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ABSTRACT

Transformers are a dominant architecture in modern machine learning, powering
applications across vision, language, and beyond. At the core of their success lies
the attention layer, where the query, key, and value matrices determine how token
dependencies are captured. While considerable work has focused on scaling and
optimizing Transformers, comparatively little attention has been paid to how the
weights of the queries, keys and values are initialized. Common practice relies on
random initialization or alternatives such as mimetic initialization, which imitates
weight patterns from converged models, and weight selection, which transfers
weights from a teacher model. In this paper, we argue that initialization can in-
troduce an optimization bias that fundamentally shapes training dynamics. We
propose conditioned initialization, a principled scheme that initializes attention
weights to improve the spectral properties of the attention layer. Theoretically,
we show that conditioned initialization can potentially reduce the condition num-
ber of the attention Jacobian, leading to more stable optimization. Empirically, it
accelerates convergence and improves generalization across diverse applications,
highlighting conditioning as a critical yet underexplored area for advancing Trans-
former performance. Importantly, conditioned initialization is simple to apply and
integrates seamlessly into a wide range of Transformer architectures.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have rapidly become a cornerstone of modern machine learning,
driving progress in fields as diverse as natural language processing (Vaswani et al., 2017; Zhuang
et al., 2021; Zhen et al., 2022), computer vision (Dosovitskiy et al., 2020; Liu et al., 2021; Touvron
et al., 2021; Carion et al., 2020), and robotics (Salzmann et al., 2020; Maiti et al., 2023). A key
factor behind this versatility is the self-attention mechanism, which models interactions between
tokens by comparing them pairwise and dynamically weighting their contributions. This ability
to capture both long-range and global dependencies has positioned Transformers as a foundational
architecture across a wide spectrum of learning tasks.

While substantial effort has been devoted to improving the efficiency, scalability, and expressive-
ness of attention mechanisms (Ali et al., 2021; Xiong et al., 2021b; Ding et al., 2022), relatively
little focus has been placed on a more basic but equally important aspect: how attention weights
are initialized. Initialization plays a critical role in shaping optimization landscapes of deep neu-
ral networks. Classical schemes such as Xavier (Glorot & Bengio, 2010) and Kaiming (He et al.,
2015) initialization showed that carefully chosen scaling of weights at the start of training can dra-
matically improve gradient optimization and stability in deep networks. These insights were crucial
for enabling the training of very deep architectures such as ResNets (He et al., 2016), where poor
initialization could otherwise cause vanishing or exploding gradients. Yet, despite their depth and
complexity, Transformers have received far less theoretical scrutiny on this front. Given that self-
attention relies on query, key, and value projections whose interplay directly governs the stability of
token interactions, it is natural to ask whether initialization schemes tailored specifically to attention
could offer similar benefits.

Currently, Transformers typically adopt simple random initializations, without consideration of the
unique structure of attention layers. Recent alternatives such as mimetic initialization (Trockman &
Kolter, 2023), which transfers statistical patterns from converged models, and weight selection (Xu
et al., 2023), which reuses pretrained weights from larger teacher models, highlight a growing recog-
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nition that initialization matters. However, these methods remain heuristic and lack a principled
connection to the conditioning of the attention mechanism itself.

In this work, we revisit Transformer initialization from a theoretical perspective. We show that the
stability of optimization in self-attention layers is closely tied to the conditioning of their Jacobians,
which in turn depends on the spectral properties of the query, key, and value projections. Building
on this insight, we introduce conditioned initialization, a principled scheme designed to improve
the spectral conditioning of attention blocks at the start of training. Rather than directly modifying
training objectives, our method intervenes at initialization, providing an inductive bias that promotes
more stable optimization dynamics.

Our contributions are threefold:

1. Theoretical framework: We establish a connection between the conditioning of self-
attention Jacobians and the spectral structure of the query, key, and value matrices, mo-
tivating initialization schemes that explicitly target this property.

2. Conditioned initialization: We propose a simple initialization method that reduces the
upper bound on the attention Jacobian’s condition number, thereby biasing training toward
stable optimization.

3. Empirical validation: Through experiments on diverse benchmarks, spanning image clas-
sification, object detection, instance segmentation, language modeling, and long-range se-
quence learning, we show that conditioned initialization consistently accelerates conver-
gence and improves generalization, and can be easily integrated into a variety of different
Transformer architectures.

By highlighting initialization as a critical yet underexplored component of Transformer design, our
work opens up a new perspective on how principled conditioning can be leveraged to improve opti-
mization stability and downstream performance.

2 RELATED WORK

Initialization. Initialization strategies play a pivotal role in determining how efficiently deep net-
works can be trained. Early advances such as Xavier (Glorot & Bengio, 2010) and Kaiming initial-
ization (He et al., 2015) demonstrated that properly scaling weights at the outset helps preserve vari-
ance across layers, preventing issues like vanishing or exploding gradients. These ideas were foun-
dational in enabling the successful training of very deep architectures, most notably ResNets (He
et al., 2016). In the context of Transformers, however, initialization has typically been treated in
a more ad hoc manner, with standard practice relying on simple schemes from normal or trun-
cated normal distributions. More recent efforts have begun to acknowledge the unique structure of
attention layers. For example, mimetic initialization (Trockman & Kolter, 2023) introduces induc-
tive bias by imitating the statistical patterns of trained networks, while weight selection (Xu et al.,
2023) transfers weights from larger pretrained teacher models to provide a stronger starting point
for smaller architectures. In our experiments we compare to these two methods.

Conditioning. A growing body of work has underscored the importance of conditioning for both
the trainability and generalization of neural networks. In particular, Saratchandran et al. (2025)
showed that networks with better-conditioned weights tend to achieve superior performance, and
proposed a matrix preconditioning method to explicitly control condition numbers during training.
From a different angle, Liu et al. (2022) analyzed optimization through the lens of the neural tangent
kernel (NTK), demonstrating that well-conditioned NTKs lead to faster and more reliable conver-
gence, particularly in the infinite-width regime where the NTK dominates learning dynamics (Jacot
et al., 2018). This has been extended to the transformer setting in Yang (2020). Other studies have
pointed out structural factors that affect conditioning. For example, Agarwal et al. (2021) observed
that increasing network depth can itself improve conditioning, thereby aiding gradient-based meth-
ods. In the case of Transformers, Ji et al. (2025) argued that skip connections act as an implicit
conditioning mechanism, stabilizing the optimization of deep Transformers. Our work departs from
these approaches by asking whether initialization itself can be designed to yield better-conditioned
attention layers from the outset.
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3 THEORETICAL FRAMEWORK

3.1 PRELIMINARIES

For the theoretical framework we will primarily focus on self-attention, which is one of the most
common forms of attention in a Transformer. Self-attention is composed of three learnable matrices,
query WQ ∈ RD×d, key WK ∈ RD×d, and value WV ∈ RD×d defined for an input sequence
X ∈ RN×D.

A(X) = softmax(XWQW
T
KXT )XWV (1)

where softmax is the softmax activation that acts row-wise on a matrix (Prince, 2023). Note that
then A(X) ∈ RN×d. In general, Transformers employ multiple heads i.e. attention matrices Ai

for 1 ≤ i ≤ h where h is the number of heads. These are then concatenated together to form a
multi-head attention layer [A1, . . . , Ah]. We point out that in some references the notation A(X) is
reserved for only the term softmax(XWQW

T
KXT ). However, in this paper as we will be concerned

with the whole attention layer we use A(X) to denote the whole layer output as defined in eq. (1).
For further details on Transformers readers may consult Prince (2023).

The self-attention map of a layer in a Transformer A(X) has parameters given by those parameters
in X from the previous layer and those given by WQ, WK , WV that define A(X). Our work will
consider the Jacobian of A(X) with respect to the parameters within the layer of A(X), namely
WQ, WK , WV . Therefore, when we speak of the Jacobian of A(X) it will be with respect to WQ,
WK , WV . We will denote this Jacobian by J(A(X)) and note that it is defined by

J(A(X)) =

[
∂A(X)

∂WQ
,
∂A(X)

∂WK
,
∂A(X)

∂WV

]T
(2)

Given a matrix Z ∈ Rm×n we denote the vectorization of Z by vec(Z) ∈ Rmn×1 (Magnus &
Neudecker, 2019). Note that for such a matrix there is a transformation Tmn ∈ Rmn×mn such that
Tmnvec(Z) = vec(ZT ) where ZT denotes the transpose of Z. The matrix Tmn is known as a
commutation matrix and is a permutation matrix (Magnus & Neudecker, 2019). The maximum sin-
gular value of a matrix Z will be denoted by σmax(Z) and the minimum singular value by σmin(Z).
We will use the standard terminology SVD to denote the singular value decomposition of a matrix.
Given a vector v ∈ Rn the notation ||v||2 will denote the vector 2-norm of v. Finally, we will let
Im×n denote the rectangular identity matrix that has all 1’s on its main diagonal and Om×n as the
real m× n semi-orthogonal matrices.

3.2 MAIN THEOREMS

In this section, we present the main theorem of the paper, which motivates the development of a sim-
ple yet effective strategy, conditioned initialization, designed to reduce the condition number of the
Jacobian of the attention layer at initialization. As shown in section 4, this scheme is straightforward
to implement while providing significant optimization benefits.
Definition 3.1. Let Z be an N × d matrix of full rank. The condition number of Z, denoted by κ,
is defined as

κ(Z) =
σmax(Z)

σmin(Z)
(3)

where σmax(Z) denotes the maximum singular value of Z and σmin(Z) the minimum singular value
of Z, which we know is non-zero as Z is full rank.

Our objective is to analyze the condition number of the self-attention layer in a Transformer. We
show that the condition number of its Jacobian depends on the condition numbers of the query, key,
and value weight matrices. Furthermore, we demonstrate that initializing WQ, WK , and WV with
low condition numbers imparts an inductive bias into the Transformer architecture that leads to more
effective optimization.

We begin by examining the derivatives of the self-attention layer with respect to the parameters WQ,
WK , and WV . We will need the following lemma.
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Lemma 3.1. Let Λ : Rn → Rn×n denote the function Λ(z) = Diag(z)− z · zT . We then have
that

∂softmax

∂x
(z) = Λ(softmax(z)). (4)

Proposition 3.1. Let A(X) denote a self-attention matrix with input X as defined by eq. (1).
Then

∂A(X)

∂WQ
= (WT

V XT ⊗ IN )

(
Λ(softmax(XWQW

T
KXT ))

)
(XWK ⊗X) (5)

∂A(X)

∂WK
= (WT

V XT ⊗ IN )

(
Λ(softmax(XWQW

T
KXT ))

)
(X ⊗XWQ) · TDd (6)

∂A(X)

∂WV
= Id ⊗ softmax(XWQW

T
KXT )X (7)

where Λ is defined in lemma 3.1 and TDd is the commutation matrix satisfying TDdvec(WK) =
vec(WT

K) (see section 3.1).

From proposition 3.1 we obtain a bound on the condition number of the Jacobian of the attention
matrix.

Theorem 3.1. Let A(X) denote a self-attention matrix, as defined in eq. (1), with input X and
let J(A(X)) denote its Jacobian with respect to the parameter matrices WQ, WK and WV as
defined in eq. (2). Assume that J(A(X)) has full rank so that κ(J(A(X))) is finite. Then

κ(J(A(X))) ≤ κ(X)3κ
(
Λ(softmax(XWQW

T
KXT ))

)
κ(WV )

(
κ(WQ) + κ(WK)

)
(8)

+ κ(X)κ(softmax(XWQW
T
KXT ))

where Λ is defined in lemma 3.1.

Theorem 3.1 shows that κ(J(A(X))) is bounded above by a sum of two terms:

κ(X)3 · κ
(
Λ(softmax(XWQW

T
KXT ))

)
κ(WV )

(
κ(WQ) + κ(WK)

)
(9)

κ
(
softmax(XWQW

T
KXT )

)
(10)

Observation. Theorem 3.1 provides a strategy for reducing the condition number of the Jacobian
of A through the upper bound in eq. (8). Since we directly control WQ, WK , and WV , reducing
their condition numbers decreases the term in eq. (9), thereby tightening the bound. Our next step
is to show that this can be achieved at initialization and to confirm empirically in section 4 that it
introduces a bias which improves both optimization and performance.

3.3 CONDITIONED INITIALIZATION

Our goal in this section is to design a simple and effective initialization for the query, key, and value
matrices WQ, WK , and WV that lowers the condition number of their singular value spectra, thereby
improving the conditioning of the Jacobian J(A).

We begin with two key observations. There are two families of m × n matrices with condition
number 1:

1. scalar multiples of the identity λIm×n with λ ̸= 0, and
2. semi-orthogonal matrices Om×n (matrices with orthonormal rows or columns).

From theorem 3.1, the condition number of J(A) admits the surrogate upper bound

B(J(A)) := κ(X)3 κ
(
Λ(softmax(XWQW

T
KXT ))

)
κ(WV )

(
κ(WQ) + κ(WK)

)
(11)

+ κ(X)κ(softmax(XWQW
T
KXT )). (12)

Unlike the true condition number κ(J(A)), the bound B(J(A)) can be directly influenced at initial-
ization by controlling the conditioning of WQ, WK , and WV . Standard practice initializes these
matrices from Gaussian or uniform distributions, which do not enforce good conditioning.

4
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The following proposition shows that initializing WQ, WK , and WV from either of the families
above yields a strictly better surrogate bound at initialization.

Proposition 3.2. Let A(X) denote an attention matrix with WQ, WK , and WV initialized from
a Gaussian or uniform distribution, and let A(X) denote one where WQ, WK , and WV are
initialized from either {λID×d} or OD×d. Then

B(J(A)) ≤ B(J(A)).

Remark. The quantity B(J(A)) is only an upper bound on κ(J(A)). Thus, proposition 3.2 guaran-
tees a tighter bound but does not by itself imply improved conditioning of the Jacobian. Nonetheless,
as we demonstrate in section 4, the initialization in proposition 3.2 consistently lowers the condition
number during training and leads to more stable optimization and improved performance.

Initialization Strategy. Although proposition 3.2 shows that initializing the matrices WQ, WK ,
and WV using either {λID×d} or OD×d can potentially lower the condition number of J(A), it does
not specify which choice is most suitable for each matrix. We note that WQ, WK , and WV play
distinct algebraic roles in attention, and this motivates different treatments. For the value map WV ,
which enters linearly into the output

(softmax(XWQW
T
KXT ))(XWV ),

initializing with the rectangular identity preserves the scale of the input representations (XWV =
X), keeps κ(WV ) = 1, and avoids unnecessary distortion of the Jacobian. In contrast, the query
and key maps interact bilinearly through

S = XWQW
T
KXT ,

and initializing them as rectangular identities can bias projections toward coordinate subspaces,
yielding anisotropic logits and unstable softmax dynamics. A semi-orthogonal initialization for WQ

and WK instead provides near-isometric embeddings, giving each head balanced representations of
X and supporting more diverse and stable attention patterns.

Implementation. Following the above design principle, in the experiments of section 4 we
initialized the value matrices WV for each head as rectangular identities. For the queries and keys,
we initialized each W

(i)
Q and W

(i)
K in the i-th head with independent semi-orthogonal projections,

(W
(i)
Q )TW

(i)
Q = Id, (W

(i)
K )TW

(i)
K = Id,

for i = 1, . . . , h, where h is the number of heads. This produces near-isometric embeddings into
distinct subspaces, thereby diversifying the logits S(i) = (XW

(i)
Q )(XW

(i)
K )T and the resulting

attention patterns. See section A.1.1 for a concrete way to carry out this procedure. We refer to
this initialization as conditioned initialization.

Different forms of attention. The formulation in section 3.1 describes the classical self-attention
layer used in Transformers. In practice, many recent architectures have proposed variations of atten-
tion to improve efficiency and effectiveness (Touvron et al., 2021; Ali et al., 2021; Liu et al., 2021;
Ding et al., 2022; Xiong et al., 2021b). In particular, many of these newer forms of attention apply
normalization to the query, key and values. Our conditioned initialization is readily applicable to
these generalized forms of attention, including those with normalization (see Henry et al. (2020);
Dehghani et al. (2023); Zhang & Sennrich (2019)), and we empirically demonstrate in section 4 that
it consistently yields strong performance.

4 EXPERIMENTS

In this section, we evaluate the theoretical insights from section 3 across a range of Transformer
applications. For each setting, we compare our conditioned initialization against the standard de-
fault schemes commonly used in the literature, as well as more recent alternatives such as mimetic
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Figure 1: Average condition number of the attention Jacobian during training under three common
initialization schemes, shown alongside the theoretical bound from eq. (8).

initialization (Trockman & Kolter, 2023) and weight selection (Xu et al., 2023). In all experiments,
conditioned initialization is implemented as described in section 3.3. The goal is to test our initial-
ization on a wide range of architectures at different parameter levels. For larger scale experiments
we refer the reader to section A.4.

4.1 VITS FOR IMAGE CLASSIFICATION

Vision Transformers. We applied conditioned initialization to the attention layer of a variety of
modern vision Transformers: a ViT-Base (ViT-B) (Dosovitskiy et al., 2020), a Swin-Base (Swin-B)
(Liu et al., 2021), a XCiT-Medium (XCiT-M) (Ali et al., 2021), a DeiT-Base (DeiT-B) (Touvron
et al., 2021), and a DaViT-Base (DaViT-B) (Ding et al., 2022) for image classification on ImageNet-
1k. Each model is initialized in three ways: (i) the default truncated normal initialization (Hugging
Face, 2025b), (ii) mimetic initialization (Trockman & Kolter, 2023), and (iii) our conditioned ini-
tialization from section 3.3. We point out that each of these vision Transformers uses a different
attention layers to the standard self-attention used in the ViT-B architecture. However, as mentioned
in section 3.3 conditioned initialization applies to more general forms of attention.

Results on ImageNet-1k. We trained three versions of each Transformer: a baseline model with
a default initialization (Hugging Face, 2025b), one with mimetic initialization (Trockman & Kolter,
2023) and one incorporating conditioned initialization, see section A.3.1 for training details. The
final results, summarized in table 1, show the test accuracy for each initialization on each model.
We observe that in every case, conditioned initialization outperforms the other two.

Validating the theory. We validate the theoretical results of section 3 using ViT-B and XCiT-M
models trained on ImageNet-1k. Figure 1 reports the average condition number of the Jacobian of
the attention matrices for ViT-B (left) and XCiT-M (right), during training, under the above men-
tioned three initializations, alongside the theoretical upper bound from theorem 3.1. The results
demonstrate that conditioned initialization consistently yields a better-conditioned Jacobian, pro-
viding empirical support for its role in enabling more stable attention mechanisms.

Table 1: Comparison of Vision Transformers with different initializations pretrained on ImageNet-
1k. We report Top-1% classification accuracy. In each case, conditioned initialization improves
performance over the default and mimetic initializations.

ViT-B DeiT-B Swin-B XCiT-M DaViT-B

Original 80.3 81.6 83.4 82.6 84.3

Mimetic 80.5 81.6 83.5 82.6 84.4

Conditioned (ours) 81.5 82.7 84.6 83.5 85.3
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Figure 2: Total number of epochs required for each initialization to reach the final accuracy of the
default initialization reported in table 1, across ViT-B, DeiT-B, Swin-B, and XCiT-M. In all cases,
conditioned initialization converges more quickly, requiring fewer epochs than both default and
mimetic initialization.

Optimization efficiency. As shown in table 1, conditioned initialization achieves higher accuracy
under the same training regime compared to both default and mimetic initialization. To further
assess training efficiency, we measured the number of epochs required by mimetic and conditioned
initialization to match the final accuracy attained by the default initialization across ViT-B, DeiT-B,
Swin-B, and XCiT-M. Figure 2 reports these results, demonstrating that conditioned initialization
consistently converges 20–30% faster to the same accuracy level. Similar analysis for DaViT-B is
given in section A.3.1.

4.1.1 SMALL SCALE DATASETS

Following section 4.1, we assessed conditioned initialization on small-scale image classification
datasets: Flowers (Nilsback & Zisserman, 2008), Pets (Vedaldi, 2012), CIFAR-10, and CIFAR-
100 (Krizhevsky et al., 2009). Experiments were conducted with the ViT-Tiny (ViT-T) architecture,
a common choice for such benchmarks (Trockman & Kolter, 2023; Xu et al., 2023). We compared
conditioned initialization with the default truncated normal scheme (Hugging Face, 2025b) and with
mimetic initialization (Trockman & Kolter, 2023). Because ViTs lack strong inductive bias, they
typically perform poorly on small datasets; mimetic initialization has been shown to partially remedy
this by providing a more suitable inductive bias. As shown in table 2, conditioned initialization
reliably improves over the default and performs on par with mimetic initialization.

Weight selection. We compared our initialization with the weight selection method from Xu et al.
(2023). This can be found in section A.3.1.

Table 2: Comparison of ViT-T pretrained on four small scale datasets with three different initializa-
tions. We report Top-1% classification accuracy. In each case, conditioned initialization improves
performance over the default and mimetic initializations.

Pets Flowers CIFAR-10 CIFAR-100

Default 26.7 64.5 92.4 71.7

Mimetic 47.7 71.6 93.6 75.0

Conditioned (ours) 47.7 72.1 94.1 75.3

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

In this section, we test conditioned initialization in a fine-tuning setting on two downstream tasks:
object detection and instance segmentation. We first pretrain an XCiT architecture (Ali et al., 2021)
on ImageNet-1K and then fine-tune on COCO 2017 (Lin et al., 2014). The XCiT models are used
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Figure 3: Average condition number of the attention Jacobian during training under three common
initialization schemes, shown alongside the theoretical bound from eq. (8).

as backbones within a Mask R-CNN framework (He et al., 2017) equipped with a Feature Pyramid
Network (FPN) for multi-scale features. To connect XCiT to FPN, we adapt its column structure to
output intermediate representations, using the 12-layer XCiT-Small (XCiT-S) with strides adjusted
from 16 to [4, 8, 16, 32] for FPN compatibility. Downsampling is done with max pooling and up-
sampling with a single transposed convolution. We evaluate this setup across three initializations:
default truncated normal, mimetic, and our conditioned initialization.

Results. The results for object detection and instance segmentation are presented in table 3. We
report AP b (Average Precision for bounding boxes), AP b

50/75 (Average Precision at IoU thresholds
of 0.50 and 0.75 for bounding boxes), APm (Average Precision for masks), and APm

50/75 (Average
Precision at IoU thresholds of 0.50 and 0.75 for masks). Across all metrics, XCiT models with
conditioned initialization consistently outperform both alternatives.

Table 3: Performance evaluation of object detection and instance segmentation on the COCO
dataset. For each metric, our spectrally conditioned architecture (Spec. cond.) outperforms the
original.

Model AP b AP b
50 AP b

75 APm APm
50 APm

75

Default 44.9 66.1 48.9 40.1 63.1 42.8

Mimetic 44.8 66.0 49.1 40.2 63.1 42.9

Conditioned (ours) 45.5 66.8 49.5 40.6 63.5 43.3

4.3 LONG RANGE SEQUENCE MODELING

Long-range sequences are essential for Transformers, enabling the integration of information across
distant tokens. We assess our initialization scheme on the Long-Range Arena (LRA) bench-
mark (Tay et al., 2020), designed to evaluate models on extended inputs. For this, we use the
Nyströmformer (Xiong et al., 2021b), which achieves efficient long-range modeling via near-linear
attention. We train three variants: one with default truncated normal initialization (Xiong et al.,
2021b; Hugging Face, 2025a), one with mimetic initialization (Trockman & Kolter, 2023), and one
with our conditioned initialization from section 3.3 following the setup of Xiong et al. (2021b).

Results. From table 4 we see that across all tasks in the LRA benchmark, conditioned initializa-
tion consistently outperforms both default and mimetic initialization. We validate the theoretical
results of section 3 on the text classification and ListOps task in the LRA benchmark suite. Figure 3
reports the average condition number of the Jacobian of the attention matrices for a Nyströmformer
on the text classification task (left) and a Nyströmformer on the ListOps task (middle), during train-
ing, under the above mentioned three initializations, alongside the theoretical upper bound from
theorem 3.1. The results demonstrate that conditioned initialization consistently yields a better-
conditioned Jacobian, providing empirical support for its role in enabling more stable attention
mechanisms. Furthermore, we measured the number of epochs required by mimetic and condi-
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tioned initialization to match the final accuracy attained by the default initialization. Figure 3 (right)
reports these results demonstrating that conditioned initialization consistently converges approxi-
mately 25% faster to the same accuracy level.

Table 4: Nyströmformer with three different initializations on the LRA benchmark. We report
evaluation accuracy (%). As shown, our initialization improves performance across all tasks.

Model ListOps Text Retrieval Image Pathfinder

Default 37.1 63.8 79.8 39.9 72.9

Mimetic 37.1 64.0 79.9 40.2 73.2

Conditioned (ours) 37.9 64.9 80.8 40.4 73.9

4.4 LANGUAGE MODELING

We apply the insights from section 3 to the Crammed BERT language model (Geiping & Goldstein,
2023), trained with masked language modeling. We consider three variants: the original model with
default normal initialization (µ = 0, σ = 0.02), one with mimetic initialization, and one with our
conditioned initialization. All models are pretrained on The Pile (Gao et al., 2021) following the
setup of Geiping & Goldstein (2023), and evaluated on the GLUE benchmark (Wang et al., 2018).
As shown in table 5, conditioned initialization yields the strongest performance, with mimetic also
outperforming the default baseline. Additional results for GPT-2 are provided in section A.3.4.

Table 5: We evaluate a pretrained Crammed BERT with three different initialization schemes on the
GLUE benchmark, and find that conditioned initialization outperforms the other two.

MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA Avg.

Default 83.8 92.3 86.3 55.1 90.1 87.3 85.0 48.9 78.6

Mimetic 84.1 92.5 86.5 55.1 90.3 87.5 85.1 50.1 78.9

Conditioned 84.8 92.9 86.9 55.5 91.1 87.7 86.0 51.7 79.6

5 LIMITATIONS

Our conditioned initialization is derived by optimizing an upper bound on the condition number of
the self-attention Jacobian, rather than minimizing the Jacobian’s condition number directly. The
motivation was to examine whether such a bound-based initialization could induce a more favorable
optimization bias for training Transformers. While this approach offers useful theoretical guidance
and is consistent with the empirical gains we observe, it remains an indirect proxy. Developing
methods that can efficiently estimate and control the exact Jacobian conditioning during training
would therefore be a valuable direction for future work.

6 CONCLUSION

In this paper, we introduced a theoretical framework that relates the conditioning of self-attention Ja-
cobians to the spectral properties of the query, key, and value matrices in Transformer architectures.
Building on this insight, we proposed a simple initialization strategy, conditioned initialization, that
aims to reduce the condition number of the attention Jacobian at initialization, thereby providing
a more favorable inductive bias for optimization. Extensive experiments show that this approach
consistently improves performance across a wide range of Transformer models and tasks, including
image classification, object detection, language modeling, and long-range sequence learning. 1

1Digital tools were used for grammar and formatting only. No large language models contributed to the
research, and all findings are original work by the authors.
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A APPENDIX

ETHICS STATEMENT

This work relies solely on publicly available datasets and does not involve human subjects, person-
ally identifiable information, or sensitive data. The proposed methods are developed exclusively to
advance fundamental research in machine learning.

REPRODUCIBILITY STATEMENT

All experiments in this work were designed with reproducibility in mind. References are provided
for any external codebases employed, and full details of training protocols and hardware are de-
scribed in the appendix. Complete proofs of all theoretical results are also included to allow inde-
pendent verification.

USE OF LLMS

This manuscript was prepared with the assistance of LLMs for grammar checking only. No language
models were used in conducting the research or drafting the scientific content.

A.1 THEORETICAL ANALYSIS

In this section, we give the proofs of the lemma and theorems from section 3.2 and the proposition
from section 3.3.

Notation. For the convenience of the reader we restate the notation we used in section 3.

Given a matrix Z ∈ Rm×n we denote the vectorization of Z by vec(Z) ∈ Rmn×1 (Magnus &
Neudecker, 2019). Note that for such a matrix there is a transformation Tmn ∈ Rmn×mn such that
Tmnvec(Z) = vec(ZT ) where ZT denotes the transpose of Z. The matrix Tmn is known as a
commutation matrix and is a permutation matrix (Magnus & Neudecker, 2019). The maximum sin-
gular value of a matrix Z will be denoted by σmax(Z) and the minimum singular value by σmin(Z).
We will use the standard terminology SVD to denote the singular value decomposition of a matrix.
Given a vector v ∈ Rn the notation ||v||2 will denote the vector 2-norm of v. Finally, we will let
Im×n denote the rectangular identity matrix that has all 1’s on its main diagonal. When we are
dealing with square matrices we will often simply write In with the understanding that In is the
n× n square identity matrix. Context will make it clear whether we are in the square or non-square
regime. We also let Om×n as the real m× n semi-orthogonal matrices.

We start with the following standard facts on derivatives of matrices. We point out to the reader
that Qi et al. (2025) also computes various Jacobians of the self-attention layer using Kronecker
factorizations however their computations are slightly different to ours and we therefore give explicit
details of how to obtain the proofs of lemma 3.1 and proposition 3.1.
Lemma A.1. Let A ∈ Rn×m, B ∈ Rk×l and C ∈ Rm×k. Then

∂ACB

∂C
= BT ⊗A. (13)

Proof. We start by using a well known vectorization identity (Magnus & Neudecker, 2019)

vec(ACB) = (BT ⊗A)vec(C) (14)

where vec denotes the vectorization operator which takes a matrix and maps it to a vector by stacking
its columns on top of each other, see Magnus & Neudecker (2019). We then differentiate eq. (14) to
obtain

∂vec(ACB)

∂vec(C)
= BT ⊗A. (15)

The result of the lemma follows.
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Lemma A.2. Let A ∈ Rn×m so that AT ∈ Rm×n. Then
vec(AT ) = Tmnvec(A) (16)

∂vec(AT )

∂vec(A)
= Tmn (17)

where Tmn is a commutation matrix.

Proof. The first equation follows from the definition of the transpose of a matrix (Magnus &
Neudecker, 2019). The second equation then follows from the first.

The proof of lemma 3.1 is given as follows.

Proof of lemma 3.1. Let [z1, . . . , zn] denote a row vector in Rn. Then by definition

softmax([z1, . . . , zn]) =

[
ez1∑n
i=1 e

zi
, . . . ,

ezn∑n
i=1 e

zi

]
. (18)

From the above equation we can compute the partial derivative and find
∂ softmax(z)i

∂zj
= softmax(z)i (δij − softmax(z)j) . (19)

The term ∂ softmax(z)i
∂zj

is precisely the ij component of the matrix ∂softmax(z)
∂z . Putting each of these

ij terms into an n× n matrix we find
∂softmax(z)

∂z
= Diag(z)− z · zT (20)

which proves the lemma.

We can use the above lemmas to give the proof of proposition 3.1.

Proof of proposition 3.1. We start by establishing the derivative formula for the term ∂A(X)
∂WQ

. We

will use the notation used in section 3.1. Note that by definition ∂A(X)
∂WQ

∈ RdN×dD. Using eq. (1)

A(X) = IN softmax(XWQW
T
KXT )XWV (21)

where IN is the N × N identity matrix. This is done so that we can apply lemma A.1. We then
compute

∂A(X)

∂WQ
=

∂(IN softmax(XWQW
T
KXT )XWV )

∂WQ
(22)

= (WT
V XT ⊗ IN )

∂softmax(XWQW
T
KXT )

∂WQ
using lemma A.1 (23)

= (WT
V XT ⊗ IN )Λ(softmax(XWQW

T
KXT ))

∂(XWQW
T
KXT )

∂WQ
using lemma 3.1

(24)

= (WT
V XT ⊗ IN )Λ(softmax(XWQW

T
KXT ))(XWK ⊗X) (25)

which proves the firs equality in proposition 3.1.

To compute ∂A(X)
∂WK

∈ RdN×dD we proceed in a similar way.

∂A(X)

∂WK
=

∂(IN softmax(XWQW
T
KXT )XWV )

∂WK
(26)

= (WT
V XT ⊗ IN )

∂softmax(XWQW
T
KXT )

∂WK
using lemma A.1 (27)

= (WT
V XT ⊗ IN )Λ(softmax(XWQW

T
KXT ))

∂(XWQW
T
KXT )

∂WK
using lemma 3.1

(28)

= (WT
V XT ⊗ IN )Λ(softmax(XWQW

T
KXT ))(X ⊗XWQ)TDd (29)

14
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where the last equality follows from lemmas A.1 and A.2 This establishes the second equality in
proposition 3.1.

To prove the identity for ∂A(X)
∂WV

∈ RdN×dD we write

A(X) = softmax(XWQW
T
KXT )XWV Id (30)

where Id is the d× d identity matrix. Then we simply apply lemma A.1 to obtain

∂A(X)

∂WV
=

∂(softmax(XWQW
T
KXT )XWV Id)

∂WV
(31)

= Id ⊗ softmax(XWQW
T
KXT )X (32)

which proves the final equality in proposition 3.1.

We also give the proof of theorem 3.1.

Proof of theorem 3.1. The proof of theorem 3.1 follows from using proposition 3.1 and the defini-
tion of the Jacobian of A(X) with respect to WQ, WK and WV given by

J(A(X)) =

[
∂(A(X))

∂WQ
,
∂(A(X))

∂WK
,
∂(A(X))

∂WV

]T
. (33)

We recall that the condition number is defined as κ(J(A(X))) = σmax(J(A(X)))
σmin(J(A(X))) where

σmax(J(A(X))) is the maximum singular value of J(A(X)) and σmin(J(A(X))) the minimum
singular value which we know is non-zero because of the assumption that J(A(X)) has full rank.
Note that, using the notation in section 3.1, we have that J(A(X)) ∈ R3dN×dD as ∂A(X)

∂WQ
, ∂A(X)

∂WK
,

∂A(X)
∂WV

∈ RdN×dD. For each of notation we will write AQ := ∂A(X)
∂WQ

, AK := ∂A(X)
∂WK

, AV := ∂A(X)
∂WV

.

We will start by computing a bound for the maximum singular value. We have for any vector
z ∈ RdD we have

||J(A(X))z||22 =

∥∥∥∥∥
[
∂(A(X))

∂WQ
(z),

∂(A(X))

∂WK
(z),

∂(A(X))

∂WV
(z)

]T∥∥∥∥∥
2

2

(34)

=
∥∥[AQ(z),AK(z),AV (z)

]∥∥2
2

(35)

= ∥AQ(z)∥22 + ∥AK(z)∥22 + ∥AV (z)∥22 (36)

≤
(
σmax(AQ)

2 + σmax(AK)2 + σmax(AV )
2
)
||z||22. (37)

This implies that

σmax(J(A(X))) := max
z ̸=0

||J(A(X))z||22
||z||22

(38)

≤
√

σmax(AQ)2 + σmax(AK)2 + σmax(AV )2 (39)

≤ σmax(AQ) + σmax(AK) + σmax(AV ). (40)

The next step is to compute a lower bound for the minimum singular value σmin(J(A(X))). The
approach is similar to the above, using the fact that σmin(J(A(X))) = min||z||2=1 J(A(X)(z). We
can then use the inequality

∥J(A(X)(z)∥22 =

∥∥∥∥∥
[
∂(A(X))

∂WQ
(z),

∂(A(X))

∂WK
(z),

∂(A(X))

∂WV
(z)

]T∥∥∥∥∥
2

2

(41)

≥ max

{∥∥∥∥∂(A(X))

∂WQ
(z)

∥∥∥∥ ,∥∥∥∥∂(A(X))

∂WK
(z)

∥∥∥∥ ,∥∥∥∥∂(A(X))

∂WV
(z)

∥∥∥∥} (42)

Then minimizing the above over the constraint z ∈ RdD such that ||z|| = 1 we obtain

σmin(J(A(X))) ≥ max

{
σmin

(
∂(A(X))

∂WQ

)
, σmin

(
∂(A(X))

∂WK

)
, σmin

(
∂(A(X))

∂WV

)}
. (43)
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Combing the bounds on σmax(J(A(X))) and σmin(J(A(X))) we obtain

κ(J(A(X))) ≤ κ

(
∂(A(X))

∂WQ

)
+ κ

(
∂(A(X))

∂WK

)
+ κ

(
∂(A(X))

∂WV

)
. (44)

The final step is to get a bound on the condition numbers for each term on the right hand side in the
above inequality. This is done using two facts: Firstly, given two matrices C and D such that the
product CD is full rank then κ(CD) ≤ κ(C)κ(D) and the second that κ(C ⊗ D) = κ(C)κ(D).
Using these two facts we can then use proposition 3.1 to obtain the bound of theorem 3.1 and the
proof is finished.

Using theorem 3.1 the proof of proposition is straightforward.

Proof of proposition 3.2. We first observe that by definition of the condition number of a general
m × n matrix M must always satisfy κ(M) ≥ 1. For matrices with 1’s on the diagonal and zero
elsewhere the condition number is 1. If M is a semi-orthogonal matrix then either

1. MMT = Im×m if m ≥ n (45)

2. MTM = In×n if n ≥ m. (46)

Since the singular values of M are precisely the eigenvalues of MMT if m ≥ n or MTM if n ≥ m.
It follows that the singular values of M must all be 1 and hence it has condition number 1.

Therefore, if the WQ, WK and WV matrices are initialized as ID×d or as a matrix in OD×d we have
that their condition number is 1. Therefore, we must have

B(A) ≤ B(A) (47)
and the proposition is proved.

Remark A.1. In the implementation strategy in section 3.2 we saw that we initialized the values
matrix WV with a rectangular identity matrix ID×d. However, from the theory of that section we
could have also initialized it with λID×d for λ ̸= 0. In general, we found empirically that this could
be done but that if λ got too large we noticed some instability in training due to WV having weights
that were too large. Therefore, opting for the identity ID×d was what we found worked well.

Why Conditioning the Jacobian Aids Optimization. The rationale for improving the condition-
ing of the self-attention Jacobian is connected to established results on the Neural Tangent Kernel
(NTK). Prior work, see Liu et al. (2022), has shown that better-conditioned NTKs lead to faster
and more reliable convergence to a global minima during gradient-based optimization. Since the
singular values of a network’s Jacobian correspond to the positive square roots of the eigenvalues
of its NTK, improving the conditioning of the Jacobian directly enhances the conditioning of the
NTK. This connection provides a theoretical basis for why controlling the spectral structure of the
self-attention Jacobian can benefit optimization. Furthermore, recent extensions of NTK theory to
transformer architectures (e.g., Yang 2020) support the relevance of these insights in the attention
setting. Our initialization scheme leverages this relationship by explicitly targeting improved con-
ditioning at initialization, which is consistent with the empirical performance gains observed across
tasks.

A.1.1 IMPLEMENTATION DETAILS

In this section, we give the details of how we implement the semi-orthogonal initialization of the
WQ and WV matrix of each head.

We recall from section 3.3 that our initialization for the queries and keys, proceeded by initializing
each W

(i)
Q and W

(i)
K in the i-th head with independent semi-orthogonal projections,

(W
(i)
Q )TW

(i)
Q = Id, (W

(i)
K )TW

(i)
K = Id,

for i = 1, . . . , h, where h is the number of heads. To do this suppose each W
(i)
Q and W

(i)
K are D× d

and let r = min(D, d) for each head we form two random matrices RQ
i and RK

i of shape D×d and
then take the truncated SVD

UQ
i (r)SQ

i (r)(V Q
i )T (r) and UK

i (r)SK
i (r)(V K

i )T (r) (48)
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where each of the UQ
i (r) ∈ RD×r and (V Q

i )(r) ∈ Rr×d and similarly for the K ones. We then
observe that

OQ
i := UQ

i (r) · (V Q
i )T (r) and OK

i := UK
i (r) · (V K

i )T (r) (49)
are semi-orthogonal. Doing this for each different head we get different semi-orthogonal matrices
for each WQ and WK for each head. The implementation of WV is the same for each head and is
simply done by fixing WV = ID×d.
Remark A.2. We note that in the above we used the SVD to obtain the initializations of each WQ

and WV . One can also use the QR decomposition (Magnus & Neudecker, 2019) and PyTorch has a
built in way to do this via nn.init.orthogonal.

A.2 DISCUSSION ON NORMALIZATION

This section provides additional clarification on how normalization and stabilization mechanisms
interact with the Jacobian conditioning analysis and with the proposed conditioned initialization
scheme. Several modern transformer architectures apply normalization directly to the queries, keys,
or values (e.g., RMSNorm, QKNorm), while Layer Normalization (LN) is typically applied to the
inputs of each block. The discussion below outlines how these components relate to the theoretical
results in section 3 and to the practical behaviour observed in section 4.

Theoretical setting. In the original self-attention formulation Vaswani et al. (2017), no normaliza-
tion is applied directly to the query, key, or value weight matrices. The only modification is the fixed
scaling factor 1/

√
d, determined by the head dimension. Since this factor does not depend on the

model parameters, differentiating the attention map simply scales the Jacobian by a constant. A con-
stant scalar multiplication does not change the condition number of a matrix; therefore, this scaling
has no effect on the conditioning analysis developed in Section 3. The derivations for vanilla self-
attention thus remain mathematically correct and serve as a foundation for the initialization scheme
proposed later.

Compatibility with modern normalization layers. Many contemporary transformer variants in-
corporate normalization directly into the attention pathway, for example through RMSNorm or
QKNorm applied to queries, keys, or values. The conditioned initialization introduced in this paper
is designed to operate on top of these mechanisms rather than as a replacement for them. In all
experiments, the architectures retain their original normalization layers exactly as implemented in
the publicly released codebases. For example, the DeiT-B model applies QKNorm to both queries
and keys. When applying conditioned initialization, these QKNorm layers remain in place. This
ensures that comparisons in section 4 are consistent with the established baseline implementations
in the literature.

Normalization versus conditioning. Normalization and conditioning address different aspects of
stability. Normalization controls the scale of activations and gradients, whereas conditioning con-
cerns the spectral structure of the Jacobian. These effects are distinct. A matrix may have small
norm but poor conditioning, or it may have large norm yet be well-conditioned. For example,

A =

[
1 0

0 1

]
, B =

[
10.1 0

0 10

]
have very different Frobenius norms but nearly identical condition numbers, while

C =

[
1 0

0 1

]
, D =

[√
2 0

0 0.1

]
have similar Frobenius norms but condition numbers 1 and approximately 14.14, respectively. Nor-
malization schemes such as LN, RMSNorm, and QKNorm regulate magnitudes, while conditioned
initialization directly shapes the spectral behaviour of the Jacobian. These mechanisms therefore
complement one another.

Ablation on Partial Initialization. We conducted several ablation studies in which the condi-
tioned initialization was applied to only a subset of the attention projection matrices, such as ini-
tializing only WQ, only WK , or only WV . An initial hypothesis was that initializing WV alone
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might be sufficient, since the softmax operation effectively performs a row-wise normalization on
the attention scores. However, normalization and conditioning target fundamentally different prop-
erties: a matrix may have small norm yet still exhibit a large condition number. This observation
led us to a more complete analysis, formalized in theorem 3.1, which shows that the conditioning of
the self-attention Jacobian depends on the joint spectral structure of WQ, WK , and WV . Consistent
with this theoretical insight, we found that applying conditioned initialization to all three projections
yields the most stable behaviour and the strongest empirical performance.

Discussion on the Output Projection. We also examined whether the conditioned initialization
should be applied to the output projection matrix WO, given its close relationship to WV . Empir-
ically, we found that once WV is initialized using the proposed scheme, the initialization of WO

has negligible effect. Applying the conditioned initialization to WO in addition to WV did not al-
ter training behaviour or final performance. Consequently, our method focuses on conditioning the
query, key, and value projections, while leaving WO with its standard initialization.

A.3 EXPERIMENTS

A.3.1 VISION TRANSFORMERS

Hardware and implementation. The image classification experiments in section 4.1 of the paper
were done on Nvidia A100 GPUs. The implementation of the ViTs was all done using the Timm
code base (Wightman, 2019). The architectures were all trained from scratch on the ImageNet-
1k dataset using the AdamW optimizer following the hyperparameters used in the original papers
(Dosovitskiy et al., 2020; Steiner et al., 2016; Liu et al., 2021; Ali et al., 2021; Touvron et al.,
2021; Ding et al., 2022). For the case of ViT-T on the Pets, Flowers, CIFAR-10 and CIFAR-100
datasets we used Wightman (2019) for the architecture and the training hyperparameters from Xu
et al. (2023).

Optimization analysis for DaViT-B. As shown in table 1, conditioned initialization achieves
higher accuracy under the same training regime compared to both default and mimetic initializa-
tion on the DaViT-B architecture. To further assess training efficiency, we measured the number of
epochs required by mimetic and conditioned initialization to match the final accuracy attained by the
default initialization across on the DaViT-B architecture. Figure 4 reports these results, demonstrat-
ing that conditioned initialization consistently converges to approximately 25% faster to the same
accuracy level.

Default Mimetic Conditioned (ours)
0

50

100

150

200

250

300

350

Ep
oc

hs

300 293

221

DaViT-B

Figure 4: Total number of epochs required for each initialization to reach the final accuracy of
the default initialization reported in table 1 for DaViT-B architecture. Conditioned initialization
converges more quickly, requiring fewer epochs than both default and mimetic initialization.
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Weight Selection Xu et al. (Xu et al., 2023) introduced the weight selection method, showing that
weights transferred from an ImageNet-21K-pretrained ViT-Small (ViT-S) model provide a strong in-
ductive bias for initializing a ViT-Tiny (ViT-T) on small-scale datasets. Here, we examine whether
weight selection remains effective when pretraining is performed on ImageNet-1K. To this end,
we pretrained ViT-S models on ImageNet-1K under three initialization schemes: default truncated
normal (Hugging Face, 2025b), mimetic (Trockman & Kolter, 2023), and our conditioned initial-
ization from section 3.3. Using the weight selection procedure (Xu et al., 2023), we then derived
corresponding ViT-T initializations and trained them on Food-101 (Bossard et al., 2014), CIFAR-
10, and CIFAR-100 (Krizhevsky et al., 2009). Table 6 summarizes the results. Each entry labeled
“ImageNet-1K” indicates that the ViT-S model was pretrained on ImageNet-1K with the specified
initialization before its weights were transferred to ViT-T via weight selection. For comparison,
the final row reports the performance of a ViT-T initialized from an ImageNet-21K-pretrained ViT-S
with default truncated normal initialization. The results highlight a key finding: replacing ImageNet-
21K with ImageNet-1K can yield comparable performance, provided that the initialization is chosen
carefully. In particular, conditioned initialization on ImageNet-1K achieves accuracy on par with de-
fault initialization pretrained on ImageNet-21K, underscoring its effectiveness in data-limited pre-
training regimes.

Table 6: Comparison of ViT-T pretrained on four small scale datasets with three different initializa-
tions. We report Top-1% classification accuracy. In each case, conditioned initialization improves
performance over the default and mimetic initializations.

Food-101 CIFAR-10 CIFAR-100

ImageNet-1k + Default 85.5 96.6 79.7

ImageNet-1k + Mimetic 86.4 96.3 79.9

ImageNet-1k + Conditioned (ours) 87.3 97.1 81.0

ImageNet-21k + Default 87.1 97.1 81.1

Training loss curves. We plot the training curves for each of the vision transformer experiments
with each different initialization. In fig. 5, fig. 6, fig. 7 we plot the training loss for the different
initializations for the ViT-B, DeiT-B, Swin-B, XCiT-M and DaViT-B architectures respectively. In
each case, we see conditioned initialization has trains stably and converges faster when compared to
the default and Mimetic initializations.
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Training Loss for ViT-B
Conditioned (ours)
Default
Mimetic
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Conditioned (ours)
Default
Mimetic

Figure 5: Training loss curves for different initializations for ViT-B (left) and DeiT-B (right).

A.3.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Hardware and Implementation: The experiments for section 4.2 of the paper on object detection
and instance segmentation were carried out on Nvidia A100 GPUs. The implementation followed
He et al. (2017). We used the code base given by the GitHub Matterport (2017) following their exact
training regime.
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Figure 6: Training loss curves for different initializations for Swin-B (left) and XCiT-M (right).
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Figure 7: Training loss curves for different initializations for DaViT-B.

A.3.3 LONG RANGE SEQUENCE MODELING WITH NYSTRÖMFORMER

Hardware and Implementation. All the experiments for the Nyströmformer on LRA benchmark
results in section 4.3 were carried out on Nvidia A100 GPUs following the implementation and
hyperparameter settings given in Xiong et al. (2021a).

A.3.4 LANGUAGE MODELING

Crammed BERT. The BERT language modeling experiment in section 4.4 were all carried out on
a Nvidia A6000 GPU. The Crammed-Bert was implemented following the original paper Geiping
& Goldstein (2023) and the original GitHub Geiping (2023). The training regime follows Geiping
(2023).

GPT-2 on TinyStories. We train an autoregressive Transformer, namely a GPT-2 architecture
trained on the TinyStories dataset (Eldan & Li, 2023). Once again we compared three initializations:
one with the default normal initialization (µ = 0, σ = 0.02), one with mimetic and a third with
conditioned initialization. As shown in table 7, conditioned initialization achieves a lower perplexity
than both the default and mimetic initializations showing that it boosts performance in the setting of
autoregressive Transformers. We used the training regime from (Eldan & Li, 2023).

A.4 LARGER SCALE EXPERIMENTS

In this section we tested our initialization on much larger models in both the vision and language
setting.
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Table 7: GPT-2 models trained on the TinyStories dataset. We initialize a model in three different
ways. Conditioned initialization achieves a perplexity than the other two initializations.

Perplexity

Default 2.47

Mimetic 2.40

Conditioned (ours) 2.29

We ran a larger GPT-2 model, 472 million parameters, on the WikiText-103 dataset and the TinyS-
tories dataset. The results are shown in table 8 and table 9 below clearly shows our initialization
obtains better performance by obtaining the lowest perplexity.

Table 8: Perplexity of 472M GPT-2 model pretrained on TinyStories.

Model Perplexity

Default 2.39
Mimetic 2.32
Conditioned (ours) 2.20

Table 9: Perplexity of 472M GPT-2 model pretrained on WikiText-103.

Model Perplexity

Default 44.2
Mimetic 43.8
Conditioned (ours) 42.7

We repeated this experiment with a 1.72 billion parameter GPT-2 model. In this case we witnessed
overfitting in all initialized cases. However, this is to be expected as a billion parameter model
is too large for the TinyStories and WikiText-103 datasets. Yet even in this case our initialization
performed much better as can be seen from table 10 and table 11.

Table 10: Perplexity of 1.72B GPT-2 model pretrained on TinyStories.

Model Perplexity

Default 4.15
Mimetic 4.25
Conditioned (ours) 4.03

Table 11: Perplexity of 1.72B GPT-2 model pretrained on WikiText-103.

Model Perplexity

Default 48.1
Mimetic 48.5
Conditioned (ours) 46.9

We also ran experiments on large scale ViTs on the ImageNet-1k dataset, where these models range
from 200-300M parameters. Once again for these larger models we witnessed overfitting (this has
also been observed in Dosovitskiy et al. (2020); Ding et al. (2022)) yet even in this case our initial-
ization outperformed the other two standard ones, see table 12.

We then ran two 1 billion parameter models namely a ViT-Giant (ViT-G) and a DaViT-Giant (DaViT-
G) as these where some of the standard billion parameter vision transformers we could find in
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Table 12: Large scale ViTs with different initializations pretrained on ImageNet-1k. We show the
Top1% accuracy.

ViT-L DeiT-L Swin-L XCiT-L DaViT-L
Original 79.6 80.7 82.6 81.5 83.3

Mimetic 2 79.7 80.6 82.4 81.5 83.2
Conditioned (ours) 80.7 81.5 83.7 82.4 84.4

Hugging Face (2025b). We pretrained them each with the different initializations on ImageNet-1k.
As can be seen from table 13 our initialization out performs the other two.

Table 13: 1B scale ViTs with different initializations pretrained on ImageNet-1k. We show the
Top1% accuracy.

ViT-G DaViT-G
Original 78.8 81.9

Mimetic 2 78.6 82.0
Conditioned (ours) 79.9 82.9
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