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ABSTRACT

Optimization methods are crucial to the success of machine learning, with Stochas-
tic Gradient Descent (SGD) serving as a foundational algorithm for training models.
However, SGD is often sensitive to the choice of the learning rate, which necessi-
tates extensive hyperparameter tuning. In this work, we introduce a new variant of
SGD that brings enhanced stability in two key aspects. First, our method allows the
use of the same fixed learning rate to attain optimal convergence rates regardless
of the noise magnitude, eliminating the need to adjust learning rates between
noiseless and noisy settings. Second, our approach achieves these optimal rates
over a wide range of learning rates, significantly reducing sensitivity compared
to standard SGD, which requires precise learning rate selection. Our key innova-
tion is a novel gradient estimator based on a double-momentum mechanism that
combines two recent momentum-based techniques. Utilizing this estimator, we
design both standard and accelerated algorithms that are robust to the choice of
learning rate. Specifically, our methods attain optimal convergence rates in both
noiseless and noisy stochastic convex optimization scenarios without the need for
learning rate decay or fine-tuning. We also prove that our approach maintains
optimal performance across a wide spectrum of learning rates, underscoring its
stability and practicality. Empirical studies further validate the robustness and
enhanced stability of our approach.

1 INTRODUCTION

Stochastic Convex Optimization (SCO) is a fundamental framework that captures several classical
Machine Learning (ML) problems, such as linear regression, logistic regression, and SVMs (Support
Vector Machines), amongst others. In the past two decades, SCO has been extensively explored and
highly influenced the field of ML: it popularized the use of Stochastic Gradient Descent (SGD) as the
standard workhorse for training ML models; see e.g. Shalev-Shwartz et al. (2007); Welling & Teh
(2011); Mairal et al. (2009); Recht et al. (2011); as well as has lead to the design of sophisticated SGD
variants that play a central role in training modern large scale models (Duchi et al., 2011; Kingma &
Ba, 2015).
One practical difficulty in applying SGD-type methods is the need to tune its learning rate among other
hyperparameters, and it is well known that the performance of such algorithms crucially relies on the
right choice of the learning rate. Adaptive SGD variants, such as AdaGrad and Adam (Duchi et al.,
2011; Kingma & Ba, 2015; Levy et al., 2018; Kavis et al., 2019; Jacobsen & Cutkosky, 2022) have
been designed to alleviate this issue by adjusting the learning rate during training. However, despite
reducing the need for hyperparameter tuning, adaptive methods can introduce additional complexity
and may not always lead to better generalization performance. In many applications, practitioners still
prefer to employ standard SGD because it often results in better test error and improved generalization
compared to adaptive methods (Wu et al., 2016; Ruder, 2016). Thus, designing SGD variants that
are robust to the choice of learning rate, while retaining the simplicity and generalization benefits of
standard SGD, can be extremely beneficial in practice.

To address these challenges, we propose a new approach that retains the simplicity and generalization
benefits of standard SGD while significantly enhancing its robustness to learning rate selection.
Moreover, since our method focuses on stabilizing the gradient estimation rather than adapting the
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learning rate, it is orthogonal to adaptive techniques and could potentially be combined with them to
yield even better performance.

Focusing on the SCO Setting: In this paper we focus on the prevalent SCO setting where the
objective (expected loss) is an Expectation Over Smooth losses (SCO-EOS); this applies e.g. to linear
and logistic regression problems (though not to SVMs). In this case, it is well known that SGD
requires a careful tuning of the learning rate to obtain the optimal performance. For example, in the
noiseless case, SGD (or GD in this case) should employ a learning rate of ηOffline = 1/L where L is
the smoothness parameter of the objective. Nevertheless, if we apply this ηOffline in the noisy setting,
the guarantees of SGD become vacuous. To obtain the optimal SGD guarantees, we should roughly
decrease the learning rate by a factor of σ

√
T where T is the total number of SGD iterates (and

samples), and σ is the variance of the noise in the gradient estimates. This illustrates the sensitivity
of SGD to the choice of η, a challenge that also affects stochastic accelerated methods such as those
in Lan (2012); Hu et al. (2009); Xiao (2010).
Contributions. We introduce a novel gradient estimator for SCO-EOS problems that uses a single
sample per-iterate, and shows that its square error, ∥ϵt∥2, shrinks with the number of updates as
∥ϵt∥2 ∝ 1/t, where t is the iterate. This, in contrast to the standard SGD estimator where usually
∥ϵt∥2 = Variancet = O(1). Our new estimator blends two recent mechanisms that are related to
the notion of momentum: Anytime Averaging, which is due to Cutkosky (2019); and a corrected
momentum technique (Cutkosky & Orabona, 2019). We therefore denote our estimator by µ2 which
stands for Momentum2.
As described below, our new estimator enables to "Do Stochastic (optimization), while feeling
Noiseless", i.e. it allows us to use similar machinery as GD employs in the noiseless case. Specifically,
(i) we can use the exact same fixed learning rate as is used in GD, irrespective of the noise; (ii) it
enables us to use the norm of the gradient estimates as a stopping criteria, which is a common practice
for GD (Beck, 2014). Finally, (iii) it enables us to design new SGD variants which are extremely
robust to the choice of the learning rate, significantly reducing sensitivity compared to standard SGD.
Concretely, we design an SGD variant called µ2-SGD, as well as an accelerated version called
µ2 − ExtraSGD , that employs our new estimator and demonstrates their stability with respect to
the choice of the learning rates η. We demonstrate the following,

• For µ2-SGD: Upon using the exact same learning rate of ηOffline = 1/8LT (where T is the
total number of iterates/data-samples), µ2-SGD enjoys a convergence rate of O(L/T ) in the noiseless
case, and a rate of O(L/T + σ̃/

√
T ) in the noisy case. Moreover, in the noisy case, µ2-SGD enjoys

the same convergence rate as of the optimal SGD O(L/T + σ̃/
√
T ), for a wide range of learning

rate choices i.e. η ∈ [ηmin, ηmax], with the ratio ηmax/ηmin ≈ (σ̃/L)
√
T .

• For µ2 − ExtraSGD : Upon using the exact same learning rate of ηOffline = 1/2L, µ2 −
ExtraSGD enjoys an optimal convergence rate of O(L/T 2) in the noiseless case, and an optimal
rate of O(L/T 2 + σ̃/

√
T ) in the noisy case. Moreover, in the noisy case, µ2 − ExtraSGD enjoys

the same optimal convergence of O(L/T 2 + σ̃/
√
T ), for an extremely wide range of learning rate

choices i.e. η ∈ [ηmin, ηmax], with the ratio ηmax/ηmin ≈ (σ̃/L)T 3/2. The optimal rates mentioned
above are also tight for SCO-EOS problems, see e.g. Thm. 16.7 in Cutkosky (2022).

These ratios are substantially larger than the corresponding ratio for standard SGD, where the optimal
convergence is achieved only when ηmax/ηmin ≈ O(1). This establishes the substantial improvement
in stability of our approach compared to standard SGD (see Appendix A for a detailed discussion).

We empirically demonstrate the improved stability and performance of our methods over various
baselines, confirming both the theoretical and practical advantages of our approach.

On the technical side, it is important to note that individually, each of the momentum techniques
that we combine is unable to ensure the stability properties that we are able to ensure for their
appropriate combination, i.e. for µ2-SGD and for µ2 − ExtraSGD . Moreover, our accelerated
version µ2 − ExtraSGD , requires a careful and delicate blend of several techniques in the right
interweaved manner, which leads to a concise yet delicate analysis.

Related Work: The Gradient Descent (GD) algorithm and its stochastic counterpart SGD (Robbins
& Monro, 1951) are cornerstones of ML and Optimization. Their adoption in various fields has lead
to the development of numerous elegant and useful variants (Duchi et al., 2011; Kingma & Ba, 2015;
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Ge et al., 2015). Curiously, many SGD variants that serve in practical training of non-convex learning
models; were originally designed under the framework of SCO.

As we mention in the introduction, the performance of SGD crucially relies on the choice of the
learning rate. There is a plethora of work on designing methods that implicitly and optimally adapt
the learning rate throughout the learning process (Duchi et al., 2011; Kingma & Ba, 2015; Kavis
et al., 2019; Antonakopoulos et al., 2022; Jacobsen & Cutkosky, 2022; Ivgi et al., 2023; Defazio
& Mishchenko, 2023); and such methods are widely adopted among practitioners. Nevertheless, in
several practical scenarios, standard (non-adaptive) SGD has proven to yields better generalization
compared to adaptive variants, albeit still necessitating to find an appropriate learning rate (see
e.g. Giladi et al. (2019)).

Momentum (Polyak, 1964) is another widely used practical technique (Sutskever et al., 2013), and it
is interestingly related to the accelerated method of Nesterov (Nesterov, 1983) – a seminal approach
that enables to obtain faster convergence rates compared to GD for smooth and convex objectives.
While Nesterov’s accelerated method is fragile to noise, Lan (2012); Hu et al. (2009); Xiao (2010)
have designed stochastic accelerated variants that enable to obtain a convergence rate that interpolates
between the fast rate in the noiseless case and between the standard SGD rate in the noisy case
(depending on the noise magnitude).

Our work builds on two recent mechanisms related to the notion of momentum: (i) An Anytime
averaging mechanism Cutkosky (2019) which relies on averaging the query points of the gradient
oracle. And (ii) a corrected momentum technique Cutkosky & Orabona (2019) which relies on
averaging the gradients themselves throughout the learning process (while introducing correction). It
is interesting to note that the Anytime mechanism has proven to be extremely useful in designing
adaptive and accelerated methods (Cutkosky, 2019; Kavis et al., 2019; Antonakopoulos et al., 2022).
The corrected momentum mechanism has mainly found use in designing optimal and adaptive
algorithms for stochastic non-convex problems (Cutkosky & Orabona, 2019; Levy et al., 2021).

2 SETTING

Consider stochastic optimization problems with a convex objective f : K 7→ R that satisfies,

f(x) := Ez∼Df(x; z) , (1)

where K ⊆ Rd is a compact convex set, and D is an unknown distribution from which we may draw
i.i.d. samples {zt ∼ D}t. We consider first order optimization methods that iteratively employ such
samples in order to generate a sequence of query points and eventually output a solution xoutput ∈ K.
Our goal is to approximately minimize f(·), so our performance measure is the expected excess loss,

ExcessLoss := E[f(xoutput)]−min
x∈K

f(x) ,

where the expectation is w.r.t. the randomization of the samples.

More concretely, at every iteration t such methods maintain a query point xt ∈ Rd which is computed
based on the past query points and past samples {z1, . . . , zt−1}. Then, the next query point xt+1

is computed based on xt and on a gradient estimate gt that is derived by drawing a fresh sample
zt ∼ D independently of past samples, and computing, gt := ∇f(xt; zt) . Note that this derivative
is w.r.t. x. The independence between samples implies that gt is an unbiased estimate of ∇f(xt)
in the following sense, E[gt|xt] = ∇f(xt) . It is often comfortable to think of the computation of
gt = ∇f(xt; zt) as a (noisy) Gradient Oracle that upon receiving a query point xt ∈ K outputs a
vector gt ∈ Rd, which is an unbiased estimate of∇f(xt).

Assumptions. We will make the following assumptions,
Bounded Diameter: There exists D > 0 such: maxx,y∈K ∥x− y∥ ≤ D.
Bounded variance: There exists σ > 0 such,

E∥∇f(x; z)−∇f(x)∥2 ≤ σ2 , ∀x ∈ K (2)

Expectation over smooth functions: There exists L > 0 such ∀x, y ∈ K , z ∈ Support{D},

∥∇f(x; z)−∇f(y; z)∥ ≤ L∥x− y∥ , (3)
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This implies that the expected loss f(·) is L smooth.
Bounded Smoothness Variance. The above assumption implies that there exists σ2

L ∈ [0, L2] such,

E ∥(∇f(x; z)−∇f(x))− (∇f(y; z)−∇f(y))∥2 ≤ σ2
L∥x− y∥2 , ∀x, y ∈ K . (4)

Clearly, in the deterministic setting where f(x; z) = f(x) , ∀z ∈ Support{D}, we have σL = 0. In
App. B, we show how Eq. (3) implies Eq. (4).
Notation: The notation∇f(x; z) relates to gradients with respect to x, i.e.,∇ := ∇x. We use ∥ · ∥
to denote the Euclidean norm. Given a sequence {yt}t we denote yt1:t2 :=

∑t2
τ=t1

yτ . For a positive
integer N we denote [N ] := {1, . . . , N}. We also let ΠK : Rd 7→ K denote the orthogonal projection
onto K, i.e. ΠK(x) = argminy∈K ∥y− x∥2 , ∀x ∈ Rd. We shall also denote σ̃2 := 32D2σ2

L +2σ2.

3 MOMENTUM MECHANISMS

Here, we provide background regarding two mechanisms that are related to the notion of momentum.
Curiously, these approaches are related to averaging of different elements of the learning algorithm.
Our approach presented in Sec. 4 builds on a combination of these aforementioned mechanisms.

3.1 MECHANISM I: ANYTIME-GD

This first mechanism is related to averaging the query points for the noisy gradient oracle. While in
standard SGD we query the gradients at the iterates that we compute, in Anytime-SGD (Cutkosky,
2019), we query the gradients at weighted averages of the iterates that we compute.

More concretely, the Anytime-SGD algorithm (Cutkosky, 2019; Kavis et al., 2019) that we describe
in Equations (5) and (6), employs a learning rate η > 0 and a sequence of non-negative weights
{αt}t. The algorithm maintains two sequences {wt}t, {xt}t. At initialization x1 = w1, and,

wt+1 = wt − ηαtgt ,∀t ∈ [T ] ,where gt = ∇f(xt; zt) , (5)

where zt ∼ D. Then Anytime-SGD updates,

xt+1 =
α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 . (6)

The above implies that the xt’s are weighted averages of the wt’s, i.e. that xt+1 = 1
α1:t+1

∑t+1
τ=1 ατwτ .

Thus, at every iterate, the gradient gt is queried at xt which is a weighted average of past iterates, and
then wt+1 is updated similarly to GD with a weight αt on the gradient gt.

Curiously, it was shown in Wang et al. (2021) (see Sec. 4.5.1), that a very similar algorithm to
Anytime-GD, can be related to the classical Heavy-Ball method (Polyak, 1964), and the latter
incorporates momentum in its iterates. Cutkosky (2019) has shown that Anytime-SGD obtains the
same convergence rates as SGD for convex loss functions (both smooth and non-smooth). And this
technique was found to be extremely useful in designing universal accelerated methods (Cutkosky,
2019; Kavis et al., 2019).

The next theorem is crucial in analyzing Anytime-SGD, and actually applies more broadly,
Theorem 3.1 (Rephrased from Theorem 1 in Cutkosky (2019)). Let f : K 7→ R be a convex function
with a minimum w∗ ∈ argminw∈K f(w). Also let {αt ≥ 0}t, and {wt ∈ K}t, {xt ∈ K}t, such
that {xt}t is an {αt}t weighted average of {wt}t, i.e. such that x1 = w1, and for any t ≥ 1,
xt+1 = 1

α1:t+1

∑t+1
τ=1 ατwτ . Then the following holds for any t ≥ 1:

α1:t (f(xt)− f(w∗)) ≤
∑t

τ=1 ατ∇f(xτ ) · (wτ − w∗) .

The above theorem holds for any sequence {wt ∈ K}t, and as a private case it holds for the Anytime-
GD algorithm. Thus the above Theorem relates the excess loss of a given algorithm that computes
the sequences {wt ∈ K}t, {xt ∈ K}t to its weighted regret,Rt :=

∑t
τ=1 ατ∇f(xτ ) · (wτ − w∗) .

3.2 MECHANISM II: RECURSIVE CORRECTED AVERAGING

This second mechanism is related to averaging the gradient estimates that we compute throughout
training, which is a common and crucial technique in practical applications. While straightforward
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averaging might incur bias into the gradient estimates, it was suggested in Cutkosky & Orabona
(2019) to add a bias correction mechanism named STORM (STochastic Recursive Momentum). And
it was shown that this mechanism leads to a powerful variance reduction effect.

Concretely, STORM maintains an estimate dt which is a corrected weighted average of past stochas-
tic gradients, and then it performs an SGD-style update step,

wt+1 = wt − ηdt . (7)

The corrected momentum estimates are updated as follows,

dt = ∇f(wt; zt) + (1− βt)(dt−1 −∇f(wt−1, zt)) , (8)

for some βt ∈ [0, 1]. The above implies that E[dt] = E∇f(wt). Nevertheless, in general E[dt|wt] ̸=
∇f(wt), so dt is conditionally biased (in contrast to standard SGD estimates). Moreover, the choice
of the same sample zt in the two terms of the above expression is crucial for the variance reduction
effect.

4 OUR APPROACH: DOUBLE MOMENTUM MECHANISM

Our approach is to combine together the two momentum mechanisms that we describe above. Our
algorithm is therefore named µ2-SGD (Momentum2-Stochastic Gradient Descent), and we describe
it in Alg. 1. Intuitively, each of these Momentum (averaging) techniques stabilizes the algorithm,
and their combination leads to a method that is almost as stable as offline GD. Note that the right
combination of these techniques is crucial to obtaining our results, which cannot be achieved by
employing only one of these technique without the other.

We first describe algorithm 1, and then present our main result in Theorem 4.1, showing that the error
of the gradient estimates of our approach shrinks as we progress. Suggesting that we may use the
norm of the gradient estimate as a stopping criteria which is a common practice in GD (Beck, 2014).
Another benefit is demonstrated in Thm. 4.2,is that µ2-SGD obtains the same convergence rate as
standard SGD, for a very wide range of learning rates (in contrast to SGD).

Next we elaborate on the ingredients of Alg. 1:
Update rule: Note that for generality we allow a broad family of update rules in Eq. (10) of Alg. 1.
The only constraint on the update rule is that its iterates {wt}t always belong to K. Later, we will
specifically analyze the natural SGD-style update rule,

wt+1 = ΠK(wt − ηαtdt) . (9)

Momentum Computation: From Eq. (12) in Alg. 1 we can see that the momentum dt is updated
similarly to the STORM update in Eq. (8), albeit with two main differences: (i) first we incorporate
importance weights {αt}t into STORM and recursively update the weighted momentum αtdt.
More importantly (ii) we query the noisy gradients at the averages xt’s rather than in the iterates
themselves, and the averages (Eq. (11)) are computed in the spirit of Anytime-SGD. These can be
seen in the computation of gt+1 and g̃t which query the gradients at the averages rather than the
iterates. Thus, as promised our algorithms combines two different momentum mechanisms.

Next, we present our main result, which shows that Alg. 1 yields estimates with a very small error.
The only limitation on the update rule in Eq. (10) is that its iterates {wt}t always belong to K.

Theorem 4.1. Let f : K 7→ R, and assume thatK is convex with diameter D, and that the assumption
in Equations (2),(3),(4) hold. Then invoking Alg. 1 with {αt = t+ 1}t and {βt = 1/αt}, ensures,

E∥ϵt∥2 := E∥dt −∇f(xt)∥2 ≤ σ̃2/t ,

here ϵt := dt −∇f(xt), and σ̃2 := 32D2σ2
L + 2σ2. ⋆ In App. D.1 we provide high-prob. bounds.

So according to the above theorem, the overall error of dt compared to the exact gradient ∇f(xt)
shrinks as we progress. Conversely, in standard SGD (as well as in Anytime-SGD) the expected
square error is fixed, namely E∥gt −∇f(wt)∥2 ≤ O(σ2).

Based Thm. 4.1, we may analyze Alg. 1 with the specific SGD-type update rule presented in Eq. (9).
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Algorithm 1 µ2-SGD

Input: #Iterations T , initialization x1, η > 0, weights {αt}t, Corrected Momentum weights {βt}t
Initialize: set w1 = x1, draw z1 ∼ D and set d1 = ∇f(x1, z1)
for t = 1, . . . , T do

Iterate Update:
Use an update rule to compute wt+1 ∈ K (10)

Query Update (Anytime-SGD style):
xt+1 =

α1:t

α1:t+1
xt +

αt+1

α1:t+1
wt+1 , (11)

Update Corrected Momentum (STORM style):
draw zt+1 ∼ D, compute gt+1 := ∇f(xt+1; zt+1), and g̃t := ∇f(xt; zt+1) and update,

dt+1 = gt+1 + (1− βt+1)(dt − g̃t) (12)

end for
output: xT

Theorem 4.2 (µ2-SGD Guarantees). Let f : Rd 7→ R be a convex function, and assume that
w∗ ∈ argminw∈K f(w) is also its global minimum in Rd. Also, let us make the same assumptions
as in Thm. 4.1. Then invoking Alg. 1 with {αt = t+ 1}t and {βt = 1/αt}t, and using the SGD-type
update rule (9) with a learning rate η ≤ 1/8LT inside Eq. (10) of Alg. 1 guarantees,

E(f(xT )− f(w∗)) = E∆T ≤ O

(
D2

ηT 2
+ 2ησ̃2 +

4Dσ̃√
T

)
,

where ∆t := f(xt)− f(w∗), and σ̃2 := 32D2σ2
L + 2σ2.

Stability of µ2-SGD. The above lemma shows that µ2-SGD obtains the optimal SGD convergence
rates for both offline (noiseless) and noisy case with the same choice of fixed learning rate ηOffline =
1

8LT , which does not depend on the noise σ̃. This in contrast to SGD, which require either reducing
the offline learning rate by a factor of σ

√
T ; or using sophisticated adaptive learning rates (Duchi

et al., 2011; Levy et al., 2018).

Moreover, letting ηNoisy = 1/(8LT + σ̃T 3/2/D), than it can be seen that in the noisy case our
approach enables to employ learning rates in an extremely wide range of [ηNoisy, ηOffline]; and still
obtain the same optimal SGD convergence rate. Indeed note that, ηOffline/ηNoisy ≈ (σ̃/L)T 1/2.

Comment: Note that in Theorem 4.2 we assume that the global minimum of f(·) belongs to K. In
the next section we present µ2 − ExtraSGD — an accelerated version of µ2-SGD, that does not
require this assumption, and enables to obtain accelerated convergence rates as well as better stability.

4.1 EXTENSIONS

Uniformly Small Error. We have shown that upon using a single sample per-iteration, our approach
enables to yields gradient estimates dt’s with a shrinking square error of O(1/t). Nevertheless, if we
like to incorporate early stopping, it is desirable to have a uniformly small error of O(1/T ) across all
iterates. In the appendix we show that this is possible, and only comes at the price of a logarithmic
increase in the overall sample complexity. The idea is to incorporate a decaying batch-size into our
approach: at round t we suggest to use a batch-size bt ∝ T/t. Thus, along T rounds we use a total of∑T

t=1 bt = O(T log T ) samples. This modification allows a uniformly small square error of O(1/T )
across all iterates.
Accurate Estimates of General Operators. We have shown that our approach enables to yield
O(1/t) estimates for gradient estimates of the query point {xt}t∈[T ]. This can be similarly generalized
to yielding O(1/t) estimates for other operators. For example, if we like to estimate the Hessian
∇2f(xt), and we assume Lipschitz continuous Hessians and bounded variance analogously to
Eq. (2),(3),(4), then we can maintain good Hessian estimates in the spirit of Eq. (12)
Unweighted Variant of µ2-SGD. It is natural to ask whether we can employ the more standard
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uniform weights {αt = 1}t∈[T ], within µ2-SGD. Going along very similar lines to our proof for
Thm. 4.2, we show that this indeed can be done while using η ∝ 1/L log T , and yields similar
bounds, albeit suffering logarithmic factors in T .

4.2 NECESSITY OF BOTH MECHANISMS

Here we discuss the importance of combining both Anytime and STORM mechanisms to obtaining
the shrinking error property (see Thm. 4.1) of µ2-SGD, which is a key to our other results. Concretely,
the Anytime mechanism (without STORM ) appearing in Equations (5) (6), is employing gradient
estimates of the form gt := ∇f(xt; zt), and it is therefore immediate that error of these gradient
estimates ∥ϵAnytime

t ∥2 := ∥gt − ∇f(xt)∥2 is O(1), which is similar to standard SGD. Conversely,
the STORM mechanisms (without Anytime) appearing in Equations (7) (8) maintains estimates
dt. The STORM update rule yields a variance reduction, which depends on the distance between
consecutive query points i.e. ∥wt − wt−1∥2, which will in turn depend on the learning rate (as
in the original STORM paper). This couples between the variance reduction mechanism and the
learning rate, and therefore fails to achieve robustness to the learning rate (for example: using a fixed
learning rate within the standard STORM approach will fail to converge). Thus, the combination of
these techniques is crucial towards obtaining the shrinking error substantiated in Thm. 4.1, which
is independent of the learning rate, and therefore allows to obtain stability as we substantiate in
Theorems 4.2 and 5.2.

4.3 PROOF SKETCH OF THM. 4.1

Proof. First note that the xt’s always belong to K, since they are weighted averages of {wt ∈ K}t’s.
Our first step is to bound the difference between consecutive queries. The definition of xt implies:
α1:t−1(xt − xt−1) = αt(wt − xt) , yielding,

∥xt − xt−1∥2 = (αt/α1:t−1)
2 ∥wt − xt∥2 ≤ (16/α2

t−1)D
2 . (13)

where we used αt = t+1 implying αt/α1:t−1 ≤ 4/αt−1 for any t ≥ 2, we also used ∥wt−xt∥ ≤ D.
Notation: Prior to going on with the proof we shall require some notation. We will denote ḡt :=
∇f(xt), and recall the following notation from Alg. 1: gt := ∇f(xt, zt) ; g̃t−1 := ∇f(xt−1, zt).
We will also denote, ϵt := dt − ḡt .

Recalling Eq. (12), and combining it with the above definition of ϵt enables to derive the following,

αtϵt = βtαt(gt − ḡt) + (1− βt)(αtZt +
αt

αt−1
αt−1ϵt−1) ,

where we denote Zt := (gt− ḡt)− (g̃t−1− ḡt−1). Now, using αt = t+1, and βt = 1/(t+1) then it
can be shown that αtβt = 1,and αt(1−βt) = αt−1 := αt−1. Moreover, (1−βt)

αt

αt−1
= αt−1

αt−1
= 1.

Plugging these above yields,

αtϵt = αt−1Zt + αt−1ϵt−1 + (gt − ḡt) = Mt + αt−1ϵt−1 . (14)

where for any t > 1 we denote Mt := αt−1Zt + (gt − ḡt), as well as M1 = g1 − ḡ1. Unrolling the
above equation yields an explicit expression for any t ∈ [T ]: αtϵt =

∑t
τ=1 Mτ .

Notice that the sequence {Mt}t is martingale difference sequence with respect to the natural filtration
{Ft}t induced by the history of the samples up to time t; which implies,

E∥αtϵt∥2 =

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E∥Mτ∥2 ≤ 2

t∑
τ=1

α2
t−1E∥Zt∥2 + 2

t∑
τ=1

E∥gt − ḡt∥2 . (15)

Using Eq. (4) together with Eq. (13) allows to bound, E∥Zt∥2 = E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 ≤
σ2
L∥xt − xt−1∥2 ≤ 16σ2

LD
2/α2

t−1 , and we may also bound E∥gt − ḡt∥2 ≤ σ2. Plugging it above
back into Eq. (15) and summing establishes the theorem.

5 ACCELERATED VERSION: µ2 − EXTRASGD

Here we present an accelerated version that makes use of a double momentum mechanism as we
do for µ2-SGD. Our approach relies on an algorithmic template named ExtraGradient (Korpelevich,
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1976; Nemirovski, 2004; Juditsky et al., 2011). The latter technique has already been combined
with the Anytime-SGD mechanism in Cutkosky (2019); Kavis et al. (2019), showing that it leads to
acceleration. Here, we further blend an appropriate STORM Mechanism, leading to a new method
that we name µ2 − ExtraSGD . Our main result is presented in Thm. 5.2.

On the technical side, our accelerated version requires a careful and delicate blend of several
techniques in the right interweaved manner, which leads to a concise yet delicate analysis.

Optimistic OGD, Extragradient and UnixGrad: The extragradient technique is related to an
algorithmic template named Optimistic Online GD (Optimistic OGD) (Rakhlin & Sridharan, 2013).
In this algorithm we receive a sequence of (possibly arbitrary) loss vectors {dt ∈ Rd}t∈[T ] in an
online manner. And our goal is to compute a sequence of iterates (or decision points) {wt ∈ K}t,
whereK is given convex set. Note that we may pick wt only based on past information {d1, . . . , dt−1}.
And our goal is to ensure a low weighted regret for any w ∈ K, where the latter is defined as,

RT (w) :=

T∑
t=1

αtdt · (wt − w∗) ,

and {αt > 0} is a sequence of predefined weights. In the optimistic setting we assume that we
may access a sequence of “hint vectors" {d̂t ∈ Rd}t and that prior to picking wt we may also
access {d̂1, . . . , d̂t}. Rakhlin & Sridharan (2013) have shown that if the hints are useful, in the
sense that d̂t ≈ dt, then one can reduce the regret by properly incorporating the hints. Thus, in
Optimistic-OGD we maintain two sequences: a decision point sequence {wt}t and an auxiliary
sequence {yt}, updated as follows,

Optimistic OGD:
wt = argmin

w∈K
αtd̂t · w +

1

2η
∥w − yt−1∥2 & yt = argmin

y∈K
αtdt · y +

1

2η
∥y − yt−1∥2 (16)

It was shown in Rakhlin & Sridharan (2013); Kavis et al. (2019) that the above algorithm enjoys the
following regret bound for any w ∈ K,
Theorem 5.1 (See e.g. the proof of Thm. 1 in Kavis et al. (2019)). Let η > 0, {αt ≥ 0}t∈[T ] and
K be a convex set with bounded diameter D. Then Optimistic-OGD ensures the following for any
w ∈ K, T∑

t=1

αtdt · (wt − w) ≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥dt − d̂t∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 .

The Extragradient algorithm (Nemirovski, 2004) aims to minimize a convex function f : K 7→ R.
To do so, it applies the Optimistic-OGD template with the following choices of loss and hint vectors:
d̂t = ∇f(yt−1), and dt := ∇f(wt).
The UnixGrad algorithm (Kavis et al., 2019), can be seen as an Anytime version of Extragradient,
where again we aim to minimize a convex function f : K 7→ R. In the spirit of Anytime-GD,
UnixGrad maintains two sequences of weighted averages {xt, x̂t}t based on {wt, yt}t,

x̂t =
α1:t−1

α1:t
xt−1 +

αt

α1:t
yt−1 , xt =

α1:t−1

α1:t
xt−1 +

αt

α1:t
wt (17)

Then, based on the above averages UnixGrad sets the loss and hint vectors as follows: d̂t = ∇f(x̂t),
and dt := ∇f(xt). Note that the above averaging rule implies that the xt’s are weighted averages of
the wt’s, i.e. xt =

1
α1:t

∑t
τ=1 ατwτ . The latter enables to utilize the Anytime guarantees of Thm. 3.1.

There also exist stochastic versions of the above approaches where we may only query noisy gradients.

Our Approach. We suggest to employ the Optimistic-OGD template together with a
STORM mechanism on top of the Anytime mechanism employed by UnixGrad. Specifically,
we maintain the same weighted averages as in Eq. (17), and define momentum estimates as follows:
At round t draw a fresh sample zt ∼ D, and compute

g̃t−1 = ∇f(xt−1; zt) , ĝt = ∇f(x̂t; zt) , gt = ∇f(xt; zt) . (18)

Based on the above compute the (corrected momentum) loss and hint vectors as follows,

αtd̂t = αtĝt + (1− βt)αt(dt−1 − g̃t−1) & αtdt = αtgt + (1− βt)αt(dt−1 − g̃t−1) (19)
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Algorithm 2 µ2 − ExtraSGD

Input: #Iterations T , initialization y0, η > 0, weights {αt}t, Corrected Momentum weights {βt}t
Initialize: set x0 = 0, and x̂1 = y0, draw z1 ∼ D and set d0 = g̃0 = d̂1 = ∇f(x̂1, z1)
for t = 1, . . . , T do

Compute: wt = argmin
w∈K

αtd̂t ·w+ 1
2η∥w− yt−1∥2 , & Update: xt =

α1:t−1

α1:t
xt−1 +

αt

α1:t
wt

Compute: gt = ∇f(xt; zt) & Update: dt = gt + (1− βt)(dt−1 − g̃t−1)

Compute: yt = argmin
y∈K

αtdt · y + 1
2η∥y − yt−1∥2 & Update: x̂t+1 = α1:t

α1:t+1
xt +

αt+1

α1:t+1
yt

Draw a fresh sample zt+1 ∼ D and compute, g̃t = ∇f(xt; zt+1) , ĝt+1 = ∇f(x̂t+1, zt+1)

Update: d̂t+1 = ĝt+1 + (1− βt+1)(dt − g̃t)

end for
output: xT

And then update according to Optimistic OGD in Eq. (16). Notice that the update rule for αtdt is the
exact same update that we use in Alg. 1; additionally as we have already commented, the xt sequence
in Eq. (17) is an {αt}t weighted average of the {wt}t sequence. Therefore, if we pick αt = t+ 1,
and βt = 1/αt, then we can invoke Thm. 4.1 implying that,

E∥ϵt∥2 := E∥dt −∇f(xt)∥2 ≤ σ̃2/t , where σ̃2 := 32D2σ2
L + 2σ2 .

The pseudo-code in Alg. 2 depicts our µ2−ExtraSGD algorithm with the appropriate computational
order. It can be seen that it combines Optimistic-OGD updates (Eq. (16)), together with appropriate
Anytime averaging (Eq. (17)), and together with STORM updates for dt, d̂t (Eq. (19)).

We are now ready to state the guarantees of µ2 − ExtraSGD ,
Theorem 5.2 (µ2 − ExtraSGD ). Let f : K 7→ R be a convex function and K a convex set with
diameter D, and denote w∗ ∈ argminw∈K f(w). Then under the assumption in Equations (2),(3),(4),
invoking Alg. 2 with {αt = t+ 1}t and {βt = 1/αt}t, and η ≤ 1/2L guarantees,

E(f(xT )− f(w∗)) := E∆T ≤ O

(
D2

ηT 2
+

σ̃D√
T

)
.

As can be seen in Alg. 2, the appropriate µ2 accelerated version requires a careful and delicate blend
of the aforementioned techniques in the right interweaved manner.
Stability of µ2 − ExtraSGD . The above lemma shows that µ2 − ExtraSGD obtains the
optimal rates for both offline (noiseless) and noisy cases with the same choice of fixed learning
rate ηOffline = 1/2L. This contrasts existing accelerated methods, which require either to reduce
the offline learning rate by a factor of σ

√
T (Xiao, 2010); or to employ sophisticated adaptive

learning rates (Cutkosky, 2019; Kavis et al., 2019). Moreover, letting ηNoisy := 1/(2L+ σ̃T 3/2/D),
then it can be seen that in the noisy case, our approach enables to employ learning rates in an
extremely wide range of [ηNoisy, ηOffline]; and still obtain the same optimal convergence rate of
O
(
LD2/T 2 + σ̃D/

√
T
)

. Indeed note that, the ratio ηOffline/ηNoisy ≈ (σ̃/L)T 3/2. Moreover,
conversely to Thm. 4.2, which requires w∗ ∈ argminw∈K f(w) to be also the global minimum of
f(·); Thm. 5.2 does not require this assumption.

6 EXPERIMENTS

We begin by evaluating our proposed µ2-SGD algorithm in a convex setting, where model weights
were projected onto a unit ball after each gradient update. The evaluation is conducted on the MNIST
dataset (LeCun et al., 2010), using a logistic regression model. We compare our approach with
the parameters suggested by our theoretical framework (αt = t, βt =

1
t ) against several baseline

optimizers. This includes each individual component of the µ2-SGD algorithm—STORM and
AnyTime-SGD—all tested with the same parameter settings. As illustrated in Figure 1 and Figure 3,
the µ2-SGD algorithm consistently demonstrates superior stability across a wide range of learning

9
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rates. Notably, while the AnyTime-SGD algorithm maintains strong stability over a broad spectrum
of learning rates, STORM encounters difficulties at higher rates. By integrating key elements from
both STORM and AnyTime-SGD, the µ2-SGD approach achieves a more stable high-performance
than either method alone. Additionally, when considering a more typical range of learning rates
for this setup (see Figure 1(b)), µ2-SGD may not always achieve the absolute best result compared
the other algorithms. Nevertheless, it consistently achieves high performance and robustness across
a broader range of learning rates, significantly reducing the need for an extensive search to find a
high-performing learning rate. On top of that, by leveraging the momentum parameters grounded in
our theoretical framework, µ2-SGD further eliminates the need for hyperparameter tuning—a process
that can be highly computationally expensive.

(a) Over a Wide Range of Leaning Rates. (b) Over a Typical Range of Learning Rates.

Figure 1: MNIST: Test Accuracy Over Different Learning Rates in a Convex Setting (↑ is better).

Deep Learning Variant. We demonstrate the effectiveness of our approach in non-convex settings
using a 2-layer convolutional network on the MNIST dataset and ResNet-18 on the CIFAR-10
dataset (Krizhevsky et al., 2014). First, we reformulate the AnyTime update, originally defined as
xt :=

αtwt+α1:t−1xt−1

α1:t
into a mathematically equivalent momentum-based approach:

xt = γtwt + (1− γt)xt−1

where γt :=
αt

α1:t
. For non-convex models, decaying momentum parameters in the iteration number

can be overly aggressive; thus, we propose a heuristic approach using fixed momentum parameters
to improve adaptability. Note that, by setting αt = Cα1:t−1, where C > 0 is a constant, we derive
γt =

C
C+1 , making it fixed for all time steps t ≥ 1.

We show that using fixed momentum parameters (γt = 0.1, βt = 0.9) in the non-convex setting
ensures high stability and strong performance (i) across a wide range of learning rates and (ii)
over random seeds, as shown in Figure 2 and in App. H.3. Consistent results were observed on
both MNIST and CIFAR-10, as detailed in App. H.3. These findings highlight the robustness and
adaptability of our method, making it a reliable choice for optimizing non-convex models.

(a) CIFAR-10: Over a Wide Range. (b) CIFAR-10: Over a Typical Search Range. (c) MNIST: Over a Typical Search Range.

Figure 2: Test Accuracy Over a Range of Learning Rates in Non-Convex Setups (↑ is better).

All experiments were conducted using the PyTorch framework. The convex experiments were run on
an Apple M2 chip and the non-convex on an NVIDIA A30 GPU. The results were averaged over
three different random seeds. For further details on the experimental setup, please see App. H.

7 CONCLUSION

By carefully blending two recent momentum techniques, we designed a new shrinking-error gradient
estimate for the SCO-EOS setting. Based on it, we presented two algorithms that rely on SGD and
Extragradient templates and showed their significant stability w.r.t. the choice of the learning rate,
thus enabling a much more robust training. In the future, it will be interesting to further explore
the applicability of our non-convex heuristic for huge-scale models, which require much more
computational resources. Moreover, it will be interesting to understand whether we can design an
algorithm for non-convex problems, with similar theoretical properties to our approach.
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A STABILITY W.R.T. CHOICE OF LEARNING RATE

Here we formally explain what we mean when we relate to the stability of an algorithm A w.r.t.
choice of the learning rate η.

Given a SCO algorithm A, we can usually present its generalization bounds as follows:
For a given choice of 0 ≤ η ≤ η̄, then the algorithm A ensures,

Excess-Loss ≤ RA(η) ,

whereR : R+ 7→ R+ is the convergence rate as a function of the learning rate η. And this description
applies to all the methods that we mention in our paper.

In this case we can define the optimal learning rate as follows,

η∗ := min
η∈[0,η̄]

RA(η) .

And we define the range of order optimal learning rates of A to be:

RangeA := {η ∈ [0, η̄] : RA(η) ≤ 2RA(η
∗)} .

In words, this set is comprised of all learning rates that achieve the optimal convergence rate up to a
multiplicative factor of 2 1.

Usually, the set RangeA is a line segment in R+, and we can therefore write RangeA = [ηmin, ηmax].
And we can further denote,

ratioA = ηmax/ηmin .

Thus, higher ratios imply improved stability of A w.r.t. choice of the learning rate η. Next,
we compare the stability for the methods that we mention in our paper, for the SCO-EOS set-
ting that we describe in Sec. 2. And substantiate the improved stability of µ2-SGD and of
µ2 − ExtraSGD overstandardSGDandacceleratedstochasticSGD.

Stability of Standard SGD: For standard SGD it is well known that for the choice η ∈ (0, 1
2L ] it

enjoys a convergence rate of,

RSGD(η) :=
D2

ηT
+ ησ2

Thus, in the typical case where D
σ
√
T
≤ 1

2L (i.e. when the noise is not negligible) we have η∗ = D
σ
√
T

,

andRSGD(η
∗) = 2Dσ√

T
. And it can therefore be validated that,

ratioSGD ≤ 15 .

Conversely, (ii) in the non typical case where D
σ
√
T

> 1
2L we have η∗ = 1

2L . In this case we can
validate again that,

ratioSGD ≤ 15 .

This substantiates that for standard SGD we have stability ratio of ratioSGD ≈ O(1).

Stability of Accelerated Stochastic SGD: There are several variants of accelerated stochastic SGD.
For such algorithms, and for a learning rate choice of η ∈ (0, 1

2L ], such methods enjoy a convergence
rate of (See e.g. Theorem 2 in Lan (2012)),

RAccel−SGD(η) :=
D2

ηT 2
+ ησ2T

Thus, similarly to our analysis of standard SGD, it can be validated that for such methods we have,
ratioAccel−SGD ≈ O(1).

1The choice of 2 is rather arbitrary, and we can similarly choose any factor sufficiently greater than 1.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Stability of µ2-SGD: As we establish in Theorem 4.2 our µ2-SGD approach ensures that for the
choice of η ∈ (0, 1

8LT ], it enjoys a convergence rate of,

Rµ2−SGD(η) :=
D2

ηT 2
+ 2ησ̃2 +

4Dσ̃√
T

.

Thus, in this case we have η∗ = D√
2σ̃T

, and Rµ2−SGD(η
∗) = 2

√
2Dσ̃
T + 4Dσ̃√

T
. And it can therefore

be validated that in this case we have ηmin ≈ D
σ̃T 3/2 and ηmax = 1

8LT , and therefore,

ratioµ2−SGD ≈
σ̃

LD

√
T .

Stability of µ2 − ExtraSGD : As we establish in Theorem 5.2 our µ2 − ExtraSGD approach
ensures that for the choice of η ∈ (0, 1

2L ], it enjoys a convergence rate of,

Rµ2 − ExtraSGD (η) :=
D2

ηT 2
+

σ̃D√
T

.

Thus, in this case we have η∗ = 1
2L , andRµ2 − ExtraSGD (η∗) = 2LD2

T 2 + σ̃D√
T

. And it can therefore

be validated that in this case we have ηmin ≈ D
σ̃T 3/2 and ηmax = 1

2L , and therefore,

ratioµ2 − ExtraSGD ≈
σ̃

LD
T 3/2 .

B EXPLAINING THE BOUNDED SMOOTHNESS VARIANCE ASSUMPTION

Here we show that Eq. (3) implies that Eq. (4) holds for some σ2
L ∈ [0, L].

Fixing x, y ∈ K, then Eq. (3) implies that for any z ∈ Support{D} there exists Lx,y;z ∈ [0, L] such
that,

∥∇f(x; z)−∇f(y; z)∥2 = L2
x,y;z∥x− y∥2 .

Similarly there exists Lx,y ∈ [0, L] such that,

∥∇f(x)−∇f(y)∥2 = L2
x,y∥x− y∥2 .

And clearly in the deterministic case we have Lx,y;z = Lx,y ,∀z ∈ Support{D}. Therefore,

E∥(∇f(x; z)−∇f(x))− (∇f(y; z)−∇f(y))∥2 = E∥∇f(x; z)−∇f(y; z)∥2 − ∥∇f(x)−∇f(y))∥2

= E(L2
x,y;z − L2

x,y) · ∥x− y∥2 = σ2
L{x, y} · ∥x− y∥2 ,

where we have used E(∇f(x; z) − ∇f(y; z)) = (∇f(x) − ∇f(y)), and we denote σ2
L{x, y} :=

E(L2
x,y;z − L2

x,y). This notation implies that σ2
L{x, y} ∈ [0, L2], and clearly σ2

L{x, y} = 0 in the
deterministic case for all x, y ∈ K. Thus, if we denote,

σ2
L := sup

x,y∈K
σ2
L{x, y} ,

Then σ2
L ∈ [0, L2] satisfies Eq. (4) and is equal to 0 in the deterministic (noiseless) case.

C PROOF OF THM. 4.1

Proof of Thm. 4.1. First note that the xt’s always belong to K, since they are weighted averages of
the {wt ∈ K}t’s. Next we bound the difference between consecutive queries. By definition,

α1:t−1(xt − xt−1) = αt(wt − xt) ,

Implying,

∥xt − xt−1∥2 = (αt/α1:t−1)
2 ∥wt − xt∥2 ≤ (16/t2)D2 = (16/α2

t−1)D
2 . (20)
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where we have used αt = t+1 implying αt/α1:t−1 ≤ 4/t for any t ≥ 2, we also used ∥wt−xt∥ ≤ D
which holds since wt, xt ∈ K, finally we use αt−1 = t.

Notation: Prior to going on with the proof we shall require some notation. We will denote ḡt :=
∇f(xt), and recall the following notation form Alg. 1: gt := ∇f(xt, zt) ; g̃t−1 := ∇f(xt−1, zt),
and we will also denote, ḡt := ∇f(xt) ,and

ϵt := dt − ḡt .

Now, recalling Eq. (12),

αtdt = αtgt + (1− βt)αt(dt−1 − g̃t−1) .

Combining the above with the definition of ϵt yields the following recursive relation,

αtϵt := αtdt − αtḡt

= αt(gt − ḡt) + (1− βt)αt(dt−1 − g̃t−1)

= βtαt(gt − ḡt) + (1− βt)αt(dt−1 − g̃t−1 + gt − ḡt)

= βtαt(gt − ḡt) + (1− βt)αt(ḡt−1 − g̃t−1 + gt − ḡt) + (1− βt)αt(dt−1 − ḡt−1)

= βtαt(gt − ḡt) + (1− βt)αt((gt − ḡt)− (g̃t−1 − ḡt−1)) + (1− βt)αt(dt−1 − ḡt−1)

= βtαt(gt − ḡt) + (1− βt)αtZt + (1− βt)
αt

αt−1
αt−1ϵt−1

where we denoted Zt := (gt− ḡt)−(g̃t−1− ḡt−1). Now, using αt = t+1, and βt = 1/(t+1) then it
can be shown that αtβt = 1,and αt(1−βt) = αt−1 := αt−1. Moreover, (1−βt)

αt

αt−1
= αt−1

αt−1
= 1.

Using these relations in the equation above gives,

αtϵt = αt−1Zt + αt−1ϵt−1 + (gt − ḡt) = Mt + αt−1ϵt−1 . (21)

where for any t > 1 we denote Mt := αt−1Zt + (gt − ḡt), as well as M1 = g1 − ḡ1. Unrolling the
above equation yields an explicit expression for any t ∈ [T ],

αtϵt =

t∑
τ=1

Mτ . (22)

Now, notice that the sequence {Mt}t is is martingale difference sequence with respect to the natural
filtration {Ft}t induced by the history of the samples up to time t. Indeed,

E[Mt|Ft−1] = E[(gt− ḡt)|Ft−1] +αt−1E[Zt|Ft−1] = E[(gt− ḡt)|xt] +αt−1E[Zt|xt−1, xt] = 0 .

Thus, using Lemma C.1 below gives,

E∥αtϵt∥2 =

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E∥Mτ∥2 =

t∑
τ=1

E∥αt−1Zt + (gt − ḡt)∥2

≤ 2

t∑
τ=1

α2
t−1E∥Zt∥2 + 2

t∑
τ=1

E∥gt − ḡt∥2

≤ 2

t∑
τ=1

α2
t−1E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 + 2

t∑
τ=1

σ2

= 2

t∑
τ=1

α2
t−1E∥(∇f(xt; zt)−∇f(xt))− (∇f(xt−1; zt)−∇f(xt−1))∥2 + 2tσ2

≤ 2

t∑
τ=1

α2
t−1σ

2
L∥xt − xt−1∥2 + 2tσ2

≤ 32D2σ2
L

t∑
τ=1

(α2
t−1/α

2
t−1) + 2tσ2

= (32D2σ2
L + 2σ2) · t

= σ̃2 · t . (23)
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here the first inequality uses ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd; the second
inequality uses the bounded variance assumption; the third inequality uses Eq. (4), and the last
inequality uses Eq. (20).

Dividing the above inequality by α2
t = (t+ 1)2 the lemma follows,

E∥dt −∇f(xt)∥2 = E∥ϵt∥2 = E∥αtϵt∥2/α2
t ≤ σ̃2t/(t+ 12) ≤ σ̃2/(t+ 1) .

Lemma C.1. Let {Mt}t be a martingale difference sequence with respect to a filtration {Ft}t, then
the following holds for any t,

E

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E ∥Mτ∥2 .

C.1 PROOF OF LEMMA C.1

Proof of Lemma C.1. We shall prove the lemma by induction over t. The base case where t = 1
clearly holds.

Now for induction step let us assume that the equality holds for t ≥ 1 and lets prove it holds for t+1.
Indeed,

E

∥∥∥∥∥
t+1∑
τ=1

Mτ

∥∥∥∥∥
2

= E

∥∥∥∥∥Mt+1 +

t∑
τ=1

Mτ

∥∥∥∥∥
2

= E

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

+ E∥Mt+1∥2 + 2E

(
t∑

τ=1

Mτ

)
·Mt+1

=

t+1∑
τ=1

E ∥Mτ∥2 + 2E

[
E

[(
t∑

τ=1

Mτ

)
·Mt+1|Ft

]]

=

t+1∑
τ=1

E ∥Mτ∥2 + 2E

[(
t∑

τ=1

Mτ

)
· E [Mt+1|Ft]

]

=

t+1∑
τ=1

E ∥Mτ∥2 + 0

=

t+1∑
τ=1

E ∥Mτ∥2 ,

where the third line follows from the induction hypothesis, as well as from the law of total expectations;
the fourth lines follows since {Mτ}tτ=1 are measurable w.r.t Ft, and the fifth line follows since
E[Mt+1|Ft] = 0. Thus, we have established the induction step and therefore the lemma holds.

D EXTENSIONS

Here we provide several extensions and additions to Theorem 4.1.

• In Sec. D.1 we provide high-probability bounds for ∥ϵt∥2.

• In Sec. D.2 we show how to obtain E∥ϵt∥2 ≤ O(1/T ) at the price of additional O(log T )
factor in the total sample complexity (i.e. we show that this requires a total of O(T log T )
samples rather than O(T ) samples).

• Our extension to a more standard variant of SGD, which employs uniform weights and a
learning rate of η ∝ 1/L log T appears in Sec. G
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D.1 HIGH PROBABILITY BOUNDS

To obtain high probability bounds we shall require another assumption, that the stochastic gradients
in K are bounded, i.e. that the exist G > 0 such ∥∇f(x, z)∥ ≤ G , ∀x ∈ K, z ∈ Support{D}. We
are now ready to show that w.p. ≥ 1− δ then for all t ∈ [T ] we have,

∥ϵt∥2 ≤ O

(
σ̃2

t
· log(T/δ) + U2

max

t2
· log(T/δ)

)
,

where we denote Umax := 8LD + 2G.

Recall that in the proof of Theorem 4.1 we show the following in Eq. (22),

αtϵt =

t∑
τ=1

Mτ := M1:t . (24)

where Mt := αt−1Zt + (gt − ḡt), as well as M1 = g1 − ḡ1, where we denoted Zt := (gt − ḡt)−
(g̃t−1 − ḡt−1). Thus Mt is a martingale difference sequence w.r.t. the natural filtration induced by
the upcoming samples. And Mt is also bounded w.p. 1 since,

∥Mt∥ = ∥αt−1Zt + (gt − ḡt)∥
≤ ∥αt−1Zt∥+ ∥(gt − ḡt)∥
≤ ∥αt−1(gt − g̃t−1)∥+ ∥αt−1(ḡt − ḡt−1)∥+ ∥(gt − ḡt)∥
≤ Lαt−1∥xt − xt−1∥+ Lαt−1∥xt − xt−1∥+ 2G

≤ 2Lαt−1 · 4D/αt−1 + 2G

= 8LD + 2G

:= Umax .

where we have used the smoothness of the ∇f(·, z) as well as Eq. (20). We also denote Umax :=
8LD + 2G.

Finally, similarly to the proof of Theorem 4.1 we can show that,

Et−1∥Mt∥2 = σ̃2

where Et−1 denotes conditional expectation conditioned over history of the samples (randomizations)
up until and including round t− 1.

Now, since the {Mt}t is a martingale sequence w.r.t. the natural filtration induced by optimization
process, and since it is bounded, with bounded conditional second moments, then we can use Cor. 4.1
in Minsker (2017) 2 to show that w.p. ≥ 1− δ the for all t ∈ [T ] we have,

∥M1:t∥2 ≤ O
(
σ̃2t · log(T/δ) + U2

max log(T/δ)
)

where the T inside the logarithm comes from using the union bound.

Thus, based on the above and on Eq. (24), we immediately conclude that, w.p. ≥ 1− δ then for all
t ∈ [T ] we have,

∥ϵt∥2 =
1

α2
t

∥M1:t∥2 ≤ O

(
σ̃2

t
· log(T/δ) + U2

max

t2
· log(T/δ)

)
where we used αt = t. This concludes the proof.

D.2 UNIFORMLY SMALL ERROR BOUNDS

Here we show that upon increasing the sample complexity by a factor of log T , enables to obtain a
uniformly small bound of E∥ϵt∥2 ≤ σ̃2/T ,∀t ∈ [T ].

To do do, we will employ a batch-size of size bt = ⌈T/t⌉ at round t.

2Actaully Cor. 4.1 in Minsker (2017) is a Corollary of Thm. 3.1 therein, which applies to a sum of independent
matrices. Nevertheless, we can obtain a corollary for the Martingale difference case for vectors from Thm. 3.2 in
Minsker (2017) which applies to this martingale difference case.
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Total # Samples. The total number of samples that we use along all rounds is therefore
∑T

t=1 bt =
O(T log T ). Thus the sample complexity only increases by log T factor.

Error Analysis. Upon using a batch-size bt the variance of our estimator in round t decreases by a
factor of bt. Thus, along the exact same lines as in Eq. (23) we can show the following.

E∥αtϵt∥2 ≤
t∑

τ=1

σ̃2

bτ
≤ σ̃2

T

t∑
τ=1

τ ≤ σ̃2 t
2

T
.

Recalling αt = t and dividing by α2
t yields,

E∥ϵt∥2 ≤
σ̃2

T
,

which establishes the uniformly small error.

E PROOF OF THM. 4.2

Proof of Thm. 4.2. The proof is a direct combination of Thm. 4.1 together with the standard regret
bound of OGD (Online Gradient Descent), which in turn enables to utilize the Anytime guarantees of
Thm. 3.1.
Part 1: Regret Bound. Standard regret analysis of the update rule in Eq. (9) implies the following
for any t (see e.g. (Hazan et al., 2016), as well as Theorem 15.1 in (Cutkosky)),

t∑
τ=1

ατdτ · (wτ − w∗) ≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 . (25)

Part 2: Anytime Guarantees. Since the xt’s are weighted averages of the wt’s we may invoke
Thm. 3.1, which ensures for any t ∈ [T ],

α1:t∆t = α1:t(f(xt)− f(w∗)) ≤
t∑

τ=1

ατ∇f(xτ ) · (wτ − w∗) ,

where we denote ∆t := f(xt)− f(w∗).

Part 3: Combining Guarantees. Combining the above Anytime guarantees together with the bound
in Eq. (25) yields,

α1:t∆t ≤
t∑

τ=1

ατ∇f(xτ ) · (wτ − w∗)

=

t∑
τ=1

ατdτ · (wτ − w∗) +

t∑
τ=1

ατ (∇f(xτ )− dτ ) · (wτ − w∗)

=
D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 −

t∑
τ=1

ατ ϵτ · (wτ − w∗)

≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥∇f(xτ ) + ϵτ∥2 +

t∑
τ=1

∥ατ ϵτ∥ · ∥wτ − w∗∥

≤ D2

2η
+ η

t∑
τ=1

α2
τ∥∇f(xτ )∥2 + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 2ηL

t∑
τ=1

α2
τ∆τ + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τ∆τ + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥ , (26)
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where the first inequality follows from Cauchy-Schwartz; the second inequality holds since ∥wt −
w∗∥ ≤ D, as well as from using ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd, the
third inequality follows by the self bounding property for smooth functions (see Lemma E.1 below)
implying that ∥∇f(xτ )∥2 ≤ 2L(f(xτ )− f(w∗)) := 2L∆τ ; and the fourth inequality follows due
to α2

τ ≤ 2α1:τ which holds since ατ = τ + 1.

Lemma E.1. (See e.g. (Levy et al., 2018; Cutkosky, 2019)) Let F : Rd 7→ R be an L-smooth function
with a global minimum x∗, then for any x ∈ Rd we have,

∥∇F (x)∥2 ≤ 2L(F (x)− F (w∗)) .

Next, we will take expectation over Eq. (26), yielding,

α1:tE∆t ≤
D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + η

t∑
τ=1

α2
τE∥ϵτ∥2 +D

t∑
τ=1

E∥ατ ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + η

t∑
τ=1

α2
τE∥ϵτ∥2 +D

t∑
τ=1

√
α2
τE∥ϵτ∥2

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + η

t∑
τ=1

α2
τ · σ̃2/ατ +D

t∑
τ=1

√
α2
τ · σ̃2/ατ

≤ D2

2η
+ 4ηL

t∑
τ=1

α1:τE∆τ + ησ̃2
t∑

τ=1

ατ +Dσ̃

t∑
τ=1

√
ατ

≤ D2

2η
+ 4ηL

T∑
τ=1

α1:τE∆τ + ησ̃2
T∑

τ=1

ατ +Dσ̃

T∑
τ=1

√
ατ

≤ D2

2η
+ 4ηL

T∑
τ=1

α1:τE∆τ + ησ̃2α1:T + 2Dσ̃T 3/2

≤ D2

2η
+

1

2T

T∑
τ=1

α1:τE∆τ + ησ̃2α1:T + 2Dσ̃T 3/2 , (27)

where the second lines is due to Jensen’s inequality implying that EX ≤
√

EX2 for any random
variable X; the third line follows from E∥ϵt∥2 ≤ σ̃2/αt which holds by Thm. 4.1; the fifth line holds
since t ≤ T ; the sixth line follows since

∑T
t=1

√
αt ≤ 2T 3/2, and the last line follows since we pick

η ≤ 1/8LT .

To obtain the final bound we will apply the lemma below to Eq. (27),

Lemma E.2. Let {At}t∈[T ] be a sequence of non-negative elements and B ∈ R, and assume that for
any t ≤ T ,

At ≤ B +
1

2T

T∑
t=1

At ,

Then the following bound holds,
AT ≤ 2B .

Taking At ← α1:tE∆t and B ← D2

2η + ησ̃2α1:T + 2Dσ̃T 3/2 provides the following explicit bound,

α1:T E∆T ≤
D2

η
+ 2ησ̃2α1:T + 4Dσ̃T 3/2

Dividing by α1:T and recalling α1:T = Θ(T 2) gives,

E(f(xT )− f(w∗)) = E∆T ≤ O

(
D2

ηT 2
+ 2ησ̃2 +

4Dσ̃√
T

)
,

which concludes the proof.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.1 PROOF OF LEMMA E.2

Proof of Lemma E.2. Summing the inequality At ≤ B + 1
2T

∑T
t=1 At over t gives,

A1:T ≤ TB + T
1

2T
A1:T = TB +

1

2
A1:T ,

Re-ordering we obtain,

A1:T ≤ 2TB .

Plugging this back to the original inequality and taking t = T gives,

AT ≤ B +
1

2T
A1:T ≤ 2B .

which concludes the proof.

F PROOF OF THM. 5.2

Proof of Thm. 5.2. The proof decomposes according to the techniques that µ2 − ExtraSGD em-
ploys.
Part I: Anytime Guarantees. Since the xt’s are {αt}t weighted averages of the {wt}t’s we can
invoke Thm. 3.1 which implies,

α1:T (f(xT )− f(w∗)) ≤
T∑

t=1

αt∇f(xt) · (wt − w∗) =

T∑
t=1

αtdt · (wt − w∗)−
T∑

t=1

αtϵt · (wt − w∗) .

(28)

where we have denote ϵt := dt −∇f(xt).
Part II: Optimistic OGD Guarantees. Since the update rule for {wt, yt}t satisfies the Optimistic-
OGD template w.r.t the sequences of loss and hint vectors {dt, d̂t}t we can apply Lemma 5.1 to
bound the weighted regret in Eq. (28) as follows,

α1:T (f(xT )− f(w∗))

≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥dt − d̂t∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 −
T∑

t=1

αtϵt · (wt − w∗)

≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥gt − ĝt∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 +
T∑

t=1

∥αtϵt∥ · ∥wt − w∗∥

≤ 4D2

η
+

η

2

T∑
t=1

α2
t ∥∇f(xt; zt)−∇f(x̂t; zt)∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+

ηL2

2

T∑
t=1

α2
t ∥xt − x̂t∥2 −

1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+

ηL2

2

T∑
t=1

α2
t

(
αt

α1:t

)2

∥wt − yt−1∥2 −
1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+

4ηL2

2

T∑
t=1

∥wt − yt−1∥2 −
1

2η

T∑
t=1

∥wt − yt−1∥2 +D

T∑
t=1

∥αtϵt∥

≤ 4D2

η
+D

T∑
t=1

∥αtϵt∥ , (29)

where the first line uses Eq. (28) together with Thm. 5.1; the second line uses dt − d̂t = gt − ĝt
which follows by Eq. (19); and the third line follows by the definitions of gt, ĝt, as well as from
∥wt−w∗∥ ≤ D, which holds since wt, w

∗ ∈ K; the fourth line follows by our assumption in Eq. (3);
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the fifth line holds since xt − x̂t = (αt/α1:t)(wt − yt−1) which holds due to Eq. (17); the sixth line
holds since α4

t /(α1:t)
2 ≤ 4 ,∀t ≥ 1; and the last line follows since 2ηL2 − 1/(2η) ≤ 0 which holds

since we assume η ≤ 1/2L.
Part III: µ2 Guarantees. Notice that our definitions for wt, xt, αt, βt and dt satisfy the exact same
conditions of Thm. 4.1, This immediately implies that E∥ϵt∥2 ≤ σ̃2/t ,∀t. Using this, and taking the
expectation of Eq. (29) yields,

α1:T E(f(xT )− f(w∗)) ≤ 4D2

η
+D

T∑
t=1

E∥αtϵt∥ ≤
4D2

η
+D

T∑
t=1

√
E∥αtϵt∥2

≤ 4D2

η
+Dσ̃

T∑
t=1

√
α2
t /t ≤

4D2

η
+ 2T 3/2Dσ̃ . (30)

where the second inequality uses Jensen’s Inequality: EX ≤
√

EX2 which holds for any random
variable X; the last inequality follows from α2

t /t ≤ 2t, implying that
∑T

t=1

√
α2
t /t ≤ 2T 3/2.

Dividing the above equation by α1:T and recalling that α1:T = Θ(T 2) concludes the proof.

G EXTENSION OF µ2-SGD TO UNIFORM WEIGHTS AND η ∝ 1/L log T

Here we show that we can obtain the same guarantees as in Thm. 4.2, when using the following more
standard choices of αt = 1, and η ∝ 1/L log T inside Alg. 1; albeit suffering log T factors in the
convergence rate.

The next theorem, which is a variant of Thm. 4.1, shows that even upon choosing uniform weights
we get E∥ϵt∥2 ≤ O(σ̃2/t).
Theorem G.1. Let f : K 7→ R, and assume that K is convex with diameter D, and that the
assumption in Equations (2),(3),(4) hold. Then invoking Alg. 1 with {αt = 1}t and {βt = 1/t},
ensures,

E∥ϵt∥2 := E∥dt −∇f(xt)∥2 ≤ σ̃2/t ,

where ϵt := dt −∇f(xt), and σ̃2 := 32D2σ2
L + 2σ2.

Next we provide a proof sketch. The exact proof follows same lines as the proof of Thm. 4.1.

Proof Sketch of Thm. G.1. First note that the xt’s always belong to K, since they are weighted
averages of {wt ∈ K}t’s. Our first step is to bound the difference between consecutive queries. The
definition of xt implies,

α1:t−1(xt − xt−1) = αt(wt − xt) ,

yielding,

∥xt − xt−1∥2 = (αt/α1:t−1)
2 ∥wt − xt∥2 ≤

1

(t− 1)2
D2 . (31)

where we have used αt = 1 and α1:t−1 = t − 1; we also used ∥wt − xt∥ ≤ D which holds since
wt, xt ∈ K.
Notation: Prior to going on with the proof we shall require some notation. We will denote ḡt :=
∇f(xt), and recall the following notation from Alg. 1: gt := ∇f(xt, zt) ; g̃t−1 := ∇f(xt−1, zt).
We will also denote, ϵt := dt − ḡt .

Now, recalling Eq. (12), using αt = 1, and combining it with the above definition of ϵt enables to
derive the following recursive relation,

ϵt = βt(gt − ḡt) + (1− βt)Zt + (1− βt)ϵt−1

=
1

t
(gt − ḡt) +

t− 1

t
Zt +

t− 1

t
ϵt−1 ,

where we denote Zt := (gt − ḡt)− (g̃t−1 − ḡt−1), and used βt = 1/t. Now, multiplying the above
equation by t gives,

tϵt = (gt − ḡt) + (t− 1)Zt + (t− 1)ϵt−1

= Mt + (t− 1)ϵt−1 .
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where for any t > 1 we denote Mt := (t− 1)Zt + (gt − ḡt), as well as M1 = g1 − ḡ1. Unrolling
the above equation yields an explicit expression for any t ∈ [T ]:

tϵt =

t∑
τ=1

Mτ := M1:t .

Noticing that the sequence {Mt}t is is martingale difference sequence with respect to the natural
filtration {Ft}t induced by the history of the samples up to time t; enables to bound as follows,

E∥tϵt∥2 =

∥∥∥∥∥
t∑

τ=1

Mτ

∥∥∥∥∥
2

=

t∑
τ=1

E∥Mτ∥2 =

t∑
τ=1

E∥(t− 1)Zt + (gt − ḡt)∥2

≤ 2

t∑
τ=1

(t− 1)2E∥Zt∥2 + 2

t∑
τ=1

E∥gt − ḡt∥2

≤ 2

t∑
τ=1

(t− 1)2E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 + 2

t∑
τ=1

σ2 . (32)

Now, using Eq. (4) together with Eq. (31) allows to bound,

E∥(gt − ḡt)− (g̃t−1 − ḡt−1)∥2 ≤ σ2
L∥xt − xt−1∥2 ≤ σ2

LD
2/(t− 1)2 .

Plugging the above back into Eq. (32) and summing establishes the theorem.

µ2-SGD with η ∝ 1/L log T Based on the above theorem we are now ready to state the guarantees
A version of µ2-SGD that employs standard choices of αt = 1 and η ∝ 1/L log T .

Theorem G.2 (µ2-SGD Guarantees). Let f : Rd 7→ R be a convex function, and assume that
w∗ ∈ argminw∈K f(w) is also its global minimum in Rd. Also, let us make the same assumptions as
in Thm. 4.1. Then invoking Alg. 1 with {αt = 1}t and {βt = 1/t}t, and using the SGD-type update
rule (9) with a learning rate η ≤ 1

16L(1+log T ) inside Eq. (10) of Alg. 1 guarantees,

E(f(xT )− f(w∗)) = E∆T ≤ Õ

(
D2

ηT
+ 2η

σ̃2

T
+

4Dσ̃√
T

)
,

where ∆t := f(xt)− f(w∗), and σ̃2 := 32D2σ2
L + 2σ2.

And note that this demonstrates the same stability of this µ2-SGD variant, similarly to the stability of
the variant that we discuss in the main text and in Thm. 4.2.

Next we provide a proof.

Proof of Thm. G.2. The proof is a direct combination of Thm. G.1 together with the standard regret
bound of OGD (Online Gradient Descent), which in turn enables to utilize the Anytime guarantees of
Thm. 3.1.
Part 1: Regret Bound. Standard regret analysis of the update rule in Eq. (9) implies the following
for any t (Hazan et al., 2016),

t∑
τ=1

ατdτ · (wτ − w∗) ≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 . (33)

Part 2: Anytime Guarantees. Since the xt’s are weighted averages of the wt’s we may invoke
Thm. 3.1, which ensures for any t ∈ [T ],

α1:t∆t = α1:t(f(xt)− f(w∗)) ≤
t∑

τ=1

ατ∇f(xτ ) · (wτ − w∗) ,

where we denote ∆t := f(xt)− f(w∗).
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Part 3: Combining Guarantees. Combining the above Anytime guarantees together with the bound
in Eq. (33) yields,

α1:t∆t ≤
t∑

τ=1

ατ∇f(xτ ) · (wτ − w∗)

=

t∑
τ=1

ατdτ · (wτ − w∗) +

t∑
τ=1

ατ (∇f(xτ )− dτ ) · (wτ − w∗)

=
D2

2η
+

η

2

t∑
τ=1

α2
τ∥dτ∥2 −

t∑
τ=1

ατ ϵτ · (wτ − w∗)

≤ D2

2η
+

η

2

t∑
τ=1

α2
τ∥∇f(xτ ) + ϵτ∥2 +

t∑
τ=1

∥ατ ϵτ∥ · ∥wτ − w∗∥

≤ D2

2η
+ η

t∑
τ=1

α2
τ∥∇f(xτ )∥2 + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 2ηL

t∑
τ=1

α2
τ∆τ + η

t∑
τ=1

α2
τ∥ϵτ∥2 +D

t∑
τ=1

∥ατ ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

∆τ + η

t∑
τ=1

∥ϵτ∥2 +D

t∑
τ=1

∥ϵτ∥ , (34)

where the first inequality follows from Cauchy-Schwartz; the second inequality holds since ∥wt −
w∗∥ ≤ D, as well as from using ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 which holds for any a, b ∈ Rd, the third
inequality follows by the self bounding property for smooth functions (see Lemma E.1) implying that
∥∇f(xτ )∥2 ≤ 2L(f(xτ )− f(w∗)) := 2L∆τ ; and the fourth inequality follows due to ατ = 1.

Next, we will take expectation over Eq. (34), yielding,

tE∆t = α1:tE∆t ≤
D2

2η
+ 4ηL

t∑
τ=1

E∆τ + η

t∑
τ=1

E∥ϵτ∥2 +D

t∑
τ=1

E∥ϵτ∥

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + η

t∑
τ=1

E∥ϵτ∥2 +D

t∑
τ=1

√
E∥ϵτ∥2

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + η

t∑
τ=1

σ̃2/τ +D

t∑
τ=1

√
σ̃2/τ

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + ησ̃2
t∑

τ=1

1/τ +Dσ̃

t∑
τ=1

√
1/τ

≤ D2

2η
+ 4ηL

t∑
τ=1

E∆τ + ησ̃2(1 + log t) + 2Dσ̃
√
t

≤ D2

2η
+

1

4(1 + log T )

t∑
τ=1

E∆τ + ησ̃2(1 + log t) + 2Dσ̃
√
t , (35)

where the second lines is due to Jensen’s inequality implying that EX ≤
√

EX2 for any random
variable X; the third line follows from E∥ϵt∥2 ≤ σ̃2/t which holds by Thm. G.1. We also used∑t

τ=1 1/
√
τ ≤ 2

√
t as well as

∑t
τ=1 1/τ ≤ 1 + log t. Lastly, we use our choice for η.

To obtain the final bound we will apply Lemma G.3 below to Eq. (35).

Lemma G.3. Let T > 2, and {At}t∈[T ] be a sequence of non-negative elements and {Bt ∈ R}t∈[T ]

a monotonically increasing sequence of non-negative elements, and assume that for any t ≤ T ,

tAt ≤ Bt +
1

4(1 + log T )

T∑
t=1

At ,
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Then the following bound holds ∀t ∈ [T ],

At ≤ 2Bt/t .

Taking At ← E∆t and Bt ← D2

2η + ησ̃2(1 + log t) + 2Dσ̃
√
t provides the following explicit bound,

E(f(xT )− f(w∗)) = E∆T ≤ Õ

(
D2

ηT
+ 2η

σ̃2

T
+

4Dσ̃√
T

)
,

which concludes the proof.

G.1 PROOF OF LEMMA G.3

Proof. We shall prove the lemma by induction. For the base case we have,

A1 ≤ B1 +
1

4(1 + log T )
A1 ≤ B1 +

1

4
A1

This directly implies that A1 ≤ 4B1/3 ≤ 2B1, which establishes the base case.

For the induction step, lets assume that the lemma holds for for any τ ≤ t, and show that it also
holds for t+ 1. Indeed, using the induction assumption we obtain,

(t+ 1)At+1 ≤ Bt+1 +
1

4(1 + log T )

(
At+1 +

t∑
τ=1

Aτ

)

≤ Bt+1 +
1

4
At+1 +

1

4(1 + log T )

t∑
τ=1

2Bτ
τ

≤ Bt+1 +
1

4
At+1 +

2Bt+1

4(1 + log T )

t∑
τ=1

1

τ

≤ Bt+1 +
1

4
At+1 +

2Bt+1

4(1 + log T )

t∑
τ=1

1

τ

≤ Bt+1 +
1

4
At+1 +

1

2
Bt+1 .

where we have used the monotonicity of the Bt sequence, as well as the fact that for any t ≤ T we
have

∑t
τ=1

1
τ ≤ 1 + log t ≤ 1 + log T . Re-ordering the above implies (t+ 1− 1

4 )At+1 ≤ 3
2Bt+1.

Since t ≥ 1 then t+ 1− 1
4 ≥

3
4 (t+ 1). Using this together with the non-negativity of At+1 directly

implies that,

At+1 ≤
3Bt+1/2

t+ 1− 1
4

≤ 3Bt+1/2

3(t+ 1)/4
= 2Bt+1 .

which establishes the induction step; and in turn the induction proof.

H EXPERIMENTS

H.1 TECHNICAL DETAILS

We compared the following optimization algorithms over a range of fixed learning rates3:

• µ2-SGD.
• Momentum-based SGD with µ = 0.9 and τ = 0.9 (see PyTorch docs.4).

3Note that comparing fixed learning rates across different optimizers is consistent with our theoretical
findings, which demonstrate optimal convergence for η = αtηµ2-SGD = O(t/T ) ≃ O(1).

4https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
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• Standard SGD.
• STORM.
• Anytime-SGD.

We evaluated our approach on the following datasets:

• CIFAR-10 Dataset. The CIFAR-10 dataset (Krizhevsky et al., 2014) consists of 60,000
color images across ten classes with a resolution of 32x32 pixels.

• MNIST-10 Dataset. The MNIST dataset (LeCun et al., 2010) comprises 70,000 grayscale
images of handwritten digits (0-9) with a resolution of 28x28 pixels.

H.2 CONVEX SETTING

In this experiment, we address a logistic regression problem aimed at minimizing the empirical loss
on the MNIST dataset. Both the training and testing phases employed mini-batches of size 64, with
one full pass (epoch) over the dataset.

To maintain stability and ensure a well-defined problem, the model weights are constrained within a
unit ball, limiting the solution space to a compact convex set:

K = {w ∈ Rd : ∥w∥2 ≤ 1},

where w ∈ Rd denotes the model weights.

At each iteration, the weights are projected back into the unit ball using the projection function
ΠK(w), ensuring that the norm of w remains bounded.

The following algorithms were evaluated with their respective parameter settings: µ2-SGD with
αt = t and βt = 1/t, STORM with βt = 1/t, and Anytime-SGD with αt = t.

Figure 3: Test Loss over Iterations and Learning Rates
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Figure 4: Test Accuracy over LRs from 0.0001 to 1000

Figure 5: Test Loss over LRs from 0.0001 to 1000

Figure 6: Test Loss over LRs from 0.001 to 1
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H.3 NON-CONVEX SETTING

CIFAR-10 Experiment. In this experiment, we employed the ResNet-18 architecture, and during
both the training and testing phases, we used mini-batches of size 32 and performed 25 epochs over
the dataset. The training phase included image augmentations such as RandomCrop with padding
of 2 pixels (resulting in a crop size of 32x32 with a probability of 0.5) and RandomHorizontalFlip
with a probability of 0.5. These augmentations help in improving the generalization of the model by
artificially expanding the training dataset.

MNIST-10 Experiment. In this experiment, in both the training and testing phases, we employed
mini-batches of size 64 and performed one epoch over the dataset. We used a simple CNN architecture
that included two convolutional layers followed by max-pooling layers, a fully connected layer with
batch normalization, and an output layer.

The following algorithms were evaluated with their respective fixed parameter settings: µ2-SGD with
γt = 0.1 and βt = 0.9, STORM with βt = 0.9, and Anytime-SGD with γt = 0.1.

In the figures below, note that we have clipped the loss values to a maximum of 20 to simplify visual
interpretation.

Figure 7: CIFAR-10: Test Accuracy Over Epochs at Learning Rate = 10 (↑ is better).
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Figure 8: CIFAR-10: Test Loss over LRs from 0.0001 to 10

Figure 9: CIFAR-10: Test Loss over LRs from 0.01 to 1
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Figure 10: MNIST: Test Accuracy Over Iterations at Learning Rate=10 (↑ is better).

Figure 11: MNIST: Test Accuracy over LRs from 0.0001 to 10
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Figure 12: MNIST: Test Loss over LRs from 0.0001 to 10

Figure 13: MNIST: Test Loss over LRs from 0.01 to 1
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Figure 14: CIFAR-10: Test Accuracy Over Epochs at Learning Rate=1 (↑ is better).

Figure 15: MNIST: Test Accuracy Over Iterations at Learning Rate=1 (↑ is better).

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

H.4 COMPLETE EXPERIMENTAL RESULTS

H.4.1 MNIST - CONVEX

Figure 16: Test Accuracy with Learning Rate 0.0001

Figure 17: Test Accuracy with Learning Rate 0.001
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Figure 18: Test Accuracy with Learning Rate 0.01

Figure 19: Test Accuracy with Learning Rate 0.1
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Figure 20: Test Accuracy with Learning Rate 1

Figure 21: Test Accuracy with Learning Rate 10
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Figure 22: Test Accuracy with Learning Rate 100

Figure 23: Test Accuracy with Learning Rate 1000
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Figure 24: Test Loss with Learning Rate 0.0001

Figure 25: Test Loss with Learning Rate 0.001
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Figure 26: Test Loss with Learning Rate 0.01

Figure 27: Test Loss with Learning Rate 0.1
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Figure 28: Test Loss with Learning Rate 1

Figure 29: Test Loss with Learning Rate 10
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Figure 30: Test Loss with Learning Rate 100

Figure 31: Test Loss with Learning Rate 1000
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H.4.2 CIFAR-10 - NON-CONVEX

Figure 32: Test Accuracy with Learning Rate 0.0001

Figure 33: Test Accuracy with Learning Rate 0.001
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Figure 34: Test Accuracy with Learning Rate 0.01

Figure 35: Test Accuracy with Learning Rate 0.1
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Figure 36: Test Loss with Learning Rate 0.0001

Figure 37: Test Loss with Learning Rate 0.001
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Figure 38: Test Loss with Learning Rate 0.01

Figure 39: Test Loss with Learning Rate 0.1
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Figure 40: Test Loss with Learning Rate 1

Figure 41: Test Loss with Learning Rate 10
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H.4.3 MNIST - NON-CONVEX

Figure 42: Test Accuracy with Learning Rate 0.0001

Figure 43: Test Accuracy with Learning Rate 0.001
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Figure 44: Test Accuracy with Learning Rate 0.01

Figure 45: Test Accuracy with Learning Rate 0.1
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Figure 46: Test Loss with Learning Rate 0.0001

Figure 47: Test Loss with Learning Rate 0.001
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Figure 48: Test Loss with Learning Rate 0.01

Figure 49: Test Loss with Learning Rate 0.1
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Figure 50: Test Loss with Learning Rate 1

Figure 51: Test Loss with Learning Rate 10

50


