

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MANY-FOR-MANY: UNIFY THE TRAINING OF MULTI- PLE VIDEO AND IMAGE GENERATION AND MANIPULA- TION TASKS

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, *etc.* However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely *many-for-many*, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes will be made publicly available.

1 INTRODUCTION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Visual data generation has a wide range of applications in industry and our daily lives, such as video games (Valevski et al., 2024), advertising (Zhang et al., 2024), media content creation (Polyak et al., 2025), *etc.* Along with the great success of text-to-image (T2I) generation models (Ramesh et al., 2021; Rombach et al., 2021; Podell et al., 2023; Esser et al., 2024), video generation techniques (OpenAI, 2024; Yang et al., 2024c; Polyak et al., 2025; Ma et al., 2025; Kong et al., 2024; Chen et al., 2025; Team, 2025) have recently witnessed significant progress driven by the rapid development of diffusion models (DMs) (Ho et al., 2020; Rombach et al., 2021; Peebles & Xie, 2022; Lipman et al., 2023). Current research is preliminarily focused on text-to-video (T2V) generation. Early attempts (Guo et al., 2023; Blattmann et al., 2023b;a) are often built on pre-trained T2I models such as Stable Diffusion (SD) (Rombach et al., 2021) by encoding motion dynamics into latent codes (Khachatryan et al., 2023) or inserting additional temporal layers (Guo et al., 2023; Blattmann et al., 2023b;a). Despite significant advancements, these methods tend to produce unnatural motions and are limited by the small number of generated frames.

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Recently, diffusion transformers (DiT) (Peebles & Xie, 2022; Esser et al., 2024; Yang et al., 2024c) have been widely adopted in numerous image and video generation methods (Esser et al., 2024; Labs, 2024; OpenAI, 2024; Team, 2025) due to their excellent scalability. In particular, SORA (OpenAI, 2024) demonstrates remarkable performance in creating realistic videos, inspiring many subsequent T2V works (Yang et al., 2024c; Ma et al., 2025; Kong et al., 2024; Team, 2025; RunwayML, 2023; Kuaishou, 2024). For example, trained on web-scale datasets, the open-source models CogVideoX (Yang et al., 2024c), HunyuanVideo (Kong et al., 2024) and Wan2.1 (Team, 2025) have attracted significant attention. The commercial models Runway (RunwayML, 2023) and Kling (Kuaishou,

054 Table 1: The size and supported tasks of the current main open-source video foundation models.
055

Model	Size	Training Data		Supported Tasks	Unified Training
		Video	Image		
CogVideoX (Yang et al., 2024c)	28&5B	unkown	unkown	T2V, I2V	✗
MovieGen (Polyak et al., 2025)	30B	100M	1B	T2V, Personalized T2V (PT2V)	✗
StepVideo (Ma et al., 2025)	30B	2B	3.8B	T2V, I2V	✗
HunyuanVideo (Kong et al., 2024)	13B	$\mathcal{O}(100)M$	$\mathcal{O}(1)B$	T2V, I2V	✗
Wan2.1 (Team, 2025)	1.3B&14B	1.5B	10B	T2V, I2V	✗
MfM	2B&8B	120M	160M	T2V, I2V, video extension, FLF2V, FLC2V, video manipulation, etc.	✓

062
063 Figure 1: Examples of MfM on typical video generation and manipulation tasks. Generated frames
064 are highlighted within black boxes. Note that MfM uses a single model to perform these tasks.
065
066
067
068
069
070
071
072
073
074

075 2024) have demonstrated impressive performance in practical use. Other video generation tasks, such
076 as image-to-video (I2V) and video-to-video (V2V), are commonly regarded as downstream problems
077 of T2V. By fine-tuning pre-trained T2V models with relatively small resources (Yang et al., 2024c;
078 Kong et al., 2024; Team, 2025), various models tailored to different tasks can be obtained, including
079 I2V (Tian et al., 2025; Team, 2025), video super-resolution (Xie et al., 2025), reference-to-video (Liu
080 et al., 2025; Jiang et al., 2025), etc.

081 In this work, we aim to economically train a model from scratch, which can, however, perform a
082 number of visual generation and manipulation tasks effectively, including T2V, I2V, V2V, etc. To this
083 end, we introduce a simple yet effective framework, called *Many-for-Many* (MfM in short), to unify
084 the training of different tasks. The key difference between the various visual generation/manipulation
085 tasks lies in their varying conditions. Therefore, we propose to standardize the conditions using a
086 lightweight adapter, thereby enabling multi-task joint training. Adhering to the foundation model’s
087 training recipe, we progressively update our MfM model from a low resolution to higher resolutions.
088 Specifically, we employ a joint image-video learning strategy, which equips our model with capabili-
089 ties for both image generation and manipulation. An advantage of our MfM training framework is
090 that the many data that cannot be used to train T2V models in previous methods now can be used to
091 train our unified model. Therefore, MfM learning not only leads to a unified model but also enhances
092 video generation performance.

093 Two versions (2B and 8B) of our MfM model are trained. As shown in Table 1, our model can
094 perform more than 10 different visual generation and manipulation tasks. Figure 1 illustrates some
095 examples of MfM tasks. Extensive experiments are performed to demonstrate the effectiveness and
096 flexibility of our MfM model. In particular, our 8B model achieves highly competitive performance
097 in the challenging T2V and I2V tasks by using only 10% of the training data used in state-of-the-art
098 open-source T2V foundation models (Yang et al., 2024c; Kong et al., 2024; Team, 2025).
099
100

101 2 RELATED WORK

102 **Diffusion Models for Visual Generation.** Since the seminal work of denoising diffusion probabilistic
103 model (DDPM) (Ho et al., 2020), remarkable progress has been achieved in training diffusion models
104 (DMs) for image/video generation (Rombach et al., 2021; Esser et al., 2024; Blattmann et al., 2023a;
105 OpenAI, 2024; Kong et al., 2024). In particular, Rombach et al. (Rombach et al., 2021) proposed to

108 train DMs in latent space, achieving impressive image generation results with reduced computational
 109 costs. The development of Stable Diffusion (SD) (Rombach et al., 2021) has sparked a surge of
 110 research in text-to-image (T2I) generation (Podell et al., 2023; Zhang & Agrawala, 2023; Ruiz et al.,
 111 2023). SDXL (Podell et al., 2023) expands SD by using a larger model and more sophisticated
 112 architecture design. With the advancement in Diffusion Transformer (DiT) (Peebles & Xie, 2022)
 113 and Flow Matching (FM) (Lipman et al., 2023), Esser et al. (Esser et al., 2024) proposed MMDiT to
 114 train SD3 and Flux (Labs, 2024), which show state-of-the-art T2I performance.

115 In terms of T2V generation, early efforts often fine-tune pre-trained T2I models to learn motion
 116 dynamics (Guo et al., 2023; Blattmann et al., 2023a; Chen et al., 2024a), which are, however, limited
 117 in motion naturalness and video frames. The success of SORA (OpenAI, 2024) in generating realistic
 118 long videos has inspired numerous commercial (OpenAI, 2024; RunwayML, 2023; Kuaishou, 2024)
 119 and open-source (Yang et al., 2024c; Polyak et al., 2025; Ma et al., 2025; Kong et al., 2024; Team,
 120 2025) T2V models. CogVideoX (Yang et al., 2024c) adopts MMDiT to T2V and achieves impressive
 121 results in modeling coherent long-duration videos with natural movements. Ma *et al.* (Ma et al., 2025)
 122 and Polyak *et al.* (Polyak et al., 2025) scaled the T2V model to 30B and demonstrated promising
 123 improvements in simulating natural motions. Specifically, Ma *et al.* (Ma et al., 2025) employed
 124 video-based direct preference optimization (Rafailov et al., 2024), namely Video-DPO, to improve
 125 the visual quality of generated videos. The recently released open-source models HunyuanVideo
 126 (Kong et al., 2024) and Wan2.1 (Team, 2025) exhibit much improved video quality and prompt
 127 controllability, significantly facilitating the research of video generation in the community.

128 **Downstream Tasks of Visual Generation Models.** With the advancement in pre-trained T2I and
 129 T2V foundation models, researchers have developed various techniques to adapt them to various
 130 content creation and manipulation tasks, such as controllable generation (Zhang & Agrawala, 2023;
 131 Wu et al., 2023), personalized generation (Ruiz et al., 2023), editing (Brooks et al., 2023; Liew et al.,
 132 2023), super-resolution (Yang et al., 2023), among others. Zhang *et al.* (Zhang & Agrawala, 2023)
 133 introduced ControlNet to facilitate various conditional inputs, which, however, requires multiple
 134 control modules for different conditions. UniControl (Qin et al., 2023) and UNIC-Adapter (Duan
 135 et al., 2024) enable unified conditional image generation using a single model. InstructPix2Pix
 136 (Brooks et al., 2023) and MagicBrush (Zhang et al., 2023a) offer general-purpose image editing
 137 solutions. However, for video tasks, most approaches (Wu et al., 2023; Liew et al., 2023) still follow
 138 a single-model single-task framework due to the complexities of video generation. Very recently,
 139 Jiang *et al.* (Jiang et al., 2025) proposed a so-called all-in-one model for multiple visual creation
 140 and editing tasks based on pre-trained T2V models (Kong et al., 2024; Team, 2025). Although
 141 achieving impressive results, this model is built on pre-train T2V models and treats the other tasks
 142 as downstream applications. In contrast, in this work, we train a single model from scratch, which
 143 can, however, perform multiple visual generation and manipulation tasks, by effectively utilizing the
 144 available training data from different tasks.

3 MANY-FOR-MANY UNIFIED TRAINING

145 Our Many-for-Many (MfM) unified training framework is illustrated in Figure 2. It is basically a
 146 DiT (Peebles & Xie, 2022) with 3D full attention, trained by the Flow Matching technique (Lipman
 147 et al., 2023). Videos and text prompts are encoded using a video VAE (Yang et al., 2024c) and an
 148 LLM text encoder (Raffel et al., 2020), respectively. To mitigate the reliance on costly annotation of
 149 T2V training data and make the best use of existing training data from various visual generation and
 150 manipulation tasks, we introduce an effective and lightweight adapter to unify the various conditions
 151 across different tasks. A progressive and joint training strategy is then developed to train a unified
 152 model for multiple visual generation and manipulation tasks. To accommodate varying computational
 153 demands and performance requirements, we design two versions of our model with different sizes
 154 (8B and 2B), whose hyper-parameters are summarized in Table 7 of the **Appendix**. The inference
 155 latency of different variants on different resolution are summarized in Table 8 of the **Appendix**.

3.1 ADAPTER FOR DIFFERENT INPUTS

156 We categorize the inputs of different image and video tasks (OpenAI, 2024; Hu et al., 2023; Wu
 157 et al., 2023; Jiang et al., 2025) based on their dimensions: 0D conditions (*e.g.*, timestep and motion
 158 score), 1D conditions (*e.g.*, text), 2D conditions (*e.g.*, image and mask) and 3D conditions (*e.g.*, video
 159 and video depths). 0D and 1D conditions are commonly used in DiT, which are embedded using

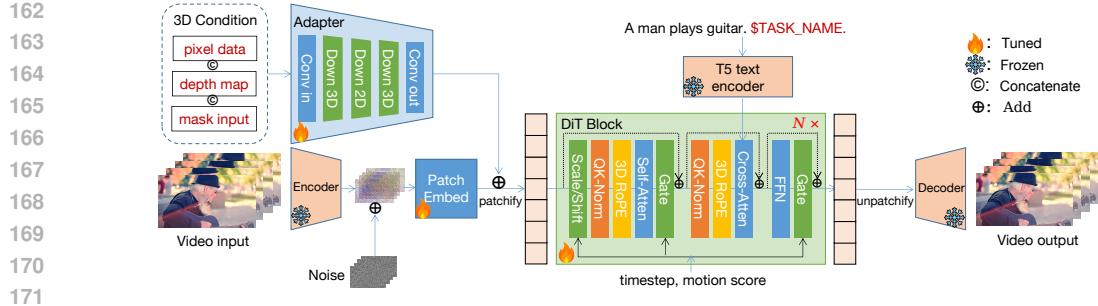


Figure 2: Architecture of the proposed Many-for-Many (MfM) unified training framework.

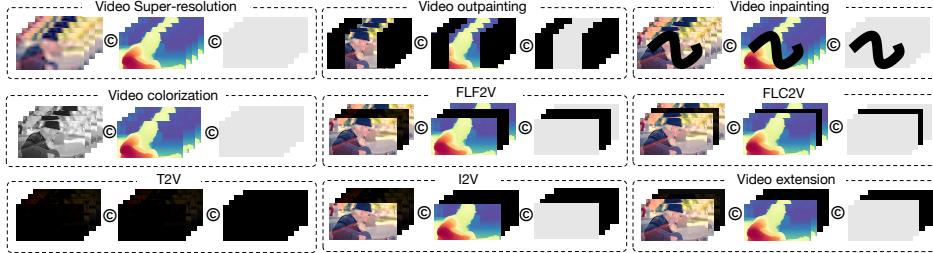


Figure 3: Example conditional inputs for some visual generation and manipulation tasks. In each task block, from left to right, the conditions are respectively task-oriented pixel data, depth maps, and mask inputs. The mask is composed of binary black and white pixels, with white pixels indicating the regions that are conditioned on pixel data, and black pixels indicating the regions to be generated.

AdaLN and a text encoder, respectively. 2D conditions can be padded to 3D and thus merged into 3D conditions. The 3D conditions include both pixel data (*e.g.*, image and video) and masks, which vary across generation and manipulation (including enhancement) tasks:

- **Generation Tasks:** These tasks require at least one frame to be generated without any frame-wise condition. Examples include T2I (text-to-image), T2V (text-to-video), I2V (image-to-video), video extension, FLF2V (first-last-frame-to-video) and FLC2V (first-last-clip-to-video).
- **Manipulation Tasks:** These tasks require frame-wise conditions. Examples include image/video inpainting/outpainting, image/video colorization, image/video style transfer, single image super-resolution (SISR), video super-resolution (VSR), *etc.*

As illustrated in the upper-left corner of Figure 2, fortunately, we can represent the various inputs in a unified manner, concatenating the pixel, depth map and mask conditions. The depth maps are introduced as a condition to enhance our model’s understanding of 3D space. Note that we append the task name (*e.g.*, “text-to-video”, “image-to-video”, *etc.*) to the text prompts to clarify tasks because some of them share a common video mask input, such as VSR and video colorization. Figure 3 illustrates some example inputs for different generation and manipulation tasks. For instance, for the T2V task, the pixel data, depth map, and mask inputs are all set to 0 so that the task is driven by merely the text prompt. For the task of I2V, only the conditions of the first frame are provided.

Existing visual generation methods typically process the pixel and mask conditions separately — pixel conditions are processed by video VAE, while mask conditions are directly reshaped and interpolated (Jiang et al., 2025; Team, 2025). While achieving impressive results, these methods are complex and cannot be easily extended to other types of conditions such as depth maps. Our proposed adapter unifies all 3D inputs, regardless of their content (*e.g.*, pixel, mask, depth). The adapter comprises several convolution layers and downsampling blocks to adjust the temporal and spatial resolutions. Given a 3D condition input in pixel space $Y \in \mathbb{R}^{T \times H \times W \times C}$, where $\{T, H, W, C\}$ represents the frame number, height, width, and channel number, the adapter converts it into a feature map $y \in \mathbb{R}^{t \times h \times w \times c}$, which shares the same spatial and temporal resolution as the latent space of the video VAE and is added to it. Given the video VAE’s 8×8 spatial and $4 \times$ temporal compression ratios (Yang et al., 2024c), we have $t = T/4, h = H/8, w = W/8$. The proposed architecture can be easily adjusted according to the compression ratios of alternative video VAEs.

216
217

3.2 TRANSFORMER WITH 3D FULL ATTENTION

218
219
220
221
222
223
224
225
226

3D Full Attention. Early video generation models (Blattmann et al., 2023a; Guo et al., 2023) are typically built on pre-trained T2I models, which use separate spatial and temporal attention to reduce computational complexity. However, such methods are suboptimal for modeling natural motions (Yang et al., 2024c). In recent works (OpenAI, 2024; Yang et al., 2024c; Ma et al., 2025; Kong et al., 2024), 3D full attention has become widely adopted and shown superiority in generating videos with smooth and consistent motions. In this work, we incorporate the transformer block in GoKu (Chen et al., 2025), which consists of a self-attention module to capture relationships within input sequences, a cross-attention layer to include text embeddings, and an adaptive layer normalization (AdaLN) operation to embed timestep and motion score information.

227
228
229
230
231
232
233
234

3D RoPE. Rotary Position Embedding (RoPE) (Su et al., 2021) encodes positional information and enables the model to understand both the absolute position of tokens and their relative distances, demonstrating powerful ability in capturing inter-token relationships, particularly for long sequences in LLMs. We extend it to 3D RoPE by applying 1D RoPE to each temporal (t) and spatial (h, w) dimension, then concatenating the encodings. Specifically, for 3D video data (t, h, w) , each dimension occupies $2/8$, $3/8$, and $3/8$ of the hidden state channels, respectively. We apply 3D RoPE for both image and video tokens. Due to the exceptional extrapolation capabilities of RoPE, the proposed 3D RoPE can effectively handle videos with varying resolutions and lengths.

235
236
237
238
239

Q-K Normalization. Previous methods (Esser et al., 2024; Dehghani et al., 2023a) have shown that the training of large transformer models can encounter numerical instability due to the uncontrollable growth in attention entropy. To address this issue, following (Esser et al., 2024; Dehghani et al., 2023a), we adopt RMSNorm (Zhang & Sennrich, 2019) and implement Query-Key Normalization (QK-Norm) to stabilize the training process.

240
241

3.3 TRAINING DETAILS

242
243
244
245

Flow Matching. During model training, we employ Rectified Flow (RF) to optimize the network due to its superior performance (Lipman et al., 2023; Esser et al., 2024; Chen et al., 2025). In each training step, a video input X_0 , Gaussian noise $\epsilon \sim \mathcal{N}(0, 1)$, and a timestep $t \in [0, 1]$ are randomly sampled. The model input X_t is calculated as a linear interpolation between ϵ and X_0 :

$$X_t = (1 - t)X_0 + t\epsilon. \quad (1)$$

246
247
248
249
250

The model is trained to approximate the ground-truth velocity $V_t = \frac{dX_t}{dt} = \epsilon - X_0$, which represents the change rate of X_t with respect to timestep t , capturing the change direction and magnitude from ϵ to X_0 . Given conditions of motion score ms , text prompt c , and 3D conditional input Y , we train our model μ_θ to predict the velocity V_t . The optimization objective \mathcal{L} is defined as:

$$\mathcal{L} = \mathbb{E}_{t, X_0, \epsilon \sim \mathcal{N}(0, 1), ms, c, Y} |\mu_\theta(t, X_t, ms, c, Y) - V_t|^2. \quad (2)$$

251
252
253

Following SD3 (Esser et al., 2024), we use Logit-Normal Sampling in training.

254
255
256
257
258
259
260

Multi-Task Joint Learning. While our model is primarily designed for video generation, we leverage a large volume of image data in training. Following existing T2V foundation models (OpenAI, 2024; Kong et al., 2024; Chen et al., 2025), we progressively adjust the image-to-video ratio throughout training. Initially, we train with pure text-image pairs to establish a connection between textual prompts and high-level visual semantics. As training progresses, we inject video data, gradually decreasing the image-to-video ratio to 0.1. This image-video joint learning strategy expands our training data and enables our model to tackle various image tasks, including T2I and SISR.

261
262
263
264
265
266
267

Unlike standard T2V foundation models, our training data include a substantial portion of low-resolution, watermarked, text-dominated, and concisely captioned data. To effectively utilize the available training data, we implement multi-task learning, thanks to our proposed conditional adapter. At each training step, we randomly sample a video input, assign a set of qualified tasks that fits it, and select one task to construct the conditional input for training. For each qualified task set, the selection probability of tasks like T2I, T2V, and I2V is tripled compared to other tasks, ensuring that the learning process pay more attention to more challenging problems.

268
269

Resolution Progressive Training. Our training pipeline is structured into multiple stages with progressively increased spatial and temporal resolutions. Initially, we train our model on low-resolution data (e.g., $49 \times 128 \times 224$) at a low computational cost. We then increase the resolution

270
271 Table 2: Resolution progressive training recipe for 8B MfM.
272
273
274
275
276
277
278

Training Stage	Dataset	SP	bs/GPU	Learning rate	#iters	#seen samples
128px	160M images	1	16	1e-4	170k	700M
	120M videos					
360px	160M images	1	2	8e-5	100k	100M
	120M videos					
720px	160M images	2	1	5e-5	50k	12M
	10M videos					
Multi-res	160M images	2	1	5e-5	40k	5M
	5M videos					

279 to $89 \times 352 \times 640$ to enhance the model’s fine-grained understanding of text-motion relationships.
280 Subsequently, the training resolution is increased to $97 \times 720 \times 1280$ to capture intricate details.
281 Finally, we conclude the training pipeline with a multi-resolution stage using NaViT (Dehghani et al.,
282 2023b). In this stage, the model is fed high-quality videos with their native aspect ratios, dynamically
283 adjusting the durations to limit the total sequence length. This multi-resolution fine-tuning stage
284 enables our model to generate videos at arbitrary resolutions. During training, we randomly replace
285 10% (30%) of text prompts with null-text prompts for T2V/I. For tasks other than T2V/I, we randomly
286 zero the 3D conditional inputs with a chance of 10%. The detailed training recipe for our 8B model
287 is summarized in Table 2. We adopt Fully Sharded Data Parallelism (FSDP) (Zhao et al., 2023) and
288 Sequence-Parallelism (SP) (Li et al., 2022) to achieve efficient and scalable training of MfM.
289

290 4 EXPERIMENTS
291292 4.1 EXPERIMENT SETUP
293

294 **Training Data Preparation.** Our training data are collected from a variety of sources, including
295 publicly available academic datasets, Internet resources, and proprietary datasets. We adopt a data
296 curation pipeline similar to GoKu (Chen et al., 2025) to filter the collected data, obtaining 160M HQ
297 text-image pairs and 40M HQ text-video pairs. We also retrieve 80M relatively LQ text-video pairs
298 for training. We utilize RAFT (Teed & Deng, 2020) to obtain motion scores by computing the mean
299 optical flow of video clips, which are integrated into our MfM model training via AdaLN.

300 Note that we use significantly fewer text-video pairs than the main T2V models (Polyak et al., 2025;
301 Ma et al., 2025; Kong et al., 2024; Team, 2025) to train our MfM model. However, our MfM
302 framework leverages a multi-task data augmentation strategy to expand the effective training data
303 distribution (please refer to **Appendix** for details), with which we significantly expand the model’s
304 exposure to diverse conditioning scenarios without requiring additional data collection. For all tasks,
305 we employ a lightweight depth model (Yang et al., 2024a) to predict the depth maps of the inputs on
306 the fly. We concatenate these depth maps into the 3D conditional inputs as depicted in Figure 3.

307 **Evaluation.** We utilize the widely used VBench (Huang et al., 2024) to evaluate MfM’s performance
308 on T2V and I2V tasks. While a benchmark is proposed in VACE (Jiang et al., 2025) to evaluate a
309 model’s multi-task capacity, only one video is open-sourced for each task, and many tasks supported
310 by MfM are not involved in VACE. Therefore, we build an MfM-benchmark, which comprises 480
311 samples (30 per task) distributed across 16 distinct generation/manipulation tasks (please refer to
312 **Appendix** for details). For all experiments, we maintain the same MfM inference parameters: 30
313 diffusion steps with a classifier-free guidance scale of 9.0.

314 Regarding evaluation metrics, on VBench we adopt a comprehensive set of perceptual metrics:
315 aesthetic quality, imaging quality, motion smoothness, dynamic degree, object class accuracy, multiple
316 object handling, spatial relationship preservation, scene consistency, appearance style, temporal style,
317 and overall consistency (higher scores indicate better performance across all metrics). Meanwhile,
318 we rank the competitors for each metric and calculate the average rank over all metrics for each
319 method. For some tasks on MfM-benchmark, we also use reference-based metrics, including FID,
320 PSNR, SSIM, and LPIPS, to quantify the fidelity of generated content.

321 4.2 EXPERIMENTAL RESULTS ON T2V AND I2V
322

323 Since most of the existing methods use two separate models for T2V and I2V tasks, we present
324 the quantitative comparison in two tables. The results of T2V are shown in Table 3. We can see

324 Table 3: Quantitative comparison of T2V generation performance on the VBench-T2V benchmark.
 325 Comparison baselines are selected from VBench leaderboard. For each dimension, the best result
 326 is in bold, the second best result is underscored and the third best result is italic. (Aesth: Aesthetic
 327 Quality; Img: Imaging Quality; Mul.Obj: Multiple Objects; Temp: Temporal Style; Consist: Overall
 328 Consistency; Avg: Average Ranking.)

329 Model	330 Motion	331 Dynamic	332 Aesth.	333 Img.	334 Object	335 Mul.Obj.	336 Spatial	337 Scene	338 Appear.	339 Temp.	340 Consist.	341 Avg.
MfM	0.983	<u>0.819</u>	<u>0.645</u>	0.662	0.927	<u>0.782</u>	<u>0.802</u>	<u>0.546</u>	0.251	0.247	0.277	2.86
Wan2.1 ((Team, 2025))	0.969	0.943	0.615	<u>0.672</u>	0.942	0.814	0.810	0.536	0.211	0.256	0.274	3.77
Hunyuan ((Kong et al., 2024))	0.989	0.708	0.603	<u>0.675</u>	0.861	0.685	0.686	0.538	0.198	0.238	0.264	5.73
Sora ((OpenAI, 2024))	0.987	0.799	<u>0.634</u>	0.682	<u>0.939</u>	0.708	0.742	0.569	<u>0.247</u>	0.250	0.262	3.27
Gen-3 ((RunwayML, 2023))	<u>0.992</u>	0.601	0.633	0.668	0.878	0.536	0.650	<u>0.545</u>	0.243	<u>0.247</u>	0.266	4.77
PikaLabs ((Labs, 2023))	0.995	0.475	0.620	0.618	0.887	0.430	0.610	0.498	0.222	0.242	0.259	6.95
LTX-Video ((HaCohen et al., 2024))	0.989	0.543	0.598	0.602	0.834	0.454	0.654	0.510	0.214	0.226	0.251	7.82
CogVideoX1.5 ((Yang et al., 2024c))	0.981	0.561	0.620	0.653	0.834	0.672	0.794	0.532	0.246	<u>0.254</u>	<u>0.274</u>	5.23
EasyAnimate ((Xu et al., 2024))	0.980	0.571	0.694	0.585	0.895	0.668	0.761	0.543	0.230	0.246	0.264	4.59

337 Table 4: Quantitative comparison of I2V generation performance on the VBench-I2V benchmark.
 338 Comparison baselines are selected from VBench leaderboard. For each dimension, the best result
 339 is in bold and the second best result is underscored. (IS. Consist: Image Subject Consistency; IB.
 340 Consist: Image Background Consistency.)

341 Model	342 IS. Consist.	343 IB. Consist.	344 Motion	345 Dynamic	346 Aesth.	347 Img.	348 Avg.
MfM	0.982	<u>0.991</u>	0.987	<u>0.613</u>	0.608	0.718	3.33
Wanx-I2V (Team, 2025)	0.973	0.981	0.978	<u>0.678</u>	0.615	0.708	5.50
Hunyuan-I2V (Kong et al., 2024)	0.988	<u>0.992</u>	0.994	0.239	0.617	0.700	3.67
Magi-1 (Sand-AI, 2025)	<u>0.983</u>	0.990	0.986	0.682	0.647	0.697	3.50
Step-Video (Ma et al., 2025)	0.978	0.986	<u>0.992</u>	0.487	0.622	0.704	3.83
DynamicCrafter (Xing et al., 2023)	0.981	0.986	0.973	0.474	0.664	0.693	5.33
VideoCrafter-I2V (Chen et al., 2024a)	0.911	0.913	0.980	0.226	0.607	<u>0.716</u>	7.83
I2VGen-XL (Zhang et al., 2023b)	0.975	0.976	0.983	0.249	<u>0.653</u>	0.698	5.83
CogvideoX-I2V (Yang et al., 2024c)	0.971	0.967	0.984	0.331	<u>0.618</u>	0.700	6.17
ConsistI2V (Ren et al., 2024)	0.958	0.959	0.973	0.186	0.590	0.669	9.50

350 that MfM achieves the best average rank (2.86) among all models evaluated. In particular, MfM
 351 exhibits well-balanced performance across multiple dimensions, ranking the best in appearance and
 352 overall consistency, and the second in dynamic degree, aesthetic quality, multiple object generation,
 353 and spatial relation generation, which are essential for producing visually coherent videos aligned
 354 with textual descriptions. In comparison, the larger models such as Wan2.1 (14B), Hunyuan (13B)
 355 and the commercial models such as Sora can achieve impressive scores in specific dimensions, but
 356 their overall performance is compromised by notable weaknesses in other dimensions. For instance,
 357 Wan2.1 ranks last in motion smoothness, while Hunyuan shows deficiencies in appearance style,
 358 resulting in jerky movements, visual distortions, or monotonous video style in some scenarios. The
 359 visual comparison can be found in Figure 4, where Wan2.1 generates a bicycle without a rider and
 360 fails to depict the slowing motion instruction given in the prompt. Similarly, Sora and Hunyuan fail to
 361 accurately represent the slowing motion. Hunyuan also exhibits distortion in the bicycle’s handlebars
 362 as the sequence progresses. Our MfM successfully generates a motion-consistent video with the
 363 bicycle correctly slowing down, demonstrating superior temporal coherency.

364 The results of I2V are shown in Table 4. We see that MfM also achieves the best average rank
 365 (3.33). In particular, it excels in imaging quality and achieves very balanced performance across static
 366 consistency and dynamic generation. In comparison, although Hunyuan-I2V achieves the highest
 367 scores in consistency and motion smoothness, its performance in dynamic degree and aesthetic
 368 qualities is substantially lower, resulting in an average rank of only 3.67, lower than MfM and Magi-1.
 369 Visual comparisons of I2V generation are provided in the **Appendix**.

370 Finally, it is worth mentioning that our MfM achieves competitive results in both T2V and I2V
 371 generation tasks using a **single unified model**, while previous approaches such as Wan and Hunyuan
 372 rely on separate specialized models for each generation paradigm. The unified nature of MfM reduces
 373 overall model parameters and ensures consistent visual quality between text and image conditioning.

375 4.3 PERFORMANCE ON MULTIPLE VIDEO MANIPULATION TASKS

376 Beyond T2V and I2V generation, our MfM supports 16 distinct tasks through a unified model. Given
 377 that our primary focus is on video generation and manipulation, while the image tasks and data are

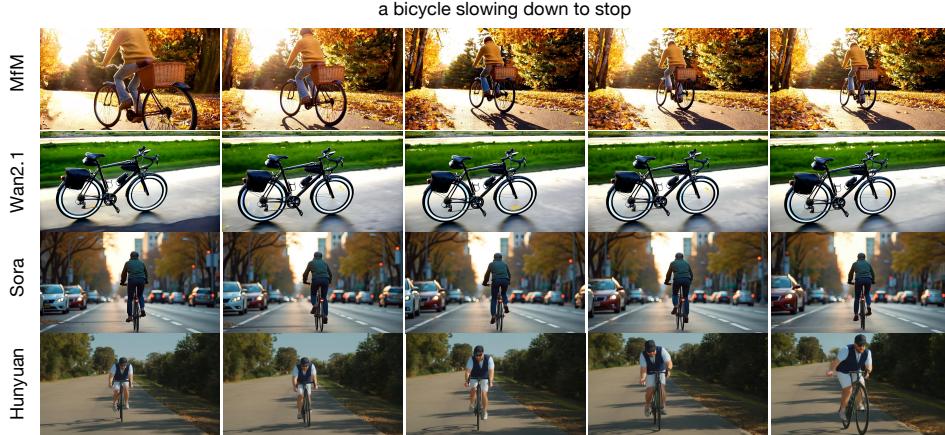


Figure 4: Qualitative comparison of T2V generation results on the prompt "a bicycle slowing down to stop." More visual comparisons are provided in the [Appendix](#).

Table 5: Performance comparison on multiple video manipulation tasks.

Task	Method	Reference-based Metrics				No-reference Perceptual Metrics				
		FID \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	Aesth.	Img.	Motion	Consist.	Temp.
VINP	MfM	51.03	21.31	0.830	0.112	0.560	0.767	0.994	0.220	0.985
	VACE ((Jiang et al., 2025))	67.51	17.41	0.534	0.256	0.569	0.757	0.990	0.224	0.983
	ProPainter ((Zhou et al., 2023))	119.93	20.40	0.880	0.118	0.417	0.739	0.992	0.206	0.985
VOUTP	MfM	44.15	18.21	0.733	0.168	0.539	0.745	0.992	0.216	0.974
	VACE ((Jiang et al., 2025))	54.34	16.16	0.500	0.310	0.567	0.736	0.987	0.211	0.971
	FYC ((Chen et al., 2024b))	94.69	14.49	0.416	0.414	0.550	0.736	0.988	0.211	0.971
	M3DDM ((Fan et al., 2023))	174.61	17.96	0.571	0.475	0.484	0.671	0.982	0.214	0.972
FLF2V	MfM	31.98	19.95	0.583	0.203	0.525	0.730	0.981	0.225	0.966
	Wanx ((Team, 2025))	38.24	18.28	0.512	0.244	0.520	0.742	0.990	0.229	0.978
	Hunyuan ((Kong et al., 2024))	118.18	10.17	0.372	0.419	0.476	0.598	0.992	0.225	0.985
VCOLOR	MfM	76.54	17.93	0.810	0.176	0.582	0.756	0.993	0.230	0.985
	colormnet ((Yang et al., 2024b))	77.08	17.47	0.812	0.160	0.594	0.758	0.990	0.230	0.980
	TCVC ((Zhang et al., 2023c))	82.42	20.69	0.699	0.201	0.553	0.720	0.991	0.228	0.984

used to aid video task training, we perform evaluation on a subset of video tasks with established baselines for comparison. Specifically, we select four representative tasks, including video inpainting, video outpainting, video transition and video colorization, for experiment since they have competitive baseline models and standardized evaluation protocols. Table 5 presents quantitative comparisons on our established MfM-Benchmark. Visual comparisons can be found in the [Appendix](#).

Our experimental results demonstrate MfM’s excellent versatility and effectiveness as a unified video foundation model across diverse manipulation tasks. First, MfM shows consistent advantages in reference-based metrics. In particular, it achieves FID improvements ranging from 16.4% to 72.9% over the specialized models of these tasks. In addition to reference-based metrics, MfM exhibits impressive temporal coherence, which demonstrates MfM’s strong ability to seamlessly transition between different operations: inferring complex motion change from two frames, preserving spatial coherence during region manipulation, and maintaining consistent appearance while modifying visual attributes. Meanwhile, with MfM the knowledge learned from one task can benefit another task. For example, the capability developed for handling boundaries in outpainting can enhance performance in inpainting; similarly, the motion-inference ability required for video translation contributes to the temporal coherence observed in colorization tasks. In summary, MfM can effectively capture the principles underlying diverse video manipulation tasks and achieve competitive performance without requiring separate architectures for each manipulation paradigm.

4.4 THE BENEFIT OF MULTI-TASK TRAINING TO VIDEO GENERATION

We conduct a series of ablation studies to validate that our multi-task training strategy benefits video generation, and to examine the influence of different auxiliary tasks and our design choices. Specifically, initialized from a T2V baseline model, we train models under several settings with the same number of training iterations, including: (i) training with the pure T2V paradigm, (ii) T2V augmented with a single auxiliary task, (iii) our final MfM, and (iv) MfM without depth conditioning. The results on the VBench-T2V benchmark are reported in Table 6.

432 Table 6: Ablation study on multi-task training versus single-task training on VBench-T2V. The best
 433 result is in **bold**, the second best result is underlined. Meanwhile, **green** box means better than T2V
 434 training paradigm while **blue** box means worse than T2V training paradigm.

Paradigm	Motion	Dynamic	Aesth.	Img.	Object	Mul.Obj.	Spatial	Scene	Appear.	Temp.	Consist.
T2V	0.987	0.806	0.617	0.599	0.926	0.705	0.638	0.502	0.232	0.249	0.263
T2V+I2V	0.988	<u>0.778</u>	<u>0.612</u>	<u>0.601</u>	<u>0.918</u>	<u>0.665</u>	<u>0.611</u>	<u>0.533</u>	<u>0.236</u>	<u>0.248</u>	<u>0.261</u>
T2V+VCOLOR	<u>0.987</u>	0.764	<u>0.621</u>	<u>0.609</u>	<u>0.948</u>	<u>0.723</u>	<u>0.593</u>	<u>0.543</u>	<u>0.233</u>	<u>0.251</u>	<u>0.265</u>
T2V+VSR	0.989	0.792	0.621	0.597	0.930	<u>0.664</u>	0.608	<u>0.555</u>	<u>0.230</u>	<u>0.252</u>	<u>0.261</u>
T2V+VINP	0.990	0.778	0.623	0.610	0.945	0.767	0.652	0.537	<u>0.229</u>	<u>0.247</u>	<u>0.265</u>
T2V+VOUT	0.988	0.722	<u>0.625</u>	0.614	0.948	0.753	<u>0.612</u>	0.520	0.229	<u>0.250</u>	<u>0.261</u>
T2V+FLF2V	0.985	0.847	0.620	0.613	0.960	<u>0.658</u>	0.619	0.531	<u>0.233</u>	<u>0.252</u>	<u>0.262</u>
T2V+FLC2V	0.984	<u>0.875</u>	<u>0.615</u>	<u>0.598</u>	<u>0.919</u>	<u>0.695</u>	0.663	0.568	<u>0.231</u>	<u>0.250</u>	<u>0.262</u>
T2V+VEXT	0.988	<u>0.722</u>	0.626	0.615	0.941	<u>0.761</u>	0.621	<u>0.563</u>	0.235	<u>0.251</u>	<u>0.263</u>
MfM w/o Depth	0.988	0.819	0.623	<u>0.584</u>	<u>0.908</u>	<u>0.659</u>	0.675	0.472	0.232	0.248	0.264
MfM w/ Depth	0.988	0.903	<u>0.625</u>	0.608	<u>0.953</u>	0.723	0.677	0.536	0.237	0.253	0.266

445
 446 First, we see that all variants outperform the baseline on Scene metrics, validating the value of
 447 adding auxiliary tasks on scene detail generation. Beyond this, different tasks can yield distinct gains.
 448 For example, VINP and VOUT boost semantic metrics (e.g., Object, Multi-Object). In contrast,
 449 VEXT improves perceptual quality (Aesthetic, Imaging Quality). Interestingly, most variants degrade
 450 Dynamics, whereas FLF2V and FLC2V improve it. This is because both of them require interpolating
 451 realistic motion between states, providing temporally grounded, geometrically constrained signals to
 452 supervise the model to learn motion realism, temporal consistency, and dynamic integrity, resulting
 453 in smoother, more structured temporal dynamics.

454 Second, MfM consistently outperforms the pure T2V baseline across all metrics. This is because
 455 compared with T2V that relies solely on high-level text signal, MfM leverages complementary low-
 456 and mid-level signals (e.g., color stability, spatial completion, motion plausibility). This multi-
 457 task synergy improves not only semantic alignment, but also detail coherence and visual realism.
 458 Moreover, MfM adaptively balances task-specific inductive biases, avoiding overfit to any single
 459 objective. We attribute this to multi-task regularization: diverse supervisory signals encourage the
 460 model to learn richer, more generalizable video representations. Notably, FLF2V and FLC2V serve
 461 as temporal regularizers, counteracting dynamics degradation seen with other auxiliary tasks alone.
 462 Visual illustrations are presented in the Appendix.

463 Finally, removing depth conditions consistently degrades performance across all metrics, including
 464 Dynamics (−10%), Imaging Quality (−4%), and Scene Consistency (−12%). This demonstrates
 465 that geometric cues from the 3D depth map serve as a powerful complement to multi-task learning,
 466 significantly enhancing motion dynamics, perceptual quality, and scene-level coherence.

468 5 CONCLUSION

469
 470 In this work, we introduced MfM (Many-for-Many), a unified video foundation model capable
 471 of handling diverse visual generation and manipulation tasks through a single parameter-efficient
 472 architecture. Specifically, we designed a lightweight adapter to effectively unify various 2D and
 473 3D conditions into a uniform representational space, enabling seamless integration into our video
 474 generation pipeline. By employing progressive joint image-video learning and multi-task training
 475 strategies, we not only enabled multiple visual generation and manipulation capabilities within a
 476 single model but also transferred the knowledge from other image tasks to video generation. This
 477 knowledge sharing significantly reduced the required amount of costly text-to-video training data
 478 and enhanced the fundamental video generation capabilities. As validated in our experiments, MfM
 479 achieved competitive or superior performance compared to specialized models and even commercial
 480 systems while using much fewer training data and model parameters.

481 **Limitations.** Despite the demonstrated effectiveness, we acknowledge certain limitations of our
 482 proposed MfM. Currently, MfM processes 1D conditions (text) and 2D/3D conditions (masks, pixels,
 483 depth) separately before implicitly fusing them through self-attention in DiT blocks. In future work,
 484 we will explore the use of vision-language models rather than text-only encoders to perform explicit
 485 multimodal fusion earlier in the pipeline, which could enhance performance on tasks requiring
 486 comprehensive understanding of complex input conditions.

486 6 ETHICS STATEMENT
487488 This work does not involve any human subjects or sensitive personal data. The usage of all datasets
489 strictly complies with their respective licenses.
490491 Our methods are intended solely for academic and scientific purposes. We do not foresee direct
492 harmful applications, but acknowledge that misuse could occur if applied without proper safeguards.
493 We encourage responsible use of the research outcomes, with attention to fairness, transparency, and
494 legal compliance.
495496 7 REPRODUCIBILITY STATEMENT
497498 We have taken several measures to ensure the reproducibility of our work. All details of the proposed
499 model, preprocessing steps of datasets and algorithms with full hyperparameter settings and training
500 procedures provided are described in the main text.
501502 REFERENCES
503504 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
505 image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference*
506 *on computer vision*, pp. 1728–1738, 2021.507 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
508 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach.
509 Stable video diffusion: Scaling latent video diffusion models to large datasets. In *ArXiv*, 2023a.510 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
511 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
512 *CVPR*, 2023b.
513514 G. Bradski. The OpenCV Library. *Dr. Dobb's Journal of Software Tools*, 2000.515 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
516 editing instructions. In *CVPR*, 2023.518 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan.
519 Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In *ArXiv*,
520 2024a.521 Qihua Chen, Yue Ma, Hongfa Wang, Junkun Yuan, Wenzhe Zhao, Qi Tian, Hongmei Wang, Shaobo
522 Min, Qifeng Chen, and Wei Liu. Follow-your-canvas: Higher-resolution video outpainting with
523 extensive content generation. *arXiv preprint arXiv:2409.01055*, 2024b.
524525 Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang, Fengda Zhu, Hao Yang, Hongxiang Hao, Hui
526 Wu, Zhichao Lai, Yifei Hu, Ting-Che Lin, Shilong Zhang, Fu Li, Chuan Li, Xing Wang, Yanghua
527 Peng, Peize Sun, Ping Luo, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu. Goku: Flow
528 based video generative foundation models. *ArXiv*, 2025.529 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao,
530 Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, and Sergey Tulyakov.
531 Panda-70m: Captioning 70m videos with multiple cross-modality teachers. In *CVPR*, 2024c.
532533 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
534 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
535 vision transformers to 22 billion parameters. In *International Conference on Machine Learning*,
536 pp. 7480–7512. PMLR, 2023a.537 Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
538 Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver,
539 Piotr Padlewski, Alexey Gritsenko, Mario Lučić, and Neil Houlsby. Patch n' pack: Navit, a vision
transformer for any aspect ratio and resolution. *arXiv*, 2023b.

540 Lunhao Duan, Shanshan Zhao, Wenjun Yan, Yinglun Li, Qing-Guo Chen, Zhao Xu, Weihua Luo,
 541 Kaifu Zhang, Mingming Gong, , and Gui-Song Xia. Unic-adapter: Unified image-instruction
 542 adapter with multi-modal transformer for image generation. *arXiv*, 2024.

543

544 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari and Jonas Muller, Harry Saini,
 545 Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
 546 English, Kyle Lace, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
 547 transformers for high-resolution image synthesis. *ArXiv*, 2024.

548 Fanda Fan, Chaoxu Guo, Litong Gong, Biao Wang, Tiezheng Ge, Yuning Jiang, Chunjie Luo, and
 549 Jianfeng Zhan. Hierarchical masked 3d diffusion model for video outpainting. In *Proceedings of*
 550 *the 31st ACM International Conference on Multimedia*, pp. 7890–7900, 2023.

551

552 Google. Veo: a text-to-video generation system, 2025. URL <https://storage.googleapis.com/deepmind-media/veo/Veo-3-Tech-Report.pdf>.

553

554 Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
 555 Animate your personalized text-to-image diffusion models without specific tuning. In *ArXiv*, 2023.

556

557 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
 558 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov,
 559 Yaki Bitterman, Zeev Melumian, and Ofir Bibi. Ltx-video: Realtime video latent diffusion. *arXiv*,
 560 2024.

561 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NIPS*, pp.
 562 6840–6851, 2020.

563

564 Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone: Consistent
 565 and controllable image-to-video synthesis for character animation. *arXiv*, 2023.

566

567 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 568 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
 569 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 570 *Recognition*, pp. 21807–21818, 2024.

571 Zeyinzi Jiang, Zhen Han, Chaojie Mao, Jingfeng Zhang, Yulin Pan, and Yu Liu. Vace: All-in-one
 572 video creation and editing. *arXiv*, 2025.

573

574 Levon Khachatryan, Andranik Moysisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,
 575 Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are
 576 zero-shot video generators. In *ArXiv*, 2023.

577 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 578 Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Aladdin Wang, Andong Wang, Changlin Li, Duojun
 579 Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue,
 580 Joey Wang, Junkun Yuan, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenqing
 581 Yu, Xinchi Deng, Yang Li, Yanxin Long, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu
 582 He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou,
 583 Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar Zhong. Hunyuandvideo: A
 584 systematic framework for large video generative models. *ArXiv*, 2024.

585 Kuaishou. Kling, 2024. URL <https://klingai.kuaishou.com>.

586

587 Black Forest Labs. Flux, 2024. URL <https://blackforestlabs.ai/>.

588

589 Pika Labs. Pika labs, 2023. URL <https://www.pika.art/>.

590

591 Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
 592 Long sequence training from system perspective. *arXiv*, 2022.

593 Jun Hao Liew, Hanshu Yan, Jianfeng Zhang, Zhongcong Xu, and Jiashi Feng. Magicedit: High-
 fidelity and temporally coherent video editing. In *arXiv*, 2023.

594 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 595 for generative modeling. *arXiv*, 2023.

596

597 Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
 598 Qixiang Ye, and Fang Wan. Timestep embedding tells: It's time to cache for video diffusion model.
 599 *arXiv preprint arXiv:2411.19108*, 2024.

600 Lijie Liu, Tianxaing Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Qian He, and Xinglong Wu.
 601 Phantom: Subject-consistent video generation via cross-modal alignment. *arXiv*, 2025.

602

603 Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan,
 604 Ranchen Ming, Xiaoni Song, Xing Chen, Yu Zhou, Deshan Sun, Deyu Zhou, Jian Zhou, Kaijun
 605 Tan, Kang An, Mei Chen, Wei Ji, Qiling Wu, Wen Sun, Xin Han, Yanan Wei, Zheng Ge, Aojie Li,
 606 Bin Wang, Bizhu Huang, Bo Wang, Brian Li, Changxing Miao, Chen Xu, Chenfei Wu, Chenguang
 607 Yu, Dapeng Shi, Dingyuan Hu, Enle Liu, Gang Yu, Ge Yang, Guanzhe Huang, Gulin Yan, Haiyang
 608 Feng, Hao Nie, Haonan Jia, Hanpeng Hu, Hanqi Chen, Haolong Yan, Heng Wang, Hongcheng
 609 Guo, Huilin Xiong, Huixin Xiong, Jiahao Gong, Jianchang Wu, Jiaoren Wu, Jie Wu, Jie Yang,
 610 Jiaoshuai Liu, Jiaoshuo Li, Jingyang Zhang, Junjing Guo, Junzhe Lin, Kaixiang Li, Lei Liu, Lei
 611 Xia, Liang Zhao, Liguo Tan, Liwen Huang, Liying Shi, Ming Li, Mingliang Li, Muhua Cheng,
 612 Na Wang, Qiaohui Chen, Qinglin He, Qiuyan Liang, Quan Sun, Ran Sun, Rui Wang, Shaoliang
 613 Pang, Shiliang Yang, Sitong Liu, Siqi Liu, Shuli Gao, Tiancheng Cao, Tianyu Wang, Weipeng
 614 Ming, Wenqing He, Xu Zhao, Xuelin Zhang, Xianfang Zeng, Xiaoqia Liu, Xuan Yang, Yaqi Dai,
 615 Yanbo Yu, Yang Li, Yineng Deng, Yingming Wang, Yilei Wang, Yuanwei Lu, Yu Chen, Yu Luo,
 616 Yuchu Luo, Yuhe Yin, Yuheng Feng, Yuxiang Yang, Zecheng Tang, Zekai Zhang, Zidong Yang,
 617 Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Xinhao Zhang, Yibo Zhu,
 618 Heung-Yeung Shum, and Dixin Jiang. Step-video-t2v technical report: The practice, challenges,
 619 and future of video foundation model. *arXiv*, 2025.

620

621 Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang,
 622 and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. *arXiv
 623 preprint arXiv:2407.02371*, 2024.

624

625 OpenAI. Video generation models as world simulators, 2024. URL <https://openai.com/sora>.

626

627 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 628 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 629 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

630

631 William Peebles and Saining Xie. Scalable diffusion models with transformers. *ArXiv*, 2022.

632

633 Pexels. Pexels: Free stock photos, 2025. URL <https://www.pexels.com/zh-cn/>. Accessed:
 634 2025-05-13.

635

636 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 637 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 638 synthesis. *ArXiv*, 2023.

639

640 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
 641 Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang Wang,
 642 Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh, Kunpeng
 643 Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar Singh,
 644 Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh Ramb-
 645 hatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh Ramaswamy,
 646 Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li, Tingbo Hou, Wei-
 647 Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng Liu, Yi-Chiao Wu, Yue
 648 Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Thabet, Artsiom Sanakoyeu,
 649 Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood, Ce Liu, Cen Peng, Dimitry
 650 Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu, Fraylie Nord, Jeff Liang, John
 651 Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence Chen, Licheng Yu, Luya Gao,
 652 Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai Li, Simone Parmeggiani, Steve
 653 Fine, Tara Fowler, Vladan Petrovic, and Yuming Du. Movie gen: A cast of media foundation
 654 models. *arXiv*, 2025.

648 Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Carlos
 649 Niebles, Caiming Xiong, Silvio Savarese, Stefano Ermon, Yun Fu, and Ran Xu. Unicontrol: A
 650 unified diffusion model for controllable visual generation in the wild. In *ArXiv*, 2023.
 651

652 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 653 Finn. Direct preference optimization: Your language model is secretly a reward model. In *NIPS*,
 654 2024.

655 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 656 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 657 transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020.

658

659 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 660 and Ilya Sutskever. Zero-shot text-to-image generation. *ArXiv*, 2021.

661

662 Weiming Ren, Harry Yang, Ge Zhang, Cong Wei, Xinrun Du, Stephen Huang, and Wenhui Chen.
 663 Consisti2v: Enhancing visual consistency for image-to-video generation. *arXiv*, 2024.

664

665 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 666 resolution image synthesis with latent diffusion models. In *CVPR*, 2021.

667

668 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 669 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *CVPR*,
 2023.

670

671 RunwayML. Gen-3 by runway, 2023. URL <https://research.runwayml.com/gen3>.

672

673 Sand-AI. Magi-1: Autoregressive video generation at scale, 2025. URL https://static.magi.world/static/files/MAGI_1.pdf.

674

675 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 676 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
 677 Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, , and Jenia Jitsev.
 678 Laion-5b: An open large-scale dataset for training next generation image-text models. In *ArXiv*,
 2022.

679

680 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 681 transformer with rotary position embedding. In *Neurocomputing*, 2021.

682

683 Wan Team. Wan: Open and advanced large-scale video generative models. *Arxiv*, 2025.

684

685 Zachary Teed and Jia Deng. Raft: Recurrent all pairs field transforms for optical flow. In *ECCV*,
 2020.

686

687 Jie Tian, Xiaoye Qu, Zhenyi Lu, Wei Wei, Sichen Liu, and Yu Cheng. Extrapolating and decoupling
 688 image-to-video generation models: Motion modeling is easier than you think. In *CVPR*, 2025.

689

690 Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
 691 game engines. *arXiv*, 2024.

692

693 Qiuhe Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian Yang,
 694 Mingwu Zheng, Xin Tao, et al. Koala-36m: A large-scale video dataset improving consistency
 695 between fine-grained conditions and video content. In *Proceedings of the Computer Vision and
 Pattern Recognition Conference*, pp. 8428–8437, 2025.

696

697 Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
 698 Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal understanding
 699 and generation. *arXiv preprint arXiv:2307.06942*, 2023.

700

701 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 702 models for text-to-video generation. In *ICCV*, 2023.

702 Rui Xie, Yinhong Liu, Penghao Zhou, Chen Zhao, Jun Zhou, Kai Zhang, Zhenyu Zhang, Jian Yang,
 703 Zhenheng Yang, and Ying Tai. Star: Spatial-temporal augmentation with text-to-video models for
 704 real-world video super-resolution. *arXiv*, 2025.

705

706 Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Xintao Wang,
 707 Tien-Tsin Wong, and Ying Shan. Dynamicrafter: Animating open-domain images with video
 708 diffusion priors. *arXiv*, 2023.

709

710 Jiaqi Xu, Xinyi Zou, Kunzhe Huang, Yunkuo Chen, Bo Liu, MengLi Cheng, Xing Shi, and Jun
 711 Huang. Easyanimate: A high-performance long video generation method based on transformer
 712 architecture. *arXiv preprint arXiv:2405.18991*, 2024.

713

714 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
 715 Zhao. Depth anything v2. *arXiv*, 2024a.

716

717 Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion
 718 for realistic image super-resolution and personalized stylization. *ArXiv*, 2023.

719

720 Yixin Yang, Jiangxin Dong, Jinhui Tang, and Jinshan Pan. Colormnet: A memory-based deep
 721 spatial-temporal feature propagation network for video colorization. In *European Conference on
 722 Computer Vision*, pp. 336–352. Springer, 2024b.

723

724 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 725 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 726 with an expert transformer. *ArXiv*, 2024c.

727

728 Liping Yuan, Jiawei Wang, Haomiao Sun, Yuchen Zhang, and Yuan Lin. Tarsier2: Advancing large
 729 vision-language models from detailed video description to comprehensive video understanding.
 730 *arXiv preprint arXiv:2501.07888*, 2025.

731

732 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *NIPS*, 2019.

733

734 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,
 735 Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation models
 736 for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025.

737

738 Juan Zhang, Jiahao Chen, Cheng Wang, Zhiwang Yu, Tangquan Qi, Can Liu, and Di Wu. Virbo:
 739 Multimodal multilingual avatar video generation in digital marketing. *arXiv*, 2024.

740

741 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
 742 dataset for instruction-guided image editing. In *NIPS*, 2023a.

743

744 Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
 745 In *NIPS*, 2023.

746

747 Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli
 748 Zhao, , and Jingren Zhou. I2vgen-xl: High-quality image-to-video synthesis via cascaded diffusion
 749 models. In *ArXiv*, 2023b.

750

751 Yu Zhang, Siqi Chen, Mingdao Wang, Xianlin Zhang, Chuang Zhu, Yue Zhang, and Xueming Li.
 752 Temporal consistent automatic video colorization via semantic correspondence. In *Proceedings of
 753 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1835–1844, 2023c.

754

755 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 756 Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
 757 Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
 758 scaling fully sharded data parallel. *arXiv*, 2023.

759

760 Shangchen Zhou, Chongyi Li, Kelvin CK Chan, and Chen Change Loy. Propainter: Improving
 761 propagation and transformer for video inpainting. In *Proceedings of the IEEE/CVF international
 762 conference on computer vision*, pp. 10477–10486, 2023.

756 **A APPENDIX**
757758 In this appendix, we provide visual demonstrations and the following supporting materials to the
759 main paper:
760

- 761 • Declaration of LLM Assistance;
- 762 • The hyper-parameters and inference latency of 2B&8B MfM (referring to Sec. 3 in the main
763 paper);
- 764 • The details of our data augmentation strategy and MfM-Benchmark construction (referring to Sec.
765 4.1 in the main paper);
- 766 • Visual results of T2V generation on VBench (referring to Sec. 4.2 in the main paper);
- 767 • Visual results of I2V generation on VBench (referring to Sec. 4.2 in the main paper);
- 768 • User study of I2V generation;
- 769 • Visual results of multi-task generation on MfM-Benchmark (referring to Sec. 4.3 in the main
770 paper);
- 771 • Visual results of T2V generation with or without multi-task training (referring to Sec. 4.4 in the
772 main paper);
- 773 • Failure cases of MfM;
- 774 • **Details about training data;**
- 775 • **Ablation study on sampling probability;**
- 776 • **Evaluation results on MovieGen Benchmarks;**
- 777 • **Ablation study on task interactions between different tasks;**
- 778 • **Quantitative Gains of Q-K Normalization and 3D RoPE;**
- 779 • **Ablation study on model adaptation to new tasks.**

783 For better viewing experience, we uploaded the video demos to a dedicated anonymous website
784 <https://anonymous.4open.science/w/MfMPage-2602/>, where the videos can be played directly in the
785 browser. Note that, due to the significant number of high-quality video files included in our demon-
786 strations, initial page loading may require several minutes to complete. We appreciate your patience
787 during this process, as the complete visual experience is essential to understand the capabilities and
788 performance of our approach.

789 **A.1 DECLARATION OF LLM ASSISTANCE**
790791 We use ChatGPT-5 to assist with the refinement of this manuscript. After drafting the full text, we
792 provided selected passages to the models for suggestions on grammar, clarity, and conciseness. All
793 revisions were reviewed and finalized by the authors to ensure accuracy and appropriateness.
794795 **A.2 THE HYPER-PARAMETERS AND INFERENCE LATENCY OF 2B&8B MFM**
796797 Table 7: Hyper-parameters of our 2B and 8B model variants.
798

799 Model Size	800 Layers	801 Attention Heads	802 Head Dim	803 FFN Dim	804 Cross-Attn Dim
800 2B	801 28	802 28	803 64	804 7168	805 (1792, 2048)
801 8B	802 40	803 48	804 64	805 12288	806 (3072, 2048)

803 In Table 7, we present the detailed hyper-parameter settings of our two MfM variants. The larger
804 model has 8 billion parameters with 40 layers, 48 attention heads, and a hidden dimension of 3,072,
805 whereas the smaller model has 2 billion parameters with 28 layers, 28 attention heads, and a hidden
806 dimension of 1,792.

807 In Table 8, we report the inference latency of our model under different resolutions. For inference,
808 we adopt sequence parallelization and Teocache (Liu et al., 2024) to improve efficiency. Notably, due
809 to the unified adapter interface and the simple additive integration of adapter outputs into the latent
features, the inference cost remains nearly constant across tasks.

810
811
812 Table 8: Model Inference Time of 2B&8B MfM
813
814
815
816
817
818

Model	Resolution	Steps	Time
2B	[97,128,224]	30	5.80s
2B	[97,360,640]	30	16.12s
2B	[97,720,1280]	30	2:05
8B	[97,128,224]	30	9.03s
8B	[97,360,640]	30	32.90s
8B	[97,720,1280]	30	4:19

819
820
821 A.3 THE DETAILS OF MFM-BENCHMARK CONSTRUCTION
822

823 For multi-task data augmentation strategy, we applied the following enhancement pipeline:

824
825 1. Text-to-Video (T2V): We used the original captions as conditioning input.
826
827 2. Image-to-Video (I2V): We used the first frame and caption as conditioning input.
828
829 3. Video Extension (VEXT): We extracted the first 8 frames as conditioning input to generate
830 the remaining frames.
831
832 4. Video Inpainting (VINP): We applied random masks to interior regions covering 1/9 to 1/4
833 of the total pixels.
834
835 5. Video Outpainting (VOUTP): We generated boundary masks covering 1/8 to 1/4 of the total
836 width/height.
837
838 6. Video Colorization (VCOLOR): We converted the ground-truth videos to grayscale.
839
840 7. First-Last-Frame-to-Video (FLF2V): We used the first and last frames as conditioning input
841 to generate the intermediate 95 frames.
842
843 8. First-Last-Clip-to-Video (FLC2V): We used the first 8 frames and last 8 frames as condi-
844 tioning input.
845
846 9. Video Super-Resolution (VSR): We applied random downsampling factors between 2 \times and
847 6 \times and used the downsampled videos as conditioning input.
848
849 10. Video Editing (VEDIT): We used the original videos as conditioning input, replacing the
850 original captions with style instruction prompts (*e.g.*, "change the video to oil painting
851 style").
852
853 11. Text-to-Image (T2I): We used the first frame at the ground-truth.
854
855 12. Image Super-Resolution (SISR): We used the first frames at the ground truth and downsampled
856 them with downsampling factors between 2 \times and 6 \times .
857
858 13. Image Inpainting (IINP): We sampled the first frames and randomly masked them like VINP.
859
860 14. Image Outpainting (IOUTP): we sampled the first frames and randomly masked them like
861 VOUTP.
862
863 15. Image Colorization (ICOLOR): We sampled the first frames and converted them to
864 grayscale.
865
866 16. Image Editing (IEdit): We sampled the first frames and replaced the original captions with
867 instruction prompts such as VEDIT.

868 For MfM-benchmark, first, we collected 1500 videos of 1280 \times 720 of resolution and their accom-
869 panying captions from Pexels (Pexels, 2025), selecting only those containing more than 97 frames.
870 We then applied a two-stage quality filtering process: (1) removing blurry videos by calculating
871 the CV2.Laplacian (Bradski, 2000) score for each frame and excluding those below a threshold
872 of 200, and (2) evaluating motion dynamics using RAFT (Teed & Deng, 2020) and retaining only
873 videos with motion scores exceeding 5. This filtering resulted in our final dataset of 480 high-quality
874 videos, which serve as ground-truth for reference-based metrics. We standardized each video to 97
875 frames and divided them into 16 segments for consistent processing. Final, we applied the above
876 enhancement pipeline to prepare the condition.

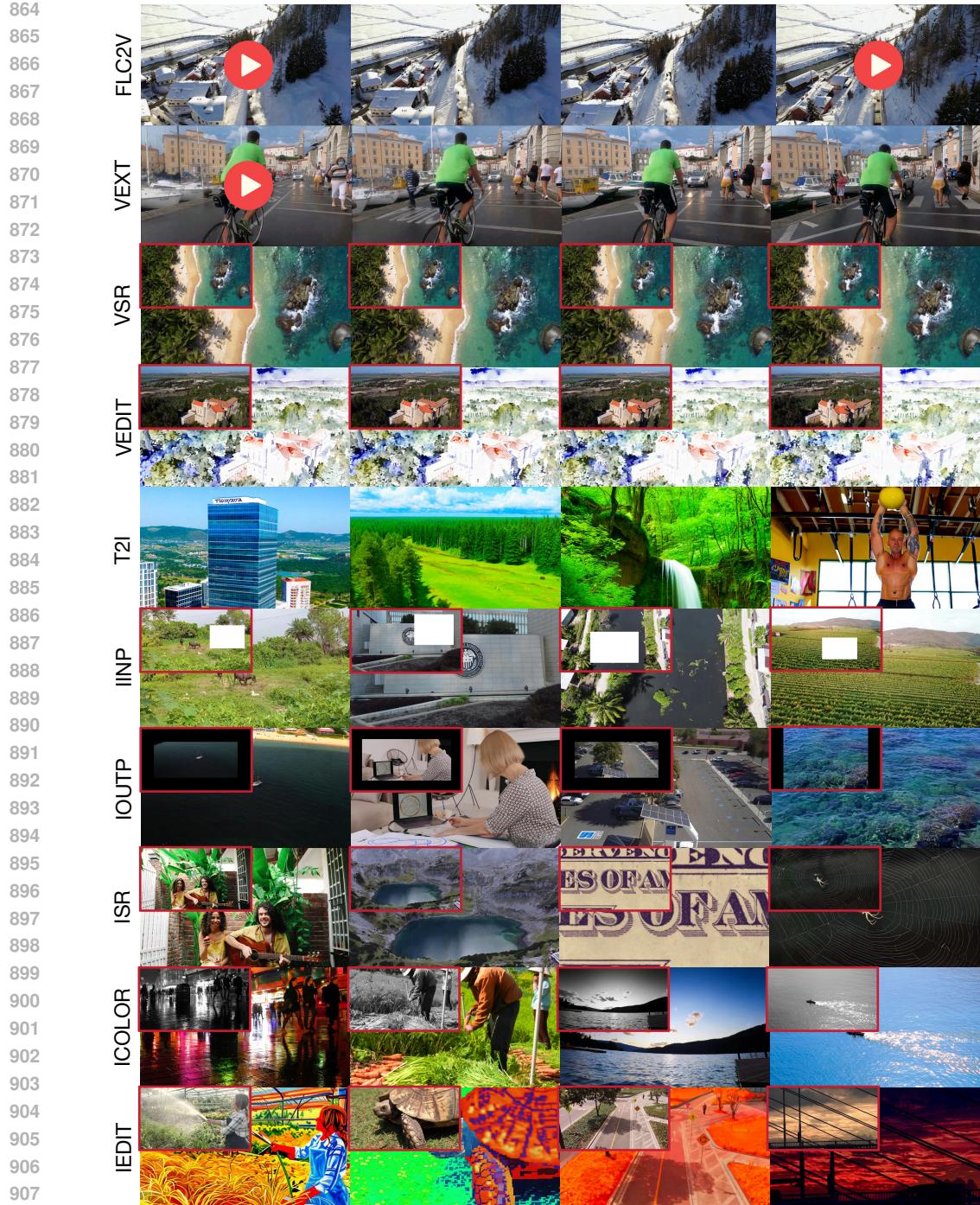


Figure 5: Visual illustrations for different tasks supported by our MfM.

Visual illustrations of these tasks are shown in Figure 5, Figure 14, Figure 15, Figure 16, Figure 17. Video demonstrations are also available at <https://anonymous.4open.science/w/MfMPage-2602/>.

A.4 VISUAL RESULTS OF T2V GENERATION ON VBENCH

Our comprehensive qualitative analysis spans four diverse text-to-video generation scenarios—coastal beach oil painting with waves, person walking in snowstorm, koala playing piano in forest, and bicycle slowing down—as illustrated in Figures 6, 7, 8 and 9. We compare MfM with Wan2.1 (Team, 2025),

918 Hunyuan (Kong et al., 2024), Sora (OpenAI, 2024), Gen-3 (RunwayML, 2023), PikaLabs (Labs,
 919 2023), LTX-Video (HaCohen et al., 2024), CogVideoX1.5 (Yang et al., 2024c), and EasyAnimate (Xu
 920 et al., 2024). From these figures and the demo videos in our provided anonymous website, we can
 921 have the following observations.

922 Wanx2.1 exhibits prompt comprehension failures across multiple dimensions. For example, it fails
 923 to capture motion elements—generating a moving bicycle in Figure 9 that shows no deceleration,
 924 and even producing backwards walking motion in Figure 7, contradicting natural human movement.
 925 Hunyuan produces near-identical frames in the beach scene (Figure 6), where waves show negligible
 926 movement. Additionally, Hunyuan demonstrates limited stylistic interpretation capability, completely
 927 missing the oil painting aesthetic in Figure 6. Sora produces significant contextual mismatches in
 928 several scenarios. Notably, it generates an urban nighttime scene instead of a snowstorm in Figure
 929 7. While Sora delivers reasonable visual quality, it frequently produces minimal frame-to-frame
 930 progression, which is particularly evident in the bicycle sequence, where speed reduction is barely
 931 perceptible. Gen-3 generally provides good visual quality but struggles with specific prompt elements.
 932 It fails to accurately render koala coloration in Figure 8, producing an unnatural scenario where the
 933 koala is in the piano. In Figure 9, it shows a riderless bike with non-diminishing dust effects that
 934 physically contradict the slowing action specified in the prompt.

935 PikaLabs demonstrates framing issues across multiple scenarios. In Figure 7, the human subject
 936 appears too small to effectively convey walking motion. This problem is even more pronounced in
 937 Figure 9, where an inappropriately wide urban composition makes the bicycle barely visible. LTX-
 938 Video exhibits the most severe quality limitations, consistently delivering washed-out, minimalist
 939 renderings across all scenarios. Most problematically, LTX-Video demonstrates dramatic mid-
 940 sequence discontinuities in Figure 8, completely changing the scene halfway through. CogVideoX
 941 generates video with small motion changes and cannot adapt to the style prompting (Figure 6).
 942 Easyaimate completely misidentifies the requested animal in Figure 8, rendering a panda instead of a
 943 koala. In Figure 9, it shows an inappropriate close-up framing of a stationary bicycle wheel, making
 944 the slowing action impossible to perceive. In contrast, MfM demonstrates superior results across all
 945 scenarios, achieving an ideal balance of prompt fidelity, motion physics, and visual quality.

946 A.5 VISUAL RESULTS OF I2V GENERATION ON VBENCH

947 Our qualitative analysis spans four diverse cases—swimming turtle, dog carrying a soccer ball, fishing
 948 boat navigation, and galloping horses—as illustrated in Figures 10, 11, 12 and 13. These scenarios
 949 were selected to evaluate model performance across a spectrum of challenges, including animal
 950 locomotion, object interaction, environmental dynamics, and atmospheric conditions. We compare
 951 our MfM with Wanx-I2V (Team, 2025), Hunyuan-I2V (Kong et al., 2024), Magi-1 (Sand-AI, 2025),
 952 Step-Video (Ma et al., 2025), DynamicCrafter (Xing et al., 2023), VideoCrafter-I2V (Chen et al.,
 953 2024a), I2VGen-XL (Zhang et al., 2023b), CogvideoX-I2V (Yang et al., 2024c), ConsistI2V (Ren
 954 et al., 2024). From these figures and the demo videos in our provided anonymous website, we can
 955 have the following observations.

956 Hunyuan-I2V demonstrates minimal temporal progression across all scenarios, producing sequences
 957 with negligible motion variation. This is particularly evident in the turtle (Figure 10) and fishing
 958 boat (Figure 12) examples. Furthermore, Hunyuan-I2V introduces anatomical inconsistencies in the
 959 horse sequence, rendering equine subjects with only three legs in later frames—a critical biological
 960 implausibility. Wanx-I2V can produce reasonable animal movement, but sometimes fail to capture
 961 essential action descriptors. For example, it fails to generate the “navigating” movement explicitly
 962 specified in the boat prompt (Figure 12). StepVideo-I2V suffers from visual artifacts across multiple
 963 dimensions, including anatomical anomalies (abnormal turtle fin articulation in Figure 10), subject
 964 identity inconsistencies (altered dog appearance in Figure 11), and most strikingly, fundamental scene
 965 misinterpretation in the horse sequence. CogVideo-I2V demonstrates object consistency failures,
 966 including problematic size variations in the turtle sequence and unstable object interactions in the
 967 dog example. DynamiCrafter exhibits even more pronounced temporal instability, with objects and
 968 environmental elements changing unnaturally between consecutive frames—most evident in the
 969 inconsistent appearance of soccer ball and geometric distortions of the dog subject in Figure 11.
 970 VidCrafter and ConsistI2V both struggle with maintaining prompt fidelity, frequently altering the
 971 fundamental identity characteristics in the conditioning image. This prompt deviation is particularly
 972 pronounced in the dog sequence (Figure 11), where breed characteristics, coat patterns, and contextual

972
973
974 Table 9: User votes on 10 image-to-video generation outputs
975
976

Method	MfM	Wanx I2V	Hunyuan I2V	StepVideo I2V	Magi-1	Cogvideo I2V	I2VGenXL	DynCrafter	VidCrafter	ConsistI2V
Top-1 Rates	64.29%	20.00%	1.43%	4.29%	0.00%	5.71%	4.29%	0.00%	0.00%	0.00%
Top-3 Rates	85.71%	71.43%	40.00%	41.43%	12.86%	30.00%	12.86%	0.00%	4.29%	1.43%

977
978 elements shift significantly from the reference image. In contrast, our MfM and Magi-1 achieve both
979 robust identity preservation and convincing motion dynamics in all test cases.
980

981 A.6 USER STUDY OF I2V GENERATION

982
983 To comprehensively evaluate MfM’s effectiveness in generative tasks, we conduct a user study
984 specifically focused on image-to-video (I2V) generation, comparing against nine I2V generation
985 methods whose models are publicly available: Wanx-I2V (Team, 2025), Hunyuan-I2V (Kong et al.,
986 2024), StepVideo-I2V (Ma et al., 2025), Magi-1 (Sand-AI, 2025), Cogvideo-I2V (Yang et al., 2024c),
987 I2VGenXL (Zhang et al., 2023b), DynamiCrafter (Xing et al., 2023), VideoCrafter (Chen et al.,
988 2024a), and ConsistI2V (Ren et al., 2024). The user study comprised 10 test cases encompassing
989 various content categories, including animal motion, human activities, scenic close-ups, and vehicular
990 movement. We invited 10 participants and asked them to rank the top three generated videos for
991 each case based on visual quality and semantic consistency. Table 9 presents the average Top-1
992 and Top-3 rates for all methods. The results clearly show that MfM outperforms all competitors,
993 achieving a 64.29% Top-1 rate and an 85.71% Top-3 rate. Wanx-I2V ranks second with 20.00%
994 Top-1 and 71.43% Top-3 rates, respectively. Hunyuan-I2V and StepVideo-I2V demonstrate moderate
995 performance with Top-3 rates of approximately 40%, despite Top-1 rates below 5%. Notably, Magi-1,
996 DynamiCrafter, VideoCrafter, and ConsistI2V fail to secure any Top-1 selections and exhibit minimal
997 presence in Top-3 rankings. These results reveal MfM’s superior capability in generating high-quality
998 image-to-video content that consistently meets human evaluation criteria.
999

1000 A.7 VISUAL RESULTS OF MULTI-TASK GENERATION

1001
1002 The visual results of four representative video tasks, including VINP, VOUTP, VCOLOR and FLF2V,
1003 are illustrated in Figure 14, Figure 15, Figure 16, Figure 17, respectively.

1004
1005 For VINP, we compare our MfM with VACE (Jiang et al., 2025) and ProPainter (Zhou et al., 2023)
1006 across three diverse scenarios in Figure 14. We see that MfM demonstrates superior performance
1007 in maintaining visual fidelity and temporal consistency. Specifically, both MfM and VACE produce
1008 reasonably coherent results in the first and third cases, where they successfully reconstruct the masked
1009 region with detail preservation and natural integration with the surrounding environment. However, in
1010 the second case, VACE shows inconsistencies in intensity distribution and color. ProPainter exhibits
1011 severe blurring and artifacts in the inpainted region, failing to properly reconstruct the subject and
1012 completely losing the details.

1013
1014 For VOUTP, we compare MfM with VACE (Jiang et al., 2025), Follow-Your-Canvas (FYC) (Chen
1015 et al., 2024b), and M3DDM (Fan et al., 2023). The comparisons on three diverse scenarios are
1016 illustrated in Figure 15. MfM demonstrates exceptional consistency and contextual understanding
1017 across all test cases. VACE shows moderate capabilities but with noticeable limitations. While
1018 it produces acceptable wave continuation in the ocean scene, it generates noticeable brightness
1019 mismatches between the original and generated regions in the second case. FYC suffers from the
1020 brightness mismatches in the second case; what’s more, it fails to complete the leg of the person in
1021 the first frame of the first case. M3DDM exhibits significant limitations in this task. It generates
1022 blurred outputs and visually jarring discontinuities around the generated areas.

1023
1024 For VCOLOR, we compare MfM with Colormnet (Yang et al., 2024b) and TCVC(Zhang et al.,
1025 2023c) in Figure 16. We see that MfM demonstrates excellent contextual understanding performance
1026 and maintains superior temporal color stability between adjacent frames. Compared with other
1027 baselines, it achieves more complete colorization coverage without introducing grayscale artifacts
1028 while preserving realistic lighting conditions. Colormnet shows reasonable performance on these
1029 cases but suffers from saturation issues in the last two cases. TCVC exhibits substantial limitations

1026 across all test scenarios, with large portions remaining in grayscale and the overall color tone
 1027 appearing excessively dull and lifeless.
 1028

1029 For FLF2V, we compare MfM with Wanx-FLF2V (Team, 2025) and Hunyuan (with keyframe
 1030 LoRA) (Kong et al., 2024). The comparisons on three scenarios are illustrated in Figure 17. We see
 1031 that both MfM and Wanx-FLF2V deliver natural motion interpolation between the first frame and the
 1032 last frame without jarring transitions, as shown in the first and third cases. But Wanx-FLF2V performs
 1033 abnormally in the second case, where the video frames are unexpectedly compressed vertically at
 1034 the end, altering the aspect ratio. Hunyuan exhibits severe limitations in the first and third cases.
 1035 It produces intermediate frames with a different viewpoint and a noticeably darkened color tone,
 1036 resulting in jarring visual transitions.
 1037

A.8 VISUAL RESULTS OF ABLATION STUDY

1039 The ablation study results on four scenarios are illustrated in Figure 18, which provides visual
 1040 evidence to support that multi-task training significantly improves the temporal dynamics of the
 1041 generated videos. We can see that T2V w/ MfM demonstrates cinematographic qualities, including
 1042 smooth and flexible camera movements, as well as vivid and evolving patterns. For instance, in the
 1043 first case, the varying angle of the video effectively captures the dynamic essence of 'gain speed';
 1044 in the second case, dynamic color transitions and the natural progression of pyrotechnic effects are
 1045 illustrated; in the third case, the train is portrayed with appropriate motion blur; and in the fourth,
 1046 the celestial progression is dramatically captured, with the sun emerging and intensifying across the
 1047 horizon, accompanied by corresponding atmospheric lighting changes. In contrast, T2V w/o MfM
 1048 exhibits minimal camera movement, with limited perspective variation and an almost static side view
 1049 throughout the sequence. Furthermore, in the last case, T2V w/o MfM produces nearly identical
 1050 frames of a static sun, with little temporal progression.
 1051

A.9 FAILURE CASES

1053 While MfM demonstrates strong performance across T2V and I2V generation tasks, it also occasion-
 1054 ally produces failure cases, as illustrated in Figure 19. First, in complex interaction scenarios, MfM
 1055 may produce physically implausible object relationships. For instance, in the basketball dunking
 1056 sequence (first row), the ball incorrectly traverses the net rather than entering the basket properly.
 1057 Similarly, in the burger eating sequence (second row), the burger wrapper abruptly merges into the
 1058 burger in the intermediate frames. Second, MfM also exhibits limitations in generating videos that
 1059 contain words; this is particularly evident in the cyberpunk cityscape (third row) and the animated
 1060 panda scene (fourth row). Finally, for sequences involving rapid motion, we observe temporal artifacts
 1061 manifesting as duplicated or misplaced features. This is exemplified in the cat playing sequence
 1062 (fifth row), where an anomalous second tail-like object appears near the cat's head in intermediate
 1063 frames. Meanwhile, in the sword fighting sequence (last row), the character on the right undergoes
 1064 noticeable variations and distortions in the intermediate frames. Future work will be conducted to
 1065 further improve the performance of MfM on these scenarios.
 1066

A.10 DETAILS ABOUT TRAINING DATA

1068 Regarding our training data, over 70% of them are collected from publicly available sources, including
 1069 Panda70M (Chen et al., 2024c), Koala36M (Wang et al., 2025), InternVid Wang et al. (2023),
 1070 OpenVid (Nan et al., 2024), and WebVid (Bain et al., 2021), complemented by a small portion of
 1071 proprietary data. For images, the primary source is LAION-5B (Schuhmann et al., 2022).
 1072

To ensure data quality, we adopt a multi-stage filtering pipeline:

- **Video Segmentation:** We first apply PySceneDetect for coarse scene boundaries. Then, we extract frame-level features using DINOv2 (Oquab et al., 2023), compute inter-frame similarity, and further split clips at low-similarity points. Videos shorter than 2 seconds are removed.
- **Video Quality Filtering:** Each segmented clip is evaluated along several dimensions: 1) basic metadata (FPS, resolution, bitrate) extracted directly from video; 2) average aesthetic score using a pretrained aesthetic model; 3) overlay text ratio via a pretrained OCR model;

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

4) watermark detection through a dedicated watermark model; 5) for motion quality, we compute optical flow using RAFT (Teed & Deng, 2020), then filter out clips with insufficient motion.

- **Semantic Content Filtering:** To identify and remove potential low-quality or undesirable content, we employ a fine-tuned VideоЛLaMA3 (Zhang et al., 2025) model to detect unsafe content, low-light or blurry scenes, overexposed frames, black borders, abrupt perspective shifts, and static-image animations.
- **Video Captioning:** For caption generation, we use Tarsier2 (Yuan et al., 2025), prompting it to produce two complementary captions: a short global summary and a long, detailed description. These two captions are merged to form the final caption for each clip.

A.11 ABLATION STUDY ON SAMPLING PROBABILITY

We chose to assign $3\times$ higher sampling probability to the basic generation tasks for two main reasons. First, these three tasks (T2V, I2V, and T2I) represent the core generation capabilities most commonly required in practical scenarios. Unlike editing tasks, which provide strong and explicit conditioning signals, these basic generation tasks rely on weaker supervision and are therefore significantly harder to optimize. Allocating additional sampling probability ensures that the backbone generative ability is sufficiently strengthened during pretraining.

Second, we conducted an ablation study to investigate how different sampling ratios affect model performance. Specifically, we compared four settings: 1) Equal sampling probability across all tasks 2) $2\times$ sampling probability for the three basic tasks 3) $3\times$ sampling probability for the three basic tasks 4) $4\times$ sampling probability for the three basic tasks.

The evaluation results on VBench-T2V are shown in the Table 10. Among all configurations, the $3\times$ sampling strategy consistently achieves the strongest overall performance across most metrics, demonstrating that an appropriately biased multi-task sampling schedule can effectively enhance generative capability without increasing the training budget.

In contrast, sampling ratios that allocate insufficient training budget to the basic generation tasks (e.g., $1\times$ or $2\times$) lead to under-optimized T2V performance. In these settings, the T2V task does not receive enough updates to fully benefit from the complementary supervision provided by other tasks.

Conversely, overemphasizing the basic tasks (e.g., $4\times$) weakens the regularization effect brought by the editing tasks. This reduces multi-task synergy and results in performance degradation across several metrics.

As an extreme case, assigning zero probability to all other tasks degenerates the training back to a pure T2V paradigm, which—as demonstrated in the Table 6 of the main paper—performs worse than our mixed MfM training framework. This further validates that the improvements are not solely due to the basic tasks themselves, but arise from the interaction among diverse tasks under a well-balanced sampling strategy.

Table 10: Quantitative comparison of T2V generation performance with different sampling probability on the VBench-T2V benchmark. For each dimension, the best result is in bold, the second best result is underscored.

Model	Motion	Dynamic	Aesth.	Img.	Object	Mul.Obj.	Spatial	Scene	Appear.	Temp.	Consist.
1 \times	0.9865	0.6528	0.5822	0.5493	0.8726	0.6395	0.6026	0.4789	0.2254	0.2299	0.2507
2 \times	0.9664	<u>0.8750</u>	0.5520	0.5420	0.7642	0.3361	0.4578	0.4942	<u>0.2285</u>	0.2272	0.2495
3 \times	0.9922	0.8889	0.5911	0.5853	0.8861	0.5160	0.5851	0.4869	0.2289	0.2341	0.2483
4 \times	0.9810	0.6667	0.5834	0.5791	0.8441	0.4177	0.4977	0.4680	0.2277	0.2393	0.2470

A.12 EVALUATION RESULTS ON MOVIEGEN BENCHMARKS

Besides VBench, we also adopt another widely used benchmark — the MovieGen Benchmark (Polyak et al., 2025) released by Meta (hereafter referred to as the MovieGen Benchmark) — for further evaluation. This benchmark provides broader coverage across key evaluation dimensions and includes

1134 diverse motion categories (*i.e.*, high, medium, and low motion prompts). It has also been adopted by
 1135 recent state-of-the-art works such as Veo 3 (Google, 2025) and Goku (Chen et al., 2025). Since the
 1136 MovieGen Benchmark does not provide official evaluation metrics, we employ the same set of video
 1137 quality evaluation metrics used in VBench to measure the performance of different models on several
 1138 key metrics. The results of open-sourced models are presented in Table 11.
 1139

1140 Table 11: Quantitative comparison of T2V generation performance on the MovieGen benchmark.

Model	Aesthetic.	Imaging	Dynamic	Temporal	Consistency	Avg.	Rank.
MfM (8B)	0.6136	<u>0.6887</u>	0.7188	0.2615	<u>0.2615</u>	2.2	
Wanx (14B)	0.6428	0.7265	0.2969	0.2474	0.2474	3.4	
Hunyuan (13B)	0.6044	0.6483	<u>0.5469</u>	<u>0.2651</u>	0.2651	<u>2.4</u>	
Opensora (11B)	<u>0.6311</u>	0.6180	<u>0.5156</u>	0.2688	0.2588	2.6	
Cogvideo (5B)	0.5634	0.6104	0.4844	0.2452	0.2452	4.8	
EasyAnimate (12B)	0.5439	0.5697	0.4322	0.1375	0.1375	6.2	
LTX-video (0.98B)	0.5087	0.5603	0.3438	0.2063	0.2063	6.8	

1149
 1150 The results on the MovieGen benchmark further demonstrate the advantages of our MfM. In particular,
 1151 MfM (8B) achieves the best performance on video dynamics and the second-best results on image
 1152 quality and overall consistency, closely matching or even surpassing those much larger models such
 1153 as Wanx (14B), Hunyuan (13B), and OpenSora (11B). Note that our **MfM model achieves this**
 1154 **performance by training on only 160M images and 120M video clips**, far less than those models
 1155 like Wanx and Hunyuan, which are trained on billion-scale datasets.

1156 Regarding long-duration video generation, our model is primarily trained on clips of 97 frames.
 1157 Extending the temporal window significantly increases the computational and memory cost during
 1158 training, and thus long-duration generation is currently beyond the intended scope of this work. A
 1159 promising direction is to adapt our MfM framework to a streaming or chunk-wise generation pipeline,
 1160 which would enable arbitrarily long videos. We consider this as an important extension in future
 1161 work.

1162 A.13 ABLATION STUDY ON TASK INTERACTIONS BETWEEN DIFFERENT TASKS

1163 Given the large number of possible task combinations, it is infeasible to conduct an exhaustive
 1164 ablation over all of them. Therefore, we select a subset of representative tasks (T2V, VINP, FFL2V,
 1165 VColor) to study task interactions. In particular, starting from a T2V-only checkpoint, we evaluate
 1166 mixing strategies including: T2V only, T2V + any single task, T2V + any two tasks, and T2V + all
 1167 selected tasks. The evaluation results on VBench-T2V are summarized in Table 12:

1170 Table 12: Quantitative comparison of different task interactions. For each dimension, the best result
 1171 is in bold, the second best result is underscored.

Model	Motion	Dynamic	Aesth.	Img.	Object	Mul.Obj.	Spatial	Scene	Appear.	Temp.	Consist.
T2V	0.9915	0.6556	0.5931	0.5448	<u>0.8869</u>	0.5457	<u>0.6112</u>	0.5065	0.2214	0.2379	0.2520
T2V+VCOLOR	0.9892	0.6111	0.5881	0.5484	0.8339	0.5122	0.4326	0.5000	0.2317	0.2406	0.2519
T2V+VINP	0.9887	0.6944	0.5770	0.5402	0.8703	0.5655	0.5714	0.4833	0.2333	0.2288	0.2474
T2V+FLF2V	0.9911	0.7778	<u>0.5930</u>	0.5437	0.8932	0.6006	0.5098	0.4935	0.2295	0.2415	0.2464
T2V+FLF2V+VCOLOR	0.9846	0.7639	0.5743	0.5725	0.8623	0.5358	0.6515	0.5291	0.2298	0.2419	0.2551
T2V+VINP+FLF2V	0.9925	<u>0.8472</u>	0.5947	<u>0.5808</u>	0.9090	0.5983	0.5261	0.5356	0.2291	0.2421	0.2551
T2V+VINP+VCOLOR	0.9870	0.7778	0.5816	0.5785	0.8576	0.5816	0.5150	0.5007	0.2347	0.2333	0.2445
T2V+FLF2V+VCOLOR+VINP	<u>0.9922</u>	0.8750	0.5911	0.5853	0.8861	0.5760	0.5851	0.4969	0.2289	0.2372	0.2553

1181
 1182 As shown in the table, in most cases, when both tasks improve performance on certain metrics,
 1183 incorporating them into the mixed training pipeline also brings benefits (*e.g.*, dynamic, appearance).
 1184 However, when one task improves performance while another negatively affects it, the final mixed
 1185 results vary across metrics. For example, for object and multiple object metrics, integrating FFL2V
 1186 leads to significant gains. When further combining it with VColor, the mixed model still improves
 1187 upon the T2V baseline, but the magnitude of improvement narrows because VColor has a mild
 1188 negative effect on single-object and multi-object generation accuracy. Conversely, mixing VINP and

1188 VCOLOR with T2V can degrade performance on temporal style, though VCOLOR alone improves
 1189 general generation quality.
 1190

1191 Interestingly, we also observe cases where two individually harmful tasks produce unexpected im-
 1192 provements when combined. For instance, VINP and FLF2V each weaken some metrics, but together,
 1193 they significantly improve scene and overall consistency. We attribute this to the complementary
 1194 regularization effects they impose on holistic video understanding: although VINP primarily focuses
 1195 on spatial completion and FLF2V on temporal completion, each task alone may bias optimization in
 1196 an unbalanced direction, whereas their combination better constrains the model and leads to improved
 1197 global metrics like overall consistency.
 1198

1199 Finally, when all tasks are included in training, the model achieves substantial gains on most metrics
 1200 (*e.g.*, motion, dynamic, image quality, appearance, overall consistency). Some metrics drop slightly
 1201 compared to T2V-only training due to the absence of regularization from tasks that specifically benefit
 1202 them. For example, as shown in Table 6 of the main paper, metrics such as aesthetics and scene
 1203 benefit greatly from incorporating video-extension and first-last-clip-to-video tasks.
 1204

1205 However, it is difficult to accurately evaluate the effect of each individual task and all possible
 1206 combinations, given the enormous combinatorial space and the complex interactions among tasks.
 1207 Therefore, throughout this work, we focus on assessing the overall performance of the model under
 1208 mixed-task training—examining whether the model can simultaneously learn 10+ editing capabilities
 1209 while leveraging their interactions to improve video generation ability.
 1210

1211 A.14 QUANTITATIVE GAINS OF Q-K NORMALIZATION AND 3D RoPE

1212 To better clarify the contribution of Q-K Normalization and 3D Rotary Position Embedding (3D
 1213 RoPE), we performed an ablation study by finetuning a 2B-parameter checkpoint for an additional
 1214 10K training steps under three settings: (1) full model, (2) removing Q-K Norm, and (3) removing
 1215 3D RoPE. We report the results on the VBench-T2V benchmark in Table 13.
 1216

1217 Table 13: Quantitative gain of Q-K normalization and 3D Rotary Position Embedding.
 1218

Model	Motion	Dynamic	Aesth.	Img.	Object	Mul.Obj.	Spatial	Scene	Appear.	Temp.	Consist.
MfM-baseline	0.9922	0.8889	0.5911	0.5853	0.8861	0.5160	0.5851	0.4869	0.2289	0.2341	0.2483
MfM (w/o Q-K Norm)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MfM (w/o RoPE)	0.9659	0.8472	0.3149	0.3628	0.0973	0.0000	0.0089	0.0022	0.2200	0.0423	0.0584

1219 In our experiments, the model consistently collapses after 3K steps once Q-K Normalization is
 1220 removed. This collapse manifests as exploding attention activations and rapidly diverging losses,
 1221 preventing further training. This confirms that Q-K Norm is critical for stabilizing large-scale
 1222 DiT-based video generation models, especially under our multi-task many-for-many training regime
 1223 where diverse conditioning signals create additional gradient variance.
 1224

1225 Unlike Q-K Norm, removing 3D RoPE does not cause training divergence; however, it leads to
 1226 substantial degradation across all VBench metrics. The drop is particularly severe for spatial-semantic
 1227 metrics such as Object, Multiple Objects, Spatial, and Scene. Without 3D RoPE, the model frequently
 1228 fails to place objects in correct spatial locations or maintain consistent geometry throughout the video,
 1229 resulting in near-zero performance on these categories. This demonstrates that 3D RoPE is crucial
 1230 for modeling the joint spatial-temporal structure of video tokens.
 1231

1232 A.15 ABLATION STUDY ON MODEL ADAPTATION TO NEW TASKS.

1233 To evaluate the models adaptation capacity after multi-tasks training, we performed the following
 1234 experiment: starting from the original T2V model, we conducted 10K-step T2V-only training (Model
 1235 1) and multi-task training (Model 2, excluding VINP tasks). After training, we fine-tuned both
 1236 models on the new VINP task and compared their adaptation performance. The results, shown in the
 1237 Table 14, demonstrate that the multi-task model adapts more effectively to the new task, highlighting
 1238 the benefits of our unified multi-task pretraining approach.
 1239

1242

1243

1244

Table 14: Performance comparison on video inpainting task.

1245

1246

1247

1248

1249

1250

1251

1252

1253

A beautiful coastal beach in spring, waves lapping on sand, oil painting

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

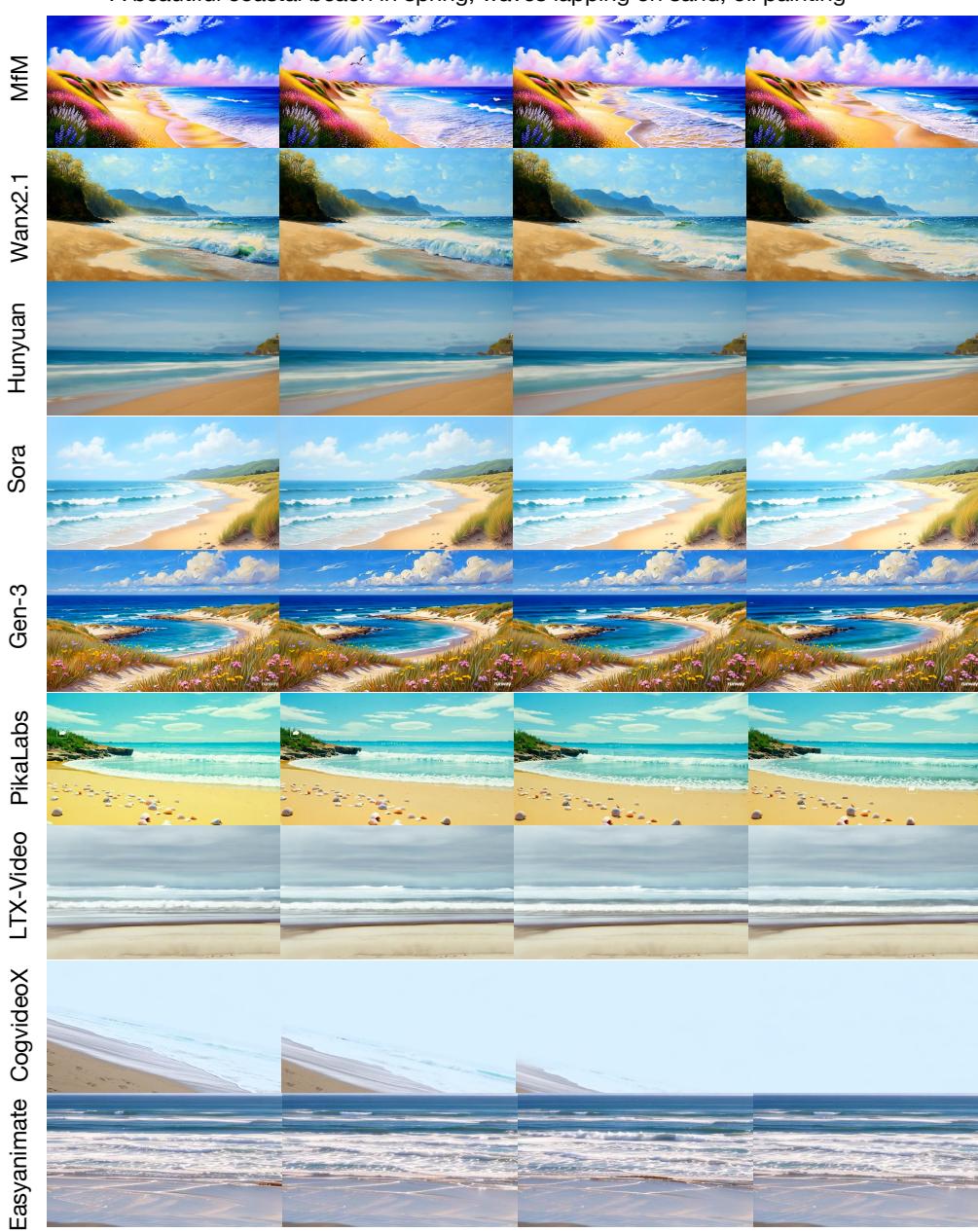


Figure 6: T2V generated videos with prompt "a beautiful coastal in spring, waves lapping on sand, oil painting".

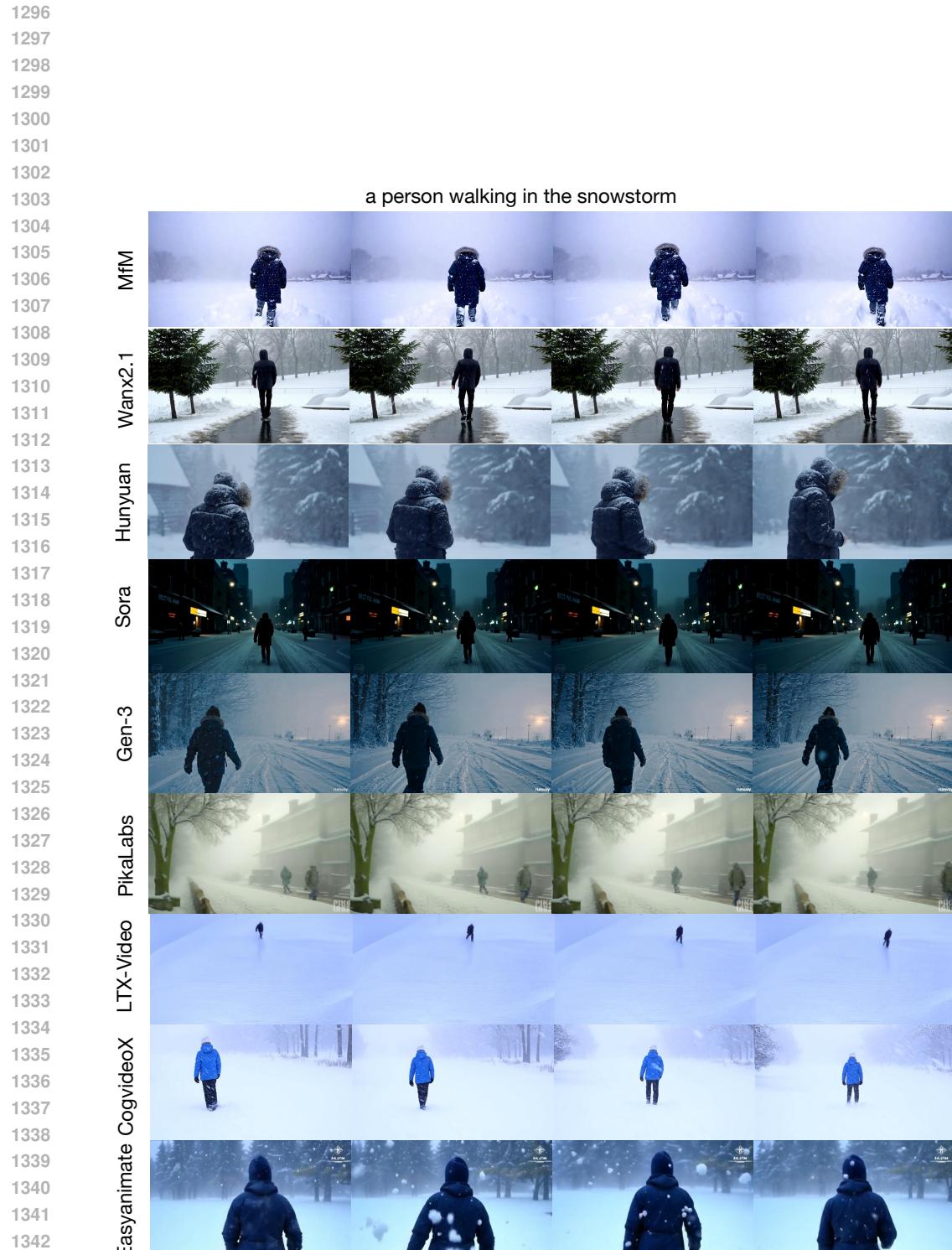


Figure 7: T2V generated videos with prompt "a person walking in the snowstorm".

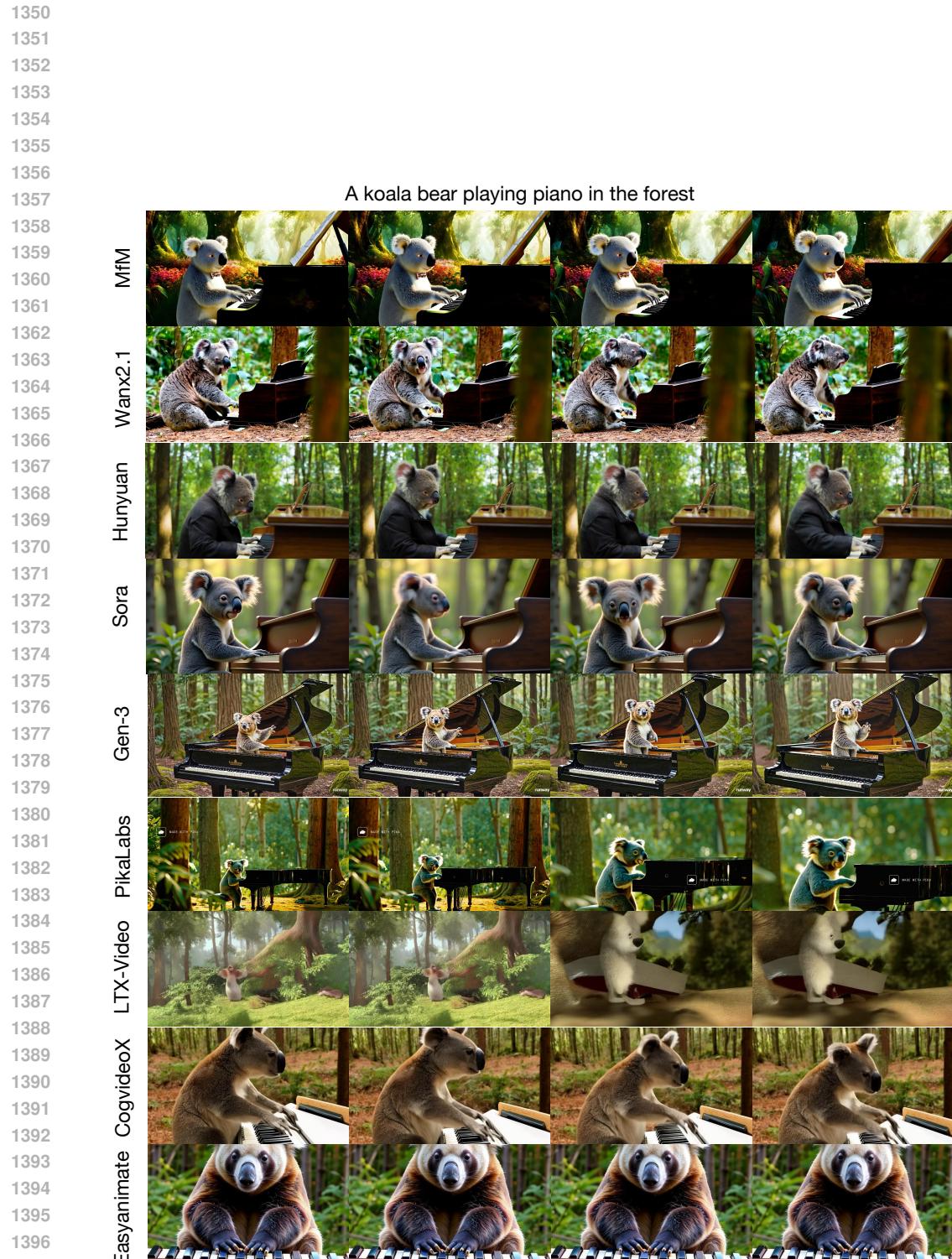


Figure 8: T2V generated videos with prompt "a koala bear playing piano in the forest".

Figure 10: I2V generated videos with prompt "a sea turtle swimming in the ocean under the water".

Figure 11: I2V generated videos with prompt "a dog carrying a soccer ball in its mouth".

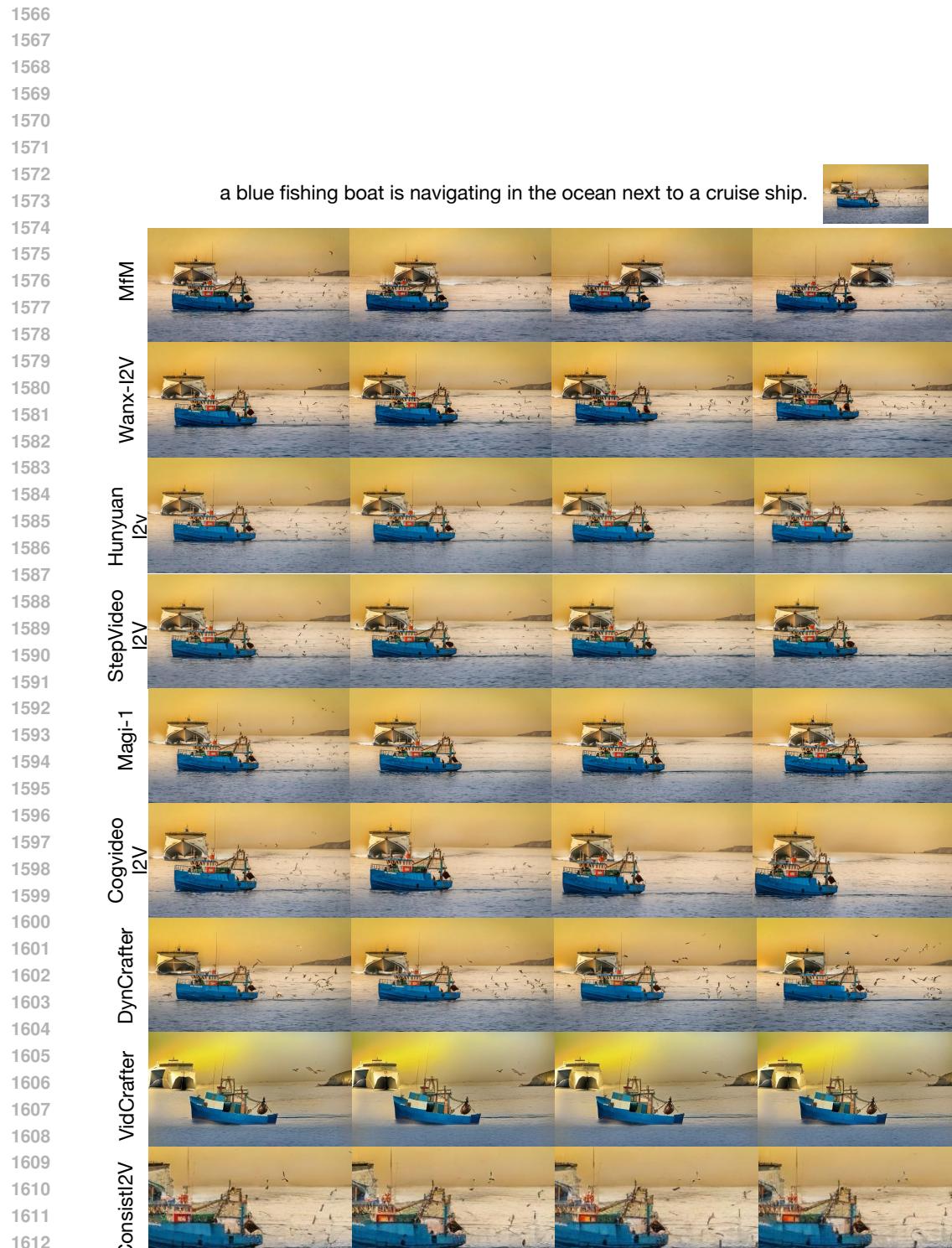


Figure 13: I2V generated videos with prompt "a couple of horses are running in the dirt".

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Figure 14: Visual comparison on task of video inpainting.

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Figure 16: Visual comparison on task of video colorization.

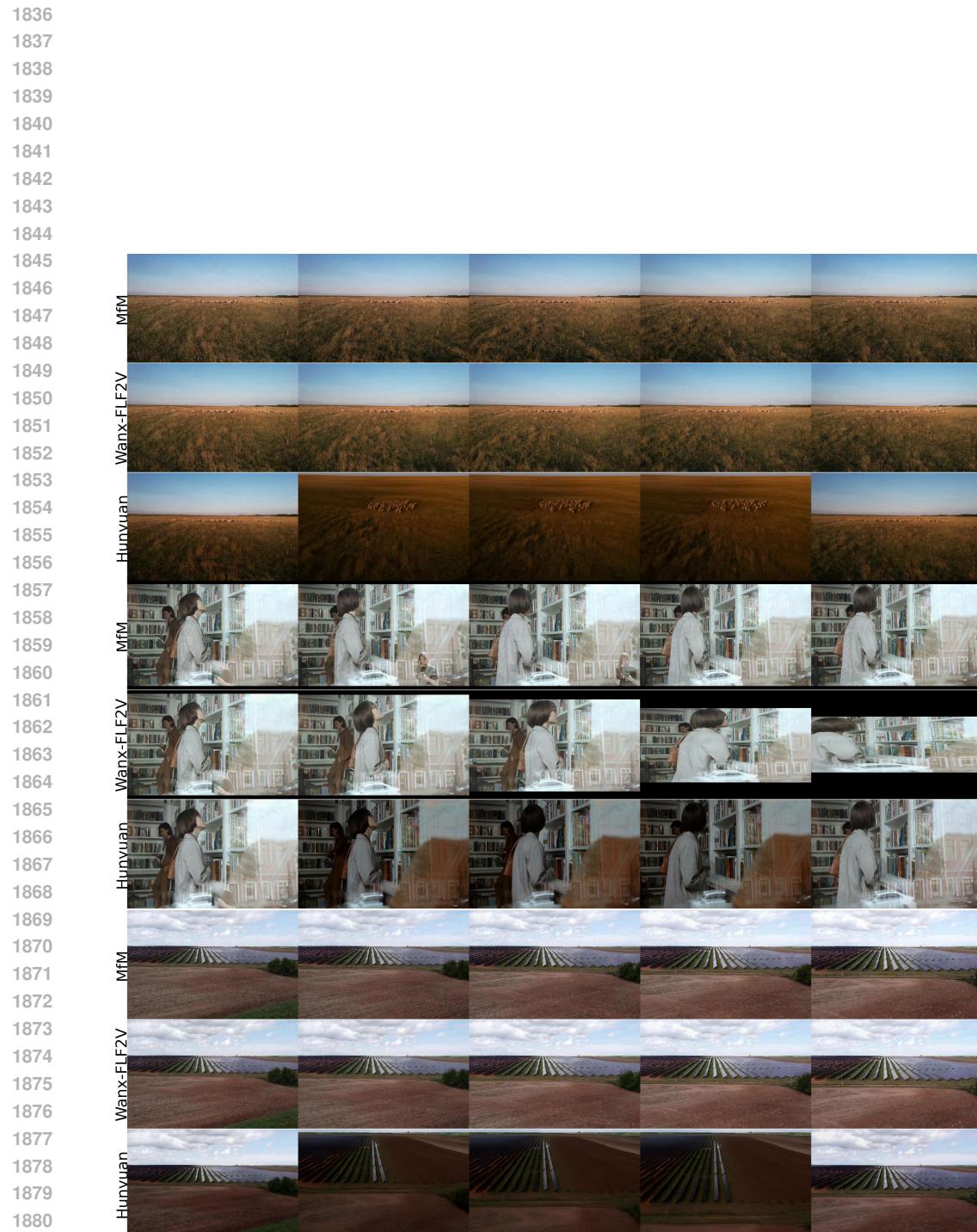


Figure 17: Visual comparison on task of first-last-frame to video.

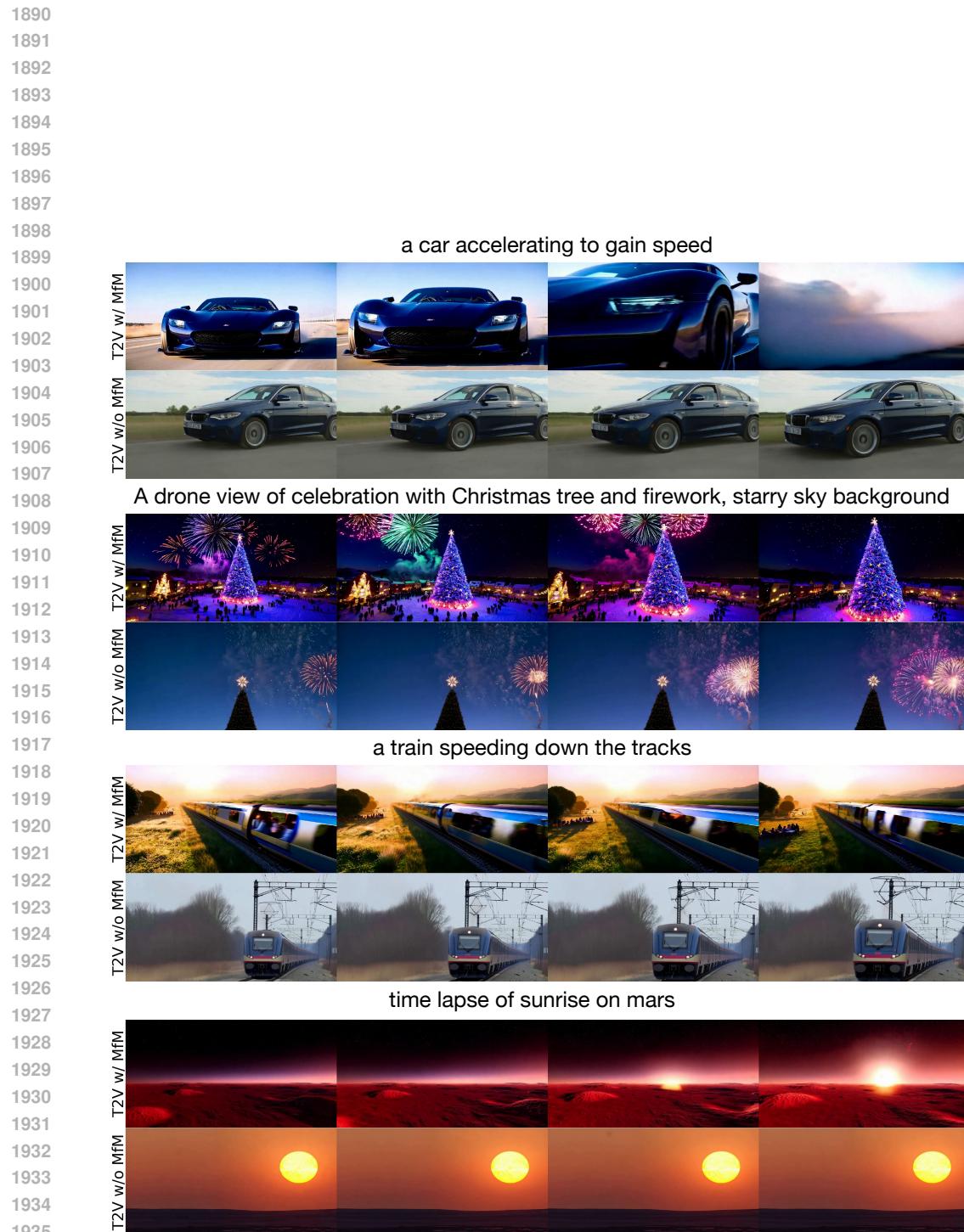


Figure 18: Ablation study on t2v task using MfM with/without multi-task training.

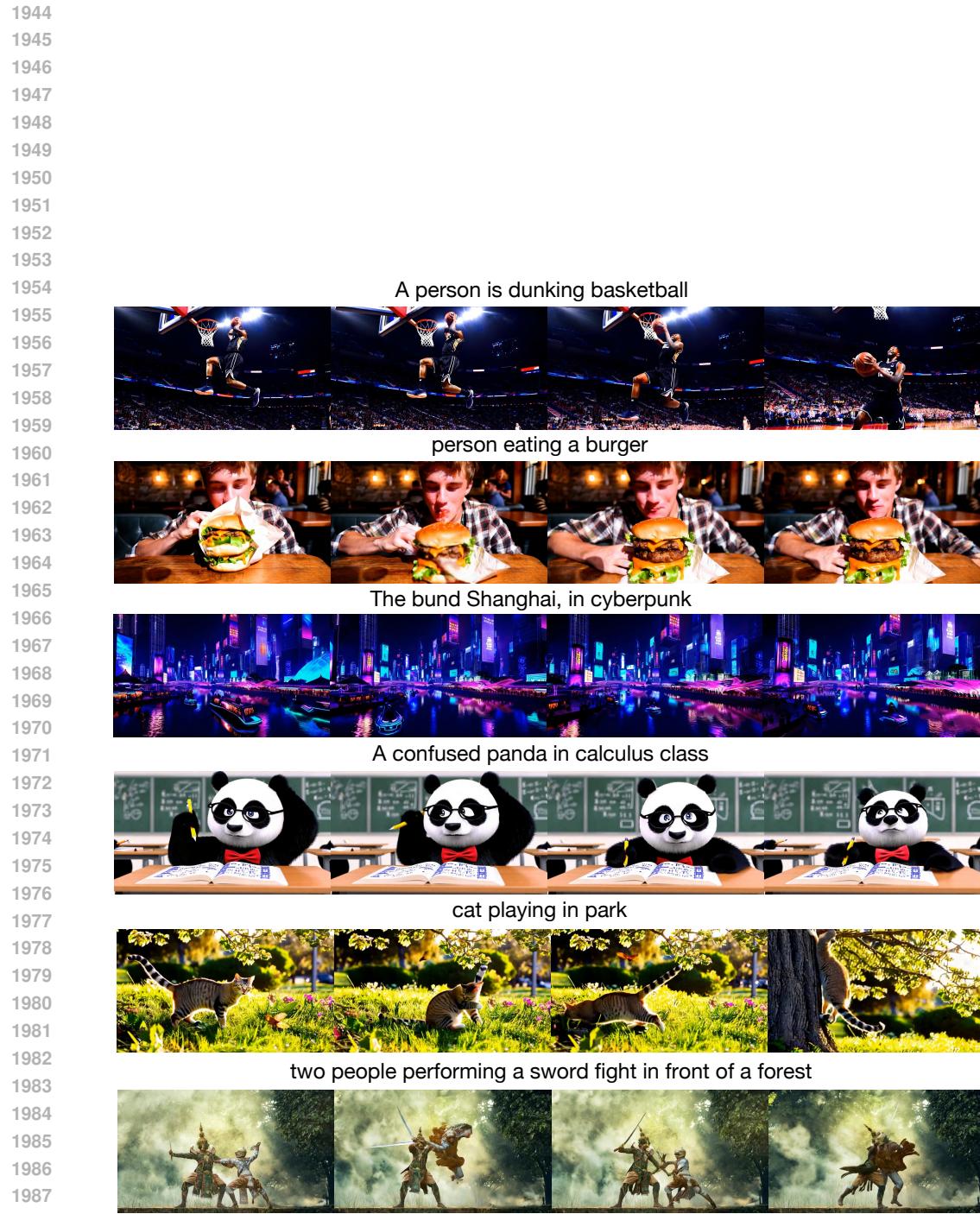


Figure 19: Failure cases of our MfM.