
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DO STOCHASTIC, FEEL NOISELESS: STABLE STOCHAS-
TIC OPTIMIZATION VIA A DOUBLE MOMENTUM MECH-
ANISM

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization methods are crucial to the success of machine learning, with Stochas-
tic Gradient Descent (SGD) serving as a foundational algorithm for training models.
However, SGD is often sensitive to the choice of the learning rate, which necessi-
tates extensive hyperparameter tuning. In this work, we introduce a new variant of
SGD that brings enhanced stability in two key aspects. First, our method allows the
use of the same fixed learning rate to attain optimal convergence rates regardless
of the noise magnitude, eliminating the need to adjust learning rates between
noiseless and noisy settings. Second, our approach achieves these optimal rates
over a wide range of learning rates, significantly reducing sensitivity compared
to standard SGD, which requires precise learning rate selection. Our key innova-
tion is a novel gradient estimator based on a double-momentum mechanism that
combines two recent momentum-based techniques. Utilizing this estimator, we
design both standard and accelerated algorithms that are robust to the choice of
learning rate. Specifically, our methods attain optimal convergence rates in both
noiseless and noisy stochastic convex optimization scenarios without the need for
learning rate decay or fine-tuning. We also prove that our approach maintains
optimal performance across a wide spectrum of learning rates, underscoring its
stability and practicality. Empirical studies further validate the robustness and
enhanced stability of our approach.

1 INTRODUCTION

Stochastic Convex Optimization (SCO) is a fundamental framework that captures several classical
Machine Learning (ML) problems, such as linear regression, logistic regression, and SVMs (Support
Vector Machines), amongst others. In the past two decades, SCO has been extensively explored and
highly influenced the field of ML: it popularized the use of Stochastic Gradient Descent (SGD) as the
standard workhorse for training ML models; see e.g. Shalev-Shwartz et al. (2007); Welling & Teh
(2011); Mairal et al. (2009); Recht et al. (2011); as well as has lead to the design of sophisticated SGD
variants that play a central role in training modern large scale models (Duchi et al., 2011; Kingma &
Ba, 2015).
One practical difficulty in applying SGD-type methods is the need to tune its learning rate among other
hyperparameters, and it is well known that the performance of such algorithms crucially relies on the
right choice of the learning rate. Adaptive SGD variants, such as AdaGrad and Adam (Duchi et al.,
2011; Kingma & Ba, 2015; Levy et al., 2018; Kavis et al., 2019; Jacobsen & Cutkosky, 2022) have
been designed to alleviate this issue by adjusting the learning rate during training. However, despite
reducing the need for hyperparameter tuning, adaptive methods can introduce additional complexity
and may not always lead to better generalization performance. In many applications, practitioners still
prefer to employ standard SGD because it often results in better test error and improved generalization
compared to adaptive methods (Wu et al., 2016; Ruder, 2016). Thus, designing SGD variants that
are robust to the choice of learning rate, while retaining the simplicity and generalization benefits of
standard SGD, can be extremely beneficial in practice.

To address these challenges, we propose a new approach that retains the simplicity and generalization
benefits of standard SGD while significantly enhancing its robustness to learning rate selection.
Moreover, since our method focuses on stabilizing the gradient estimation rather than adapting the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learning rate, it is orthogonal to adaptive techniques and could potentially be combined with them to
yield even better performance.

Focusing on the SCO Setting: In this paper we focus on the prevalent SCO setting where the
objective (expected loss) is an Expectation Over Smooth losses (SCO-EOS); this applies e.g. to linear
and logistic regression problems (though not to SVMs). In this case, it is well known that SGD
requires a careful tuning of the learning rate to obtain the optimal performance. For example, in the
noiseless case, SGD (or GD in this case) should employ a learning rate of ηOffline = 1/L where L is
the smoothness parameter of the objective. Nevertheless, if we apply this ηOffline in the noisy setting,
the guarantees of SGD become vacuous. To obtain the optimal SGD guarantees, we should roughly
decrease the learning rate by a factor of σ

√
T where T is the total number of SGD iterates (and

samples), and σ is the variance of the noise in the gradient estimates. This illustrates the sensitivity
of SGD to the choice of η, a challenge that also affects stochastic accelerated methods such as those
in Lan (2012); Hu et al. (2009); Xiao (2010).
Contributions. We introduce a novel gradient estimator for SCO-EOS problems that uses a single
sample per-iterate, and shows that its square error, ∥ϵt∥2, shrinks with the number of updates as
∥ϵt∥2 ∝ 1/t, where t is the iterate. This, in contrast to the standard SGD estimator where usually
∥ϵt∥2 = Variancet = O(1). Our new estimator blends two recent mechanisms that are related to
the notion of momentum: Anytime Averaging, which is due to Cutkosky (2019); and a corrected
momentum technique (Cutkosky & Orabona, 2019). We therefore denote our estimator by µ2 which
stands for Momentum2.
As described below, our new estimator enables to "Do Stochastic (optimization), while feeling
Noiseless", i.e. it allows us to use similar machinery as GD employs in the noiseless case. Specifically,
(i) we can use the exact same fixed learning rate as is used in GD, irrespective of the noise; (ii) it
enables us to use the norm of the gradient estimates as a stopping criteria, which is a common practice
for GD (Beck, 2014). Finally, (iii) it enables us to design new SGD variants which are extremely
robust to the choice of the learning rate, significantly reducing sensitivity compared to standard SGD.
Concretely, we design an SGD variant called µ2-SGD, as well as an accelerated version called
µ2 − ExtraSGD , that employs our new estimator and demonstrates their stability with respect to
the choice of the learning rates η. We demonstrate the following,

• For µ2-SGD: Upon using the exact same learning rate of ηOffline = 1/8LT (where T is the
total number of iterates/data-samples), µ2-SGD enjoys a convergence rate of O(L/T) in the noiseless
case, and a rate of O(L/T + σ̃/

√
T) in the noisy case. Moreover, in the noisy case, µ2-SGD enjoys

the same convergence rate as of the optimal SGD O(L/T + σ̃/
√
T), for a wide range of learning

rate choices i.e. η ∈ [ηmin, ηmax], with the ratio ηmax/ηmin ≈ (σ̃/L)
√
T .

• For µ2 − ExtraSGD : Upon using the exact same learning rate of ηOffline = 1/2L, µ2 −
ExtraSGD enjoys an optimal convergence rate of O(L/T 2) in the noiseless case, and an optimal
rate of O(L/T 2 + σ̃/

√
T) in the noisy case. Moreover, in the noisy case, µ2 − ExtraSGD enjoys

the same optimal convergence of O(L/T 2 + σ̃/
√
T), for an extremely wide range of learning rate

choices i.e. η ∈ [ηmin, ηmax], with the ratio ηmax/ηmin ≈ (σ̃/L)T 3/2. The optimal rates mentioned
above are also tight for SCO-EOS problems, see e.g. Thm. 16.7 in Cutkosky (2022).

These ratios are substantially larger than the corresponding ratio for standard SGD, where the optimal
convergence is achieved only when ηmax/ηmin ≈ O(1). This establishes the substantial improvement
in stability of our approach compared to standard SGD (see Appendix A for a detailed discussion).

We empirically demonstrate the improved stability and performance of our methods over various
baselines, confirming both the theoretical and practical advantages of our approach.

On the technical side, it is important to note that individually, each of the momentum techniques
that we combine is unable to ensure the stability properties that we are able to ensure for their
appropriate combination, i.e. for µ2-SGD and for µ2 − ExtraSGD . Moreover, our accelerated
version µ2 − ExtraSGD , requires a careful and delicate blend of several techniques in the right
interweaved manner, which leads to a concise yet delicate analysis.

Related Work: The Gradient Descent (GD) algorithm and its stochastic counterpart SGD (Robbins
& Monro, 1951) are cornerstones of ML and Optimization. Their adoption in various fields has lead
to the development of numerous elegant and useful variants (Duchi et al., 2011; Kingma & Ba, 2015;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Ge et al., 2015). Curiously, many SGD variants that serve in practical training of non-convex learning
models; were originally designed under the framework of SCO.

As we mention in the introduction, the performance of SGD crucially relies on the choice of the
learning rate. There is a plethora of work on designing methods that implicitly and optimally adapt
the learning rate throughout the learning process (Duchi et al., 2011; Kingma & Ba, 2015; Kavis
et al., 2019; Antonakopoulos et al., 2022; Jacobsen & Cutkosky, 2022; Ivgi et al., 2023; Defazio
& Mishchenko, 2023); and such methods are widely adopted among practitioners. Nevertheless, in
several practical scenarios, standard (non-adaptive) SGD has proven to yields better generalization
compared to adaptive variants, albeit still necessitating to find an appropriate learning rate (see
e.g. Giladi et al. (2019)).

Momentum (Polyak, 1964) is another widely used practical technique (Sutskever et al., 2013), and it
is interestingly related to the accelerated method of Nesterov (Nesterov, 1983) – a seminal approach
that enables to obtain faster convergence rates compared to GD for smooth and convex objectives.
While Nesterov’s accelerated method is fragile to noise, Lan (2012); Hu et al. (2009); Xiao (2010)
have designed stochastic accelerated variants that enable to obtain a convergence rate that interpolates
between the fast rate in the noiseless case and between the standard SGD rate in the noisy case
(depending on the noise magnitude).

Our work builds on two recent mechanisms related to the notion of momentum: (i) An Anytime
averaging mechanism Cutkosky (2019) which relies on averaging the query points of the gradient
oracle. And (ii) a corrected momentum technique Cutkosky & Orabona (2019) which relies on
averaging the gradients themselves throughout the learning process (while introducing correction). It
is interesting to note that the Anytime mechanism has proven to be extremely useful in designing
adaptive and accelerated methods (Cutkosky, 2019; Kavis et al., 2019; Antonakopoulos et al., 2022).
The corrected momentum mechanism has mainly found use in designing optimal and adaptive
algorithms for stochastic non-convex problems (Cutkosky & Orabona, 2019; Levy et al., 2021).

2 SETTING

Consider stochastic optimization problems with a convex objective f : K 7→ R that satisfies,

f(x) := Ez∼Df(x; z) , (1)

where K ⊆ Rd is a compact convex set, and D is an unknown distribution from which we may draw
i.i.d. samples {zt ∼ D}t. We consider first order optimization methods that iteratively employ such
samples in order to generate a sequence of query points and eventually output a solution xoutput ∈ K.
Our goal is to approximately minimize f(·), so our performance measure is the expected excess loss,

ExcessLoss := E[f(xoutput)]−min
x∈K

f(x) ,

where the expectation is w.r.t. the randomization of the samples.

More concretely, at every iteration t such methods maintain a query point xt ∈ Rd which is computed
based on the past query points and past samples {z1, . . . , zt−1}. Then, the next query point xt+1

is computed based on xt and on a gradient estimate gt that is derived by drawing a fresh sample
zt ∼ D independently of past samples, and computing, gt := ∇f(xt; zt) . Note that this derivative
is w.r.t. x. The independence between samples implies that gt is an unbiased estimate of ∇f(xt)
in the following sense, E[gt|xt] = ∇f(xt) . It is often comfortable to think of the computation of
gt = ∇f(xt; zt) as a (noisy) Gradient Oracle that upon receiving a query point xt ∈ K outputs a
vector gt ∈ Rd, which is an unbiased estimate of∇f(xt).

Assumptions. We will make the following assumptions,
Bounded Diameter: There exists D > 0 such: maxx,y∈K ∥x− y∥ ≤ D.
Bounded variance: There exists σ > 0 such,

E∥∇f(x; z)−∇f(x)∥2 ≤ σ2 , ∀x ∈ K (2)

Expectation over smooth functions: There exists L > 0 such ∀x, y ∈ K , z ∈ Support{D},

∥∇f(x; z)−∇f(y; z)∥ ≤ L∥x− y∥ , (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This implies that the expected loss f(·) is L smooth.
Bounded Smoothness Variance. The above assumption implies that there exists σ2

L ∈ [0, L2] such,

E ∥(∇f(x; z)−∇f(x))− (∇f(y; z)−∇f(y))∥2 ≤ σ2
L∥x− y∥2 , ∀x, y ∈ K . (4)

Clearly, in the deterministic setting where f(x; z) = f(x) , ∀z ∈ Support{D}, we have σL = 0. In
App. B, we show how Eq. (3) implies Eq. (4).
Notation: The notation∇f(x; z) relates to gradients with respect to x, i.e.,∇ := ∇x. We use ∥ · ∥
to denote the Euclidean norm. Given a sequence {yt}t we denote yt1:t2 :=

∑t2
τ=t1

yτ . For a positive
integer N we denote [N] := {1, . . . , N}. We also let ΠK : Rd 7→ K denote the orthogonal projection
onto K, i.e. ΠK(x) = argminy∈K ∥y− x∥2 , ∀x ∈ Rd. We shall also denote σ̃2 := 32D2σ2

L +2σ2.

3 MOMENTUM MECHANISMS

Here, we provide background regarding two mechanisms that are related to the notion of momentum.
Curiously, these approaches are related to averaging of different elements of the learning algorithm.
Our approach presented in Sec. 4 builds on a combination of these aforementioned mechanisms.

3.1 MECHANISM I: ANYTIME-GD

This first mechanism is related to averaging the query points for the noisy gradient oracle. While in
standard SGD we query the gradients at the iterates that we compute, in Anytime-SGD (Cutkosky,
2019), we query the gradients at weighted averages of the iterates that we compute.

More concretely, the Anytime-SGD algorithm (Cutkosky, 2019; Kavis et al., 2019) that we describe
in Equations (5) and (6), employs a learning rate η > 0 and a sequence of non-negative weights
{αt}t. The algorithm maintains two sequences {wt}t, {xt}t. At initialization x1 = w1, and,

wt+1 = wt − ηαtgt ,∀t ∈ [T] ,where gt = ∇f(xt; zt) , (5)

where zt ∼ D. Then Anytime-SGD updates,

xt+1 =
α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 . (6)

The above implies that the xt’s are weighted averages of the wt’s, i.e. that xt+1 = 1
α1:t+1

∑t+1
τ=1 ατwτ .

Thus, at every iterate, the gradient gt is queried at xt which is a weighted average of past iterates, and
then wt+1 is updated similarly to GD with a weight αt on the gradient gt.

Curiously, it was shown in Wang et al. (2021) (see Sec. 4.5.1), that a very similar algorithm to
Anytime-GD, can be related to the classical Heavy-Ball method (Polyak, 1964), and the latter
incorporates momentum in its iterates. Cutkosky (2019) has shown that Anytime-SGD obtains the
same convergence rates as SGD for convex loss functions (both smooth and non-smooth). And this
technique was found to be extremely useful in designing universal accelerated methods (Cutkosky,
2019; Kavis et al., 2019).

The next theorem is crucial in analyzing Anytime-SGD, and actually applies more broadly,
Theorem 3.1 (Rephrased from Theorem 1 in Cutkosky (2019)). Let f : K 7→ R be a convex function
with a minimum w∗ ∈ argminw∈K f(w). Also let {αt ≥ 0}t, and {wt ∈ K}t, {xt ∈ K}t, such
that {xt}t is an {αt}t weighted average of {wt}t, i.e. such that x1 = w1, and for any t ≥ 1,
xt+1 = 1

α1:t+1

∑t+1
τ=1 ατwτ . Then the following holds for any t ≥ 1:

α1:t (f(xt)− f(w∗)) ≤
∑t

τ=1 ατ∇f(xτ) · (wτ − w∗) .

The above theorem holds for any sequence {wt ∈ K}t, and as a private case it holds for the Anytime-
GD algorithm. Thus the above Theorem relates the excess loss of a given algorithm that computes
the sequences {wt ∈ K}t, {xt ∈ K}t to its weighted regret,Rt :=

∑t
τ=1 ατ∇f(xτ) · (wτ − w∗) .

3.2 MECHANISM II: RECURSIVE CORRECTED AVERAGING

This second mechanism is related to averaging the gradient estimates that we compute throughout
training, which is a common and crucial technique in practical applications. While straightforward

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

averaging might incur bias into the gradient estimates, it was suggested in Cutkosky & Orabona
(2019) to add a bias correction mechanism named STORM (STochastic Recursive Momentum). And
it was shown that this mechanism leads to a powerful variance reduction effect.

Concretely, STORM maintains an estimate dt which is a corrected weighted average of past stochas-
tic gradients, and then it performs an SGD-style update step,

wt+1 = wt − ηdt . (7)

The corrected momentum estimates are updated as follows,

dt = ∇f(wt; zt) + (1− βt)(dt−1 −∇f(wt−1, zt)) , (8)

for some βt ∈ [0, 1]. The above implies that E[dt] = E∇f(wt). Nevertheless, in general E[dt|wt] ̸=
∇f(wt), so dt is conditionally biased (in contrast to standard SGD estimates). Moreover, the choice
of the same sample zt in the two terms of the above expression is crucial for the variance reduction
effect.

4 OUR APPROACH: DOUBLE MOMENTUM MECHANISM

Our approach is to combine together the two momentum mechanisms that we describe above. Our
algorithm is therefore named µ2-SGD (Momentum2-Stochastic Gradient Descent), and we describe
it in Alg. 1. Intuitively, each of these Momentum (averaging) techniques stabilizes the algorithm,
and their combination leads to a method that is almost as stable as offline GD. Note that the right
combination of these techniques is crucial to obtaining our results, which cannot be achieved by
employing only one of these technique without the other.

We first describe algorithm 1, and then present our main result in Theorem 4.1, showing that the error
of the gradient estimates of our approach shrinks as we progress. Suggesting that we may use the
norm of the gradient estimate as a stopping criteria which is a common practice in GD (Beck, 2014).
Another benefit is demonstrated in Thm. 4.2,is that µ2-SGD obtains the same convergence rate as
standard SGD, for a very wide range of learning rates (in contrast to SGD).

Next we elaborate on the ingredients of Alg. 1:
Update rule: Note that for generality we allow a broad family of update rules in Eq. (10) of Alg. 1.
The only constraint on the update rule is that its iterates {wt}t always belong to K. Later, we will
specifically analyze the natural SGD-style update rule,

wt+1 = ΠK(wt − ηαtdt) . (9)

Momentum Computation: From Eq. (12) in Alg. 1 we can see that the momentum dt is updated
similarly to the STORM update in Eq. (8), albeit with two main differences: (i) first we incorporate
importance weights {αt}t into STORM and recursively update the weighted momentum αtdt.
More importantly (ii) we query the noisy gradients at the averages xt’s rather than in the iterates
themselves, and the averages (Eq. (11)) are computed in the spirit of Anytime-SGD. These can be
seen in the computation of gt+1 and g̃t which query the gradients at the averages rather than the
iterates. Thus, as promised our algorithms combines two different momentum mechanisms.

Next, we present our main result, which shows that Alg. 1 yields estimates with a very small error.
The only limitation on the update rule in Eq. (10) is that its iterates {wt}t always belong to K.

Theorem 4.1. Let f : K 7→ R, and assume thatK is convex with diameter D, and that the assumption
in Equations (2),(3),(4) hold. Then invoking Alg. 1 with {αt = t+ 1}t and {βt = 1/αt}, ensures,

E∥ϵt∥2 := E∥dt −∇f(xt)∥2 ≤ σ̃2/t ,

here ϵt := dt −∇f(xt), and σ̃2 := 32D2σ2
L + 2σ2. ⋆ In App. D.1 we provide high-prob. bounds.

So according to the above theorem, the overall error of dt compared to the exact gradient ∇f(xt)
shrinks as we progress. Conversely, in standard SGD (as well as in Anytime-SGD) the expected
square error is fixed, namely E∥gt −∇f(wt)∥2 ≤ O(σ2).

Based Thm. 4.1, we may analyze Alg. 1 with the specific SGD-type update rule presented in Eq. (9).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 µ2-SGD

Input: #Iterations T , initialization x1, η > 0, weights {αt}t, Corrected Momentum weights {βt}t
Initialize: set w1 = x1, draw z1 ∼ D and set d1 = ∇f(x1, z1)
for t = 1, . . . , T do

Iterate Update:
Use an update rule to compute wt+1 ∈ K (10)

Query Update (Anytime-SGD style):
xt+1 =

α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 , (11)

Update Corrected Momentum (STORM style):
draw zt+1 ∼ D, compute gt+1 := ∇f(xt+1; zt+1), and g̃t := ∇f(xt; zt+1) and update,

dt+1 = gt+1 + (1− βt+1)(dt − g̃t) (12)

end for
output: xT

Theorem 4.2 (µ2-SGD Guarantees). Let f : Rd 7→ R be a convex function, and assume that
w∗ ∈ argminw∈K f(w) is also its global minimum in Rd. Also, let us make the same assumptions
as in Thm. 4.1. Then invoking Alg. 1 with {αt = t+ 1}t and {βt = 1/αt}t, and using the SGD-type
update rule (9) with a learning rate η ≤ 1/8LT inside Eq. (10) of Alg. 1 guarantees,

E(f(xT)− f(w∗)) = E∆T ≤ O

(
D2

ηT 2
+ 2ησ̃2 +

4Dσ̃√
T

)
,

where ∆t := f(xt)− f(w∗), and σ̃2 := 32D2σ2
L + 2σ2.

Stability of µ2-SGD. The above lemma shows that µ2-SGD obtains the optimal SGD convergence
rates for both offline (noiseless) and noisy case with the same choice of fixed learning rate ηOffline =
1

8LT , which does not depend on the noise σ̃. This in contrast to SGD, which require either reducing
the offline learning rate by a factor of σ

√
T ; or using sophisticated adaptive learning rates (Duchi

et al., 2011; Levy et al., 2018).

Moreover, letting ηNoisy = 1/(8LT + σ̃T 3/2/D), than it can be seen that in the noisy case our
approach enables to employ learning rates in an extremely wide range of [ηNoisy, ηOffline]; and still
obtain the same optimal SGD convergence rate. Indeed note that, ηOffline/ηNoisy ≈ (σ̃/L)T 1/2.

Comment: Note that in Theorem 4.2 we assume that the global minimum of f(·) belongs to K. In
the next section we present µ2 − ExtraSGD — an accelerated version of µ2-SGD, that does not
require this assumption, and enables to obtain accelerated convergence rates as well as better stability.

4.1 EXTENSIONS

Uniformly Small Error. We have shown that upon using a single sample per-iteration, our approach
enables to yields gradient estimates dt’s with a shrinking square error of O(1/t). Nevertheless, if we
like to incorporate early stopping, it is desirable to have a uniformly small error of O(1/T) across all
iterates. In the appendix we show that this is possible, and only comes at the price of a logarithmic
increase in the overall sample complexity. The idea is to incorporate a decaying batch-size into our
approach: at round t we suggest to use a batch-size bt ∝ T/t. Thus, along T rounds we use a total of∑T

t=1 bt = O(T log T) samples. This modification allows a uniformly small square error of O(1/T)
across all iterates.
Accurate Estimates of General Operators. We have shown that our approach enables to yield
O(1/t) estimates for gradient estimates of the query point {xt}t∈[T]. This can be similarly generalized
to yielding O(1/t) estimates for other operators. For example, if we like to estimate the Hessian
∇2f(xt), and we assume Lipschitz continuous Hessians and bounded variance analogously to
Eq. (2),(3),(4), then we can maintain good Hessian estimates in the spirit of Eq. (12)
Unweighted Variant of µ2-SGD. It is natural to ask whether we can employ the more standard

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

uniform weights {αt = 1}t∈[T], within µ2-SGD. Going along very similar lines to our proof for
Thm. 4.2, we show that this indeed can be done while using η ∝ 1/L log T , and yields similar
bounds, albeit suffering logarithmic factors in T .

4.2 NECESSITY OF BOTH MECHANISMS

Here we discuss the importance of combining both Anytime and STORM mechanisms to obtaining
the shrinking error property (see Thm. 4.1) of µ2-SGD, which is a key to our other results. Concretely,
the Anytime mechanism (without STORM) appearing in Equations (5) (6), is employing gradient
estimates of the form gt := ∇f(xt; zt), and it is therefore immediate that error of these gradient
estimates ∥ϵAnytime

t ∥2 := ∥gt − ∇f(xt)∥2 is O(1), which is similar to standard SGD. Conversely,
the STORM mechanisms (without Anytime) appearing in Equations (7) (8) maintains estimates
dt. The STORM update rule yields a variance reduction, which depends on the distance between
consecutive query points i.e. ∥wt − wt−1∥2, which will in turn depend on the learning rate (as
in the original STORM paper). This couples between the variance reduction mechanism and the
learning rate, and therefore fails to achieve robustness to the learning rate (for example: using a fixed
learning rate within the standard STORM approach will fail to converge). Thus, the combination of
these techniques is crucial towards obtaining the shrinking error substantiated in Thm. 4.1, which
is independent of the learning rate, and therefore allows to obtain stability as we substantiate in
Theorems 4.2 and 5.2.

4.3 PROOF SKETCH OF THM. 4.1

Proof. First note that the xt’s always belong to K, since they are weighted averages of {wt ∈ K}t’s.
Our first step is to bound the difference between consecutive queries. The definition of xt implies:
α1:t−1(xt − xt−1) = αt(wt − xt) , yielding,

∥xt − xt−1∥2 = (αt/α1:t−1)
2 ∥wt − xt∥2 ≤ (16/α2

t−1)D
2 . (13)

where we used αt = t+1 implying αt/α1:t−1 ≤ 4/αt−1 for any t ≥ 2, we also used ∥wt−xt∥ ≤ D.
Notation: Prior to going on with the proof we shall require some notation. We will denote ḡt :=
∇f(xt), and recall the following notation from Alg. 1: gt := ∇f(xt, zt) ; g̃t−1 := ∇f(xt−1, zt).
We will also denote, ϵt := dt − ḡt .

Recalling Eq. (12), and combining it with the above definition of ϵt enables to derive the following,

αtϵt = βtαt(gt − ḡt) + (1− βt)(αtZt +
αt

αt−1
αt−1ϵt−1) ,

where we denote Zt := (gt− ḡt)− (g̃t−1− ḡt−1). Now, using αt = t+1, and βt = 1/(t+1) then it
can be shown that αtβt = 1,and αt(1−βt) = αt−1 := αt−1. Moreover, (1−βt)

αt

αt−1
= αt−1

αt−1
= 1.

Plugging these above yields,

αtϵt = αt−1Zt + αt−1ϵt−1 + (gt − ḡt) = Mt + αt−1ϵt−1 . (14)

where for any t > 1 we denote Mt := αt−1Zt + (gt − ḡt), as well as M1 = g1 − ḡ1. Unrolling the
above equation yields an explicit expression for any t ∈ [T]: αtϵt =

∑t
τ=1 Mτ .

Notice that the sequence {Mt}t is martingale difference sequence with respect to the natural filtration
{Ft}t induced by the history of the samples up to time t; which implies,

E∥αtϵt∥2 =

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E∥Mτ∥2 ≤ 2

t∑
τ=1

α2
t−1E∥Zt∥2 + 2

t∑
τ=1

E∥gt − ḡt∥2 . (15)

Using Eq. (4) together with Eq. (13) allows to bound, E∥Zt∥2 = E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 ≤
σ2
L∥xt − xt−1∥2 ≤ 16σ2

LD
2/α2

t−1 , and we may also bound E∥gt − ḡt∥2 ≤ σ2. Plugging it above
back into Eq. (15) and summing establishes the theorem.

5 ACCELERATED VERSION: µ2 − EXTRASGD

Here we present an accelerated version that makes use of a double momentum mechanism as we
do for µ2-SGD. Our approach relies on an algorithmic template named ExtraGradient (Korpelevich,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1976; Nemirovski, 2004; Juditsky et al., 2011). The latter technique has already been combined
with the Anytime-SGD mechanism in Cutkosky (2019); Kavis et al. (2019), showing that it leads to
acceleration. Here, we further blend an appropriate STORM Mechanism, leading to a new method
that we name µ2 − ExtraSGD . Our main result is presented in Thm. 5.2.

On the technical side, our accelerated version requires a careful and delicate blend of several
techniques in the right interweaved manner, which leads to a concise yet delicate analysis.

Optimistic OGD, Extragradient and UnixGrad: The extragradient technique is related to an
algorithmic template named Optimistic Online GD (Optimistic OGD) (Rakhlin & Sridharan, 2013).
In this algorithm we receive a sequence of (possibly arbitrary) loss vectors {dt ∈ Rd}t∈[T] in an
online manner. And our goal is to compute a sequence of iterates (or decision points) {wt ∈ K}t,
whereK is given convex set. Note that we may pick wt only based on past information {d1, . . . , dt−1}.
And our goal is to ensure a low weighted regret for any w ∈ K, where the latter is defined as,

RT (w) :=

T∑
t=1

αtdt · (wt − w∗) ,

and {αt > 0} is a sequence of predefined weights. In the optimistic setting we assume that we
may access a sequence of “hint vectors" {d̂t ∈ Rd}t and that prior to picking wt we may also
access {d̂1, . . . , d̂t}. Rakhlin & Sridharan (2013) have shown that if the hints are useful, in the
sense that d̂t ≈ dt, then one can reduce the regret by properly incorporating the hints. Thus, in
Optimistic-OGD we maintain two sequences: a decision point sequence {wt}t and an auxiliary
sequence {yt}, updated as follows,

Optimistic OGD:
wt = argmin

w∈K
αtd̂t · w +

1

2η
∥w − yt−1∥2 & yt = argmin

y∈K
αtdt · y +

1

2η
∥y − yt−1∥2 (16)

It was shown in Rakhlin & Sridharan (2013); Kavis et al. (2019) that the above algorithm enjoys the
following regret bound for any w ∈ K,
Theorem 5.1 (See e.g. the proof of Thm. 1 in Kavis et al. (2019)). Let η > 0, {αt ≥ 0}t∈[T] and
K be a convex set with bounded diameter D. Then Optimistic-OGD ensures the following for any
w ∈ K, T∑

t=1

αtdt · (wt − w) ≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥dt − d̂t∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 .

The Extragradient algorithm (Nemirovski, 2004) aims to minimize a convex function f : K 7→ R.
To do so, it applies the Optimistic-OGD template with the following choices of loss and hint vectors:
d̂t = ∇f(yt−1), and dt := ∇f(wt).
The UnixGrad algorithm (Kavis et al., 2019), can be seen as an Anytime version of Extragradient,
where again we aim to minimize a convex function f : K 7→ R. In the spirit of Anytime-GD,
UnixGrad maintains two sequences of weighted averages {xt, x̂t}t based on {wt, yt}t,

x̂t =
α1:t−1

α1:t
xt−1 +

αt

α1:t
yt−1 , xt =

α1:t−1

α1:t
xt−1 +

αt

α1:t
wt (17)

Then, based on the above averages UnixGrad sets the loss and hint vectors as follows: d̂t = ∇f(x̂t),
and dt := ∇f(xt). Note that the above averaging rule implies that the xt’s are weighted averages of
the wt’s, i.e. xt =

1
α1:t

∑t
τ=1 ατwτ . The latter enables to utilize the Anytime guarantees of Thm. 3.1.

There also exist stochastic versions of the above approaches where we may only query noisy gradients.

Our Approach. We suggest to employ the Optimistic-OGD template together with a
STORM mechanism on top of the Anytime mechanism employed by UnixGrad. Specifically,
we maintain the same weighted averages as in Eq. (17), and define momentum estimates as follows:
At round t draw a fresh sample zt ∼ D, and compute

g̃t−1 = ∇f(xt−1; zt) , ĝt = ∇f(x̂t; zt) , gt = ∇f(xt; zt) . (18)

Based on the above compute the (corrected momentum) loss and hint vectors as follows,

αtd̂t = αtĝt + (1− βt)αt(dt−1 − g̃t−1) & αtdt = αtgt + (1− βt)αt(dt−1 − g̃t−1) (19)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 µ2 − ExtraSGD

Input: #Iterations T , initialization y0, η > 0, weights {αt}t, Corrected Momentum weights {βt}t
Initialize: set x0 = 0, and x̂1 = y0, draw z1 ∼ D and set d0 = g̃0 = d̂1 = ∇f(x̂1, z1)
for t = 1, . . . , T do

Compute: wt = argmin
w∈K

αtd̂t ·w+ 1
2η∥w− yt−1∥2 , & Update: xt =

α1:t−1

α1:t
xt−1 +

αt

α1:t
wt

Compute: gt = ∇f(xt; zt) & Update: dt = gt + (1− βt)(dt−1 − g̃t−1)

Compute: yt = argmin
y∈K

αtdt · y + 1
2η∥y − yt−1∥2 & Update: x̂t+1 = α1:t

α1:t+1
xt +

αt+1

α1:t+1
yt

Draw a fresh sample zt+1 ∼ D and compute, g̃t = ∇f(xt; zt+1) , ĝt+1 = ∇f(x̂t+1, zt+1)

Update: d̂t+1 = ĝt+1 + (1− βt+1)(dt − g̃t)

end for
output: xT

And then update according to Optimistic OGD in Eq. (16). Notice that the update rule for αtdt is the
exact same update that we use in Alg. 1; additionally as we have already commented, the xt sequence
in Eq. (17) is an {αt}t weighted average of the {wt}t sequence. Therefore, if we pick αt = t+ 1,
and βt = 1/αt, then we can invoke Thm. 4.1 implying that,

E∥ϵt∥2 := E∥dt −∇f(xt)∥2 ≤ σ̃2/t , where σ̃2 := 32D2σ2
L + 2σ2 .

The pseudo-code in Alg. 2 depicts our µ2−ExtraSGD algorithm with the appropriate computational
order. It can be seen that it combines Optimistic-OGD updates (Eq. (16)), together with appropriate
Anytime averaging (Eq. (17)), and together with STORM updates for dt, d̂t (Eq. (19)).

We are now ready to state the guarantees of µ2 − ExtraSGD ,
Theorem 5.2 (µ2 − ExtraSGD). Let f : K 7→ R be a convex function and K a convex set with
diameter D, and denote w∗ ∈ argminw∈K f(w). Then under the assumption in Equations (2),(3),(4),
invoking Alg. 2 with {αt = t+ 1}t and {βt = 1/αt}t, and η ≤ 1/2L guarantees,

E(f(xT)− f(w∗)) := E∆T ≤ O

(
D2

ηT 2
+

σ̃D√
T

)
.

As can be seen in Alg. 2, the appropriate µ2 accelerated version requires a careful and delicate blend
of the aforementioned techniques in the right interweaved manner.
Stability of µ2 − ExtraSGD . The above lemma shows that µ2 − ExtraSGD obtains the
optimal rates for both offline (noiseless) and noisy cases with the same choice of fixed learning
rate ηOffline = 1/2L. This contrasts existing accelerated methods, which require either to reduce
the offline learning rate by a factor of σ

√
T (Xiao, 2010); or to employ sophisticated adaptive

learning rates (Cutkosky, 2019; Kavis et al., 2019). Moreover, letting ηNoisy := 1/(2L+ σ̃T 3/2/D),
then it can be seen that in the noisy case, our approach enables to employ learning rates in an
extremely wide range of [ηNoisy, ηOffline]; and still obtain the same optimal convergence rate of
O
(
LD2/T 2 + σ̃D/

√
T
)

. Indeed note that, the ratio ηOffline/ηNoisy ≈ (σ̃/L)T 3/2. Moreover,
conversely to Thm. 4.2, which requires w∗ ∈ argminw∈K f(w) to be also the global minimum of
f(·); Thm. 5.2 does not require this assumption.

6 EXPERIMENTS

We begin by evaluating our proposed µ2-SGD algorithm in a convex setting, where model weights
were projected onto a unit ball after each gradient update. The evaluation is conducted on the MNIST
dataset (LeCun et al., 2010), using a logistic regression model. We compare our approach with
the parameters suggested by our theoretical framework (αt = t, βt =

1
t) against several baseline

optimizers. This includes each individual component of the µ2-SGD algorithm—STORM and
AnyTime-SGD—all tested with the same parameter settings. As illustrated in Figure 1 and Figure 3,
the µ2-SGD algorithm consistently demonstrates superior stability across a wide range of learning

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

rates. Notably, while the AnyTime-SGD algorithm maintains strong stability over a broad spectrum
of learning rates, STORM encounters difficulties at higher rates. By integrating key elements from
both STORM and AnyTime-SGD, the µ2-SGD approach achieves a more stable high-performance
than either method alone. Additionally, when considering a more typical range of learning rates
for this setup (see Figure 1(b)), µ2-SGD may not always achieve the absolute best result compared
the other algorithms. Nevertheless, it consistently achieves high performance and robustness across
a broader range of learning rates, significantly reducing the need for an extensive search to find a
high-performing learning rate. On top of that, by leveraging the momentum parameters grounded in
our theoretical framework, µ2-SGD further eliminates the need for hyperparameter tuning—a process
that can be highly computationally expensive.

(a) Over a Wide Range of Leaning Rates. (b) Over a Typical Range of Learning Rates.

Figure 1: MNIST: Test Accuracy Over Different Learning Rates in a Convex Setting (↑ is better).

Deep Learning Variant. We demonstrate the effectiveness of our approach in non-convex settings
using a 2-layer convolutional network on the MNIST dataset and ResNet-18 on the CIFAR-10
dataset (Krizhevsky et al., 2014). First, we reformulate the AnyTime update, originally defined as
xt :=

αtwt+α1:t−1xt−1

α1:t
into a mathematically equivalent momentum-based approach:

xt = γtwt + (1− γt)xt−1

where γt :=
αt

α1:t
. For non-convex models, decaying momentum parameters in the iteration number

can be overly aggressive; thus, we propose a heuristic approach using fixed momentum parameters
to improve adaptability. Note that, by setting αt = Cα1:t−1, where C > 0 is a constant, we derive
γt =

C
C+1 , making it fixed for all time steps t ≥ 1.

We show that using fixed momentum parameters (γt = 0.1, βt = 0.9) in the non-convex setting
ensures high stability and strong performance (i) across a wide range of learning rates and (ii)
over random seeds, as shown in Figure 2 and in App. H.3. Consistent results were observed on
both MNIST and CIFAR-10, as detailed in App. H.3. These findings highlight the robustness and
adaptability of our method, making it a reliable choice for optimizing non-convex models.

(a) CIFAR-10: Over a Wide Range. (b) CIFAR-10: Over a Typical Search Range. (c) MNIST: Over a Typical Search Range.

Figure 2: Test Accuracy Over a Range of Learning Rates in Non-Convex Setups (↑ is better).

All experiments were conducted using the PyTorch framework. The convex experiments were run on
an Apple M2 chip and the non-convex on an NVIDIA A30 GPU. The results were averaged over
three different random seeds. For further details on the experimental setup, please see App. H.

7 CONCLUSION

By carefully blending two recent momentum techniques, we designed a new shrinking-error gradient
estimate for the SCO-EOS setting. Based on it, we presented two algorithms that rely on SGD and
Extragradient templates and showed their significant stability w.r.t. the choice of the learning rate,
thus enabling a much more robust training. In the future, it will be interesting to further explore
the applicability of our non-convex heuristic for huge-scale models, which require much more
computational resources. Moreover, it will be interesting to understand whether we can design an
algorithm for non-convex problems, with similar theoretical properties to our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kimon Antonakopoulos, Dong Quan Vu, Volkan Cevher, Kfir Levy, and Panayotis Mertikopoulos.
Undergrad: A universal black-box optimization method with almost dimension-free convergence
rate guarantees. In International Conference on Machine Learning, pp. 772–795. PMLR, 2022.

Amir Beck. Introduction to nonlinear optimization: Theory, algorithms, and applications with
MATLAB. SIAM, 2014.

Ashok Cutkosky. Lecture notes for ec525: Optimization for machine learning.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International Conference
on Machine Learning, pp. 1446–1454. PMLR, 2019.

Ashok Cutkosky. Lecture notes for ec525: Optimization for machine learning. EC525: Optimization
for Machine Learning, 2022.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 7449–7479. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/defazio23a.html.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Proceedings of The 28th Conference on Learning Theory,
pp. 797–842, 2015.

Niv Giladi, Mor Shpigel Nacson, Elad Hoffer, and Daniel Soudry. At stability’s edge: How to adjust
hyperparameters to preserve minima selection in asynchronous training of neural networks? In
International Conference on Learning Representations, 2019.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

Chonghai Hu, Weike Pan, and James T Kwok. Accelerated gradient methods for stochastic optimiza-
tion and online learning. In Advances in Neural Information Processing Systems, pp. 781–789,
2009.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic step
size schedule. In Proceedings of the 40th International Conference on Machine Learning (ICML),
2023.

Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. arXiv preprint
arXiv:2203.00444, 2022.

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: a universal, adaptive algorithm
with optimal guarantees for constrained optimization. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pp. 6260–6269, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon,
12:747–756, 1976.

11

https://proceedings.mlr.press/v202/defazio23a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55(5), 2014.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1-2):365–397, 2012.

Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

Kfir Yehuda Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and
acceleration. In NeurIPS, 2018.

Kfir Yehuda Levy, Ali Kavis, and Volkan Cevher. Storm+: Fully adaptive sgd with recursive
momentum for nonconvex optimization. In NeurIPS, 2021.

Julien Mairal, Francis R. Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for
sparse coding. In Andrea Pohoreckyj Danyluk, Léon Bottou, and Michael L. Littman (eds.),
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009,
Montreal, Quebec, Canada, June 14-18, 2009, volume 382 of ACM International Conference
Proceeding Series, pp. 689–696. ACM, 2009. doi: 10.1145/1553374.1553463. URL https:
//doi.org/10.1145/1553374.1553463.

Stanislav Minsker. On some extensions of bernstein’s inequality for self-adjoint operators. Statistics
& Probability Letters, 127:111–119, 2017.

Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM
Journal on Optimization, 15(1):229–251, 2004.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2).
In Soviet Mathematics Doklady, volume 27, pp. 372–376, 1983.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr computa-
tional mathematics and mathematical physics, 4(5):1–17, 1964.

Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences.
In Advances in Neural Information Processing Systems, pp. 3066–3074, 2013.

Benjamin Recht, Christopher Ré, Stephen J. Wright, and Feng Niu. Hogwild: A lock-free ap-
proach to parallelizing stochastic gradient descent. In John Shawe-Taylor, Richard S. Zemel,
Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger (eds.), Advances in Neu-
ral Information Processing Systems 24: 25th Annual Conference on Neural Information Pro-
cessing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain,
pp. 693–701, 2011. URL https://proceedings.neurips.cc/paper/2011/hash/
218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient
solver for svm. In Proceedings of the 24th international conference on Machine learning, pp.
807–814, 2007.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Jun-Kun Wang, Jacob Abernethy, and Kfir Y Levy. No-regret dynamics in the fenchel game: A
unified framework for algorithmic convex optimization. arXiv preprint arXiv:2111.11309, 2021.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688.
Citeseer, 2011.

12

https://doi.org/10.1145/1553374.1553463
https://doi.org/10.1145/1553374.1553463
https://proceedings.neurips.cc/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/218a0aefd1d1a4be65601cc6ddc1520e-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A STABILITY W.R.T. CHOICE OF LEARNING RATE

Here we formally explain what we mean when we relate to the stability of an algorithm A w.r.t.
choice of the learning rate η.

Given a SCO algorithm A, we can usually present its generalization bounds as follows:
For a given choice of 0 ≤ η ≤ η̄, then the algorithm A ensures,

Excess-Loss ≤ RA(η) ,

whereR : R+ 7→ R+ is the convergence rate as a function of the learning rate η. And this description
applies to all the methods that we mention in our paper.

In this case we can define the optimal learning rate as follows,

η∗ := min
η∈[0,η̄]

RA(η) .

And we define the range of order optimal learning rates of A to be:

RangeA := {η ∈ [0, η̄] : RA(η) ≤ 2RA(η
∗)} .

In words, this set is comprised of all learning rates that achieve the optimal convergence rate up to a
multiplicative factor of 2 1.

Usually, the set RangeA is a line segment in R+, and we can therefore write RangeA = [ηmin, ηmax].
And we can further denote,

ratioA = ηmax/ηmin .

Thus, higher ratios imply improved stability of A w.r.t. choice of the learning rate η. Next,
we compare the stability for the methods that we mention in our paper, for the SCO-EOS set-
ting that we describe in Sec. 2. And substantiate the improved stability of µ2-SGD and of
µ2 − ExtraSGD overstandardSGDandacceleratedstochasticSGD.

Stability of Standard SGD: For standard SGD it is well known that for the choice η ∈ (0, 1
2L] it

enjoys a convergence rate of,

RSGD(η) :=
D2

ηT
+ ησ2

Thus, in the typical case where D
σ
√
T
≤ 1

2L (i.e. when the noise is not negligible) we have η∗ = D
σ
√
T

,

andRSGD(η
∗) = 2Dσ√

T
. And it can therefore be validated that,

ratioSGD ≤ 15 .

Conversely, (ii) in the non typical case where D
σ
√
T

> 1
2L we have η∗ = 1

2L . In this case we can
validate again that,

ratioSGD ≤ 15 .

This substantiates that for standard SGD we have stability ratio of ratioSGD ≈ O(1).

Stability of Accelerated Stochastic SGD: There are several variants of accelerated stochastic SGD.
For such algorithms, and for a learning rate choice of η ∈ (0, 1

2L], such methods enjoy a convergence
rate of (See e.g. Theorem 2 in Lan (2012)),

RAccel−SGD(η) :=
D2

ηT 2
+ ησ2T

Thus, similarly to our analysis of standard SGD, it can be validated that for such methods we have,
ratioAccel−SGD ≈ O(1).

1The choice of 2 is rather arbitrary, and we can similarly choose any factor sufficiently greater than 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Stability of µ2-SGD: As we establish in Theorem 4.2 our µ2-SGD approach ensures that for the
choice of η ∈ (0, 1

8LT], it enjoys a convergence rate of,

Rµ2−SGD(η) :=
D2

ηT 2
+ 2ησ̃2 +

4Dσ̃√
T

.

Thus, in this case we have η∗ = D√
2σ̃T

, and Rµ2−SGD(η
∗) = 2

√
2Dσ̃
T + 4Dσ̃√

T
. And it can therefore

be validated that in this case we have ηmin ≈ D
σ̃T 3/2 and ηmax = 1

8LT , and therefore,

ratioµ2−SGD ≈
σ̃

LD

√
T .

Stability of µ2 − ExtraSGD : As we establish in Theorem 5.2 our µ2 − ExtraSGD approach
ensures that for the choice of η ∈ (0, 1

2L], it enjoys a convergence rate of,

Rµ2 − ExtraSGD (η) :=
D2

ηT 2
+

σ̃D√
T

.

Thus, in this case we have η∗ = 1
2L , andRµ2 − ExtraSGD (η∗) = 2LD2

T 2 + σ̃D√
T

. And it can therefore

be validated that in this case we have ηmin ≈ D
σ̃T 3/2 and ηmax = 1

2L , and therefore,

ratioµ2 − ExtraSGD ≈
σ̃

LD
T 3/2 .

B EXPLAINING THE BOUNDED SMOOTHNESS VARIANCE ASSUMPTION

Here we show that Eq. (3) implies that Eq. (4) holds for some σ2
L ∈ [0, L].

Fixing x, y ∈ K, then Eq. (3) implies that for any z ∈ Support{D} there exists Lx,y;z ∈ [0, L] such
that,

∥∇f(x; z)−∇f(y; z)∥2 = L2
x,y;z∥x− y∥2 .

Similarly there exists Lx,y ∈ [0, L] such that,

∥∇f(x)−∇f(y)∥2 = L2
x,y∥x− y∥2 .

And clearly in the deterministic case we have Lx,y;z = Lx,y ,∀z ∈ Support{D}. Therefore,

E∥(∇f(x; z)−∇f(x))− (∇f(y; z)−∇f(y))∥2 = E∥∇f(x; z)−∇f(y; z)∥2 − ∥∇f(x)−∇f(y))∥2

= E(L2
x,y;z − L2

x,y) · ∥x− y∥2 = σ2
L{x, y} · ∥x− y∥2 ,

where we have used E(∇f(x; z) − ∇f(y; z)) = (∇f(x) − ∇f(y)), and we denote σ2
L{x, y} :=

E(L2
x,y;z − L2

x,y). This notation implies that σ2
L{x, y} ∈ [0, L2], and clearly σ2

L{x, y} = 0 in the
deterministic case for all x, y ∈ K. Thus, if we denote,

σ2
L := sup

x,y∈K
σ2
L{x, y} ,

Then σ2
L ∈ [0, L2] satisfies Eq. (4) and is equal to 0 in the deterministic (noiseless) case.

C PROOF OF THM. 4.1

Proof of Thm. 4.1. First note that the xt’s always belong to K, since they are weighted averages of
the {wt ∈ K}t’s. Next we bound the difference between consecutive queries. By definition,

α1:t−1(xt − xt−1) = αt(wt − xt) ,

Implying,

∥xt − xt−1∥2 = (αt/α1:t−1)
2 ∥wt − xt∥2 ≤ (16/t2)D2 = (16/α2

t−1)D
2 . (20)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where we have used αt = t+1 implying αt/α1:t−1 ≤ 4/t for any t ≥ 2, we also used ∥wt−xt∥ ≤ D
which holds since wt, xt ∈ K, finally we use αt−1 = t.

Notation: Prior to going on with the proof we shall require some notation. We will denote ḡt :=
∇f(xt), and recall the following notation form Alg. 1: gt := ∇f(xt, zt) ; g̃t−1 := ∇f(xt−1, zt),
and we will also denote, ḡt := ∇f(xt) ,and

ϵt := dt − ḡt .

Now, recalling Eq. (12),

αtdt = αtgt + (1− βt)αt(dt−1 − g̃t−1) .

Combining the above with the definition of ϵt yields the following recursive relation,

αtϵt := αtdt − αtḡt

= αt(gt − ḡt) + (1− βt)αt(dt−1 − g̃t−1)

= βtαt(gt − ḡt) + (1− βt)αt(dt−1 − g̃t−1 + gt − ḡt)

= βtαt(gt − ḡt) + (1− βt)αt(ḡt−1 − g̃t−1 + gt − ḡt) + (1− βt)αt(dt−1 − ḡt−1)

= βtαt(gt − ḡt) + (1− βt)αt((gt − ḡt)− (g̃t−1 − ḡt−1)) + (1− βt)αt(dt−1 − ḡt−1)

= βtαt(gt − ḡt) + (1− βt)αtZt + (1− βt)
αt

αt−1
αt−1ϵt−1

where we denoted Zt := (gt− ḡt)−(g̃t−1− ḡt−1). Now, using αt = t+1, and βt = 1/(t+1) then it
can be shown that αtβt = 1,and αt(1−βt) = αt−1 := αt−1. Moreover, (1−βt)

αt

αt−1
= αt−1

αt−1
= 1.

Using these relations in the equation above gives,

αtϵt = αt−1Zt + αt−1ϵt−1 + (gt − ḡt) = Mt + αt−1ϵt−1 . (21)

where for any t > 1 we denote Mt := αt−1Zt + (gt − ḡt), as well as M1 = g1 − ḡ1. Unrolling the
above equation yields an explicit expression for any t ∈ [T],

αtϵt =

t∑
τ=1

Mτ . (22)

Now, notice that the sequence {Mt}t is is martingale difference sequence with respect to the natural
filtration {Ft}t induced by the history of the samples up to time t. Indeed,

E[Mt|Ft−1] = E[(gt− ḡt)|Ft−1] +αt−1E[Zt|Ft−1] = E[(gt− ḡt)|xt] +αt−1E[Zt|xt−1, xt] = 0 .

Thus, using Lemma C.1 below gives,

E∥αtϵt∥2 =

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E∥Mτ∥2 =

t∑
τ=1

E∥αt−1Zt + (gt − ḡt)∥2

≤ 2

t∑
τ=1

α2
t−1E∥Zt∥2 + 2

t∑
τ=1

E∥gt − ḡt∥2

≤ 2

t∑
τ=1

α2
t−1E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 + 2

t∑
τ=1

σ2

= 2

t∑
τ=1

α2
t−1E∥(∇f(xt; zt)−∇f(xt))− (∇f(xt−1; zt)−∇f(xt−1))∥2 + 2tσ2

≤ 2

t∑
τ=1

α2
t−1σ

2
L∥xt − xt−1∥2 + 2tσ2

≤ 32D2σ2
L

t∑
τ=1

(α2
t−1/α

2
t−1) + 2tσ2

= (32D2σ2
L + 2σ2) · t

= σ̃2 · t . (23)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

here the first inequality uses ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd; the second
inequality uses the bounded variance assumption; the third inequality uses Eq. (4), and the last
inequality uses Eq. (20).

Dividing the above inequality by α2
t = (t+ 1)2 the lemma follows,

E∥dt −∇f(xt)∥2 = E∥ϵt∥2 = E∥αtϵt∥2/α2
t ≤ σ̃2t/(t+ 12) ≤ σ̃2/(t+ 1) .

Lemma C.1. Let {Mt}t be a martingale difference sequence with respect to a filtration {Ft}t, then
the following holds for any t,

E

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E ∥Mτ∥2 .

C.1 PROOF OF LEMMA C.1

Proof of Lemma C.1. We shall prove the lemma by induction over t. The base case where t = 1
clearly holds.

Now for induction step let us assume that the equality holds for t ≥ 1 and lets prove it holds for t+1.
Indeed,

E

∥∥∥∥∥
t+1∑
τ=1

Mτ

∥∥∥∥∥
2

= E

∥∥∥∥∥Mt+1 +

t∑
τ=1

Mτ

∥∥∥∥∥
2

= E

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

+ E∥Mt+1∥2 + 2E

(
t∑

τ=1

Mτ

)
·Mt+1

=

t+1∑
τ=1

E ∥Mτ∥2 + 2E

[
E

[(
t∑

τ=1

Mτ

)
·Mt+1|Ft

]]

=

t+1∑
τ=1

E ∥Mτ∥2 + 2E

[(
t∑

τ=1

Mτ

)
· E [Mt+1|Ft]

]

=

t+1∑
τ=1

E ∥Mτ∥2 + 0

=

t+1∑
τ=1

E ∥Mτ∥2 ,

where the third line follows from the induction hypothesis, as well as from the law of total expectations;
the fourth lines follows since {Mτ}tτ=1 are measurable w.r.t Ft, and the fifth line follows since
E[Mt+1|Ft] = 0. Thus, we have established the induction step and therefore the lemma holds.

D EXTENSIONS

Here we provide several extensions and additions to Theorem 4.1.

• In Sec. D.1 we provide high-probability bounds for ∥ϵt∥2.

• In Sec. D.2 we show how to obtain E∥ϵt∥2 ≤ O(1/T) at the price of additional O(log T)
factor in the total sample complexity (i.e. we show that this requires a total of O(T log T)
samples rather than O(T) samples).

• Our extension to a more standard variant of SGD, which employs uniform weights and a
learning rate of η ∝ 1/L log T appears in Sec. G

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.1 HIGH PROBABILITY BOUNDS

To obtain high probability bounds we shall require another assumption, that the stochastic gradients
in K are bounded, i.e. that the exist G > 0 such ∥∇f(x, z)∥ ≤ G , ∀x ∈ K, z ∈ Support{D}. We
are now ready to show that w.p. ≥ 1− δ then for all t ∈ [T] we have,

∥ϵt∥2 ≤ O

(
σ̃2

t
· log(T/δ) + U2

max

t2
· log(T/δ)

)
,

where we denote Umax := 8LD + 2G.

Recall that in the proof of Theorem 4.1 we show the following in Eq. (22),

αtϵt =

t∑
τ=1

Mτ := M1:t . (24)

where Mt := αt−1Zt + (gt − ḡt), as well as M1 = g1 − ḡ1, where we denoted Zt := (gt − ḡt)−
(g̃t−1 − ḡt−1). Thus Mt is a martingale difference sequence w.r.t. the natural filtration induced by
the upcoming samples. And Mt is also bounded w.p. 1 since,

∥Mt∥ = ∥αt−1Zt + (gt − ḡt)∥
≤ ∥αt−1Zt∥+ ∥(gt − ḡt)∥
≤ ∥αt−1(gt − g̃t−1)∥+ ∥αt−1(ḡt − ḡt−1)∥+ ∥(gt − ḡt)∥
≤ Lαt−1∥xt − xt−1∥+ Lαt−1∥xt − xt−1∥+ 2G

≤ 2Lαt−1 · 4D/αt−1 + 2G

= 8LD + 2G

:= Umax .

where we have used the smoothness of the ∇f(·, z) as well as Eq. (20). We also denote Umax :=
8LD + 2G.

Finally, similarly to the proof of Theorem 4.1 we can show that,

Et−1∥Mt∥2 = σ̃2

where Et−1 denotes conditional expectation conditioned over history of the samples (randomizations)
up until and including round t− 1.

Now, since the {Mt}t is a martingale sequence w.r.t. the natural filtration induced by optimization
process, and since it is bounded, with bounded conditional second moments, then we can use Cor. 4.1
in Minsker (2017) 2 to show that w.p. ≥ 1− δ the for all t ∈ [T] we have,

∥M1:t∥2 ≤ O
(
σ̃2t · log(T/δ) + U2

max log(T/δ)
)

where the T inside the logarithm comes from using the union bound.

Thus, based on the above and on Eq. (24), we immediately conclude that, w.p. ≥ 1− δ then for all
t ∈ [T] we have,

∥ϵt∥2 =
1

α2
t

∥M1:t∥2 ≤ O

(
σ̃2

t
· log(T/δ) + U2

max

t2
· log(T/δ)

)
where we used αt = t. This concludes the proof.

D.2 UNIFORMLY SMALL ERROR BOUNDS

Here we show that upon increasing the sample complexity by a factor of log T , enables to obtain a
uniformly small bound of E∥ϵt∥2 ≤ σ̃2/T ,∀t ∈ [T].

To do do, we will employ a batch-size of size bt = ⌈T/t⌉ at round t.

2Actaully Cor. 4.1 in Minsker (2017) is a Corollary of Thm. 3.1 therein, which applies to a sum of independent
matrices. Nevertheless, we can obtain a corollary for the Martingale difference case for vectors from Thm. 3.2 in
Minsker (2017) which applies to this martingale difference case.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Total # Samples. The total number of samples that we use along all rounds is therefore
∑T

t=1 bt =
O(T log T). Thus the sample complexity only increases by log T factor.

Error Analysis. Upon using a batch-size bt the variance of our estimator in round t decreases by a
factor of bt. Thus, along the exact same lines as in Eq. (23) we can show the following.

E∥αtϵt∥2 ≤
t∑

τ=1

σ̃2

bτ
≤ σ̃2

T

t∑
τ=1

τ ≤ σ̃2 t
2

T
.

Recalling αt = t and dividing by α2
t yields,

E∥ϵt∥2 ≤
σ̃2

T
,

which establishes the uniformly small error.

E PROOF OF THM. 4.2

Proof of Thm. 4.2. The proof is a direct combination of Thm. 4.1 together with the standard regret
bound of OGD (Online Gradient Descent), which in turn enables to utilize the Anytime guarantees of
Thm. 3.1.
Part 1: Regret Bound. Standard regret analysis of the update rule in Eq. (9) implies the following
for any t (see e.g. (Hazan et al., 2016), as well as Theorem 15.1 in (Cutkosky)),

t∑
τ=1

ατdτ · (wτ − w∗) ≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 . (25)

Part 2: Anytime Guarantees. Since the xt’s are weighted averages of the wt’s we may invoke
Thm. 3.1, which ensures for any t ∈ [T],

α1:t∆t = α1:t(f(xt)− f(w∗)) ≤
t∑

τ=1

ατ∇f(xτ) · (wτ − w∗) ,

where we denote ∆t := f(xt)− f(w∗).

Part 3: Combining Guarantees. Combining the above Anytime guarantees together with the bound
in Eq. (25) yields,

α1:t∆t ≤
t∑

τ=1

ατ∇f(xτ) · (wτ − w∗)

=

t∑
τ=1

ατdτ · (wτ − w∗) +

t∑
τ=1

ατ (∇f(xτ)− dτ) · (wτ − w∗)

=
D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 −

t∑
τ=1

ατ ϵτ · (wτ − w∗)

≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥∇f(xτ) + ϵτ∥2 +

t∑
τ=1

∥ατ ϵτ∥ · ∥wτ − w∗∥

≤ D2

2η
+ η

t∑
τ=1

α2
τ∥∇f(xτ)∥2 + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 2ηL

t∑
τ=1

α2
τ∆τ + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τ∆τ + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥ , (26)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where the first inequality follows from Cauchy-Schwartz; the second inequality holds since ∥wt −
w∗∥ ≤ D, as well as from using ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd, the
third inequality follows by the self bounding property for smooth functions (see Lemma E.1 below)
implying that ∥∇f(xτ)∥2 ≤ 2L(f(xτ)− f(w∗)) := 2L∆τ ; and the fourth inequality follows due
to α2

τ ≤ 2α1:τ which holds since ατ = τ + 1.

Lemma E.1. (See e.g. (Levy et al., 2018; Cutkosky, 2019)) Let F : Rd 7→ R be an L-smooth function
with a global minimum x∗, then for any x ∈ Rd we have,

∥∇F (x)∥2 ≤ 2L(F (x)− F (w∗)) .

Next, we will take expectation over Eq. (26), yielding,

α1:tE∆t ≤
D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + η

t∑
τ=1

α2
τE∥ϵτ∥2 +D

t∑
τ=1

E∥ατ ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + η

t∑
τ=1

α2
τE∥ϵτ∥2 +D

t∑
τ=1

√
α2
τE∥ϵτ∥2

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + η

t∑
τ=1

α2
τ · σ̃2/ατ +D

t∑
τ=1

√
α2
τ · σ̃2/ατ

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + ησ̃2
t∑

τ=1

ατ +Dσ̃

t∑
τ=1

√
ατ

≤ D2

2η
+ 4ηL

T∑
τ=1

α1:τE∆τ + ησ̃2
T∑

τ=1

ατ +Dσ̃

T∑
τ=1

√
ατ

≤ D2

2η
+ 4ηL

T∑
τ=1

α1:τE∆τ + ησ̃2α1:T + 2Dσ̃T 3/2

≤ D2

2η
+

1

2T

T∑
τ=1

α1:τE∆τ + ησ̃2α1:T + 2Dσ̃T 3/2 , (27)

where the second lines is due to Jensen’s inequality implying that EX ≤
√

EX2 for any random
variable X; the third line follows from E∥ϵt∥2 ≤ σ̃2/αt which holds by Thm. 4.1; the fifth line holds
since t ≤ T ; the sixth line follows since

∑T
t=1

√
αt ≤ 2T 3/2, and the last line follows since we pick

η ≤ 1/8LT .

To obtain the final bound we will apply the lemma below to Eq. (27),

Lemma E.2. Let {At}t∈[T] be a sequence of non-negative elements and B ∈ R, and assume that for
any t ≤ T ,

At ≤ B +
1

2T

T∑
t=1

At ,

Then the following bound holds,
AT ≤ 2B .

Taking At ← α1:tE∆t and B ← D2

2η + ησ̃2α1:T + 2Dσ̃T 3/2 provides the following explicit bound,

α1:T E∆T ≤
D2

η
+ 2ησ̃2α1:T + 4Dσ̃T 3/2

Dividing by α1:T and recalling α1:T = Θ(T 2) gives,

E(f(xT)− f(w∗)) = E∆T ≤ O

(
D2

ηT 2
+ 2ησ̃2 +

4Dσ̃√
T

)
,

which concludes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.1 PROOF OF LEMMA E.2

Proof of Lemma E.2. Summing the inequality At ≤ B + 1
2T

∑T
t=1 At over t gives,

A1:T ≤ TB + T
1

2T
A1:T = TB +

1

2
A1:T ,

Re-ordering we obtain,

A1:T ≤ 2TB .

Plugging this back to the original inequality and taking t = T gives,

AT ≤ B +
1

2T
A1:T ≤ 2B .

which concludes the proof.

F PROOF OF THM. 5.2

Proof of Thm. 5.2. The proof decomposes according to the techniques that µ2 − ExtraSGD em-
ploys.
Part I: Anytime Guarantees. Since the xt’s are {αt}t weighted averages of the {wt}t’s we can
invoke Thm. 3.1 which implies,

α1:T (f(xT)− f(w∗)) ≤
T∑

t=1

αt∇f(xt) · (wt − w∗) =

T∑
t=1

αtdt · (wt − w∗)−
T∑

t=1

αtϵt · (wt − w∗) .

(28)

where we have denote ϵt := dt −∇f(xt).
Part II: Optimistic OGD Guarantees. Since the update rule for {wt, yt}t satisfies the Optimistic-
OGD template w.r.t the sequences of loss and hint vectors {dt, d̂t}t we can apply Lemma 5.1 to
bound the weighted regret in Eq. (28) as follows,

α1:T (f(xT)− f(w∗))

≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥dt − d̂t∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 −
T∑

t=1

αtϵt · (wt − w∗)

≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥gt − ĝt∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 +
T∑

t=1

∥αtϵt∥ · ∥wt − w∗∥

≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥∇f(xt; zt)−∇f(x̂t; zt)∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+

ηL2

2

T∑
t=1

α2
t ∥xt − x̂t∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+

ηL2

2

T∑
t=1

α2
t

(
αt

α1:t

)2

∥wt − yt−1∥2 −
1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+

4ηL2

2

T∑
t=1

∥wt − yt−1∥2 −
1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+D

T∑
t=1

∥αtϵt∥ , (29)

where the first line uses Eq. (28) together with Thm. 5.1; the second line uses dt − d̂t = gt − ĝt
which follows by Eq. (19); and the third line follows by the definitions of gt, ĝt, as well as from
∥wt−w∗∥ ≤ D, which holds since wt, w

∗ ∈ K; the fourth line follows by our assumption in Eq. (3);

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

the fifth line holds since xt − x̂t = (αt/α1:t)(wt − yt−1) which holds due to Eq. (17); the sixth line
holds since α4

t /(α1:t)
2 ≤ 4 ,∀t ≥ 1; and the last line follows since 2ηL2 − 1/(2η) ≤ 0 which holds

since we assume η ≤ 1/2L.
Part III: µ2 Guarantees. Notice that our definitions for wt, xt, αt, βt and dt satisfy the exact same
conditions of Thm. 4.1, This immediately implies that E∥ϵt∥2 ≤ σ̃2/t ,∀t. Using this, and taking the
expectation of Eq. (29) yields,

α1:T E(f(xT)− f(w∗)) ≤ 4D2

η
+D

T∑
t=1

E∥αtϵt∥ ≤
4D2

η
+D

T∑
t=1

√
E∥αtϵt∥2

≤ 4D2

η
+Dσ̃

T∑
t=1

√
α2
t /t ≤

4D2

η
+ 2T 3/2Dσ̃ . (30)

where the second inequality uses Jensen’s Inequality: EX ≤
√

EX2 which holds for any random
variable X; the last inequality follows from α2

t /t ≤ 2t, implying that
∑T

t=1

√
α2
t /t ≤ 2T 3/2.

Dividing the above equation by α1:T and recalling that α1:T = Θ(T 2) concludes the proof.

G EXTENSION OF µ2-SGD TO UNIFORM WEIGHTS AND η ∝ 1/L log T

Here we show that we can obtain the same guarantees as in Thm. 4.2, when using the following more
standard choices of αt = 1, and η ∝ 1/L log T inside Alg. 1; albeit suffering log T factors in the
convergence rate.

The next theorem, which is a variant of Thm. 4.1, shows that even upon choosing uniform weights
we get E∥ϵt∥2 ≤ O(σ̃2/t).
Theorem G.1. Let f : K 7→ R, and assume that K is convex with diameter D, and that the
assumption in Equations (2),(3),(4) hold. Then invoking Alg. 1 with {αt = 1}t and {βt = 1/t},
ensures,

E∥ϵt∥2 := E∥dt −∇f(xt)∥2 ≤ σ̃2/t ,

where ϵt := dt −∇f(xt), and σ̃2 := 32D2σ2
L + 2σ2.

Next we provide a proof sketch. The exact proof follows same lines as the proof of Thm. 4.1.

Proof Sketch of Thm. G.1. First note that the xt’s always belong to K, since they are weighted
averages of {wt ∈ K}t’s. Our first step is to bound the difference between consecutive queries. The
definition of xt implies,

α1:t−1(xt − xt−1) = αt(wt − xt) ,

yielding,

∥xt − xt−1∥2 = (αt/α1:t−1)
2 ∥wt − xt∥2 ≤

1

(t− 1)2
D2 . (31)

where we have used αt = 1 and α1:t−1 = t − 1; we also used ∥wt − xt∥ ≤ D which holds since
wt, xt ∈ K.
Notation: Prior to going on with the proof we shall require some notation. We will denote ḡt :=
∇f(xt), and recall the following notation from Alg. 1: gt := ∇f(xt, zt) ; g̃t−1 := ∇f(xt−1, zt).
We will also denote, ϵt := dt − ḡt .

Now, recalling Eq. (12), using αt = 1, and combining it with the above definition of ϵt enables to
derive the following recursive relation,

ϵt = βt(gt − ḡt) + (1− βt)Zt + (1− βt)ϵt−1

=
1

t
(gt − ḡt) +

t− 1

t
Zt +

t− 1

t
ϵt−1 ,

where we denote Zt := (gt − ḡt)− (g̃t−1 − ḡt−1), and used βt = 1/t. Now, multiplying the above
equation by t gives,

tϵt = (gt − ḡt) + (t− 1)Zt + (t− 1)ϵt−1

= Mt + (t− 1)ϵt−1 .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where for any t > 1 we denote Mt := (t− 1)Zt + (gt − ḡt), as well as M1 = g1 − ḡ1. Unrolling
the above equation yields an explicit expression for any t ∈ [T]:

tϵt =

t∑
τ=1

Mτ := M1:t .

Noticing that the sequence {Mt}t is is martingale difference sequence with respect to the natural
filtration {Ft}t induced by the history of the samples up to time t; enables to bound as follows,

E∥tϵt∥2 =

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E∥Mτ∥2 =

t∑
τ=1

E∥(t− 1)Zt + (gt − ḡt)∥2

≤ 2

t∑
τ=1

(t− 1)2E∥Zt∥2 + 2

t∑
τ=1

E∥gt − ḡt∥2

≤ 2

t∑
τ=1

(t− 1)2E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 + 2

t∑
τ=1

σ2 . (32)

Now, using Eq. (4) together with Eq. (31) allows to bound,

E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 ≤ σ2
L∥xt − xt−1∥2 ≤ σ2

LD
2/(t− 1)2 .

Plugging the above back into Eq. (32) and summing establishes the theorem.

µ2-SGD with η ∝ 1/L log T Based on the above theorem we are now ready to state the guarantees
A version of µ2-SGD that employs standard choices of αt = 1 and η ∝ 1/L log T .

Theorem G.2 (µ2-SGD Guarantees). Let f : Rd 7→ R be a convex function, and assume that
w∗ ∈ argminw∈K f(w) is also its global minimum in Rd. Also, let us make the same assumptions as
in Thm. 4.1. Then invoking Alg. 1 with {αt = 1}t and {βt = 1/t}t, and using the SGD-type update
rule (9) with a learning rate η ≤ 1

16L(1+log T) inside Eq. (10) of Alg. 1 guarantees,

E(f(xT)− f(w∗)) = E∆T ≤ Õ

(
D2

ηT
+ 2η

σ̃2

T
+

4Dσ̃√
T

)
,

where ∆t := f(xt)− f(w∗), and σ̃2 := 32D2σ2
L + 2σ2.

And note that this demonstrates the same stability of this µ2-SGD variant, similarly to the stability of
the variant that we discuss in the main text and in Thm. 4.2.

Next we provide a proof.

Proof of Thm. G.2. The proof is a direct combination of Thm. G.1 together with the standard regret
bound of OGD (Online Gradient Descent), which in turn enables to utilize the Anytime guarantees of
Thm. 3.1.
Part 1: Regret Bound. Standard regret analysis of the update rule in Eq. (9) implies the following
for any t (Hazan et al., 2016),

t∑
τ=1

ατdτ · (wτ − w∗) ≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 . (33)

Part 2: Anytime Guarantees. Since the xt’s are weighted averages of the wt’s we may invoke
Thm. 3.1, which ensures for any t ∈ [T],

α1:t∆t = α1:t(f(xt)− f(w∗)) ≤
t∑

τ=1

ατ∇f(xτ) · (wτ − w∗) ,

where we denote ∆t := f(xt)− f(w∗).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Part 3: Combining Guarantees. Combining the above Anytime guarantees together with the bound
in Eq. (33) yields,

α1:t∆t ≤
t∑

τ=1

ατ∇f(xτ) · (wτ − w∗)

=

t∑
τ=1

ατdτ · (wτ − w∗) +

t∑
τ=1

ατ (∇f(xτ)− dτ) · (wτ − w∗)

=
D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 −

t∑
τ=1

ατ ϵτ · (wτ − w∗)

≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥∇f(xτ) + ϵτ∥2 +

t∑
τ=1

∥ατ ϵτ∥ · ∥wτ − w∗∥

≤ D2

2η
+ η

t∑
τ=1

α2
τ∥∇f(xτ)∥2 + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 2ηL

t∑
τ=1

α2
τ∆τ + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

∆τ + η

t∑
τ=1

∥ϵτ∥2 +D

t∑
τ=1

∥ϵτ∥ , (34)

where the first inequality follows from Cauchy-Schwartz; the second inequality holds since ∥wt −
w∗∥ ≤ D, as well as from using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd, the third
inequality follows by the self bounding property for smooth functions (see Lemma E.1) implying that
∥∇f(xτ)∥2 ≤ 2L(f(xτ)− f(w∗)) := 2L∆τ ; and the fourth inequality follows due to ατ = 1.

Next, we will take expectation over Eq. (34), yielding,

tE∆t = α1:tE∆t ≤
D2

2η
+ 4ηL

t∑
τ=1

E∆τ + η

t∑
τ=1

E∥ϵτ∥2 +D

t∑
τ=1

E∥ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + η

t∑
τ=1

E∥ϵτ∥2 +D

t∑
τ=1

√
E∥ϵτ∥2

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + η

t∑
τ=1

σ̃2/τ +D

t∑
τ=1

√
σ̃2/τ

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + ησ̃2
t∑

τ=1

1/τ +Dσ̃

t∑
τ=1

√
1/τ

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + ησ̃2(1 + log t) + 2Dσ̃
√
t

≤ D2

2η
+

1

4(1 + log T)

t∑
τ=1

E∆τ + ησ̃2(1 + log t) + 2Dσ̃
√
t , (35)

where the second lines is due to Jensen’s inequality implying that EX ≤
√

EX2 for any random
variable X; the third line follows from E∥ϵt∥2 ≤ σ̃2/t which holds by Thm. G.1. We also used∑t

τ=1 1/
√
τ ≤ 2

√
t as well as

∑t
τ=1 1/τ ≤ 1 + log t. Lastly, we use our choice for η.

To obtain the final bound we will apply Lemma G.3 below to Eq. (35).

Lemma G.3. Let T > 2, and {At}t∈[T] be a sequence of non-negative elements and {Bt ∈ R}t∈[T]

a monotonically increasing sequence of non-negative elements, and assume that for any t ≤ T ,

tAt ≤ Bt +
1

4(1 + log T)

T∑
t=1

At ,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Then the following bound holds ∀t ∈ [T],

At ≤ 2Bt/t .

Taking At ← E∆t and Bt ← D2

2η + ησ̃2(1 + log t) + 2Dσ̃
√
t provides the following explicit bound,

E(f(xT)− f(w∗)) = E∆T ≤ Õ

(
D2

ηT
+ 2η

σ̃2

T
+

4Dσ̃√
T

)
,

which concludes the proof.

G.1 PROOF OF LEMMA G.3

Proof. We shall prove the lemma by induction. For the base case we have,

A1 ≤ B1 +
1

4(1 + log T)
A1 ≤ B1 +

1

4
A1

This directly implies that A1 ≤ 4B1/3 ≤ 2B1, which establishes the base case.

For the induction step, lets assume that the lemma holds for for any τ ≤ t, and show that it also
holds for t+ 1. Indeed, using the induction assumption we obtain,

(t+ 1)At+1 ≤ Bt+1 +
1

4(1 + log T)

(
At+1 +

t∑
τ=1

Aτ

)

≤ Bt+1 +
1

4
At+1 +

1

4(1 + log T)

t∑
τ=1

2Bτ
τ

≤ Bt+1 +
1

4
At+1 +

2Bt+1

4(1 + log T)

t∑
τ=1

1

τ

≤ Bt+1 +
1

4
At+1 +

2Bt+1

4(1 + log T)

t∑
τ=1

1

τ

≤ Bt+1 +
1

4
At+1 +

1

2
Bt+1 .

where we have used the monotonicity of the Bt sequence, as well as the fact that for any t ≤ T we
have

∑t
τ=1

1
τ ≤ 1 + log t ≤ 1 + log T . Re-ordering the above implies (t+ 1− 1

4)At+1 ≤ 3
2Bt+1.

Since t ≥ 1 then t+ 1− 1
4 ≥

3
4 (t+ 1). Using this together with the non-negativity of At+1 directly

implies that,

At+1 ≤
3Bt+1/2

t+ 1− 1
4

≤ 3Bt+1/2

3(t+ 1)/4
= 2Bt+1 .

which establishes the induction step; and in turn the induction proof.

H EXPERIMENTS

H.1 TECHNICAL DETAILS

We compared the following optimization algorithms over a range of fixed learning rates3:

• µ2-SGD.
• Momentum-based SGD with µ = 0.9 and τ = 0.9 (see PyTorch docs.4).

3Note that comparing fixed learning rates across different optimizers is consistent with our theoretical
findings, which demonstrate optimal convergence for η = αtηµ2-SGD = O(t/T) ≃ O(1).

4https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

25

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Standard SGD.
• STORM.
• Anytime-SGD.

We evaluated our approach on the following datasets:

• CIFAR-10 Dataset. The CIFAR-10 dataset (Krizhevsky et al., 2014) consists of 60,000
color images across ten classes with a resolution of 32x32 pixels.

• MNIST-10 Dataset. The MNIST dataset (LeCun et al., 2010) comprises 70,000 grayscale
images of handwritten digits (0-9) with a resolution of 28x28 pixels.

H.2 CONVEX SETTING

In this experiment, we address a logistic regression problem aimed at minimizing the empirical loss
on the MNIST dataset. Both the training and testing phases employed mini-batches of size 64, with
one full pass (epoch) over the dataset.

To maintain stability and ensure a well-defined problem, the model weights are constrained within a
unit ball, limiting the solution space to a compact convex set:

K = {w ∈ Rd : ∥w∥2 ≤ 1},

where w ∈ Rd denotes the model weights.

At each iteration, the weights are projected back into the unit ball using the projection function
ΠK(w), ensuring that the norm of w remains bounded.

The following algorithms were evaluated with their respective parameter settings: µ2-SGD with
αt = t and βt = 1/t, STORM with βt = 1/t, and Anytime-SGD with αt = t.

Figure 3: Test Loss over Iterations and Learning Rates

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 4: Test Accuracy over LRs from 0.0001 to 1000

Figure 5: Test Loss over LRs from 0.0001 to 1000

Figure 6: Test Loss over LRs from 0.001 to 1

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H.3 NON-CONVEX SETTING

CIFAR-10 Experiment. In this experiment, we employed the ResNet-18 architecture, and during
both the training and testing phases, we used mini-batches of size 32 and performed 25 epochs over
the dataset. The training phase included image augmentations such as RandomCrop with padding
of 2 pixels (resulting in a crop size of 32x32 with a probability of 0.5) and RandomHorizontalFlip
with a probability of 0.5. These augmentations help in improving the generalization of the model by
artificially expanding the training dataset.

MNIST-10 Experiment. In this experiment, in both the training and testing phases, we employed
mini-batches of size 64 and performed one epoch over the dataset. We used a simple CNN architecture
that included two convolutional layers followed by max-pooling layers, a fully connected layer with
batch normalization, and an output layer.

The following algorithms were evaluated with their respective fixed parameter settings: µ2-SGD with
γt = 0.1 and βt = 0.9, STORM with βt = 0.9, and Anytime-SGD with γt = 0.1.

In the figures below, note that we have clipped the loss values to a maximum of 20 to simplify visual
interpretation.

Figure 7: CIFAR-10: Test Accuracy Over Epochs at Learning Rate = 10 (↑ is better).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 8: CIFAR-10: Test Loss over LRs from 0.0001 to 10

Figure 9: CIFAR-10: Test Loss over LRs from 0.01 to 1

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: MNIST: Test Accuracy Over Iterations at Learning Rate=10 (↑ is better).

Figure 11: MNIST: Test Accuracy over LRs from 0.0001 to 10

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 12: MNIST: Test Loss over LRs from 0.0001 to 10

Figure 13: MNIST: Test Loss over LRs from 0.01 to 1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 14: CIFAR-10: Test Accuracy Over Epochs at Learning Rate=1 (↑ is better).

Figure 15: MNIST: Test Accuracy Over Iterations at Learning Rate=1 (↑ is better).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

H.4 COMPLETE EXPERIMENTAL RESULTS

H.4.1 MNIST - CONVEX

Figure 16: Test Accuracy with Learning Rate 0.0001

Figure 17: Test Accuracy with Learning Rate 0.001

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 18: Test Accuracy with Learning Rate 0.01

Figure 19: Test Accuracy with Learning Rate 0.1

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 20: Test Accuracy with Learning Rate 1

Figure 21: Test Accuracy with Learning Rate 10

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 22: Test Accuracy with Learning Rate 100

Figure 23: Test Accuracy with Learning Rate 1000

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure 24: Test Loss with Learning Rate 0.0001

Figure 25: Test Loss with Learning Rate 0.001

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 26: Test Loss with Learning Rate 0.01

Figure 27: Test Loss with Learning Rate 0.1

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 28: Test Loss with Learning Rate 1

Figure 29: Test Loss with Learning Rate 10

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure 30: Test Loss with Learning Rate 100

Figure 31: Test Loss with Learning Rate 1000

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

H.4.2 CIFAR-10 - NON-CONVEX

Figure 32: Test Accuracy with Learning Rate 0.0001

Figure 33: Test Accuracy with Learning Rate 0.001

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 34: Test Accuracy with Learning Rate 0.01

Figure 35: Test Accuracy with Learning Rate 0.1

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Figure 36: Test Loss with Learning Rate 0.0001

Figure 37: Test Loss with Learning Rate 0.001

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Figure 38: Test Loss with Learning Rate 0.01

Figure 39: Test Loss with Learning Rate 0.1

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Figure 40: Test Loss with Learning Rate 1

Figure 41: Test Loss with Learning Rate 10

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

H.4.3 MNIST - NON-CONVEX

Figure 42: Test Accuracy with Learning Rate 0.0001

Figure 43: Test Accuracy with Learning Rate 0.001

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Figure 44: Test Accuracy with Learning Rate 0.01

Figure 45: Test Accuracy with Learning Rate 0.1

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Figure 46: Test Loss with Learning Rate 0.0001

Figure 47: Test Loss with Learning Rate 0.001

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Figure 48: Test Loss with Learning Rate 0.01

Figure 49: Test Loss with Learning Rate 0.1

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Figure 50: Test Loss with Learning Rate 1

Figure 51: Test Loss with Learning Rate 10

50

