
In each round, an arm is selected randomly with a probability of ϵ, while the arm with the highest
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Figure 2: The average cumulative regret with one standard error. The experiment was conducted
over 10 episodes with different initial parameters for the model.

predicted value from the machine learning model is selected with a probability of 1− ϵ. Here, we will
perform a grid search to choose the value of ϵ from the three candidates ϵ ∈ {0.05, 0.1, 0.2}. Mean-
while, in UCB-based algorithms, β is provided as a parameter to control the degree of exploration.
We use a grid search to select the value of β from the three candidates β ∈ {0.01, 0.1, 1}.
We employ a fully connected neural network model with two intermediate layers. Including the input
and output layers, the total number of layers is four. Each of the two intermediate layers contains
33 units, one of which is a bias term. As for the tree-based model, we consider an ensemble of four
soft-trees, the depth of each soft-tree is three. The regularization coefficient λ for the parameters
is fixed at 10−4, regardless of the machine learning model. Supplementary details related to the
implementation of the algorithms are summarized in Appendix F.1.

Results. The results for each algorithm are shown in Fig. 2. In real-world dataset, three different
numbers of arms were considered, with K̃ being one of {20, 40, 60}. These experiments were
conducted over 10 episodes with different initial parameters θ0 for the model. Additional results
without the grid search for ϵ, β are summarized in Appendix F.2.

In all settings of real-world dataset, the regret of ST-UCB was not smaller in the early rounds, but the
increase in the cumulative regret became more gradual as the rounds progressed. For example, in
the setting of K̃ = 60, after round 150, there was no change in the cumulative regret of ST-UCB.
However, from round 1 to 70, the regret of ST-UCB was relatively high compared to other methods.
In our experiment, UCB-based policies (NN-UCB, ST-UCB) tended to actively select arms that
had not been chosen before in the early rounds. As the rounds increased, exploratory behavior
was suppressed, and there was a stronger tendency to select only arms with high rewards. On the
other hand, in policies based on ϵ-greedy (NN-greedy, ST-greedy), the exploration rate is kept at ϵ
across all rounds. Therefore, the regret continues to accumulate gradually as the rounds increase,
raising concerns about worsening cumulative regret over extended long rounds. In the f (1) and f (2)

settings of synthetic dataset, ST-UCB outperformed the other policies, and the convergence stability
of cumulative regret in f (3) was comparable between ST-UCB and NN-UCB.

6 Conclusion and future direction

In this paper, we propose a new regret-minimization algorithm based on a soft tree ensemble model.
Our analysis extends the theoretical framework of existing neural bandit (NB) approaches to the soft
tree ensemble model, demonstrating, under appropriate assumptions, the achievement of Õ(

√
T )

regret. To our knowledge, this is the first application of NB theory to models other than neural
networks; we believe that our work marks an important first step toward developing exploration and
exploitation theory using various complex models beyond neural nets.
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Our future research directions are outlined below. Firstly, it is important to study the extension when
employing hard decision trees. In this paper, as the scale parameter α approaches infinity, the soft
tree regressor approaches that of a hard tree. We conjecture that our algorithm also works in this
regime; however, since our regret analysis assumes a fixed α, our proposed method is not guaranteed
to maintain the no-regret property with a varying scale parameter α. Hence, a more careful theoretical
treatment is needed for this extension. Secondly, we plan to generalize the theory to encompass more
common learning methods of the ensemble tree model. Specifically, learning algorithms using hard
trees often utilize optimization methods in a greedy format rather than gradient descent. Therefore,
developing theoretical foundations for ensemble tree learning methods that are more practically
applicable is crucial.
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A Information gain of TNTK

A.1 Proof of Lemma 3.1

Firstly, we formally define the dot product kernel on the sphere.
Definition A.1 (Dot product kernel on the sphere [31]). Let d ≥ 2 and Sd−1 be the unit sphere of
Rd. Then, a kernel k : Sd−1 × Sd−1 → R of the following form is called a dot product kernel on the
sphere Sd−1:

k(x, x̃) =

∞∑
n=0

bn(x
⊤x̃)n for all x, x̃ ∈ Sd−1, (13)

where (bn)n∈N is an absolutely summable sequence. Furthermore, if bn ≥ 0 for any n ∈ N, k is a
continuous positive semi-definite kernel on the sphere Sd−1.

As described in Sec. 2 in [31], continuous positive semi-definite dot-product kernels are decomposed
as Eq. (6) by using spherical harmonics (Yn,j).

The following lemma shows the eigendecay of dot product kernels depending on coefficients (bn)n∈N.
Lemma A.1 (Proposition 2.3 in [31]). Let d ≥ 2 and (Yn,j)j∈[Nd,n] be the spherical harmonics
of degree n. Furthermore, let k(x, x̃) :=

∑∞
n=1 bn(x

⊤x̃)n be a continuous positive semi-definite
dot-product kernel on Sd−1. Here, if there exist r ∈ (0, 1) and c > 0 such that bn ≤ crn holds for
any n ∈ N, then, there exists constant C > 0 and (λn)n∈N such that λn ≤ Crn and k(x, x̃) =∑∞
n=0

∑Nd,n

j=1 λnYn,j(x)Yn,j(x̃) hold for all x, x̃ ∈ Sd−1, and n ∈ N.

To prove Lemma 3.1, we consider the Maclaurin series expansion of TNTK; then, Lemma 3.1 is
given from Lemma A.1.

Proof of Lemma 3.1. First, we respectively define functions f1 : [−1, 1]→ R and f2 : [−1, 1]→ R
as

f1(a) =
1

2π
arcsin

(
α2a

α2 + 0.5

)
+

1

4
, (14)

f2(a) =
α2

π

1√
(1 + 2α2)2 − 4α4a2

. (15)

Then, since x, x̃ ∈ Sd−1, the following holds directly from the analytical expression of TNTK [21]:

kTNTK(x, x̃) = 2DD(x⊤x̃)f1(x
⊤x̃)D−1f2(x

⊤x̃) + 2Df1(x
⊤x̃)D. (16)

Here, since −1 < α2a
α2+0.5 < 1 holds for any a ∈ [−1, 1],

f1(a) =
1

2π
arcsin

(
α2a

α2 + 0.5

)
+

1

4
(17)

=
1

2π

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)

(
α2

α2 + 0.5

)2n+1

a2n+1 +
1

4
, (18)

from the Maclaurin series expansion of the inverse sine function. Furthermore, since −1 <(
2α2a
1+2α2

)2
< 1 holds for any a ∈ [−1, 1],

f2(a) =
α2

π

1√
(1 + 2α2)2 − 4α4a2

(19)

=
α2

π(1 + 2α2)

1√
1−

(
2α2

1+2α2

)2
a2

(20)

=
α2

π(1 + 2α2)

∞∑
n=0

(−1)n
(
−0.5
n

)(
α2

α2 + 0.5

)2n

a2n, (21)
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where the last line follows from the fact that (1 + x)c =
∑∞
n=0

(
c
n

)
xn holds for any c ∈ R and

x ∈ (−1, 1). Here,
(
c
n

)
denotes a generalized binomial coefficient, which is defined as

(
c
n

)
= 1

if n = 0; otherwise,
(
c
n

)
= c(c−1)···(c−n+1)

n! . By rearranging Eq. (18) and Eq. (21), f1 and f2 can

respectively be rewritten as f1(a) =
∑∞
i=1 b

(1)
i ai and f2(a) =

∑∞
i=1 b

(2)
i ai, where the coefficients

b
(1)
i and b

(2)
i are defined as

b
(1)
i =


1
4 if i = 0,

(i−1)!
(2π)2i−1i(((i−1)/2)!)2

(
α2

α2+0.5

)i
if ∃n ∈ N, i = 2n+ 1,

0 otherwise,

, (22)

b
(2)
i =


α2

π(1+2α2) if i = 0,

α2

π(1+2α2)

(
α2

α2+0.5

)i
1

(i/2)! [0.5 · 1.5 · · · (0.5 + 0.5i− 1)] if ∃n ∈ N, i = 2n,

0 otherwise.

(23)

From the Stirling’s inequality: e(n/e)n ≤ n! ≤ en(n/e)n, for any i such that i = 2n+ 1 holds,
(i− 1)!

(2π)2i−1i(((i− 1)/2)!)2
=

(2n)!

(2π)22n(2n+ 1)(n!)2
(24)

≤ 2en(2n/e)2n

(2π)22n(2n+ 1)e2(n/e)2n
(25)

≤ 2n

(2π)(2n+ 1)e
(26)

≤ 1

(2π)e
(27)

≤ 1

e
. (28)

Therefore, 0 ≤ b
(1)
i ≤ e−1

(
α2

α2+0.5

)i
holds for any i ∈ N. Furthermore, for any i such that i = 2n

holds,
α2

π(1 + 2α2)

1

(i/2)!
[0.5 · 1.5 · · · (0.5 + 0.5i− 1)] (29)

=
α2

π(1 + 2α2)

1

n!
[0.5 · 1.5 · · · (0.5 + n− 1)] (30)

≤ α2

π(1 + 2α2)

1

n!
(1 · 2 · · ·n) (31)

=
α2

π(1 + 2α2)
. (32)

Therefore, 0 ≤ b
(2)
i ≤ α2

π(1+2α2)

(
α2

α2+0.5

)i
holds for any i ∈ N. Now, we rewrite Eq. (16) by using

the multiple Cauchy product formula as follows:

kTNTK(x, x̃) =

∞∑
i=0

bi(x
⊤x̃)i, (33)

where,

bi =2DD
i−1∑
i2=0

i2∑
i3=0

· · ·
iD−2∑
iD−1=0

iD−1∑
iD=0

(
b
(1)
i−i2b

(1)
i2−i3 · · · b

(1)
iD−1−iDb

(2)
iD

)

+ 2D
i∑

i2=0

i2∑
i3=0

· · ·
iD−2∑
iD−1=0

iD−1∑
iD=0

(
b
(1)
i−i2b

(1)
i2−i3 · · · b

(1)
iD−1−iDb

(1)
iD

)
.

(34)
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By combining Eq. (34) with the upper bounds of b(1)i and b
(2)
i ,

bi ≤ 2DD
(
1

e

)D−1
α2

π(1 + 2α2)

(
α2

α2 + 0.5

)iD i−1∑
i2=0

i2∑
i3=0

· · ·
iD−2∑
iD−1=0

iD−1∑
iD=0

1

+ 2D
(
1

e

)D (
α2

α2 + 0.5

)iD i∑
i2=0

i2∑
i3=0

· · ·
iD−2∑
iD−1=0

iD−1∑
iD=0

1

(35)

≤ 2DD
(
1

e

)D−1
α2

π(1 + 2α2)

(
α2

α2 + 0.5

)iD
(i− 1)D + 2D

(
1

e

)D (
α2

α2 + 0.5

)iD
iD (36)

≤

[
2DD

(
1

e

)D−1
α2

π(1 + 2α2)
+ 2D

(
1

e

)D
](

α2

α2 + 0.5

)iD
iD. (37)

Therefore, there exist constant C̃α,D > 0 such that

bi ≤ C̃α,D

(
α2

α2 + 0.25

)iD
(38)

holds for any i ∈ N. By applying Lemma A.1 with Eq. (38), we have

λi ≤ C
(1)
α,D

(
α2

α2 + 0.25

)iD
(39)

= C
(1)
α,D exp

(
iD ln

(
α2

α2 + 0.25

))
(40)

= C
(1)
α,D exp

(
−iD ln

(
1 +

1

4α2

))
(41)

for some constant C(1)
α,D > 0.

A.2 Proof of Theorem 3.1

Our proof strategy of Theorem 3.1 is adapted from [23, 35].

Proof of Theorem 3.1. Fix any deterministic sequence x1, . . . ,xt ∈ X ⊂ Sd−1. For any M ∈ N+,
let us define kernel functions k(M)

TNTK and k̃
(M)
TNTK as

k
(M)
TNTK(x, x̃) =

M∑
n=0

Nd,n∑
j=1

λnYn,j(x)Yn,j(x̃), (42)

k̃
(M)
TNTK(x, x̃) =

∞∑
n=M+1

Nd,n∑
j=1

λnYn,j(x)Yn,j(x̃). (43)

Furthermore, let K(M)
TNTK and K̃

(M)
TNTK be t× t-kernel matrices whose (i, j)-th entry are k(M)

TNTK(xi,xj)

and k̃
(M)
TNTK(xi,xj), respectively. As with the proof of Theorem 3 in [36], we have the following

decomposition:

1

2
ln det

(
It + ρ−1KTNTK

)
=

1

2
ln det

(
It + ρ−1K

(M)
TNTK

)
+

1

2
ln det

(
It + ρ−1

(
It + ρ−1K

(M)
TNTK

)−1

K̃
(M)
TNTK

)
.

(44)

By following the same argument as the proof of Theorem 2 in [35], the first term of Eq. (44) is
bounded from above as follows:

1

2
ln det

(
It + ρ−1K

(M)
TNTK

)
≤ NM

2
ln

(
1 +

kt

ρNM

)
. (45)
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where NM =
∑M
n=1 Nd,n and k = maxx∈X kTNTK(x,x). Furthermore, by following the same

argument as the proof of Theorem 3.2 in [23], the second term of Eq. (44) is bounded from above as
follows:

1

2
ln det

(
It + ρ−1

(
It + ρ−1K

(M)
TNTK

)−1

K̃
(M)
TNTK

)
(46)

≤ t

2
ln

1 +
ρ−1tr

(
K̃

(M)
TNTK

)
t

 (47)

≤ t

2
ln

(
1 + ρ−1

∞∑
n=M+1

λnNd,n

)
(48)

≤ t

2ρ

∞∑
n=M+1

λnNd,n. (49)

Then, from Lemma 3.1, there exists some constants C > 0 and Cα,d > 0 such that

∞∑
n=M+1

λnNd,n ≤
∞∑

n=M+1

C
(1)
α,DC exp (−CαDn)nd−2 (50)

≤
∞∑

n=M+1

C
(1)
α,DCCα,d exp (−0.5CαDn) . (51)

where we set Cα as Cα = ln(1 + 1/(4α2)). Furthermore, Eq. (50) follows from Nd,n = Θ(nd−2)
(see, e.g., [23]). Therefore,

∞∑
n=M+1

λnNd,n ≤ C
(1)
α,DCCα,d

∫ ∞

M

exp (−0.5CαDx) dx (52)

≤ C̃α,D,d exp

(
−CαDM

2

)
, (53)

where we set C̃α,D,d as C̃α,D,d = C
(1)
α,DCCα,d. Now, by noting NM = O(Md−1) [23], there exists

the constant C̃ > 0 such that

1

2
ln det

(
It + ρ−1KTNTK

)
≤ NM

2
ln

(
1 +

kt

ρNM

)
+

t

2ρ

∞∑
n=M+1

λnNd,n (54)

≤ C̃Md−1

2
ln

(
1 +

kt

ρ

)
+

C̃α,D,dt

2ρ
exp

(
−CαDM

2

)
. (55)

By choosing M as

M =

⌈
2C−1

α D−1 ln

(
C̃α,D,dtρ

−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1
)⌉

, (56)
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M ≥ 1 for sufficiently large t, and we have

M =

⌈
2C−1

α D−1 ln

(
C̃α,D,dtρ

−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1
)⌉

(57)

⇒M ≥ 2C−1
α D−1 ln

(
C̃α,D,dtρ

−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1
)

(58)

⇔ exp

(
CαDM

2

)
≥ C̃α,D,dtρ

−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1

(59)

⇔ 1 ≥ C̃α,D,dtρ
−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1

exp

(
−CαDM

2

)
(60)

⇒Md−1 ≥ C̃α,D,dtρ
−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1

exp

(
−CαDM

2

)
(61)

⇒ C̃Md−1

2
ln

(
1 +

kt

ρ

)
≥ C̃α,D,dt

2ρ
exp

(
−CαDM

2

)
. (62)

Therefore,
1

2
ln det

(
It + ρ−1KTNTK

)
(63)

≤ C̃Md−1 ln

(
1 +

kt

ρ

)
(64)

≤

⌈
2C−1

α D−1 ln

(
C̃α,D,dtρ

−1C̃−1

[
ln

(
1 +

kt

ρ

)]−1
)⌉d−1

C̃ ln

(
1 +

kt

ρ

)
(65)

= O
(
lnd t

)
. (66)

The above inequality holds for any choice of x1, . . . ,xt; hence, the proof is completed.

B Confidence bounds of soft trees

B.1 Proof of Lemma 3.2

To prevent the subscript from becoming redundant hereafter, unless specifically stated otherwise, we
denote the initial parameter θ0 by θ := θ0, and the initial parameters of the m-th tree are denoted
by θ

(m)
. Moreover, the initial parameter vectors corresponding to the internal nodes and leaf nodes

for θ
(m)

are denoted by w(m) and π(m), respectively. First, following [21], we decompose the finite
sample approximation of the TNTK as follows:

⟨∇θ0
h(x;θ0),∇θ0

h (x̃;θ0)⟩ (67)

=
1

M

M∑
m=1

〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉
(68)

+
1

M

M∑
m=1

〈
∇w(m),(L)h(m)

(
x;θ

(m)
0

)
,∇w(m),(L)h(m)

(
x̃;θ

(m)
0

)〉
+

1

M

M∑
m=1

〈
∇w(m),(R)h(m)

(
x;θ

(m)
0

)
,∇w(m),(R)h(m)

(
x̃;θ

(m)
0

)〉 (69)

+
1

M

M∑
m=1

〈
∇π(m)h(m)

(
x;θ

(m)
0

)
,∇π(m)h(m)

(
x̃;θ

(m)
0

)〉
. (70)
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Here, w(m),(T ), w(m),(L), and w(m),(R) represent the parameters of the root (top) node, all internal
nodes of the left subtree, and all internal nodes of the right subtree of the m-th tree at the initial
values, respectively. Now, we define k

(T )
TNTK(x, x̃), k

(L)
TNTK(x, x̃), k

(R)
TNTK(x, x̃), and k

(B)
TNTK(x, x̃)

as follows:

k
(T )
TNTK(x, x̃) = E

[〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉]
, (71)

k
(L)
TNTK(x, x̃) = E

[〈
∇w(m),(L)h(m)

(
x;θ

(m)
0

)
,∇w(m),(L)h(m)

(
x̃;θ

(m)
0

)〉]
, (72)

k
(R)
TNTK(x, x̃) = E

[〈
∇w(m),(R)h(m)

(
x;θ

(m)
0

)
,∇w(m),(R)h(m)

(
x̃;θ

(m)
0

)〉]
, (73)

k
(B)
TNTK(x, x̃) = E

[〈
∇π(m)h(m)

(
x;θ

(m)
0

)
,∇π(m)h(m)

(
x̃;θ

(m)
0

)〉]
. (74)

Note that, since the initial parameters of each tree follow the same distribution, the definitions
mentioned above do not depend on the choice of m. Now, assuming that the initial parame-
ters follow a multivariate normal distribution independent across dimensions, by using the law
of large numbers, Eqs. (68), (69), and (70) converge in probability, respectively, to k

(T )
TNTK(x, x̃),

k
(L)
TNTK(x, x̃) + k

(R)
TNTK(x, x̃), and k

(B)
TNTK(x, x̃). From the continuous mapping theorem, it fol-

lows that kTNTK(x, x̃) = k
(T )
TNTK(x, x̃) + k

(L)
TNTK(x, x̃) + k

(R)
TNTK(x, x̃) + k

(B)
TNTK(x, x̃) can be

expressed [21]. Note that the convergence to the above TNTK also holds for the initialization strategy
of ST-UCB. Actually, regarding Eq. (68), we have

1

M

M∑
m=1

〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉
(75)

=
1

2

[ 2

M

M/2∑
m=1

〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉

+
2

M

M/2∑
m=1

〈
∇w(M/2+m),(T )h(M/2+m)

(
x;θ

(M/2+m)
0

)
,∇w(M/2+m),(T )h(m)

(
x̃;θ

(M/2+m)
0

)〉]
.

(76)

The first and second terms correspond to the inner products of gradients when initializing M/2 soft
trees with the standard normal distribution and converge in probability to k

(T )
TNTK(x, x̃). There-

fore, by the continuous mapping theorem, Eq. (75) converges in probability to k
(T )
TNTK(x, x̃).

Similar arguments apply to k
(L)
TNTK(x, x̃) + k

(R)
TNTK(x, x̃) and k

(B)
TNTK(x, x̃), indicating that in

the initialization strategy of ST-UCB, ⟨∇θ0
h(x;θ0),∇θ0

h (x̃;θ0)⟩ also converges in probability
to kTNTK(x, x̃). The following three lemmas each evaluate the concentration to k

(T )
TNTK(x, x̃),

k
(L)
TNTK(x, x̃) + k

(R)
TNTK(x, x̃), and k

(B)
TNTK(x, x̃) for Eqs. (68), (69), and (70), respectively.

Lemma B.1. For any x, x̃ ∈ Sd−1 and ϵ ≥ 0, we have

P

(∣∣∣∣∣k(T )
TNTK(x, x̃)−

1

M

M∑
m=1

〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉∣∣∣∣∣ ≤ ϵ

)

≥ 1− 4 exp

(
−cmin

{
ϵ2

K2
,
ϵ

K

}
M

)
,

(77)

where K = 4α2CL2. Furthermore, C, c > 0 are absolute constants.
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Lemma B.2. For any x, x̃ ∈ Sd−1, ϵ ≥ 0, and D ≥ 2, we have

P

(∣∣∣∣∣k(L)TNTK(x, x̃)−
1

M

M∑
m=1

〈
∇w(m),(L)h(m)

(
x;θ

(m)
0

)
,∇w(m),(L)h(m)

(
x̃;θ

(m)
0

)〉∣∣∣∣∣ ≤ ϵ

)

≥ 1− 4 exp

(
−cmin

{
ϵ2

K2
,
ϵ

K

}
M

)
.

(78)

Furthermore, we have

P

(∣∣∣∣∣k(R)
TNTK(x, x̃)−

1

M

M∑
m=1

〈
∇w(m),(R)h(m)

(
x;θ

(m)
0

)
,∇w(m),(R)h(m)

(
x̃;θ

(m)
0

)〉∣∣∣∣∣ ≤ ϵ

)

≥ 1− 4 exp

(
−cmin

{
ϵ2

K2
,
ϵ

K

}
M

)
.

(79)

Lemma B.3. For any x, x̃ ∈ Sd−1 and ϵ ≥ 0, we have

P

(∣∣∣∣∣k(B)
TNTK(x, x̃)−

1

M

M∑
m=1

〈
∇π(m)h(m)

(
x;θ

(m)
0

)
,∇π(m)h(m)

(
x̃;θ

(m)
0

)〉∣∣∣∣∣ ≤ ϵ

)

≥ 1− 4 exp

(
− c̃ϵ2M

L2

)
.

(80)

Here, c̃ > 0 is an absolute constant.

In proving the above lemmas, following [21], we denote a single soft tree of depth D̃ determined by
the internal node parameters w ∈ Rd(2D̃−1) and leaf node parameters π ∈ R2D̃ as hD̃(·,w,π).

Proof of Lemma B.1. Fix any D̃ ≤ D, w ∈ Rd(2D̃−1), and π ∈ R2D̃ . From the definition of the soft
tree, the following recursive formula holds [21]:

hD̃(x,w,π)

= σ
(
w(T )⊤x

)
hD̃−1

(
x,w(L),π(L)

)
+
[
1− σ

(
w(T )⊤x

)]
hD̃−1

(
x,w(R),π(R)

)
.

(81)

Note that h(m)(x;θ(m)) = hD
(
x,w(m),π(m)

)
. Here, π(L),π(R) represent the parameters of the

leaves belonging to the left and right subtrees, respectively. From Eq. (81), we have

∇w(T )hD̃(x,w,π) = xσ̇
(
w(T )⊤x

) [
hD̃−1

(
x,w(L),π(L)

)
− hD̃−1

(
x,w(R),π(R)

)]
, (82)

where σ̇(b) := α exp(−α2b2)/
√
π is the derivative of σ(·). Therefore,

⟨∇w(T )hD̃(x,w,π),∇w(T )hD̃(x̃,w,π)⟩

= x⊤x̃σ̇
(
w(T )⊤x

)
σ̇
(
w(T )⊤x̃

) [
hD̃−1

(
x,w(L),π(L)

)
hD̃−1

(
x̃,w(L),π(L)

)
− hD̃−1

(
x,w(L),π(L)

)
hD̃−1

(
x̃,w(R),π(R)

)
− hD̃−1

(
x,w(R),π(R)

)
hD̃−1

(
x̃,w(L),π(L)

)
+ hD̃−1

(
x,w(R),π(R)

)
hD̃−1

(
x̃,w(R),π(R)

)]
.

(83)

Here, let us define pD̃,l(x,w) :=
∏2D̃−1
n=1 σ

(
w⊤
n x
)1ll↙n

[
1− σ

(
w⊤
n x
)]1ll↘n as the weight proba-

bility function of leaf l in a soft tree of depth D̃; then, we have

hD̃−1

(
x,w(L),π(L)

)
=

2D̃−1∑
l=1

π
(L)
l pD̃−1,l

(
x,w(L)

)
. (84)
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Since the sub-Gaussian norm of the normal distribution is bounded from above by a constant multiple
of its standard deviation (see, e.g., Example 2.5.6 in [39]), for any m ∈ [M ], we have

∥∥∥hD−1

(
x,w(m),(L),π(m),(L)

)∥∥∥
ψ2

=

∥∥∥∥∥∥
2D−1∑
l=1

π
(m),(L)
l pD−1,l

(
x,w(m),(L)

)∥∥∥∥∥∥
ψ2

(85)

≤

∥∥∥∥∥∥
2D−1∑
l=1

π
(m),(L)
l

∥∥∥∥∥∥
ψ2

(86)

≤ CL, (87)

where the first inequality follows from
∣∣∣pD−1,l

(
x,w(m),(L)

)∣∣∣ ≤ 1. Similarly,∥∥∥hD−1

(
x,w(m),(R),π(m),(R)

)∥∥∥
ψ2

≤ CL. (88)

Due to ∥σ̇(·)∥∞ ≤ α/
√
π,
∣∣x⊤x̃

∣∣ ≤ 1, and Lemma E.4, we obtain∥∥∥〈∇w(T )h(m)
(
x;θ

(m)
)
,∇w(T )h(m)

(
x̃;θ

(m)
)〉∥∥∥

ψ1

≤ 4C2L2α2

π
. (89)

From the centering lemma (Lemma E.3), there exists an absolute constant C̃ > 0 such that∥∥∥k(T )
TNTK(x, x̃)−

〈
∇w(T )h(m)

(
x;θ

(m)
)
,∇w(T )h(m)

(
x̃;θ

(m)
)〉∥∥∥

ψ1

≤ 4C̃C2L2α2

π
(90)

≤ 4C̃C2L2α2. (91)

Therefore, taking C̃C2 as a new absolute constant C and using the independence of parameters for
each m ∈ [M/2], the application of Bernstein’s inequality (Lemma E.2) yields

P

∣∣∣∣∣∣k(T )
TNTK(x, x̃)−

2

M

M/2∑
m=1

〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉∣∣∣∣∣∣ ≥ ϵ


≤ 2 exp

(
−cmin

{
ϵ2

2K2
,

ϵ

2K

}
M

)
.

(92)

Note that the similar inequality also holds for m ∈ [M ] \ [M/2]:

P

∣∣∣∣∣∣k(T )
TNTK(x, x̃)−

2

M

M∑
m=M/2+1

〈
∇w(m),(T )h(m)

(
x;θ

(m)
0

)
,∇w(m),(T )h(m)

(
x̃;θ

(m)
0

)〉∣∣∣∣∣∣ ≥ ϵ


≤ 2 exp

(
−cmin

{
ϵ2

2K2
,

ϵ

2K

}
M

)
.

(93)

By taking union bound in Eqs. (92) and (93) and taking c/2 as an new absolute constant c , we obtain
the desired result.

Proof of Lemma B.2. We only show Eq. (78) for simplicity. Fix any w ∈ RdN and π ∈ RL

corresponding to the parameters of a soft tree of depth D. Furthermore, let wi: and πi: (1 ≤ i ≤ N )
represent the internal node parameter vectors and the leaf node parameter vectors, respectively, for the
subtree rooted at the i-th internal node (note that the parameter indices are assigned in breadth-first
order, hence by definition, w2: = w(L), w3: = w(R)). From Eq. (81), we have:

∇w(L)hD(x,w,π) = σ
(
w(T )⊤x

)
∇w(L)hD−1

(
x,w(L),π(L)

)
. (94)
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Given that ∥σ(·)∥∞ ≤ 1, for any m ∈ [M ], we have:∥∥∥〈∇w(m),(L)h(m)
(
x;θ

(m)
0

)
,∇w(m),(L)h(m)

(
x̃;θ

(m)
0

)〉∥∥∥
ψ1

≤
∥∥∥〈∇w(m),(L)hD−1

(
x,w(m),(L),π(m),(L)

)
,∇w(m),(L)hD−1

(
x̃,w(m),(L),π(m),(L)

)〉∥∥∥
ψ1

.

(95)

Now, decomposing the gradient of the subtree rooted at the left child of the root node, we have:〈
∇w(L)hD−1

(
x,w(L),π(L)

)
,∇w(L)hD−1

(
x̃,w(L),π(L)

)〉
(96)

= ⟨∇w2:
hD−1 (x,w2:,π2:) ,∇w2:

hD−1 (x̃,w2:,π2:)⟩ (97)

=
〈
∇

w
(T )
2:

hD−1 (x,w2:,π2:) ,∇w
(T )
2:

hD−1 (x̃,w2:,π2:)
〉

+
〈
∇

w
(L)
2:

hD−1 (x,w2:,π2:) ,∇w
(L)
2:

hD−1 (x̃,w2:,π2:)
〉

+
〈
∇

w
(R)
2:

hD−1 (x,w2:,π2:) ,∇w
(R)
2:

hD−1 (x̃,w2:,π2:)
〉
.

(98)

Considering that w2: are parameters for a soft tree with L/2 leaves, similar to the proof of Lemma B.1,
there exists an absolute constant C such that for any m ∈ [M ]:∥∥∥〈∇w

(m),(T )
2:

hD−1

(
x,w

(m)
2: ,π

(m)
2:

)
,∇

w
(m),(T )
2:

hD−1

(
x̃,w

(m)
2: ,π

(m)
2:

)〉∥∥∥
ψ1

≤ 4α2Cπ−1(L/2)2.
(99)

Similarly to Eq. (95), we have:∥∥∥〈∇w
(m),(L)
2:

hD−1

(
x,w

(m)
2: ,π

(m)
2:

)
,∇

w
(m),(L)
2:

hD−1

(
x̃,w

(m)
2: ,π

(m)
2:

)〉∥∥∥
ψ1

≤
∥∥∥〈∇w

(m),(L)
2:

hD−2

(
x,w

(m),(L)
2: ,π

(m),(L)
2:

)
,∇

w
(m),(L)
2:

hD−2

(
x̃,w

(m),(L)
2: ,π

(m),(L)
2:

)〉∥∥∥
ψ1

.

(100)

Similarly, for the right subtree:∥∥∥〈∇w
(m),(R)
2:

hD−1

(
x,w

(m)
2: ,π

(m)
2:

)
,∇

w
(m),(R)
2:

hD−1

(
x̃,w

(m)
2: ,π

(m)
2:

)〉∥∥∥
ψ1

≤
∥∥∥〈∇w

(m),(R)
2:

hD−2

(
x,w

(m),(R)
2: ,π

(m),(R)
2:

)
,∇

w
(m),(R)
2:

hD−2

(
x̃,w

(m),(R)
2: ,π

(m),(R)
2:

)〉∥∥∥
ψ1

.

(101)

Therefore,∥∥∥〈∇w(m),(L)hD−1

(
x,w(m),(L),π(m),(L)

)
,∇w(m),(L)hD−1

(
x̃,w(m),(L),π(m),(L)

)〉∥∥∥
ψ1

≤ 4α2Cπ−1(L/2)2

+
∥∥∥〈∇w

(m),(L)
2:

hD−2

(
x,w

(m),(L)
2: ,π

(m),(L)
2:

)
,∇

w
(m),(L)
2:

hD−2

(
x̃,w

(m),(L)
2: ,π

(m),(L)
2:

)〉∥∥∥
ψ1

+
∥∥∥〈∇w

(m),(R)
2:

hD−2

(
x,w

(m),(R)
2: ,π

(m),(R)
2:

)
,∇

w
(m),(R)
2:

hD−2

(
x̃,w

(m),(R)
2: ,π

(m),(R)
2:

)〉∥∥∥
ψ1

.

(102)

By repeating the above described argument, we can further decompose the second and third term of
Eq. (102) as follows:
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∥∥∥〈∇w(m),(L)hD−1

(
x,w(m),(L),π(m),(L)

)
,∇w(m),(L)hD−1

(
x̃,w(m),(L),π(m),(L)

)〉∥∥∥
ψ1

(103)

≤ 4α2Cπ−1(L/2)2 (104)

+ 2× 4α2Cπ−1(L/4)2 (105)

+
∥∥∥〈∇w

(m)
8:

hD−3

(
x,w

(m)
8: ,π

(m)
8:

)
,∇

w
(m)
8:

hD−3

(
x̃,w

(m)
8: ,π

(m)
8:

)〉∥∥∥
ψ1

(106)

+
∥∥∥〈∇w

(m)
9:

hD−3

(
x,w

(m)
9: ,π

(m)
9:

)
,∇

w
(m)
9:

hD−3

(
x̃,w

(m)
9: ,π

(m)
9:

)〉∥∥∥
ψ1

(107)

+
∥∥∥〈∇w

(m)
10:

hD−3

(
x,w

(m)
10: ,π

(m)
10:

)
,∇

w
(m)
10:

hD−3

(
x̃,w

(m)
10: ,π

(m)
10:

)〉∥∥∥
ψ1

(108)

+
∥∥∥〈∇w

(m)
11:

hD−3

(
x,w

(m)
11: ,π

(m)
11:

)
,∇

w
(m)
11:

hD−3

(
x̃,w

(m)
11: ,π

(m)
11:

)〉∥∥∥
ψ1

. (109)

By recursively applying the above discussion until reaching the leaves of the tree, we find:∥∥∥〈∇w(m),(L)hD−1

(
x,w(m),(L),π(m),(L)

)
,∇w(m),(L)hD−1

(
x̃,w(m),(L),π(m),(L)

)〉∥∥∥
ψ1

≤ 4α2Cπ−1

(
L
2

)2

+ 2× 4α2Cπ−1

(
L
4

)2

+ · · ·+ 2D−2 × 4α2Cπ−1

(
L

2D−1

)2

.

(110)

Thus, we conclude:∥∥∥〈∇w(m),(L)h(m)
(
x;θ

(m)
0

)
,∇w(m),(L)h(m)

(
x̃;θ

(m)
0

)〉∥∥∥
ψ1

(111)

≤ 4α2C

π

D−1∑
i=1

2i−1 L2

22i
(112)

≤ 2α2CL2

π

D−1∑
i=1

2−i (113)

≤ 2α2CL2

π
(114)

≤ 4α2CL2 (115)
= K. (116)

Finally, by applying centering lemma (Lemma E.3), Bernstein’s inequality (Lemma E.2), and the
union bound, we obtain the desired result.

Proof of Lemma B.3. From the definition of h(m), we have:

∇π(m)h(m)
(
x;θ

(m)
0

)
=
(
p1

(
x;w(m)

)
, . . . , pL

(
x;w(m)

))⊤
(117)

Noting that |pl (x;w)| ≤ 1, we have:∥∥∥〈∇π(m)h(m)
(
x;θ

(m)
0

)
,∇π(m)h(m)

(
x;θ

(m)
0

)〉∥∥∥
ψ2

≤
L∑
l=1

∥∥∥∥pl (x;w(m)
)2∥∥∥∥

ψ2

(118)

≤ CL. (119)

Therefore, by applying the centering lemma (Lemma E.3) and the general Hoeffding’s inequality
(Lemma E.1) with union bounds, the desired result is obtained.

Lemma 3.2 is derived by taking a union bound over the three preceding lemmas and rearranging the
entire expression.
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Proof of Lemma 3.2. Fix any ϵ > 0 such that ϵ ≤ K. Then, min
{
ϵ2

K2 ,
ϵ
K

}
= ϵ2

K2 . Now,

M ≥ K2

cϵ2
ln

16

δ
⇒ 1− 4 exp

(
−c ϵ2

K2
M

)
≥ 1− δ

4
, (120)

M ≥ L
2

c̃ϵ2
ln

16

δ
⇒ 1− 4 exp

(
− c̃ϵ2M

L2

)
≥ 1− δ

4
. (121)

Therefore, from Lemma B.1, Lemma B.2, and Lemma B.3, by applying the union bound,

M ≥ max

{
K2

c
,
L2

c̃

}
ϵ−2 ln

16

δ
(122)

⇒ P (|kTNTK(x, x̃)− ⟨g(x,θ0), g(x̃,θ0)⟩| ≤ 4ε) ≥ 1− δ. (123)

Finally, let C̃ = max{1/c, 1/c̃}, then

M ≥ C̃max
{
K2,L2

}
ϵ−2 ln

16

δ
(124)

⇒M ≥ max

{
K2

c
,
L2

c̃

}
ϵ−2 ln

16

δ
. (125)

By defining C
(2)
α,D as C(2)

α,D = K, the desired result is obtained.

B.2 Proof of Lemma 3.3

Proof scketch Since the parameters of the different soft trees are independent, we can confirm that
the Hessian H(x,θ) is given as the block diagonal matrix. Since we know the fact that the spectral
norm of the block diagonal matrix equals the maximum over the spectral norms of the block matrix,
the remaining interest is the upper bound of the spectral norm of each block matrix. Then, we obtain
Lemma 3.3 by carefully evaluating the upper bound of the spectral norm of each block matrix with
its Frobenius norm.

Proof of Lemma 3.3. Define H(m)
(
x,θ(m)

)
= ∇2

θ(m)h
(m)
(
x;θ(m)

)
∈ Rp̃×p̃, where p̃ = dN +L.

Then, H(x,θ) is represented by the following block diagonal matrix:

H(x,θ) =
1√
M


H(1)

(
x,θ(1)

)
0p̃×p̃ . . . 0p̃×p̃

0p̃×p̃ H(2)
(
x,θ(2)

)
. . . 0p̃×p̃

...
...

. . .
...

0p̃×p̃ 0p̃×p̃ . . . H(M)
(
x,θ(M)

)
 , (126)

where 0p̃×p̃ represents a p̃× p̃ zero matrix. Therefore,

∥H(x,θ)∥ = 1√
M

max
m∈[M ]

∥∥∥Hm

(
x,θ(m)

)∥∥∥ . (127)

Here, assume the following event holds:
∀m ∈ [M ], ∀l ∈ [L], ∀n ∈ [N ],∣∣∣π(m)

l

∣∣∣ ≤√2 ln
2M(L+N )

δ
and

∣∣∣w(m)⊤
n x

∣∣∣ ≤√2 ln
2M(L+N )

δ
.

(128)

Since θ0 is initialized by a standard normal distribution, by the union bound, the above event occurs
with probability at least 1− δ. Therefore, it is sufficient to show that Eq. (11) holds under the event
(128).

Now, the derivatives of h(m)(x;θ(m)) up to the second order are given by:

∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂w

(m)
ñ

=

L∑
l=1

π
(m)
l

∂2pl(x;w
(m))

∂w
(m)
n ∂w

(m)
ñ

, (129)

∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂π

(m)
l

=
∂pl(x;w

(m))

∂w
(m)
n

, (130)

∂2h(m)
(
x;θ(m)

)
∂π

(m)
l ∂π

(m)

l̃

= 0. (131)
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From the definition of pl, we have

∂pl(x;w
(m))

∂w
(m)
n

=
[
1ll↙nxσ̇

(
w(m)⊤
n x

)
− 1ln↘lxσ̇

(
w(m)⊤
n x

)]
×
∏
ñ ̸=n

σ
(
w

(m)⊤
ñ x

)1ll↙ñ
[
1− σ

(
w

(m)⊤
ñ x

)]1lñ↘l

,

(132)

∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n

=
[
1ll↙nxx

⊤σ̈
(
w(m)⊤
n x

)
− 1ln↘lxx

⊤σ̈
(
w(m)⊤
n x

)]
×
∏
ñ ̸=n

σ
(
w

(m)⊤
ñ x

)1ll↙ñ
[
1− σ

(
w

(m)⊤
ñ x

)]1lñ↘l

,

(133)

∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n̂

=
[
1ll↙nxσ̇

(
w(m)⊤
n x

)
− 1ln↘lxσ̇

(
w(m)⊤
n x

)]
×
[
1ll↙n̂xσ̇

(
w

(m)⊤
n̂ x

)
− 1ln̂↘lxσ̇

(
w

(m)⊤
n̂ x

)]⊤
×

∏
ñ ̸=n,ñ ̸=n̂

σ
(
w

(m)⊤
ñ x

)1ll↙ñ
[
1− σ

(
w

(m)⊤
ñ x

)]1lñ↘l

.

(134)

In the third equation, it was assumed that n ̸= n̂. Now, let us evaluate the upper bound of the above
expressions. First, from the definition of σ(·), we know that ∥σ(·)∥∞ ≤ 1 and ∥σ̇(·)∥∞ ≤ α/

√
π.

Additionally, for any a ∈ R, |σ̈(a)| ≤ 2|a|α2/
√
π. Then,∥∥∥∥∥∂2pl

(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n

∥∥∥∥∥
F

≤
∣∣∣σ̈ (w(m)⊤

n x
)∣∣∣ ∥∥1ll↙nxx

⊤ − 1ln↘lxx
⊤∥∥

F
(135)

≤ 2
∣∣∣w(m)⊤

n x
∣∣∣ α2

√
π

∥∥xx⊤∥∥
F

(136)

≤ 2
(∣∣∣w(m)⊤

n x−w(m)⊤
n x

∣∣∣+ ∣∣∣w(m)⊤
n x

∣∣∣) α2

√
π
∥x∥22 (137)

≤ 2

(
R+

√
2 ln

2M(L+N )

δ

)
α2

√
π
. (138)

Furthermore, as for n ̸= n̂,∥∥∥∥∥∂2pj(x;w
(m))

∂w
(m)
n ∂w

(m)
n̂

∥∥∥∥∥
F

(139)

≤
∥∥∥[1ll↙nxσ̇

(
w(m)⊤
n x

)
− 1ln↘lxσ̇

(
w(m)⊤
n x

)]
·
[
1ll↙n̂xσ̇

(
w

(m)⊤
n̂ x

)
− 1ln̂↘lxσ̇

(
w

(m)⊤
n̂ x

)]⊤∥∥∥
F

(140)

=
∥∥∥1ll↙n1ll↙n̂σ̇

(
w(m)⊤
n x

)
σ̇
(
w

(m)⊤
n̂ x

)
xx⊤ − 1ln↘l1ll↙n̂σ̇

(
w(m)⊤
n x

)
σ̇
(
w

(m)⊤
n̂ x

)
xx⊤

− 1ll↙n1ln̂↘lσ̇
(
w(m)⊤
n x

)
σ̇
(
w

(m)⊤
n̂ x

)
xx⊤ + 1ln↘l1ln̂↘lσ̇

(
w(m)⊤
n x

)
σ̇
(
w

(m)⊤
n̂ x

)
xx⊤

∥∥∥
F

(141)

≤ ∥σ̇(·)∥2∞∥xx⊤∥F (142)

≤ α2

π
. (143)
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Moreover, we have∥∥∥∥∥∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
F

≤
L∑
l=1

∣∣∣π(m)
l

∣∣∣ ∥∥∥∥∥∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
F

(144)

≤
L∑
l=1

(∣∣∣π(m)
l − π

(m)
l

∣∣∣+ ∣∣∣π(m)
l

∣∣∣) ∥∥∥∥∥∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
F

(145)

≤
L∑
l=1

(
R+

√
2 ln

2M(L+N )

δ

)∥∥∥∥∥∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
F

. (146)

Therefore,∥∥∥H(m)
(
x,θ(m)

)∥∥∥2 (147)

≤
∥∥∥H(m)

(
x,θ(m)

)∥∥∥2
F

(148)

=

N∑
n=1

N∑
n̂=1

∥∥∥∥∥∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
2

F

+ 2

N∑
n=1

L∑
l=1

∥∥∥∥∥∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂π

(m)
l

∥∥∥∥∥
2

F

+

L∑
l=1

L∑
l̃=1

(
∂2h(m)

(
x;θ(m)

)
∂π

(m)
l ∂π

(m)

l̃

)2 (149)

≤
N∑
n=1

∥∥∥∥∥∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂w

(m)
n

∥∥∥∥∥
2

F

+
∑
n ̸=n̂

∥∥∥∥∥∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
2

F

+ 2

N∑
n=1

L∑
l=1

∥∥∥∥∥∂2h(m)
(
x;θ(m)

)
∂w

(m)
n ∂π

(m)
l

∥∥∥∥∥
2

F

(150)

≤
N∑
n=1

[ L∑
l=1

(
R+

√
2 ln

2M(L+N )

δ

)∥∥∥∥∥∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n

∥∥∥∥∥
F

]2

+
∑
n ̸=n̂

[ L∑
l=1

(
R+

√
2 ln

2M(L+N )

δ

)∥∥∥∥∥∂2pl
(
x;w(m)

)
∂w

(m)
n ∂w

(m)
n̂

∥∥∥∥∥
F

]2

+ 2

N∑
n=1

L∑
l=1

∥∥∥∥∥∂pl
(
x;w(m)

)
∂w

(m)
n

∥∥∥∥∥
2

F

(151)

≤
N∑
n=1

4L2

(
R+

√
2 ln

2M(L+N )

δ

)4
α4

π
+
∑
n ̸=n̂

L2

(
R+

√
2 ln

2M(L+N )

δ

)2
α4

π2

+ 2NLα
2

π

(152)

≤ 4N 2L2

(
R+

√
2 ln

2M(L+N )

δ

)4
α4

π
+ 2NLα

2

π
(153)

≤ 4N 2L2

(
R+

√
2 ln

2M(L+N )

δ

)4

α4 + 2N 2L2α4 (154)

≤ 6N 2L2

(
R+

√
2 ln

2M(L+N )

δ

)4

α4, (155)

where:

• Eq. (150) follows from Eq. (131).

• Eq. (151) follows from Eqs. (146) and (130).
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• The first and second term of Eq. (152) follows from Eq. (143) and Eq. (138), re-

spectively. Furthermore, the third term of Eq. (152) follows from
∥∥∥∥∂pl(x;w(j))

∂w
(j)
n

∥∥∥∥
F

≤∥∥∥1ll↙nxσ̇
(
w

(j)⊤
n x

)
− 1ln↘lxσ̇

(
w

(j)⊤
n x

)∥∥∥
F
≤ ∥σ̇(·)∥∞ ≤ α√

π
.

• Eq. (154) follows from 1/π ≤ 1 and α ≥ 1.

• Eq. (155) follows from
(
R+

√
2 ln 2M(L+N )

δ

)4

≥ (
√
2 ln 2)4 ≥ 1.

By combining Eq. (155) with Eq. (127), we have

∥H(x,θ)∥ ≤
√
6α2NL√

M

(
R+

√
2 ln

2M(L+N )

δ

)2

(156)

≤
√
6α222D√

M

(
R+

√
2 ln

2M(L+N )

δ

)2

. (157)

Finally, from the definition of C(3)
α,D,

√
6α222D(R+

√
2)2 = C

(3)
α,D(R+

√
2)2 (158)

⇒
√
6α222D

 R√
ln 2M(L+N )

δ

+
√
2

2

≤ C
(3)
α,D(R+

√
2)2 (159)

⇔
√
6α222D√

M

(
R+

√
2 ln

2M(L+N )

δ

)2

≤
C

(3)
α,D(R+

√
2)2

√
M

ln
2M(L+N )

δ
(160)

⇔
√
6α222D√

M

(
R+

√
2 ln

2M(L+N )

δ

)2

≤
C

(3)
α,D(R+

√
2)2

√
M

ln
2D+2M

δ
, (161)

where Eq. (159) follows from ln(2M(N + L)/δ) ≥ ln 6 ≥ 1. Furthermore, Eq. (161) follows from
L+N ≤ 2D+1. By combining Eq. (161) with Eq. (157), we obtain the desired result.

B.3 Proof of Theorem 3.2

Instead of showing Theorem 3.2 directly, we show the proof of the following detailed version of
Theorem 3.2.

Theorem B.1 (Detailed version of Theorem 3.2). Suppose that Assumption 3.1 holds. Fix any
δ ∈ (0, 1), α ≥ 1, ρ > 0, and D ≥ 2. Furthermore, suppose that the number of ensemble M is
sufficiently large to satisfy the following four conditions:

M ≥ 64C
(6)
α,D|X |

2λ−2
0 ln

16|X |2

δ
, (162)

M ≥ C
(6)
α,DC

(2)−2
α,D ln

16|X |2

δ
, (163)

R̃4(R̃+ 2)4 ≤ 3η2Mρ2

56C
(3)2
α,D

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)−2

, (164)

C
(7)
α,D,T√
M

(
kB + σ

√
2 ln

12T

δ

)(
ln

6 · 2D+2M

δ

)√
ln

6M

δ
≤ 1, (165)
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where:

R = R̃+
1

2ρ

[
(2R̃+ 2D)

√
TC

(4)
α,D ln

6M

δ

(
kB + σ

√
2 ln

12T

δ

)
√
3T + R̃

]
, (166)

R̃ = 2

(
kB + σ

√
2 ln

12T

δ

)√
T

ρ
. (167)

Then, if the learning rate η satisfy η ≤ 4−1
(
ρ+ 2(2R̃+ 2DĈ)2TC

(4)
α,D ln 6M

δ

)−1

, with probability

at least 1− δ, the following inequality holds for any t ∈ [T ] and x ∈ X :

|f(x)− h(x;θt−1)| ≤
72T 2C

(3)
α,D√

Mρ2

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ
+ βσ̃t−1(x), (168)

where:

β =

√2B +
σ
√
ρ

√√√√√2

γT +
T
√
TC

(6)
α,D ln(96|X |2/δ)

ρ
√
M

+ ln
6

δ




+ ρ−1

√
k
2
+ 4C

(2)
α,D

[
C

(7)
α,D,T√
M

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)√
ln

6M

δ

+ (1− 2ηρ)
J/2

(
kB + σ

√
2 ln

12T

δ

)2√
T

ρ

](
ρ+ TC

(4)
α,D2

2DĈ2 ln
6M

δ

)
.

(169)

Here, C > 0 and Ĉ > 0 are absolute constants. Furthermore, C(4)
α,D > 0, C(5)

α,D > 0, and C
(6)
α,D > 0

are constants that depend on α and D. Moreover, k := maxx∈X
√

kTNTK(x,x) is the square root
of the maximum value of TNTK, and C

(7)
α,D,T = O(T 3) is the constant that depends on α, D, and T .

B.3.1 Proof overview

In this section, we briefly summarize the overview of our proof. We first define the following six
events:

• E1 =

{
∀θ,x, R, ∥θ − θ0∥2 ≤ R⇒ ∥H(x,θ)∥ ≤ C

(3)
α,D(R+2)2

√
M

ln 6·2D+2M
δ

}
.

• E2 =
{
∀θ,x, R, ∥θ − θ0∥2 ≤ R⇒ ∥g(x;θ)∥22 ≤ C

(4)
α,D(2R+ 2DĈ)2 ln 6M

δ

}
.

• E3 =

{
∀θ,x, R, ∥θ − θ0∥2 ≤ R⇒ ∥g(x;θ)− g(x;θ0)∥22 ≤

C
(5)
α,DR

2

M ln 6M
δ

}
.

• E4 =
{
∀t ∈ [T ], ∥yt∥2 ≤

(
kB + σ

√
2 ln 12T

δ

)√
t
}

.

• E5 =

{
∀x, x̃, |kTNTK(x, x̃)− k̃(x, x̃)| ≤ min

{
λ0

2|X | ,

√
4C

(6)
α,D
M ln 96|X |2

δ , 4C
(2)
α,D

}}
.

• E6 =
{
∀t ∈ N+,∀x ∈ X , |f(x)− µ̃t−1(x)| ≤

(√
2B + σ√

ρ

√
2(γ̃t + ln 6

δ )
)
σ̃t−1(x)

}
.

The quantities k, C(4)
α,D, C(5)

α,D, C(6)
α,D, µ̃t−1, k̃, and γ̃t are defined in Lemma B.4–B.7. Only the above

six events require probabilistic arguments in our proof. Actually, from Lemma 3.3 and Lemma B.4–
B.7, which we will show later, we can confirm the events E1, . . . , E6 simultaneously holds with
probability at least 1− δ for sufficiently large M by taking union bound; therefore, it is enough to
show Eq. (168) under the event

⋂
i∈[6] Ei. Hereafter, we show Theorem B.1 in the following steps:
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1. For sufficiently large M , we show that each of the events E2 ∩ E3, E4, and E5 holds with
probability at least 1 − δ/6 in Lemma B.4, Lemma B.5, and Lemma B.6, respectively.
Furthermore, as shown in Lemma B.7, the event E6 holds with probability at least 1− δ/3.
Since we already know the event E1 holds with probability at least 1− δ/6 from Lemma 3.3,
we can show P

(⋂
i∈[6] Ei

)
≥ 1− δ in this step by applying the union bound.

2. As with the proof of Salgia [30], the error term |f(x)− h(x;θt)| is decomposed as follows:

|f(x)− h(x;θt)|
≤ |f(x)− µ̃t(x)|+ |µ̃t(x)− ⟨g(x;θ0),θt − θ0⟩|+ |⟨g(x;θ0),θt − θ0⟩ − h(xt;θt)|.

(170)

Based on the above decomposition, we derive the upper bound of each term under the
event

⋂
i∈[6] Ei with sufficiently large M . The first term of the above inequality is bounded

from above by combining the event E6 with Lemma B.12. The second term is bounded
by resorting to the arguments from [41], which is based on the optimization error of the
gradient descent of the linearized squared loss (Lemma B.9 and Lemma B.11). The upper
bound of the third term is obtained by combining the event E1 with the fact that the error
of the first-order Taylor approximation can be characterized by the spectral norm of the
Hessian.

B.3.2 Lemmas for the events E2–E6

Lemma B.4 (Gradient norm bounds). Let δ ∈ (0, 1), M ≥ 3, and α ≥ 1. Furthermore, let θ0 be an
initial parameter of ST-UCB. Then, with probability at least 1− δ, for any x ∈ Sd−1, R ≥ 0, and
θ ∈ Rp such that ∥θ − θ0∥2 ≤ R, we have

∥g(x;θ)∥22 ≤ C
(4)
α,D(2R+ 2DĈ)2 ln

M

δ
, (171)

∥g(x;θ)− g(x;θ0)∥22 ≤
C

(5)
α,DR

2

M
ln

M

δ
, (172)

where Ĉ > 0 is an absolute constant. Moreover, C(4)
α,D = 2D+2α2 and C

(5)
α,D = 7 · 23DĈα2.

Proof. Suppose there exists u ≥ 1 such that the following event holds:

∀m ∈ [M ],

L∑
l=1

|π(m)
l | ≤ u. (173)

Following the proof of Lemma 8 in [21], we can derive that:

∥g(x;θ)∥22 ≤ N (R+ u)2α2 + L, (174)

∥g(x;θ)− g(x;θ0)∥22 (175)

≤ 1

M

M∑
m=1

[ N∑
n=1

(
α

L∑
l=1

|π(m)
l − π

(m)
l |+ 2αu

N∑
ñ=1

∥w(m)
ñ −w

(m)
ñ ∥2

)2

(176)

+

L∑
l=1

( N∑
n=1

∥w(m)
n −w(m)

n ∥2

)2]
. (177)
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Furthermore, in the second inequality, we obtain the following upper bound from the Schwarz’s
inequality:

1

M

M∑
m=1

[ N∑
n=1

(
α

L∑
l=1

|π(m)
l − π

(m)
l |+ 2αu

N∑
ñ=1

∥w(m)
ñ −w

(m)
ñ ∥2

)2

(178)

+

L∑
l=1

( N∑
n=1

∥w(m)
n −w(m)

n ∥2

)2]
(179)

≤ 1

M

M∑
m=1

[ N∑
n=1

(
2α2L∥π(m) − π(m)∥22 + 4α2u2N 2∥w(m)

n −w(m)
n ∥22

)
(180)

+

L∑
l=1

N∥w(m)
n −w(m)

n ∥22

]
(181)

≤ 1

M

M∑
m=1

N
(
2α2L+ 4α2u2N + L

)
∥θ(m) − θ

(m)∥22 (182)

=
N
(
2α2L+ 4α2u2N + L

)
M

∥θ − θ∥22 (183)

≤ 7α2NLu2

M
R2 (184)

Here, using the general Hoeffding’s inequality (Lemma E.1) and the union bound, the event (173)

holds with probability at least 1− δ when u =

√
ĈL ln(M/δ), where Ĉ ≥ 1 is an absolute constant.

Therefore, with probability at least 1− δ:

∥g(x;θ)∥22 ≤ N

(
R+

√
ĈL ln M

δ

)2

α2 + L,

∥g(x;θ)− g(x;θ0)∥22 ≤
C

(5)
α,DR

2

M
ln

M

δ
.

(185)

Finally, from the definition of C(4)
α,D,

2D+2(2R+ LĈ)2α2 = C
(4)
α,D(2R+ LĈ)2 (186)

⇔ 2D+1(2R+ LĈ)2α2 + 2(2R+ LĈ)2α2 = C
(4)
α,D(2R+ LĈ)2 (187)

⇒ 2D(2R+ LĈ)2α2 + 2L ≤ C
(4)
α,D(2R+ LĈ)2 (188)

⇒ N
(
2R+

√
LĈ
)2

α2 + 2L ≤ C
(4)
D,α(2R+ LĈ)2 (189)

⇒ N
(

R√
ln 2

+
√
LĈ
)2

α2 +
L
ln 2
≤ C

(4)
D,α(2R+ LĈ)2 (190)

⇒ N

(
R√

ln(M/δ)
+
√
LĈ

)2

α2 +
L

ln(M/δ)
≤ C

(4)
D,α(2R+ LĈ)2 (191)

⇔ N

(
R+

√
LĈ ln

M

δ

)2

α2 + L ≤ C
(4)
D,α(2R+ LĈ)2 ln

M

δ
, (192)

where:

• Eq. (188) follows from (2R+ LĈ)2α2 ≥ L since α ≥ 1, Ĉ ≥ 1, and R ≥ 0.

• Eq. (189) follows from N ≤ 2D and LĈ ≥ 1.
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• Eq. (190) follows from
√
ln 2 ≥ ln 2 ≥ 0.5.

• Eq. (191) follows from the fact that ln(M/δ) ≥ ln 2 holds under M ≥ 2.

Lemma B.5. Fix any δ ∈ (0, 1) and f ∈ HTNTK with ∥f∥TNTK ≤ B. Furthermore, suppose that
ϵt is a σ-sub-Gauss random variable for any t ∈ [T ]. Then, with probability at least 1 − δ, the
following inequality holds for any t ∈ [T ]:

∥yt∥2 ≤

(
kB + σ

√
2 ln

2T

δ

)
√
t, (193)

where k = maxx∈X
√
kTNTK(x,x).

Proof. From the reproducing property of RKHS and Schwarz’s inequality, for any x ∈ X , we have

f(x) = ⟨f, kTNTK(x, ·)⟩HTNTK
(194)

= ∥f∥TNTK∥kTNTK(x, ·)∥TNTK (195)

= ∥f∥TNTK

√
kTNTK(x,x) (196)

≤ Bk. (197)

Thus,

∥yt∥22 =

t∑
i=1

[f(xi) + ϵi]
2 (198)

≤
t∑
i=1

(
Bk + |ϵi|

)2
. (199)

By using the concentration property of σ-sub-Gauss random variable, for any t ∈ [T ] and δ̃ ∈ (0, 1),

P

(
|ϵi| ≤ σ

√
2 ln

2

δ̃

)
≥ 1− δ̃. (200)

By setting δ̃ as δ̃ = δ/T and taking the union bound, we complete the proof.

Lemma B.6. Let δ ∈ (0, 1), D ≥ 2, and X ⊂ Sd−1. Furthermore, let KTNTK(X ) :=
[kTNTK(x, x̃)]x,x̃∈X ∈ R|X |×|X| and λ0 = λmin(KTNTK(X )) > 0 be kernel matrix over X × X
and the minimum eigenvalue of KTNTK(X ), respectively. Moreover, assume that

M ≥ 64C
(6)
α,D|X |

2λ−2
0 ln

16|X |2

δ
and M ≥ C

(6)
α,DC

(2)−2
α,D ln

16|X |2

δ
(201)

hold, where C
(6)
α,D = C̃max{C(2)2

α,D , 22D}. Here, C̃ and C
(2)
α,D are defined in Lemma 3.2. Then, with

probability at least 1− δ, the following inequality holds for any x, x̃ ∈ X :

|kTNTK(x, x̃)− k̃(x, x̃)| ≤ min

 λ0

2|X |
,

√
4C

(6)
α,D

M
ln

16|X |2
δ

, 4C
(2)
α,D

 , (202)

where k̃(x, x̃) = ⟨g(x;θ0), g(x̃;θ0)⟩.

Proof. From Lemma 3.2 and the union bound, for any ε ∈ (0, C
(2)
α,D), we have

M ≥ C
(6)
α,Dε

−2 ln
16|X |2

δ
⇒ P(∀x, x̃ ∈ X , |kTNTK(x, x̃)− ⟨g(x,θ0), g(x̃,θ0)⟩| ≤ 4ε) ≥ 1− δ.

(203)
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Here, we set ε as ε = min{λ0/(8|X |),
√
C

(6)
α,D ln(16|X |2/δ)/M,C

(2)
α,D}; then, ε ∈ (0, C

(2)
α,D).

Therefore, by using Eq. (203), we have

M ≥ C
(6)
α,D min

 λ0

8|X |
,

√
C

(6)
α,D

M
ln

16|X |2
δ

, C
(2)
α,D


−2

ln
16|X |2

δ
(204)

⇒ P

∀x, x̃ ∈ X , |kTNTK(x, x̃)− k̃(x, x̃)| ≤ min

 λ0

2|X |
,

√
4C

(6)
α,D

M
ln

16|X |2
δ

, 4C
(2)
α,D




≥ 1− δ.
(205)

Furthermore,

M ≥ 64C
(6)
α,D|X |

2λ−2
0 ln

16|X |2

δ
and M ≥ C

(6)
α,DC

(2)−2
α,D ln

16|X |2

δ

⇒M ≥ C
(6)
α,D min

 λ0

8|X |
,

√
C

(6)
α,D

M
ln

16|X |2
δ

, C
(2)
α,D


−2

ln
16|X |2

δ
.

(206)

By combining the above implication with Eq. (203), we complete the proof.

Lemma B.7. Fix any δ ∈ (0, 1) and f ∈ HTNTK with ∥f∥TNTK ≤ B. Let us define k̃ as k̃(x, x̃) =
⟨g(x;θ0), g(x̃;θ0)⟩. Furthermore, suppose that (ϵt)t∈N+

are conditionally σ-sub-Gaussian random
variables. Then, under the event E5, with probability at least 1− δ,

∀t ∈ N+,∀x ∈ X , |f(x)− µ̃t−1(x)| ≤

(
√
2B +

σ
√
ρ

√
2

(
γ̃t + ln

1

δ

))
σ̃t−1(x). (207)

Here, we respectively define µ̃t−1(x) and γ̃t as

µ̃t(x) = k̃⊤
t (x)

(
K̃t + ρIt

)−1

yt, (208)

γ̃t =
1

2
max

x1,...,xt

ln det
(
It + ρ−1K̃t

)
, (209)

where k̃t(x) = [k̃(x,xi)]i∈[t] ∈ Rt and K̃t = [k̃(xi,xj)]i,j∈[t] ∈ Rt×t with k̃(x, x̃) =
⟨g(x;θ0), g(x̃;θ0)⟩.

Proof. From the definition of E5, we have |kTNTK(x, x̃)− ⟨g(x,θ0), g(x̃,θ0)⟩| ≤ λ0/(2|X |) for
any x, x̃ ∈ X . Therefore,

√∑
x,x̃∈X |kTNTK(x, x̃)− ⟨g(x,θ0), g(x̃,θ0)⟩|2 ≤ λ0/2. Here, by

combining this inequality with the arguments of the proof of Lemma C.5 in [24], under the event E5,
we have f ∈ Hk̃ with ∥f∥k̃ ≤

√
2B. Therefore, since µ̃t and σ̃t are defined as the posterior mean

and the posterior variance of Gaussian process characterized by the kernel function k̃, we obtain the
desired result by applying Lemma 3.11 in [2].

Lemma B.8. Fix any δ ∈ (0, 1); then, P(∩i∈[6]Ei) ≥ 1− δ holds.

Proof. From Lemma 3.3, B.5, and B.6, we have P(Eci ) ≤ δ/6 for any i ∈ [5]/{2, 3}. In addition,
from Lemma B.4, we have P(Ec2 ∪ Ec3) ≤ δ/6. Here, from Lemma B.6 and Lemma B.7, we have

P(Ec6) = P(Ec6 | E5)P(E5) + P(Ec6 | Ec5)P(Ec5) (210)

≤ δ

6
+

δ

6
(211)

=
δ

3
. (212)
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Therefore, by taking the union bound, we have

P(∩i∈[6]Ei) = 1− P(∪i∈[6]Eci ) (213)

≥ 1− [P(Ec1) + P(Ec2 ∪ Ec3) + P(Ec4) + P(Ec5) + P(Ec6)] (214)
≥ 1− δ. (215)

B.4 Lemmas for the upper bounds of Eq. (170)

Definition B.1. Define L̃t(θ) for any t ∈ N+:

L̃t(θ) =
∥∥G⊤

t (θ − θ0)− yt
∥∥2
2
+ ρ ∥θ − θ0∥22 . (216)

Furthermore, let us define θ̃t;1, . . . , θ̃t;J as

θ̃t;j = θ̃t;j−1 − η
{
2Gt

[
G⊤
t

(
θ̃t;j−1 − θ0

)
− yt

]
+ 2ρ

(
θ̃t;j−1 − θ0

)}
, (217)

where θ̃t;0 = θ0.
Lemma B.9 (Adapted from Lemma C.4 in [41]). Suppose that the events E2 and E4 simultaneously

hold. Furthermore, assume that η ≤ 2−1
(
TĈ222DC

(4)
α,D ln(6M/δ) + ρ

)−1

holds. Then, the

following inequalities hold for any t ∈ [T ] and j ∈ [J ]:∥∥∥θ̃t;j − θ0

∥∥∥
2
≤

(
kB + σ

√
2 ln

12T

δ

)√
t

ρ
, (218)

∥∥∥θ̃t;j − θ0 −
(
ρIp +GtG

⊤
t

)−1
Gtyt

∥∥∥
2
≤ (1− 2ηρ)

j/2

(
kB + σ

√
2 ln

12T

δ

)√
t

ρ
, (219)

where k is defined in Lemma B.5. Furthermore, the constants Ĉ and C
(4)
α,D are defined in Lemma B.4.

Proof. From the definition of L̃t(θ), we have

∇2
θL̃t(θ) = 2GtG

⊤
t + 2ρIp (220)

⪯ 2
(
∥Gt∥2F + ρ

)
Ip (221)

⪯ 2

(
tĈ222DC

(4)
α,D ln

6M

δ
+ ρ

)
Ip, (222)

where Eq. (222) follows from Lemma B.13. Therefore, L̃t(θ) is 2
(
tĈ222DC

(4)
α,D ln 6M

δ + ρ
)

-

smooth function. Furthermore, L̃t(θ) is 2ρ-strong convex because ∇2
θL̃t(θ) ⪰ 2ρIp holds. By

combining the definition of η with the standard result of gradient descent for the strongly convex and
smooth objective function (e.g., Theorem 3.6 in [16]), L̃t(θ̃t;j) ≥ L̃t(θ̃t;j−1) holds for any j ∈ [J ].
Therefore,

ρ
∥∥∥θ̃t;J − θ0

∥∥∥2
2
≤
∥∥∥G⊤

t

(
θ̃t;J − θ0

)
− yt

∥∥∥2
2
+ ρ

∥∥∥θ̃t;J − θ0

∥∥∥2
2

(223)

≤
∥∥∥G⊤

t

(
θ̃t;0 − θ0

)
− yt

∥∥∥2
2
+ ρ

∥∥∥θ̃t;0 − θ0

∥∥∥2
2

(224)

≤ ∥yt∥22 (225)

≤

(
kB + σ

√
2 ln

12T

δ

)2

t, (226)

where Eq. (226) follows from the event E4. Furthermore, since the unique minimum of L̃t(θ) is
given as θ∗ := θ0 +

(
ρIp +GtG

⊤
t

)−1
Gtyt, we have the following inequalities from Theorem 3.6
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in [16]: ∥∥∥θ̃t;j − θ0 −
(
ρIp +GtG

⊤
t

)−1
Gtyt

∥∥∥2
2

(227)

≤ (1− 2ηρ)
j ∥θ0 − θ∗∥22 (228)

≤ (1− 2ηρ)
j 1

ρ

[
L̃t(θ0)− L̃t (θ

∗)
]

(229)

≤ (1− 2ηρ)
j L̃t(θ0)

ρ
(230)

≤ (1− 2ηρ)
j ∥yt∥22

ρ
(231)

≤ (1− 2ηρ)
j

(
kB + σ

√
2 ln 12T

δ

)2
t

ρ
, (232)

where:

• Eq. (229) follows from∇L̃t(θ∗) = 0 and the fact that L̃t is the 2ρ-strong convex function.

• Eq. (230) follows from L̃t(θ
∗) ≥ 0.

• Eq. (232) follows from the event E4.

Lemma B.10 (Adapted from Lemma C.3 in [41]). Fix any R ≥ 0, j ∈ [J ] and t ∈ [T ]. Suppose

that the learning rate η satisfies η ≤ 4−1
(
ρ+ 2(2R+ 2DĈ)2TC

(4)
α,D ln 6M

δ

)−1

, and θt;j̃ satisfies

∥θt;j̃ − θ0∥2 ≤ R for all j̃ ∈ [j]. Furthermore, assume that R satisfies the following inequality:

R
4
(R+ 2)4 ≤ 3η2Mρ2

56C
(3)2
α,D

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)−2

, (233)

where:

R = R+
1

2ρ

[
(2R+ 2D)

√
tC

(4)
α,D ln

6M

δ

(
kB + σ

√
2 ln

12T

δ

)
√
3t+R

]
. (234)

Then, under the events E2 and E4,

∥ht;j+1 − yt∥2 ≤

(
kB + σ

√
2 ln

12T

δ

)
√
3t, (235)

where ht;j = [h(x1;θt;j), . . . , h(xt;θt;j)]
⊤ ∈ Rt.

Proof. We first assume that ∥ht;j − yt∥ ≤
(
kB + σ

√
2 ln 12T

δ

)√
3t holds. Here, by resorting the

same arguments as the proof of Lemma C.3 in [41], for any θ,θ′ ∈ Rd such that ∥θ − θ0∥ ≤ R, we
have

− ∥∇θLt(θ)∥22
ρ

− 2∥ht(θ)− yt∥2∥e(θ′,θ)∥2 (236)

≤ Lt(θ
′)− Lt(θ) (237)

≤ 2⟨∇θLt(θ),θ
′ − θ⟩+ 2∥ht(θ)− yt∥2∥e(θ′,θ)∥2

+ 2

[
(2R+ 2DĈ)

√
tC

(4)
α,D ln

6M

δ

]2
∥θ′ − θ∥22 + 2∥e(θ′,θ)∥22 + ρ∥θ′ − θ∥22,

(238)
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where e(θ′,θ) = ht(θ
′)−ht(θ)−Gt(θ)

⊤(θ′−θ) with ht(θ) = (h(x1;θ), . . . , h(xt;θ))
⊤ ∈ Rt

and Gt(θ) = (g(x1;θ), . . . , g(xt;θ))
⊤ ∈ Rp×t. From the upper bound of Lt(θ′) − Lt(θ), by

setting θ′ ∈ Rp as θ′ = θ − η∇θLt(θ), we have

Lt(θ − η∇θLt(θ))− Lt(θ) (239)

≤ −2cη∥∇θLt(θ)∥22
+ 2∥ht(θ)− yt∥2∥e(θ − η∇θLt(θ),θ)∥2 + 2∥e(θ − η∇θLt(θ),θ)∥22,

(240)

where c =
{
1− η

[
ρ+ 2(2R+ 2DĈ)2tC

(4)
α,D ln 6M

δ

]}
∈ (0, 1). Furthermore, for any θ′ ∈ Rp, we

obtain the following inequality by combining the lower bound of Lt(θ′) − Lt(θ) with the above
inequality,

Lt(θ − η∇θLt(θ))− Lt(θ) (241)

≤ 2cηρ [Lt(θ
′)− Lt(θ) + 2∥ht(θ)− yt∥2∥e(θ′,θ)∥2]

+ 2∥ht(θ)− yt∥2∥e(θ − η∇θLt(θ),θ)∥2 + 2∥e(θ − η∇θLt(θ),θ)∥22
(242)

≤ 2cηρ

[
Lt(θ

′)− Lt(θ) +
1

4
∥ht(θ)− yt∥22 + 4∥e(θ′,θ)∥22

]
+ 2cηρ

1

4
∥ht(θ)− yt∥22 +

4

2cηρ
∥e(θ − η∇θLt(θ),θ)∥22 + 2∥e(θ − η∇θLt(θ),θ)∥22

(243)

≤ 2cηρ

[
Lt(θ

′)− 1

2
Lt(θ)

]
+ 8cηρ∥e(θ′,θ)∥22

+
2

cηρ
∥e(θ − η∇θLt(θ),θ)∥22 + 2∥e(θ − η∇θLt(θ),θ)∥22,

(244)

where the second inequality follows from the Peter-Paul inequality, and the last inequality follows
from ∥ht(θ)−yt∥22 ≤ Lt(θ). Rearranging the above inequality with θ = θt;j and θ′ = θ0, we have

Lt(θt;j+1)− Lt(θ0) (245)
≤ (1− cηρ) [Lt(θt;j)− Lt(θ0)] + cηρLt(θ0)

+ 8cηρ∥e(θ0,θt;j)∥22 +
2

cηρ
∥e(θt;j+1,θt;j)∥22 + 2∥e(θt;j+1,θt;j)∥22

(246)

≤ (1− cηρ) [Lt(θt;j)− Lt(θ0)] + cηρ

(
kB + σ

√
2 ln

12T

δ

)2

t

+ 8cηρ∥e(θ0,θt;j)∥22 +
2

cηρ
∥e(θt;j+1,θt;j)∥22 + 2∥e(θt;j+1,θt;j)∥22.

(247)

Then, from Lemma B.15,

∥e(θ0,θt;j)∥22 =
∥∥ht(θ0)− ht(θt;j)−Gt(θt;j)

⊤(θ0 − θt;j)
∥∥2
2

(248)

=

t∑
i=1

(h(xi;θ0)− h(xi;θt;j)− ⟨g(xi;θt;j),θ0 − θt;j⟩)2 (249)

≤
4tR4(R+ 2)4C

(3)2
α,D

M

(
ln

6 · 2D+2M

δ

)2

(250)

≤
4tR

4
(R+ 2)4C

(3)2
α,D

M

(
ln

6 · 2D+2M

δ

)2

. (251)
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Furthermore, from ∥ht;j − yt∥2 ≤
(
kB + σ

√
2 ln 12T

δ

)√
3t, we have

∥θt;j+1 − θt;j∥ = η∥∇θt;jLt(θt;j)∥2 (252)

≤ 1

4ρ
∥2Gt;j(ht;j − yt) + 2(θt;j − θ0)∥2 (253)

≤ 1

2ρ
(∥Gt;j∥∥ht;j − yt∥2 + ∥θt;j − θ0∥2) (254)

≤ 1

2ρ

[
(2R+ 2D)

√
tC

(4)
α,D ln

6M

δ

(
kB + σ

√
2 ln

12T

δ

)
√
3t+R

]
(255)

⇒ ∥θt;j+1 − θ0∥ ≤ R. (256)

Combining the above inequality with Lemma B.15, we have

∥e(θt;j+1,θt;j)∥22 ≤
4tR

4
(R+ 2)4C

(3)2
α,D

M

(
ln

6 · 2D+2M

δ

)2

. (257)

Therefore,

8cηρ∥e(θ0,θt;j)∥22 +
2

cηρ
∥e(θt;j+1,θt;j)∥22 + 2∥e(θt;j+1,θt;j)∥22 (258)

≤
(
8cηρ+

2

cηρ
+ 2

)
4tR

4
(R+ 2)4C

(3)2
α,D

M

(
ln

6 · 2D+2M

δ

)2

(259)

≤ 3

cηρ

4tR
4
(R+ 2)4C

(3)2
α,D

M

(
ln

6 · 2D+2M

δ

)2

(260)

≤ cηρ

(
kB + σ

√
2 ln

12T

δ

)2

t, (261)

where the second line follows from the fact that 8cηρ + 2 ≤ 1/(cηρ) holds due to ηρ ≤ 1/4 and
c ∈ (0, 1). Furthermore, the last line follows from the condition (233) with c ≥ 3/4. By combining
Eq. (245) with Eq. (261), we have

∥ht;j+1 − yt∥22 − ∥yt∥
2
2 (262)

= Lt(θt;j+1)− Lt(θ0) (263)

≤ (1− cηρ)[Lt(θt;j)− Lt(θ0)] + 2cηρ

(
kB + σ

√
2 ln

12T

δ

)2

t (264)

≤
2cηρ

(
kB + σ

√
2 ln 12T

δ

)2
t

1− (1− cηρ)
(265)

= 2

(
kB + σ

√
2 ln

12T

δ

)2

t. (266)

By combining the event E4 with the above inequality, we obtain the desired inequality.

Finally, we check the assumption ∥ht;j − yt∥2 ≤
(
kB + σ

√
2 ln 12T

δ

)√
3t. If j̃ = 0, ∥ht;j̃ −

yt∥2 ≤
(
kB + σ

√
2 ln 12T

δ

)√
3t clearly holds from the event E2 and ht;0 = 0. Here, by applying

the aforementioned arguments, we can also verify ∥ht;j̃ − yt∥2 ≤
(
kB + σ

√
2 ln 12T

δ

)√
3t for

j̃ = 1. Repeating the same arguments for j̃ = 2, 3, . . . , j, we obtain the inequality ∥ht;j − yt∥2 ≤(
kB + σ

√
2 ln 12T

δ

)√
3t.
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Lemma B.11 (Adapted from Lemma B.2 in [41]). Suppose the following inequalities hold:

R
4
(R+ 2)4 ≤ 3η2Mρ2

56C
(3)2
α,D

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)−2

, (267)

C
(7)
α,D,T√
M

(
kB + σ

√
2 ln

12T

δ

)(
ln

6 · 2D+2M

δ

)√
ln

6M

δ
≤ 1, (268)

η ≤ 4−1

(
ρ+ 2(2R̃+ 2DĈ)2TC

(4)
α,D ln

6M

δ

)−1

, (269)

where:

R = R̃+
1

2ρ

[
(2R̃+ 2D)

√
TC

(4)
α,D ln

6M

δ

(
kB + σ

√
2 ln

12T

δ

)
√
3T + R̃

]
, (270)

R̃ = 2

(
kB + σ

√
2 ln

12T

δ

)√
T

ρ
. (271)

Furthermore, we set C(7)
α,D,T as

C
(7)
α,D,T = 2

√
3T 3/2ρ−3/2

√
C

(5)
α,D + 16T 2ρ−2(R̃+ 2)2(2 + 2DĈ)C

(3)
α,D

√
C

(4)
α,D. (272)

Then, under the events E2, E3, and E4, the following inequalities hold for any t ∈ [T ] and j ∈ [J ]:

∥θt;j − θ0∥2 ≤ 2

(
kB + σ

√
2 ln

12T

δ

)√
T

ρ
, (273)

∥∥∥θt;j − θ̃t;j

∥∥∥
2
≤

C
(7)
α,D,T√
M

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)√
ln

6M

δ
. (274)

Proof. We show by induction. Let us define Gt;j and ht;j as Gt;j = [g(x1;θt;j), . . . , g(xt;θt;j)] ∈
Rp×t and ht;j = [h(x1;θt;j), . . . , h(xt;θt;j)] ∈ Rt, respectively. First, Eqs. (273) and (274) clearly
hold if j = 0. Next, fix any j ∈ [J ], and suppose that Eqs. (273) and (274) hold for any j̃ < j. Then,
as with Lemma B.2 in [41], we have∥∥∥θt;j − θ̃t;j

∥∥∥
2
≤
∥∥∥[Ip − 2η

(
ρIp +GtG

⊤
t

)] (
θt;j−1 − θ̃t;j−1

)∥∥∥
2

+ 2η
∥∥∥(Gt;j−1 −Gt) (ht;j−1 − yt)

∥∥∥
2

+ 2η
∥∥∥Gt

[
ht;j−1 −G⊤

t (θt;j−1 − θ0)
]∥∥∥

2
.

(275)

By resorting the similar argument of the proof of Lemma B.2 in [41], the first term is bounded from
above as follows:∥∥∥[Ip − 2η

(
ρIp +GtG

⊤
t

)] (
θt;j−1 − θ̃t;j−1

)∥∥∥
2
≤ (1− 2ηρ)

∥∥∥θt;j−1 − θ̃t;j−1

∥∥∥
2
. (276)

As for the second term of Eq. (275), from Lemma B.10 and Lemma B.15, we have∥∥∥(Gt;j−1 −Gt) (ht;j−1 − yt)
∥∥∥
2

(277)

≤ ∥Gt;j−1 −Gt∥ ∥ht;j−1 − yt∥2 (278)
≤ ∥Gt;j−1 −Gt∥F ∥ht;j−1 − yt∥2 (279)

≤

√√√√ t∑
i=1

∥g(xi;θt;j−1)− g(xi;θ0)∥22
√
3t

(
kB + σ

√
2 ln

12T

δ

)
(280)

≤
√
3TR̃M−1/2

(
kB + σ

√
2 ln

12T

δ

)√
C

(5)
α,D ln

6M

δ
, (281)

where:
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• Eq. (280) follows from Lemma B.10, the condition (267), and the induction hypothesis.

• Eq. (281) follows from the event E3 and the induction hypothesis.

Furthermore, from Lemma B.13 and Lemma B.15, we have∥∥∥Gt

[
ht;j−1 −G⊤

t (θt;j−1 − θ0)
]∥∥∥

2
(282)

≤ ∥Gt∥
∥∥ht;j−1 −G⊤

t (θt;j−1 − θ0)
∥∥
2

(283)

≤
2TR̃2(R̃+ 2)2(2 + 2DĈ)C

(3)
α,D

(
ln 6·2D+2M

δ

)√
C

(4)
α,D ln 6M

δ√
M

. (284)

By combining Eqs. (276), (281), and (284) with Eq. (275), we have∥∥∥θt;j − θ̃t;j

∥∥∥
2

(285)

≤ (1− 2ηρ)∥θt;j−1 − θ̃t;j−1∥2

+ 2
√
3ηT R̃M−1/2

(
kB + σ

√
2 ln

12T

δ

)√
C

(5)
α,D ln

6M

δ

+
4ηT R̃2(R̃+ 2)2(2 + 2DĈ)C

(3)
α,D

(
ln 6·2D+2M

δ

)√
C

(4)
α,D ln 6M

δ√
M

(286)

≤
√
3TM−1/2ρ−1R̃

(
kB + σ

√
2 ln

12T

δ

)√
C

(5)
α,D ln

6M

δ

+ 4Tρ−1M−1/2R̃2(R̃+ 2)2(2 + 2DĈ)C
(3)
α,D

(
ln

6 · 2D+2M

δ

)√
C

(4)
α,D ln

6M

δ

(287)

≤M−1/2

(
kB + σ

√
2 ln

12T

δ

)2 [
2
√
3T 3/2ρ−3/2

√
C

(5)
α,D ln

6M

δ

+ 16T 2ρ−2(R̃+ 2)2(2 + 2DĈ)C
(3)
α,D

(
ln

6 · 2D+2M

δ

)√
C

(4)
α,D ln

6M

δ

] (288)

≤

(
kB + σ

√
2 ln

12T

δ

)√
T

ρ
, (289)

where Eq. (289) follows from the condition (268). From the triangle inequality and Lemma B.9,

∥θt;j − θ0∥2 ≤
∥∥∥θ̃t;j − θ0

∥∥∥
2
+
∥∥∥θ̃t;j − θt;j

∥∥∥
2

(290)

≤ 2

(
kB + σ

√
2 ln

12T

δ

)√
T

ρ
. (291)

Lemma B.12 (Adapted from Lemma C.1 in [24]). Under the event E5, the following inequality holds
for any t ∈ N+:

γ̃t ≤ γt +
t
√

tC
(6)
α,D ln(96|X |2/δ)

ρ
√
M

, (292)

where the constant C(6)
α,D is defined in Lemma B.6.
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Proof. Fix any x1, . . . ,xt ∈ X . Then,

1

2
ln det

(
It + ρ−1G⊤

t Gt

)
(293)

=
1

2
ln det

[
It + ρ−1Kt + ρ−1

(
G⊤
t Gt −Kt

)]
(294)

≤ 1

2
ln det

(
It + ρ−1Kt

)
+

1

2ρ

〈(
It + ρ−1Kt

)−1
,G⊤

t Gt −Kt

〉
(295)

≤ γt +
1

2ρ

∥∥∥(It + ρ−1Kt

)−1
∥∥∥
F

∥∥G⊤
t Gt −Kt

∥∥
F

(296)

≤ γt +

√
t

2ρ

√ ∑
x,x̃∈{x1,...,xt}

|kTNTK(x, x̃)− ⟨g(x,θ0), g(x̃,θ0)⟩|2 (297)

≤ γt +
t
√
tC

(6)
α,D ln(96|X |2/δ)

ρ
√
M

, (298)

where:

• Eq. (295) follows from the concavity of ln det(·) and the fact that ∇X ln detX = X−1

holds for any symmetric matrix X . In Eq. (295), ⟨·, ·⟩ represents the matrix inner product.

• Eq. (296) follows from the definition of γt.

• Eq. (297) follows from
∥∥∥(It + ρ−1Kt

)−1
∥∥∥
F
≤
∥∥I−1

t

∥∥
F
≤
√
t.

• Eq. (298) follows from the event E5.

Lemma B.13. Let us define Gt(θ) as Gt(θ) = (g(x1;θ), . . . , g(xt;θ))
⊤ ∈ Rp×t. Then, under the

event E2, the following inequality holds for any R ≥ 0, t ∈ N+, and θ ∈ Rp such that ∥θ−θ0∥2 ≤ R:

∥Gt(θ)∥F ≤ (2R+ 2DĈ)

√
tC

(4)
α,D ln

6M

δ
, (299)

where the constants Ĉ and C
(4)
α,D are defined in Lemma B.4.

Proof. From the definition of ∥ · ∥F , we have

∥Gt(θ)∥2F =

t∑
i=1

∥g(xi;θ)∥22 (300)

≤ tC
(4)
α,D(2R+ 2DĈ)2 ln

6M

δ
. (301)

Here, the last inequality follows from the condition E2.

Lemma B.14. Under the event E2, the following inequality holds for any t ∈ N+:∥∥ρIp +GtG
⊤
t

∥∥ ≤ ρ+ tC
(4)
α,DĈ

22D ln
6M

δ
, (302)

where the constants Ĉ and C
(4)
α,D are defined in Lemma B.4.
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Proof. Under the event E2, we have∥∥ρIp +GtG
⊤
t

∥∥ = ρ+
∥∥GtG

⊤
t

∥∥ (303)

≤ ρ+

t∑
i=1

∥∥g(xi;θ0)g(xi;θ0)⊤∥∥ (304)

≤ ρ+

t∑
i=1

∥∥g(xi;θ0)g(xi;θ0)⊤∥∥F (305)

= ρ+

t∑
i=1

∥g(xi;θ0)∥22 (306)

≤ ρ+ tC
(4)
α,D2

DĈ2 ln
6M

δ
, (307)

where:

• Eq. (304) follows from GtG
⊤
t =

∑t
i=1 g(xi;θ0)g(xi;θ0)

⊤ and the triangle inequality.

• Eq. (306) follows from the fact that ∥xx⊤∥F = ∥x∥22 holds for any x.

• Eq. (307) follows from the event E2.

Lemma B.15. Under the event E1, the following inequality holds for any x ∈ Sd−1, R ≥ 0, and
θ̃, θ̂ ∈ Rp such that ∥θ̃ − θ0∥2 ≤ R and ∥θ̂ − θ0∥2 ≤ R:

|h(x; θ̃)− h(x; θ̂)− ⟨g(x; θ̂), θ̃ − θ̂⟩| ≤
2R2C

(3)
α,D(R+ 2)2
√
M

ln
6 · 2D+2M

δ
. (308)

where the constant C(3)
α,D is defined in Lemma 3.3.

Proof. From Taylor’s theorem, there exists a ∈ [0, 1] such that∣∣∣h(x; θ̃)− h(x; θ̂)− ⟨g(x; θ̂), θ̃ − θ̂⟩
∣∣∣ (309)

=
1

2

∣∣∣(θ̃ − θ̂)⊤H
(
x, aθ̃ + (1− a)θ̂

)
(θ̃ − θ̂)

∣∣∣ (310)

≤ 1

2

∥∥∥θ̃ − θ̂
∥∥∥
2

∥∥∥H (
x, aθ̃ + (1− a)θ̂

)
(θ̃ − θ̂)

∥∥∥
2

(311)

≤ 1

2

∥∥∥θ̃ − θ̂
∥∥∥2
2

∥∥∥H (
x, aθ̃ + (1− a)θ̂

)∥∥∥ . (312)

Here, from the conditions of θ̃ and θ̂, we have∥∥∥θ̃ − θ̂
∥∥∥
2
≤
∥∥∥θ̃ − θ0

∥∥∥
2
+
∥∥∥θ0 − θ̂

∥∥∥
2
≤ 2R (313)

and ∥∥∥aθ̃ + (1− a)θ̂ − θ0

∥∥∥
2
≤ a

∥∥∥θ̃ − θ0

∥∥∥
2
+ (1− a)

∥∥∥θ0 − θ̂
∥∥∥
2
≤ R. (314)

Therefore, from the event E1,∣∣∣h(x; θ̃)− h(x; θ̂)− ⟨g(x; θ̂), θ̃ − θ̂⟩
∣∣∣ ≤ 1

2

∥∥∥θ̃ − θ̂
∥∥∥2
2

∥∥∥H (
x, aθ̃ + (1− a)θ̂

)∥∥∥ (315)

≤
2R2C

(3)
α,D(R+ 2)2
√
M

ln
6 · 2D+2M

δ
. (316)
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Proof of Theorem B.1. Suppose that the events E1–E6 hold. As proposed in [30], we decompose the
error term |f(x)− h(x;θt)|:

|f(x)− h(x;θt)|
≤ |f(x)− µ̃t(x)|+ |µ̃t(x)− ⟨g(x;θ0),θt − θ0⟩|+ |⟨g(x;θ0),θt − θ0⟩ − h(xt;θt)|.

(317)

By combining the event E6 with Lemma B.12, the first term of Eq. (317) is bounded from above as
follows:

|f(x)− µ̃t(x)| (318)

≤

(
√
2B +

σ
√
ρ

√
2

(
γ̃t + ln

6

δ

))
σ̃t−1(x) (319)

≤

√2B +
σ
√
ρ

√√√√√2

γt +
t
√

tC
(6)
α,D ln(96|X |2/δ)

ρ
√
M

+ ln
6

δ


 σ̃t−1(x). (320)

Furthermore, we obtain the following inequalities for the second term:

|µ̃t(x)− ⟨g(x;θ0),θt − θ0⟩| (321)

=
∣∣∣g(x;θ0)⊤ (ρIp +GtG

⊤
t

)−1
Gtyt − ⟨g(x;θ0),θt − θ0⟩

∣∣∣ (322)

≤ ρ−1
∥∥∥θt − θ0 −

(
ρIp +GtG

⊤
t

)−1
Gtyt

∥∥∥
2

∥∥ρIp +GtG
⊤
t

∥∥ σ̃2
t (x) (323)

≤ ρ−1

√
k
2
+ 4C

(2)
α,D

∥∥∥θt − θ0 −
(
ρIp +GtG

⊤
t

)−1
Gtyt

∥∥∥
2

∥∥ρIp +GtG
⊤
t

∥∥ σ̃t(x) (324)

≤ ρ−1

√
k
2
+ 4C

(2)
α,D

[
C

(7)
α,D,T√
M

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)√
ln

6M

δ

+ (1− 2ηρ)
J/2

(
kB + σ

√
2 ln

12T

δ

)2√
T

ρ

]

×
(
ρ+ TC

(4)
α,D2

2DĈ2 ln
6M

δ

)
σ̃t(x),

(325)

where:

• Eq. (322) follows from the feature space representation of µ̃t. Actually, we have µ̃t(x) =

g(x;θ0)
⊤Gt(ρIt + G⊤

t Gt)
−1yt = g(x;θ0)

⊤ (ρIp +GtG
⊤
t

)−1
Gtyt, where the last

equality follows from the matrix identity Gt(ρIt + G⊤
t Gt)

−1 =
(
ρIp +GtG

⊤
t

)−1
Gt

(e.g., Lemma 3 in [29]).

• Eq. (323) follows from the fact that ⟨z1, z2⟩ ≤ (z⊤
1 A−1z1) · (z⊤

2 Az2) ≤
(z⊤

1 A−1z1)∥A∥2∥z2∥2 holds for any positive definite matrix A ∈ Rp×p and z1, z2 ∈ Rp.

• Eq. (324) follows from σ̃t(x) ≤
√

k̃(x,x) ≤
√
k
2
+ 4C

(2)
α,D, where the last inequality

follows from the event E5.

• Eq. (325) follows from Lemma B.9 and Lemma B.11.
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By using Taylor’s theorem for the third term, there exist a ∈ [0, 1] such that:

|h(x;θt)− ⟨g(x;θ0),θt − θ0⟩| (326)

=
1

2

∣∣(θt − θ0)
⊤H(aθt + (1− a)θ0)(θt − θ0)

∣∣ (327)

≤ 1

2
∥θt − θ0∥2∥H(aθt + (1− a)θ0)(θt − θ0)∥2 (328)

≤ 1

2
∥θt − θ0∥22∥H(aθt + (1− a)θ0)∥ (329)

≤
72T 2C

(3)
α,D√

Mρ2

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ
, (330)

where Eq. (327) follows from h(x;θ0) = 0 holds for any x ∈ X , and Eq. (330) follows from
Lemma B.11 and the event E1. Finally, since the events E1–E6 holds with probability at least 1− δ
from Lemma B.8, we obtain the desired result by aggregating Eqs. (320), (325), and (330).

C Proof of Theorem 3.3

Theorem C.1 (Detailed version of Theorem 3.3). Suppose that Assumption 3.1 holds. Fix any
δ ∈ (0, 1), α ≥ 1, ρ > 0, and D ≥ 2. Furthermore, suppose that the number of en-
semble M is sufficiently large to satisfy Eqs. (162)–(165). Then, if the learning rate η satisfy

η ≤ 4−1
(
ρ+ 2(2R̃+ 2DĈ)2TC

(4)
α,D ln 6M

δ

)−1

, with probability at least 1 − δ, the following in-
equality holds:

RT ≤
144T 3C

(3)
α,D√

Mρ

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ
(331)

+ β

√√√√√ 8T

ln(1 + ρ−2)

γT +
T
√

TC
(6)
α,D ln(96|X |2/δ)

ρ
√
M

, (332)

where β is defined in Theorem B.1. Furthermore, if M and J is sufficiently large to satisfy the
following additional three conditions:

144T 3C
(3)
α,D√

Mρ

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ
≤ 1, (333)

T
√

TC
(6)
α,D ln(96|X |2/δ)

ρ
√
M

≤ 1, (334)

ρ−1

√
k
2
+ 4C

(2)
α,D

[
C

(7)
α,D,T√
M

(
kB + σ

√
2 ln

12T

δ

)2(
ln

6 · 2D+2M

δ

)√
ln

6M

δ

+ (1− 2ηρ)
J/2

(
kB + σ

√
2 ln

12T

δ

)2√
T

ρ

](
ρ+ TC

(4)
α,D2

2DĈ2 ln
6M

δ

)
≤ 1,

(335)

then,

RT ≤ 1 +

(
√
2B + 1 +

σ
√
ρ

√
2

(
γT + 1 + ln

6

δ

))√
8T (γT + 1)

ln(1 + ρ−2)
. (336)

The proof of Theorem C.1 leverages the following lemma, which describe the relation between the
sum of σ̃t−1(xt) and MIG.
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Lemma C.1 (Lemma 5.3 and Lemma 5.4 in [32]). Fix any T ∈ N+. Then, for any sequence
x1, . . . ,xt, the following inequality holds:

T∑
t=1

σ̃t−1(xt) ≤

√
8T γ̃T

ln(1 + ρ−2)
. (337)

Proof of Theorem C.1. From Theorem B.1, with probability at least 1− δ,

RT =

T∑
t=1

[f(x∗
t )− f(xt)] (338)

≤
144T 3C

(3)
α,D√

Mρ

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ
+ 2β

T∑
t=1

σ̃t−1(xt) (339)

≤
144T 3C

(3)
α,D√

Mρ

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ
+ β

√
8T γ̃T

ln(1 + ρ−2)
(340)

≤
144T 3C

(3)
α,D√

Mρ

(
kB + σ

√
2 ln

12T

δ

)4

ln
6 · 2D+2M

δ

+ β

√√√√√ 8T

ln(1 + ρ−2)

γT +
T
√

TC
(6)
α,D ln(96|X |2/δ)

ρ
√
M

,

(341)

where Eq. (339) follows from the definition of xt, and Eq. (340) follows from Lemma C.1. Further-
more, Eq. (341) follows from Lemma B.12.

D Proof of Lemma 4.1

Proof. Fix any function f ∈ HTNTK. According to Mercer’s representation theorem (see, e.g.,
Theorem 4.5.1 in [33]), there exists a sequence (wn,j) such that

∑∞
n=0

∑Nd,n

j=1 w2
n,j <∞ and

f(·) =
∞∑
n=0

Nd,n∑
j=1

wn,jλ
1/2
n Yn,j(·). (342)

Furthermore, the RKHS norm ∥f∥TNTK is obtained as ∥f∥2TNTK =
∑∞
n=0

∑Nd,n

j=1 w2
n,j .

Note that, similar to the TNTK, the ReLU-based NTK can be expanded using spherical harmonics
(Yn,j) as follows (see, e.g., [35]):

kNTK(x, x̃) =

∞∑
n=0

Nd,n∑
j=1

λ̃nYn,j(x)Yn,j(x̃), (343)

where (λ̃n)n∈N are the eigenvalues of the NTK. Here, the function f can be written as

f(·) =
∞∑
n=0

Nd,n∑
j=1

wn,j

(√
λn

λ̃n

)
λ1/2
n Yn,j(·). (344)

By noting both TNTK and NTK can be expanded by (Yn,j), the following equation holds from
Mercer’s representation theorem:

∥f∥2NTK =

∞∑
n=0

Nd,n∑
j=1

w2
n,j

λn

λ̃n
. (345)

42



According to Bietti and Bach [6], λ̃n = Θ(n−d) and there exists a constant Cd,L > 0 such that
Cd,Ln

−d ≤ λ̃n. Combining this with Lemma 3.1, we have:

∥f∥2NTK ≤
∞∑
n=0

Nd,n∑
j=1

w2
n,jC

(1)
α,DC

−1
d,Ln

d exp

(
− ln

(
1 +

1

4α2

)
Dn
)
. (346)

Since nd exp
(
− ln

(
1 + 1

4α2

)
Dn
)
→ 0 (as n → ∞), there exists a constant Cα,d > 0 such that

nd exp
(
− ln

(
1 + 1

4α2

)
Dn
)
≤ Cα,d holds for any n ∈ N. Thus,

∥f∥2NTK ≤ C
(1)
α,DC

−1
d,LCα,d

∞∑
n=0

Nd,n∑
j=1

w2
n,j = C

(1)
α,DC

−1
d,LCα,d∥f∥

2
TNTK <∞. (347)

From the above, it follows thatHTNTK ⊂ HNTK.

E Helper Lemmas

Definition E.1 (Sub-Gaussian norm, Definition 2.5.6 in [39]). Let X be a real-valued random
variable. Then, the following quantity ∥X∥ψ2

is called the sub-Gaussian norm of X:

∥X∥ψ2 = inf

{
t ≥ 0

∣∣∣∣ E [exp(X2

t2

)]
≤ 2

}
. (348)

Moreover, if ∥X∥ψ2 <∞ holds, we call the random variable X a sub-Gaussian random variable.
Definition E.2 (Sub-exponential norm, Definition 2.7.5 in [39]). Let X be a real-valued random
variable. Then, the following quantity ∥X∥ψ1

is called the sub-exponential norm of X:

∥X∥ψ1 = inf

{
t ≥ 0

∣∣∣∣ E [exp( |X|t
)]
≤ 2

}
. (349)

Moreover, if ∥X∥ψ1
<∞ holds, we call the random variable X a sub-exponential random variable.

Lemma E.1 (General Hoeffding’s inequality, Theorem 2.6.2 in [39]). Let X1, . . . , XN be indepen-
dent, mean-zero, sub-Gaussian random variables. Then, for every t ≥ 0, the following holds:

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2∑N

i=1 ∥X∥2ψ2

)
, (350)

where c > 0 is an absolute constant.
Lemma E.2 (Bernstain’s inequality, Theorem 2.8.1 in [39]). Let X1, . . . , XN be independent, mean-
zero, sub-exponential random variables. Then, for every t ≥ 0, the following holds:

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

{
t2∑N

i=1 ∥Xi∥2ψ1

,
t

maxi∈[N ] ∥Xi∥ψ1

})
, (351)

where c > 0 is an absolute constant.
Lemma E.3 (Centering, Lemma 2.6.8 and Exercise 2.7.10 in [39]). For any sub-Gaussian random
variable X , ∥X − E[X]∥ψ2

≤ C∥X∥ψ2
holds. Furthermore, for any sub-exponential random

variable Y , ∥Y − E[Y ]∥ψ1
≤ C∥Y ∥ψ1

holds, where C > 0 is an absolute constant.
Lemma E.4 (Product of sub-Gaussians is sub-exponential, Lemma 2.7.7 in [39]). Let X and Y
be sub-Gaussian random variables. Then, XY is a sub-exponential random variable whose sub-
exponential norm satisfies ∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2 .

F Details of numerical experiments

F.1 Our implementation of algorithms

Here, we provide additional information on the implementation of the ST-UCB and NN-UCB
algorithms. Our implementation includes the following three simplifications:
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(a) In the calculation of the gradient in line 5 of Algorithm 1, we use g(x;θt−1) from the
previous round, rather than the initial gradient g(x;θ0).

(b) In the regularization of parameters in line 3 of Algorithm 3, we do not consider the residual
from the initial parameters θ0. In other words, we apply L2 regularization directly to the
parameters themselves.

(c) Instead of initializing θ0 as described in Sec. 3.1, we initialized θ0 by the Glorot’s uniform
initializer [17].

It should be noted that the simplification (a) is the same implementation as the original NN-UCB,
while the other simplifications are for the sake of simplicity in implementation. We train two models
(ST, NN) using stochastic gradient descent (SGD) with a momentum term. The learning rate and
the momentum are set to 0.01 and 0.9, respectively. When the momentum is greater than zero, past
gradients are considered as a weighted average. SGD is performed in all rounds, with a mini-batch
size of 64 and 5 epochs, and we do not use early stopping.

F.2 Parameter sensitivity

In the results shown in Fig. 2 of the experimental section, we presented the outcomes with optimal
hyperparameters of ϵ, β. Here, the experimental results for each parameter ϵ ∈ {0.05, 0.1, 0.2}, β ∈
{0.01, 0.1, 1} are summarized in Fig. 3 (real-world dataset) and Fig. 4 (synthetic dataset). In most
cases with the real-world dataset, as the rounds progressed, ST-UCB demonstrated better performance
than NN-UCB, and UCB-based policies outperformed ϵ-greedy based policies when β = 0.01. In
the f (1) setting for the synthetic data, the regret of ST-UCB converged the fastest. On the other hand,
in the f (2) and f (3) settings, NN-UCB sometimes performed well, however the trend of cumulative
regret over the rounds was comparable between ST-UCB and NN-UCB.

G Summary of the existing works

G.1 Derivation of TNTK

Our analysis relies on the TNTK derived by Kanoh and Sugiyama [21]. From the definition of the
soft tree ensemble model, we have

⟨∇θh(x;θ),∇θh(x;θ)⟩ =
1

M

M∑
m=1

⟨∇θ(m) h̃(x;θ(m)),∇θ(m) h̃(x;θ(m))⟩. (352)

If θ ∼ N (0, Ip), (⟨∇θ(m) h̃(x;θ(m)),∇θ(m) h̃(x;θ(m))⟩)m∈[M ] is mutually independent; there-
fore, from the law of large number, the inner product ⟨∇θh(x;θ),∇θh(x;θ)⟩ converges to
E[⟨∇θ(m) h̃(x;θ(m)),∇θ(m) h̃(x;θ(m))⟩] in probability as M → ∞. Kanoh and Sugiyama [21]
shows that E[⟨∇θ(m) h̃(x;θ(m)),∇θ(m) h̃(x;θ(m))⟩] equals the expression in Eq. (1) by relying on
the recursive expressions of the soft tree (such as Eq. (81)).

G.2 MIG and effective dimension

As described in Section 3.2, MIG is commonly used as the problem complexity parameter of the
kernel-based decision-making problem. On the other hand, instead of MIG, some existing works
quantify the problem complexity based on the following effective dimension d̃ [10, 37, 40, 41]:

d̃ = Tr(KT (KT + ρIT )
−1). (353)

Due to the following inequality [9, 10], the MIG is bounded from above by the worst-case effective
dimension up to logarithmic scale:

ln det(ρ−1KT + IT ) ≤ Tr(KT (KT + ρIT )
−1)(1 + ln(ρ−1∥KT ∥+ 1)). (354)
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Figure 3: The average cumulative regret with one standard error in the real-world dataset.
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Figure 4: The average cumulative regret with one standard error in the synthetic dataset.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The assumptions for our main result is given in Assumption 3.1. The complete
proofs of our main results are given in Appendix A, B, C, and D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed information for our experiment is given in Sec. 5 and Ap-
pendix F.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

47



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are not yet ready to release the required codes and will do so as soon
as our paper is accepted. Furthermore, we believe that the lack of experimental codes is
not problematic because our experiment are not too complex, and the information given in
Sec. 5 and Appendix F.1 is sufficient to reproduce numerical experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The information of our model hyperparameter is given in Sec. 5 and Ap-
pendix F.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The error bars, which represent one standard errors, are given in our experi-
mental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Since our experiments are limited to simple problem setups and our contribu-
tions are primarily theoretical, the computational resources used are not significant.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirmed that our paper conforms, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our paper cited the original papers to use UCI-Machine Learning Repository
in Sec. 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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