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Figure 1: Qualitative visualization of the curriculum-guided reinforcement learning process of ARPO.
Each row shows an example where the model starts from a simple layout (left) and progressively re-
fines the generated image as training proceeds (base, step150, step400, step700, step1000). Bounding
boxes of different colors denote the target objects. As training advances, object placement becomes
increasingly accurate and visually coherent, demonstrating how our method incrementally improves

spatial alignment and realism.

ABSTRACT

In this work, we tackle the layout-to-image generation task by proposing a novel
online reinforcement learning (RL) framework that directly optimizes diffusion
models to achieve consistency between images and layouts. We introduce RLLay,
a method that overcomes a major limitation that lies in existing methods with
their reliance on indirect side guidance—rather than direct supervision on layout
alignment—which constrains these models’ ability to accurately position and scale
image content. Given a prompt, our approach generates multiple candidate images
and ranks them using a reward model based on Intersection-over-Union (IoU) to
quantify alignment between predicted and target layouts. To effectively utilize this
ranking signal, we introduce a pairwise preference-based optimization strategy
that fine-tunes the diffusion model by maximizing the likelihood of higher-ranked
samples relative to lower-ranked ones (hard-negatives). Experimental results show
that our RL-based fine-tuning significantly improves both spatial layout fidelity
and text-image alignment, establishing a promising direction for more controlled
and layout-aware image generation.

1 INTRODUCTION

With recent advances in text-to-image generative models (Ramesh et al 2021} Nichol & Dhariwall

2022} [Rombach et al.l 2022} [Chen et al., 2023} Xue et al.,

2024), there has been growing interest

in layout-to-image generation (Li et al.,[2023a; [Wang et al.

2024; |Guo et al | [2024) allowing users

can explicitly control the spatial locations (Xie et al., 2023

Wang et al., 2024} |Li et al,[2023a), and
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counts (Binyamin et al.|[2024} [Yang et al., 2023b)) of objects within generated images. While existing
approaches achieve satisfactory results, they typically require extensive and accurately annotated
bounding-box datasets for supervised training, resulting in significant data collection overhead.

Recent developments in reinforcement learning (RL) and preference-based learning, notably within
large language models, have inspired new methods for image generation (Zhu et al., 2025} |Xu et al.,
2023a). Preference-based learning approaches such as DPO (Fan et al., 2024) offer stable training
dynamics with lightweight frameworks compared to traditional RL-based methods (Li et al., 2023b)),
which often experience instability or suboptimal performance without careful hyperparameter tuning.
Nevertheless, current offline preference methods like DPO rely heavily on pre-collected paired data,
which is costly to acquire and limits adaptability. Furthermore, the optimization is indirect because
preference comparisons often involve externally generated images rather than samples from the model
itself, hindering training efficiency and adaptability in dynamic scenarios.

Online preference optimization (Fan et al., 2023} Black et al., 2023) emerges as an appealing
alternative by directly optimizing model outputs in real time. However, transitioning preference-
based methods to an online setting is nontrivial: generating paired data simultaneously with the
training process yields only limited samples at each step, causing gradient updates to become unstable
and negatively affecting image quality. This instability arises because gradients calculated from
sparse or poorly differentiated image pairs produce noisy and inconsistent updates. We introduce
Advanced Relative Policy Optimization (ARPO), which does not rely on any sensitive or learned
reward model and yields substantially more stable training in the online setting by directly optimizing
pairwise preferences with explicit log-probabilities.

‘We summarize our contributions below:

1. We develop a new pipeline called RLLay for layout-to-image generation using reinforce-
ment learning. To the best of our knowledge, this problem has not been previously addressed.

2. We introduce a novel preference-driven reinforcement learning algorithm ARPO, which
achieves stable gains even when reward signals are complex and reliable pairwise data are
scarce, advancing beyond existing approaches such as DPO, DSPO, and GRPO.

3. In detailed implementations, we propose an enhanced online preference optimization frame-
work featuring to mitigate training instability under settings with limited online data. We
present a hard negative mining strategy, which maximizes the utility of every generated data
pair by leveraging the full diversity of online image generation, leading to improved image
quality and more robust preference learning.

2 RELATED WORK

2.1 CONDITIONAL IMAGE GENERATION

Diffusion models have emerged as powerful generative frameworks, excelling in synthesizing high-
quality images from textual descriptions. Early foundational work by Ho et al. (Ho et al.} [2020) intro-
duced denoising diffusion probabilistic models (DDPM), which inspired subsequent enhancements
for text-to-image (T2I) generation such as Stable Diffusion (Rombach et al2022)), GLIDE (Nichol
& Dhariwall, [2022), and Imagen (Saharia et al.| [2022). These methods typically employ supervised
training objectives with deterministic or stochastic denoising schedules, enabling precise yet flexible
image generation conditioned on textual prompts.

Generating images consistent with spatial layouts has been explored extensively, employing various
architectures and training strategies. Early CNN-based approaches (Hong et al.| 2018} |Li et al.,
2019) relied on direct regression or adversarial losses to enforce spatial constraints. Transformer-
based methods, such as LayoutTransformer (Yang et al., [2021)), exploited attention mechanisms
to enhance semantic and spatial coherence. Diffusion-based methods have recently emerged, with
CreatiLayout (Guo et al.| 2024) and Hico (Zhang et al. [2023) effectively leveraging diffusion
architectures to improve spatial accuracy and visual realism via bounding box annotations, aiming
to produce images that adhere to predefined layouts.. Despite their strengths, these methods largely
depend on deterministic training paradigms, limiting their flexibility in explicitly optimizing layout
adherence via external reward signals. Our method bridges this gap, combining diffusion models
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with RL-driven pairwise preference learning to explicitly and effectively enhance spatial fidelity and
textual alignment in layout-to-image generation.

2.2 PREFERENCE LEARNING IN GENERATIVE TASKS

Reinforcement Learning (RL) has been effectively utilized in generative modeling to optimize
models directly towards user-defined objectives. Early efforts such as GAN-based approaches
(SeqGAN (Yu et al.,|2017), RankGAN (Lin et al.,|2017)) and policy-gradient methods (Ziebart et al.
2008) demonstrated RL’s capability to guide generation via explicit reward signals. Recent advances
integrate RL with diffusion models to enhance complex conditioning tasks. Black et al. (Black et al.|
2023)) introduced DDPO, optimizing diffusion models through policy gradients for objectives that are
difficult to capture explicitly by standard supervised learning, such as aesthetic quality and alignment
with user preferences. Similarly, Fan et al. (Fan et al.,[2024) demonstrated significant improvement in
text-to-image alignment by incorporating RL-based fine-tuning with KL-divergence regularization.

Pairwise preference learning has become prominent due to its effectiveness in aligning generative
models with subjective human judgments. Christiano et al. (Christiano et al., 2017)) and Ouyang et
al. (Ouyang et al.l 2022) initially proposed preference-based methods in reinforcement learning from
human feedback (RLHF), popularizing pairwise comparison paradigms. Rafailov et al. (Rafailov et al.|
2023) introduced Direct Preference Optimization (DPO), enabling training without explicit reward
modeling by directly optimizing preference pairs. Recent extensions such as RankDPO (Karthik et al.
2024) generalized this approach to ranking-based preferences, further enhancing generative models’
alignment with nuanced human judgments. In the image generation domain, ImageReward (Xu
et al.| 2023b) utilized human-rated image pairs to train robust reward models, subsequently guiding
diffusion models towards outputs aligned closely with human aesthetic preferences. DSPO (Direct
Score Preference Optimization) (Zhu et al., [2025) is a novel fine-tuning algorithm for diffusion-
based text-to-image models that aligns the pretraining and preference alignment objectives via score
matching, enabling human-preference-consistent image generation without requiring explicit reward
models.

3 METHOD

This section presents RLLay (Reinforce Your Layout): an online reinforcement learning fine-
tuning method for diffusion-based layout-to-image models that aims to substantially improve layout
consistency without sacrificing fidelity or semantic coherence. First (§[3.1), we formalize the task
with a text prompt and layout meta-information as inputs, and define a unified layout reward Ryayout
as the mean IoU between predicted and target boxes in the generated image. Next (§3.2.1), we
introduce a curriculum by layout difficulty, training in a progressive easy-to-hard schedule to stabilize
optimization and preserve separable preference signals. Then (§3.2.2)), to obtain stronger supervision,
we generate multiple candidates per (prompt, layout), rank them by R),y0ut, and construct extreme
preference pairs to amplify reward gaps and log-probability differences, improving learning efficiency
under the same inference budget. Additionally (§3.2.3)), since policy gradients require differentiable
action probabilities, we extend SD-3’s deterministic Flow—ODE to a variance-time SDE and derive a
one-step explicit log-probability log 7. Building on this (§3.2.4), we optimize a loss that combines
pairwise logistic advantage with an IoU-aware KL regularizer, yielding a learning signal that is both
directional and stable.

3.1 PROBLEM FORMULATION

We formulate the task as follows. Given a text prompt p and a set of layout meta-information

K
M = {(bs, t:)},_ |, ey
where
bi = (T1,6, Y1,is T2, Y2,i)
is the bounding box of the i-th object specified by its top-left corner (x4 ;,y; ;) and bottom-right

corner (z2,;,y2,;). All coordinates are normalized to [0, 1] with the image origin at the top-left (0, 0),
the x-axis pointing right, and the y-axis pointing down. The term ¢; denotes the textual description of
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the region (e.g., “red car”). Our goal is to generate an image [ that is semantically aligned with p and
spatially consistent with M.

To quantify spatial consistency, we compare predicted bounding boxes in the generated image with
the target layout. Let o; be the object instance in I corresponding to description ¢;, and let Box;(0;)
denote its predicted bounding box. We define the layout reward as

K
1
Rlayout (I, M) = E Z IOU(BOX[(Oi)7 bl) 2)
i=1
Here, IoU(A, B) = % denotes the Intersection-over-Union between two boxes—a standard

measure of spatial overlap in object detection and localization (Everingham et al.,[2010).

3.2 REINFORCE YOUR LAYOUT
3.2.1 CURRICULUM LEARNING BY LAYOUT DIFFICULTY

Motivation. Online fine-tuning over the full data distribution is unreliable: at early stages, the base
model typically fails to satisfy complex layout constraints, so parallel sampling yields candidate
pairs of uniformly poor quality with barely separable preference/reward signals, making policy
improvement difficult. In addition, the wide distributional span within a single dataset further
amplifies training instability. We therefore adopt a progressive curriculum by layout difficulty: the
model first consolidates basic spatial alignment on easy layouts, and is then gradually exposed
to harder scenes characterized by higher object counts, stronger overlaps, and tighter inter-object
relations. This staged schedule stabilizes optimization while preserving useful preference signal as
complexity increases.

Difficulty factors. We characterize difficulty using three signals:

* Box count K: more boxes increase combinatorial and occlusion complexity.

* Overlap: measured by average pairwise IoU or total overlap ratio (higher overlap makes localization
harder) (L1 et al., 2025).

* Preference bias (co-occurrence overfitting): diffusion models tend to overfit frequent co-
occurrences in training data (e.g., baseball player — bat), which often overrides rare or counterfac-
tual combinations (e.g., baseball player with an umbrella) (Sun et al., 2025} (Carlini et al., 2023).
This factor captures compositional failures from semantic priors.

Level definitions. Based on these factors, we partition samples into four levels:

» Easy: K € [1, 3], Overlap < 10%, no preferences/relations.

* Medium: K € [3,4], Overlap < 20%, with preferences.

* Hard: K € [4, 5], Overlap > 30%, with preferences and containment.

e Very Hard: K > 5, Overlap > 30%, with preferences, containment, and over four bounding
boxes crossing.

Scheduling. We train using stage-wise shuffled mixtures of the four difficulty levels; the exact level
definitions and per-stage mixing ratios are reported in Sec. [#.1.2]

Outcome. This curriculum first yields stable, separable signals on easy cases, then increases
exposure to hard/very-hard layouts so the policy continues to improve under heavy overlap and
complex relations without collapsing. The results of the training stage are shown as in Fig [I]

3.2.2 HARD NEGATIVE MINING VIA EXTREME PAIRING

For each (prompt, meta) pair, we generate six candidate images in parallel. To assess their spatial
alignment quality, we compute the layout reward ),y for each image using GroundingDINO (Liu
et al.;|2024), based on the alignment between generated content and the provided bounding boxes.
Let the resulting scores be sorted in descending order, and denote by x(;) the image with the i-th
highest score.
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Figure 2: Overall pipeline of our curriculum learning and reward-guided optimization framework.
Step 1 groups training samples into four difficulty levels (Easy, Medium, Hard, Very Hard) based on
bounding-box number, overlap ratio, and preference conditions. Step 2 performs hard negative mining
with a reward model to distinguish high- and low-quality generations. Step 3 applies reward-guided
optimization to update the layout-to-image diffusion model, completing a closed training loop.

Based on this ranking, we construct a set of four distinct preference pairs:

P ={(z): @) (@@),26): @0),2@), (@@)26)) 3)

where each pair (2%, z*) consists of a higher-scoring image x* (the winner) and a lower-scoring
image ¢ (the loser). These pairs serve as supervised preference signals for fine-tuning.

[P =4,

This extreme pairing strategy provides two key advantages.

First, by forming several preference pairs within each mini-batch, our strategy uses the same inference
budget more efficiently; the enlarged candidate pool yields a denser set of preference signals,
providing richer and more informative supervision.

Second, extreme pairing amplifies both the layout reward gap and the log-probability difference under
the current sampling policy:

¢

Alogp = log pg(z") — log py(z),
which concentrates gradient updates on image pairs exhibiting the most significant spatial mis-
alignment. Compared to random or arbitrary pairings, this targeted supervision produces stronger
preference signals and accelerates convergence during fine-tuning.

3.2.3 STOCHASTIC SD-3 SAMPLER WITH EXPLICIT LOG-PROB

SD-3 (Esser et al.,[2024) uses a deterministic Flow—ODE scheduler (Lipman et al.,[2022) that con-

verges to a unique solution for any fixed noise vector. To introduce stochasticity while approximately
preserving the sampling marginals and to obtain differentiable action probabilities for RL, we extend
the ODE

dz; = vg(ay, t) dt
to an SDE under a variance-time parameterization:

dl’t = ’Ug(.’Et, t) dt + O'(t) th,

where z; € R, vy is the network-predicted velocity field, o(t) = 1/1/ SNR(t) follows the SD-3
log-SNR schedule, and W; is a standard Wiener process.

Define the cumulative variance

20 - | o%(s)ds,
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andlet0 =ty < --- < ty = 1 be a partition of the time horizon with ¥; = 3(t;), AY; = ¥;41 — %,
and o; = o(t;). A single Euler—-Maruyama step (Lamba et al., 2007) over [3;, 3;11] yields

AY;
Tiy1 = xi+o—2109(mi,ti)+ AY; €, e ~N(0,1). 4
i
Because X(t) is strictly increasing, reparameterizing time in X changes step sizes but preserves the
Gaussian form of the one-step transition, enabling controlled noise injection without redesigning the
sampler.

To strengthen stochasticity, we scale the noise magnitude to 6; = (1 + v)o; (v > 0), which implies
AY; = (147)%Ax%;. 5)

In X-time this can be viewed as adjusting the step size while keeping the transition form unchanged.
For small ~y, the induced marginal shift is minor in practice (see Appendix and ablations); as v — 0,
the sampler reduces to the original deterministic Flow—ODE.

The one-step transition admits a closed-form log-probability:

@i — all® AY;
logmg(a; = Tiy1 | 50 = ) = —}T&z — 3 IOg(27TAEi)a Wi =T + 721 ve (i, i)
(6)

Differentiability flows through p; (and thus vg), providing well-behaved action-probability estimates
for preference-based and policy-gradient updates. When noise is disabled (AX; = 0), the variance
term vanishes and the sampler collapses to the deterministic Flow—ODE. For numerical stability we
use AY; + ¢ (e.g., 1075) in denominators and logarithms.

3.2.4 LosSs FUNCTION

To explicitly improve layout alignment without sacrificing fidelity or semantic consistency, we
minimize the following preference-guided objective over preference pairs (., x¢) (constructed by
the extreme pairing in Sec. [3.2.2):

Lo =E(z,zp [ —logo(BAlogp) + A(1—oa(kAr) s > ||6€(:v>\|§] @)
z€{Tw,z0}
The first term is a pairwise logistic advantage that pushes the log-probability gap A log p to increase
in favor of the better-aligned sample (thus shifting probability mass toward high-IoU regions). The
second term is an IoU-aware KL-style regularizer: when the preference gap Ar is weak (i.e., o(k Ar)
is small), it pulls the current model toward a frozen reference to stabilize training. All symbols are
defined in situ as

Alogp = logpe(wy) — logpe(xe), Ar=ry—1e, 6:(x) =logpe(x) — logpret(z),  (8)

where 7; = Riayout (s, M) is the layout reward, o(z) = 1/(1 + e~*) is the sigmoid, py denotes the
sampler-induced distribution (see Sec. , and p,.r is a frozen reference model. The scalars 5 > 0,
k > 0, and A > 0 control the sharpness of the logistic term, the temperature on the reward gap, and
the strength of the regularization, respectively.

This objective can be derived from the constrained problem
max Eqp, [Riayout (z, M)]  s.t. KL(pg|[pres) <. )

We approximate the expected reward by a weighted pairwise advantage E[o(x Ar) Alogpl, and
locally approximate the KL by a second-order expansion KL(py||pret) ~ 3 Eo[[|d:(2)[3] (up to
constants), yielding Eq. equation[7]

This loss has two useful properties. First, the derivative of the logistic term with respect to the

log-probability gap is strictly negative:
0Ly

JdAlogp

so gradient-based updates monotonically increase A log p, raising the relative likelihood of high-IoU
samples. Second, when the preference gap is weak (Ar — 0), we have o(x Ar) — % and the

=—Bo(—BAlogp) < 0, (10)
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Table 1: Curriculum schedule of difficulty ratios for CreatiLayout and HicoNet across training
iterations.

Method Iterations Easy Medium Hard Very Hard
1-150 70% 30% 0% 0%
CreatiLavout 150-400 30% 60% 10% 0%
y 400-700 20% 45% 30% 5%
700-1000  10% 20% 40% 30%
1-150 50% 50% 0% 0%
HicoNet 150-400 20% 50% 30% 0%
! 400-700 10% 40% 40% 10%
700-1000 0% 20% 40% 40%

regularizer reduces to % E, [||6.(2)|3], which suppresses semantic drift and preserves image quality
under noisy or uninformative comparisons.

Overall, combining the pairwise logistic advantage with the loU-aware regularizer provides a learning
signal that is both directional and stable; in our experiments (Sec. 4.1.2)), this objective improves
expected IoU without degrading fidelity or semantic consistency.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

4.1.1 BASELINES

To explore the effectiveness and generalizability of our approach across different diffusion backbones,
we implement and fine-tune two model variants. Specifically, HiCoNet-Layout (Cheng et al.| [2024)
is built upon Stable Diffusion 1.5, a widely adopted open-source architecture known for its balance
between generation quality and computational efficiency. In contrast, CreatiLayout (Zhang et al.,
2024) leverages Stable Diffusion 3, a more recent and powerful backbone offering enhanced semantic
understanding and generation fidelity. This dual-backbone setup allows us to evaluate how our layout
generation method adapts to varying model capacities and architectural changes, and to verify whether
the improvements introduced by our approach consistently hold across diffusion model versions.

4.1.2 DATASET SCHEDULING

We adopt a stage-wise mixed curriculum covering four difficulty levels (Easy / Medium / Hard / Very
Hard). We first construct four pools from real layouts (7,000 samples each). At the beginning of
each training stage, we resample with replacement according to the preset ratios, shuffle, and form
a 10,000-sample subset for that stage; within the stage, this subset is reshuffled every epoch. At
the next stage, a new 10,000-sample subset is re-sampled under the updated ratios. The concrete
categorization and schedule are provided in Table 1.

4.1.3 TRAINING DETAILS

Data construction. Unlike traditional supervised fine-tuning, RLLay does not rely on a pre-fixed
corpus of real image—layout pairs. To keep the training distribution close to real scenes, we do
not synthesize bounding boxes; instead, we select real layouts directly from the annotations of
LAYOUTSAM and COCO 2017 (Lin et al} 2014). According to our difficulty criteria (object
count, overlap, and preferences/relations), we construct four difficulty pools—Easy / Medium / Hard
/ Very Hard—each containing 7,000 layout samples (preserving the original categories and text
descriptions). At each stage of the curriculum, we resample and mix from the four pools according to
the stage-specific ratios to form a 10,000-sample training subset for that stage.

Evaluation protocol. We evaluate on two dataset families: the fine-grained, open-set LAYOUTSAM
and the coarse-grained, closed-set COCO 2017. LayoutSAM-Eval: following (Zhang et al., 2024)),
we evaluate on LAYOUTSAM-EVAL, which contains 5,000 prompts with metadata (category and
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Table 2: Overall performance of RLLay compared to existing state-of-the-art approaches on the
LayoutSAM-Eval(Zhang et al.| 2024) benchmark.

Method Spatial Quality Accuracy
IoUT AP{T AP50t ARt FID| CLIP-Score(Global)t VQA?T
GLIGEN 60.09 1834 37.18 29.77 2593 - -
Instance Diffusion 77.03 37.16 46,55 40.10 23.16 27.70 -
HiCO 72.05 2942 4155 3350 18.64 29.52 91.45
HiCO + RLLay 80.12 3840 47.75 4130 17.12 29.03 93.18
CreatiLayout 68.01 29.55 50.17 3320 15.26 27.89 82.26
CreatiLayout + RLLay  74.97 33.15 5537 35.60 13.27 27.31 86.08

layout annotations). COCO-Eval: following prior work (Yang et al.,2023aj; Zheng et al., [2023), we
filter out images with too small effective area and too few bounding boxes from the COCO validation
set, resulting in 4,652 validation images.

Metrics. To assess layout compliance, we use GROUNDINGDINO (Liu et al 2024) to detect
objects in generated images and match them with the ground-truth boxes, computing standard IoU,
AP, AP50, and AR. To measure overall generation quality, we report FID (Heusel et al., |2017)
and CLIP-Score (Radford et al.l [2021). We also report a VQA score (based on a visual question
answering model that answers prompt-related questions) to assess the semantic accuracy of the
generations.

Training setup. We use the ADAMW optimizer (Loshchilov & Hutter, |2017) with distributed
training on 8 x NVIDIA A6000 GPUs; the local batch size is 32 preference pairs per GPU, and
training runs for 1000 Iterations. Resolutions are model-specific: HICONET is trained at 512x 512,
whereas CREATILAYOUT is trained at 1024 x 1024.

4.2 RESULTS

4.2.1 EVALUATION ON LAYOUTSAM-EVAL

Table 2] reports quantitative results on the LayoutSAM-Eval (Zhang et al., 2024) benchmark. Our
reinforcement learning framework RLLay, consistently improves both spatial and visual quality
metrics across two strong baselines. When applied to HiCO, RLLay yields clear gains on all spatial
measures—IoU, AP, AP50, and AR—while further lowering FID and enhancing semantic accuracy
(VQA). A similar trend is observed on CreatiLayout, where RLLay substantially boosts localization
accuracy (IoU and AP50) and reduces FID, confirming that the generated layouts and final images
are both more precise and more visually faithful. Compared with diffusion-based methods such as
GLIGEN and Instance Diffusion, RLLay-enhanced models not only maintain competitive generative
quality but also deliver markedly better alignment between textual descriptions and visual layouts, as
reflected in higher CLIP-Score and VQA. These results demonstrate that the proposed reinforcement-
guided optimization effectively strengthens spatial reasoning while preserving high-fidelity image
synthesis.

4.2.2 EVALUATION ON COCO

Table 3| presents a comprehensive comparison of RLLay with representative state-of-the-art layout-to-
image generation approaches on the COCO (Lin et al.,2014) benchmark. Our method consistently
achieves superior spatial alignment, as reflected by higher IoU, AP, AP50, and AR scores, while main-
taining strong perceptual quality (lower FID and higher CLIP-Score) and semantic accuracy (higher
VQA). Compared with diffusion-based baselines such as GLIGEN and Instance Diffusion, RLLay
delivers more precise object localization and competitive visual fidelity. Relative to reinforcement-
learning-enhanced methods (e.g., HICO + RLLay), our approach further improves detection metrics
and semantic faithfulness. In particular, integrating our reward-guided curriculum with CreatiLayout
(CreatiLayout + RLLay) yields notable gains across all three categories of metrics, confirming the ef-
fectiveness of our design in balancing spatial control and generative quality. Noted that CreatiLayout
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Table 3: Overall performance of RLLay compared to existing state-of-the-art approaches on the
COCO(Lin et al., 2014} benchmark.

Method Spatial Quality Accuracy
IoUT APt APS0T ARt FID| CLIP-Score(Global)t VQA?T
GLIGEN 51.60 19.48 3210 30.68 27.94 21.63 68.47
Instance Diffusion 84.40 3891 47.60 43.10 25.66 25.65 79.49
HiCO 70.57 22.12 3326 29.00 26.05 27.17 75.12
HiCO + RLLay 7829 3733 4819 4430 25.03 26.98 81.98
CreatiLayout 56.59 12.09 26.08 17.60 26.18 26.19 69.74
CreatiLayout + RLLay 6258 1586  32.19 1830 21.09 25.14 75.54

Table 4: Ablation study on the COCO Benchmark for CreatiL.ayout and HicoNet. Metrics include
AP, AP50, AR, FID, CLIP-Score(Global), and IoU.

Method AP1T AP501 ART FID| CLIP-Score(Global) T IoU 1
CreatiLayout  12.09 26.08 17.60  26.18 26.19 56.69
+ DPO 12.87 27.35 18.20 26.01 25.79 58.35
+ DSPO 15.37 30.93 1820 21.96 25.76 60.46
+ GRPO 15.72 31.72 18.30  26.25 22.63 61.33
+ ARPO 15.86 32.19 18.30 21.09 25.14 62.58
HicoNet 22.12 33.26 29.00 26.05 27.17 70.57
+ DSPO 29.59 41.24 3580 25.23 26.85 75.85
+ GRPO 29.45 40.60 3570 29.35 25.23 74.95
+ ARPO 37.33 48.19 4430 25.03 26.80 78.29

does not release the version after finetuning on the COCO dataset, leading to lower performance than
the numbers reported in its original paper.

4.2.3 ABLATION STUDY

Table 4 reports the quantitative comparison on the COCO benchmark for CreatiLayout and HicoNet.
The proposed reinforcement learning method (ARPO) consistently improves both spatial and visual
quality metrics over all baselines. For CreatiLayout, ARPO achieves the best spatial alignment,
raising AP and AP50 to 15.86 and 32.19 while increasing IoU to 62.58, and simultaneously lowering
FID to 21.09, indicating sharper and more faithful image synthesis. A similar trend is observed for
HicoNet, where ARPO delivers substantial gains across detection-oriented metrics (AP from 22.12 to
37.33, AP50 from 33.26 to 48.19, AR from 29.00 to 44.30) while also reducing FID and maintaining
competitive CLIP-Score. Compared with other reinforcement-preference optimization approaches
such as DPO, DSPO, and GRPO, our method provides a more balanced improvement on both spatial
precision and visual fidelity, confirming its effectiveness in aligning generated layouts and images
with the intended semantics

5 CONCLUSION

In this work, we presented RLLay, a reinforcement-learning-driven pipeline for preference-based
optimization of layout-to-image diffusion models. Unlike conventional methods that rely heavily on
paired layout-image datasets, RLLay leverages pairwise human or model feedback to guide policy
updates, significantly reducing data collection requirements while improving generative alignment.
Built upon our novel reinforcement learning algorithm ARPO, the framework integrates curriculum
scheduling, hard negative mining, and preference-guided reward modeling to achieve stable and
sample-efficient optimization. Extensive experiments on COCO and LayoutSAM-Eval benchmarks
demonstrate consistent improvements in both spatial accuracy and perceptual quality over strong
diffusion and preference-optimization baselines, including DPO, DSPO, and GRPO. These results
highlight the effectiveness and generality of our approach, opening avenues for broader applications
of reinforcement preference optimization in complex generative modeling tasks.
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A APPENDIX

A.1 ETHICS STATEMENT

This work focuses on reinforcement preference optimization for layout-to-image diffusion models
and evaluates the proposed RLLay pipeline on publicly available benchmarks (e.g., COCO and
LayoutSAM-Eval). All datasets are released for research use and comply with their respective
licenses and privacy regulations. We are aware that generative vision—language systems can amplify
societal biases or produce misleading imagery. To mitigate these concerns, we adopted established
filtering procedures, reported results across diverse metrics, and carefully inspected generated samples.
We stress that our model is intended solely for academic and constructive applications and should not
be used to create harmful, discriminatory, or deceptive content.

A.2 REPRODUCIBILITY STATEMENT

We have taken comprehensive steps to ensure reproducibility. Full implementation details—including
network architecture, reward model design, the proposed ARPO algorithm, training schedules
(curriculum stages, hyperparameters), and hardware configurations—are provided in the main text
and the supplementary material. All evaluation protocols and benchmark settings are described in the
experiment section. We will release the source code, pretrained weights, and configuration scripts
upon publication to facilitate independent verification and future research.

A.3 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed only for limited editorial assistance, such as grammar
checking and minor language polishing. They were not used to generate scientific ideas, design exper-
iments, analyze results, or write substantive technical content. The authors assume full responsibility
for every aspect of the work, and LLMs are not considered contributors or authors.

A.4 ADDITIONAL NOTES ON THE RANDOM SD-3 SAMPLER

What “approximately preserving marginals” means. Extending the Flow—ODE to a variance-
time SDE does not strictly guarantee identical marginals to the original ODE. “Approximately
preserving” indicates that: (i) as the noise scaling ¥ — 0 and the step size AX; — 0, the local Markov
kernel of the SDE matches the probability flow of the ODE to first order, so the shift in the generated
distribution is controlled; (ii) with finite steps and a small ~, empirical changes in image quality (e.g.,
FID/CLIP) and alignment (e.g., [oU/AP) remain acceptable. Increasing +y raises stochasticity and
exploration but also enlarges marginal drift and quality variance.

Why variance-time reparameterization. In X-time the one-step transition is explicitly Gaussian:

AY;
Tip1 ~ N(pi, A1), Wi = ﬂfi-f—?i/a(l‘i,ti),
which yields two practical benefits: (i) a closed-form one-step log-probability log mg (2,41 | ;) that
backpropagates through wvy; (ii) fine control of the exploration strength by tuning AY; and v without
changing the Gaussian form.

Accumulating trajectory log-probabilities. While the main text gives the one-step log-probability,
preference/policy learning uses the trajectory log-probability via stepwise accumulation:
N-1
logpo(zo:n) = Y logmg(wir1| z:) + logp(zo),
i=0

where log p(z¢) is an initialization prior (constant or negligible). The preference gap A log p and the
reference difference log py — log prer are accumulated in the same way, which is numerically more
robust than a single-step proxy.
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Choosing and scheduling . Fixed small values: ~ € [0.05, 0.20] often strikes a good balance be-
tween having differentiable action probabilities and limiting distributional drift. Piecewise/annealed:
use larger y early for exploration/separability and reduce it later to recover quality. Step-adaptive:
employ smaller y at larger AY; to avoid excessive variance accumulation.

Numerical stability and implementation tips. Use (AY; + ¢) (e.g., e=1079) in denominators
and logarithms to suppress blow-ups; compute ||z;41 — ;|| in at least f1oat 32 and optionally
normalize by feature dimension. Ensure that sampling and log 7y share the same random seed and
schedule to avoid “mismatch” bias. For long trajectories, gradient clipping and an EMA teacher help
stabilize training.

Relationship to probability-flow ODE. The probability-flow ODE (PF-ODE) gives deterministic
trajectories in the zero-diffusion limit. With small v and small steps, the SDE’s drift (mean update)
aligns with PF-ODE locally, while the added diffusion supplies a stochastic policy required by RL.
“Preserving marginals” here should be understood as a local approximation and empirically controlled
behavior, rather than an exact equivalence.

Compatibility with guidance and conditioning. Classifier-free guidance (CFG) remains ap-
plicable; vy in p; simply includes the guided drift. Text/layout conditioning only enters through
vg(x;,t;; cond), to which the SDE design is agnostic. Reference model log-probabilities should
reuse the same discretization and noise draws to reduce variance and enable effective differencing.

Discretization and number of steps. A larger number of steps [V approaches the continuous limit
but increases compute linearly; in practice N is set equal to (or slightly larger than) the original
SD-3 inference steps. Non-uniform X-grids are recommended: densify segments where the log-SNR
schedule is most sensitive, which improves the stability of log 7y estimation.
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