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ABSTRACT

Diffusion models have shown impressive performance in many visual generation
and manipulation tasks. Many existing methods focus on training a model for a
specific task, especially, text-to-video (T2V) generation, while many other works
focus on finetuning the pretrained T2V model for image-to-video (I2V), video-
to-video (V2V), image and video manipulation tasks, etc. However, training a
strong T2V foundation model requires a large amount of high-quality annotations,
which is very costly. In addition, many existing models can perform only one
or several tasks. In this work, we introduce a unified framework, namely many-
for-many, which leverages the available training data from many different visual
generation and manipulation tasks to train a single model for those different tasks.
Specifically, we design a lightweight adapter to unify the different conditions in
different tasks, then employ a joint image-video learning strategy to progressively
train the model from scratch. Our joint learning leads to a unified visual generation
and manipulation model with improved video generation performance. In addition,
we introduce depth maps as a condition to help our model better perceive the 3D
space in visual generation. Two versions of our model are trained with different
model sizes (8B and 2B), each of which can perform more than 10 different tasks.
In particular, our 8B model demonstrates highly competitive performance in video
generation tasks compared to open-source and even commercial engines. Our
models and source codes will be made publicly available.

1 INTRODUCTION

Visual data generation has a wide range of applications in industry and our daily lives, such as video
games (Valevski et al.| 2024)), advertising (Zhang et al.l 2024)), media content creation (Polyak et al.|
2025)), etc. Along with the great success of text-to-image (T2I) generation models (Ramesh et al.}
2021; Rombach et al.l 2021} [Podell et al.| 2023} |[Esser et al., 2024])), video generation techniques
(OpenAlL 2024; |Yang et al.| 2024c; [Polyak et al.| [2025; Ma et al.| 2025} [Kong et al., 2024} (Chen et al.
20255 [Team, |2025) have recently witnessed significant progress driven by the rapid development of
diffusion models (DMs) (Ho et al., 2020; Rombach et al.,|2021} |Peebles & Xie, |2022; |Lipman et al.,
2023). Current research is preliminarily focused on text-to-video (T2V) generation. Early attempts
(Guo et al., 2023} Blattmann et al., 2023bja)) are often built on pre-trained T2I models such as Stable
Diffusion (SD) (Rombach et al.,|2021)) by encoding motion dynamics into latent codes (Khachatryan
et al.| |2023) or inserting additional temporal layers (Guo et al., 2023} [Blattmann et al., |2023bga).
Despite significant advancements, these methods tend to produce unnatural motions and are limited
by the small number of generated frames.

Recently, diffusion transformers (DiT) (Peebles & Xie} 2022} [Esser et al.,|2024; [Yang et al., [2024c)
have been widely adopted in numerous image and video generation methods (Esser et al.,2024; [Labs|
2024; OpenAll 2024} [Team), 2025)) due to their excellent scalability. In particular, SORA (OpenAll,
2024) demonstrates remarkable performance in creating realistic videos, inspiring many subsequent
T2V works (Yang et al.,|2024c; |[Ma et al., 2025} Kong et al., [2024; [Team| 2025; RunwayML, [2023};
Kuaishou, 2024). For example, trained on web-scale datasets, the open-source models CogVideoX
(Yang et al.| |2024c), HunyuanVideo (Kong et al., 2024) and Wan2.1 (Team, [2025) have attracted
significant attention. The commercial models Runway (RunwayML| 2023)) and Kling (Kuaishou)
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Table 1: The size and supported tasks of the current main open-source video foundation models.

Training Data

Model Size Vi Supported Tasks Unified Training
ideo Image
CogVideoX (Yang et al.|[2024c) 28&5B unkown | unkown T2V, 2V X
MovieGen (Polyak et al.|[2025) 30B 100M 1B T2V, Peronalized T2V (PT2V) X
StepVideo (Ma et al.[|2025) 30B 2B 3.8B T2V, 12V X
HunyuanVideo (Kong et al.|2024] 13B O(100)M | O(1)B T2V, 12V X
Wan2.1 (Team/[2025) 1.3B&14B 1.5B 10B T2V, 12V X
T2V, 12V, video extension,

MM 2B&3B 120M | 160M | gy pyy, FLC2V, video manipulation, etc. v
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Figure 1: Examples of MfM on typical video generation and manipulation tasks. Generated frames
are highlighted within black boxes. Note that MfM uses a single model to perform these tasks.

have demonstrated impressive performance in practical use. Other video generation tasks, such
as image-to-video (I2V) and video-to-video (V2V), are commonly regarded as downstream problems
of T2V. By fine-tuning pre-trained T2V models with relatively small resources (Yang et al., 2024¢;
Kong et al, Team), [2025)), various models tailored to different tasks can be obtained, including

12V (Tian et al., 2025; [Team), [2025), video super-resolution (Xie et al.,[2025)), reference-to-video (Liu
let al., [2025} Jiang et al.,2025), etc.

In this work, we aim to economically train a model from scratch, which can, however, perform a
number of visual generation and manipulation tasks effectively, including T2V, 12V, V2V, efc. To this
end, we introduce a simple yet effective framework, called Many-for-Many (MfM in short), to unify
the training of different tasks. The key difference between the various visual generation/manipulation
tasks lies in their varying conditions. Therefore, we propose to standardize the conditions using a
lightweight adapter, thereby enabling multi-task joint training. Adhering to the foundation model’s
training recipe, we progressively update our MfM model from a low resolution to higher resolutions.
Specifically, we employ a joint image-video learning strategy, which equips our model with capabili-
ties for both image generation and manipulation. An advantage of our MfM training framework is
that the many data that cannot be used to train T2V models in previous methods now can be used to
train our unified model. Therefore, MfM learning not only leads to a unified model but also enhances
video generation performance.

Two versions (2B and 8B) of our MfM model are trained. As shown in Table [T} our model can
perform more than 10 different visual generation and manipulation tasks. Figure[I]illustrates some
examples of MfM tasks. Extensive experiments are performed to demonstrate the effectiveness and
flexibility of our MfM model. In particular, our 8B model achieves highly competitive performance
in the challenging T2V and I2V tasks by using only 10% of the training data used in state-of-the-art

open-source T2V foundation models (Yang et al., 2024¢; [Kong et all,[2024} [Team| 2025).

2 RELATED WORK

Diffusion Models for Visual Generation. Since the seminal work of denoising diffusion probabilistic
model (DDPM) (Ho et al.| |2020), remarkable progress has been achieved in training diffusion models

(DMs) for image/video generation (Rombach et al.| 2021}, [Esser et al.,[2024; Blattmann et al., 2023a}
OpenAll 2024} [Kong et al 2024)). In particular, Rombach er al. (Rombach et al.,[2021)) proposed to
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train DMs in latent space, achieving impressive image generation results with reduced computational
costs. The development of Stable Diffusion (SD) (Rombach et al., [2021) has sparked a surge of
research in text-to-image (T2I) generation (Podell et al.| [2023; |Zhang & Agrawalal |2023; |Ruiz et al.}
2023). SDXL (Podell et al.l [2023)) expands SD by using a larger model and more sophisticated
architecture design. With the advancement in Diffusion Transformer (DiT) (Peebles & Xie, [2022)
and Flow Matching (FM) (Lipman et al., [2023), Esser et al. (Esser et al.| [2024) proposed MMDiT to
train SD3 and Flux (Labs| [2024)), which show state-of-the-art T2I performance.

In terms of T2V generation, early efforts often fine-tune pre-trained T2I models to learn motion
dynamics (Guo et al.| [2023}; |Blattmann et al.| [2023a}; |(Chen et al.| 2024al), which are, however, limited
in motion naturalness and video frames. The success of SORA (OpenAll |2024) in generating realistic
long videos has inspired numerous commercial (OpenAl 2024; RunwayML, |2023; |Kuaishou, [2024)
and open-source (Yang et al.| 2024cj |Polyak et al.,|2025; Ma et al., 2025} |Kong et al., [2024; [Team),
2025) T2V models. CogVideoX (Yang et al., 2024c) adopts MMDIT to T2V and achieves impressive
results in modeling coherent long-duration videos with natural movements. Ma et al. (Ma et al.,|2025)
and Polyak ef al. (Polyak et al.| 2025) scaled the T2V model to 305 and demonstrated promising
improvements in simulating natural motions. Specifically, Ma et al. (Ma et al., 2025) employed
video-based direct preference optimization (Rafailov et al.,|2024), namely Video-DPO, to improve
the visual quality of generated videos. The recently released open-source models HunyuanVideo
(Kong et al., 2024) and Wan2.1 (Team, |2025) exhibit much improved video quality and prompt
controllability, significantly facilitating the research of video generation in the community.

Downstream Tasks of Visual Generation Models. With the advancement in pre-trained T2I and
T2V foundation models, researchers have developed various techniques to adapt them to various
content creation and manipulation tasks, such as controllable generation (Zhang & Agrawala, 2023}
Wau et al., [2023)), personalized generation (Ruiz et al.l[2023), editing (Brooks et al.| 2023; Liew et al.|
2023)), super-resolution (Yang et al., 2023)), among others. Zhang et al. (Zhang & Agrawala,|[2023)
introduced ControlNet to facilitate various conditional inputs, which, however, requires multiple
control modules for different conditions. UniControl (Qin et al.,[2023)) and UNIC-Adapter (Duan
et al., 2024) enable unified conditional image generation using a single model. InstructPix2Pix
(Brooks et al., 2023) and MagicBrush (Zhang et al., 2023a)) offer general-purpose image editing
solutions. However, for video tasks, most approaches (Wu et al., 2023 Liew et al.|[2023) still follow
a single-model single-task framework due to the complexities of video generation. Very recently,
Jiang et al. (Jiang et al.| 2025) proposed a so-called all-in-one model for multiple visual creation
and editing tasks based on pre-trained T2V models (Kong et al., 2024} Team, 2025). Although
achieving impressive results, this model is built on pre-train T2V models and treats the other tasks
as downstream applications. In contrast, in this work, we train a single model from scratch, which
can, however, perform multiple visual generation and manipulation tasks, by effectively utilizing the
available training data from different tasks.

3 MANY-FOR-MANY UNIFIED TRAINING

Our Many-for-Many (MfM) unified training framework is illustrated in Figure|2| It is basically a
DiT (Peebles & Xiel [2022) with 3D full attention, trained by the Flow Matching technique (Lipman
et al.,|2023)). Videos and text prompts are encoded using a video VAE (Yang et al.,|2024c) and an
LLM text encoder (Raffel et al.,|2020), respectively. To mitigate the reliance on costly annotation of
T2V training data and make the best use of existing training data from various visual generation and
manipulation tasks, we introduce an effective and lightweight adapter to unify the various conditions
across different tasks. A progressive and joint training strategy is then developed to train a unified
model for multiple visual generation and manipulation tasks. To accommodate varying computational
demands and performance requirements, we design two versions of our model with different sizes
(8B and 2B), whose hyper-parameters are summarized in Table [7|of the Appendix. The inference
latency of different variants on different resolution are summarized in Table [|of the Appendix.

3.1 ADAPTER FOR DIFFERENT INPUTS

We categorize the inputs of different image and video tasks (OpenAll [2024; |[Hu et al., 2023} ‘Wu
et al.| 2023} Jiang et al.,|2025) based on their dimensions: OD conditions (e.g., timestep and motion
score), 1D conditions (e.g., text), 2D conditions (e.g., image and mask) and 3D conditions (e.g., video
and video depths). 0D and 1D conditions are commonly used in DiT, which are embedded using
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Figure 2: Architecture of the proposed Many-for-Many (MfM) unified training framework.
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Figure 3: Example conditional inputs for some visual generation and manipulation tasks. In each task
block, from left to right, the conditions are respectively task-oriented pixel data, depth maps, and
mask inputs. The mask is composed of binary black and white pixels, with white pixels indicating
the regions that are conditioned on pixel data, and black pixels indicating the regions to be generated.

AdaLN and a text encoder, respectively. 2D conditions can be padded to 3D and thus merged into 3D
conditions. The 3D conditions include both pixel data (e.g., image and video) and masks, which vary
across generation and manipulation (including enhancement) tasks:

* Generation Tasks: These tasks require at least one frame to be generated without any frame-wise
condition. Examples include T2I (text-to-image), T2V (text-to-video), I2V (image-to-video), video
extension, FLF2V (first-last-frame-to-video) and FLC2V (first-last-clip-to-video).

* Manipulation Tasks: These tasks require frame-wise conditions. Examples include image/video
inpainting/outpainting, image/video colorization, image/video style transfer, single image super-
resolution (SISR), video super-resolution (VSR), efc.

As illustrated in the upper-left corner of Figure [2] fortunately, we can represent the various inputs
in a unified manner, concatenating the pixel, depth map and mask conditions. The depth maps are
introduced as a condition to enhance our model’s understanding of 3D space. Note that we append the
task name (e.g., “text-to-video”, “image-to-video”, etc.) to the text prompts to clarify tasks because
some of them share a common video mask input, such as VSR and video colorization. Figure |3|
illustrates some example inputs for different generation and manipulation tasks. For instance, for
the T2V task, the pixel data, depth map, and mask inputs are all set to 0 so that the task is driven by

merely the text prompt. For the task of 12V, only the conditions of the first frame are provided.

Existing visual generation methods typically process the pixel and mask conditions separately —
pixel conditions are processed by video VAE, while mask conditions are directly reshaped and
interpolated (Jiang et al., [2025; Team), 2025). While achieving impressive results, these methods are
complex and cannot be easily extended to other types of conditions such as depth maps. Our proposed
adapter unifies all 3D inputs, regardless of their content (e.g., pixel, mask, depth). The adapter
comprises several convolution layers and downsampling blocks to adjust the temporal and spatial
resolutions. Given a 3D condition input in pixel space Y € RT*HXWXC where {T H,W,C}
represents the frame number, height, width, and channel number, the adapter converts it into a feature
map y € RPX"*wx¢ which shares the same spatial and temporal resolution as the latent space of the
video VAE and is added to it. Given the video VAE’s 8 x 8 spatial and 4x temporal compression
ratios (Yang et al.,|2024c), we have t = T'/4,h = H/8,w = W/8. The proposed architecture can be
easily adjusted according to the compression ratios of alternative video VAEs.
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3.2 TRANSFORMER WITH 3D FULL ATTENTION

3D Full Attention. Early video generation models (Blattmann et al.,[2023a; Guo et al.,|[2023)) are
typically built on pre-trained T2I models, which use separate spatial and temporal attention to reduce
computational complexity. However, such methods are suboptimal for modeling natural motions
(Yang et al.,|2024c). In recent works (OpenAl, 2024; Yang et al., 2024c} [Ma et al., [2025; Kong et al.,
2024), 3D full attention has become widely adopted and shown superiority in generating videos
with smooth and consistent motions. In this work, we incorporate the transformer block in GoKu
(Chen et al., 2025)), which consists of a self-attention module to capture relationships within input
sequences, a cross-attention layer to include text embeddings, and an adaptive layer normalization
(AdaLLN) operation to embed timestep and motion score information.

3D RoPE. Rotary Position Embedding (RoPE) (Su et al.,2021) encodes positional information and
enables the model to understand both the absolute position of tokens and their relative distances,
demonstrating powerful ability in capturing inter-token relationships, particularly for long sequences
in LLMs. We extend it to 3D RoPE by applying 1D RoPE to each temporal (¢) and spatial (h, w)
dimension, then concatenating the encodings. Specifically, for 3D video data (¢, h, w), each dimension
occupies 2/8, 3/8, and 3/8 of the hidden state channels, respectively. We apply 3D RoPE for both
image and video tokens. Due to the exceptional extrapolation capabilities of RoPE, the proposed 3D
ROPE can effectively handle videos with varying resolutions and lengths.

Q-K Normalization. Previous methods (Esser et al., 2024} Dehghani et al., 2023a) have shown that
the training of large transformer models can encounter numerical instability due to the uncontrollable
growth in attention entropy. To address this issue, following (Esser et al 2024} [Dehghani et al.|
2023al), we adopt RMSNorm (Zhang & Sennrich, 2019) and implement Query-Key Normalization
(QK-Norm) to stabilize the training process.

3.3 TRAINING DETAILS

Flow Matching. During model training, we employ Rectified Flow (RF) to optimize the network
due to its superior performance (Lipman et al.,[2023} [Esser et al.,2024; |Chen et al.,[2025). In each
training step, a video input X, Gaussian noise ¢ ~ N (0, 1), and a timestep ¢ € [0, 1] are randomly
sampled. The model input X, is calculated as a linear interpolation between € and Xj:

Xt = (]. - t)X() + te. (1)

The model is trained to approximate the ground-truth velocity V; = % = € — Xy, which represents

the change rate of X; with respect to timestep ¢, capturing the change direction and magnitude from e
to X(. Given conditions of motion score ms, text prompt ¢, and 3D conditional input Y, we train our
model pg to predict the velocity V;. The optimization objective L is defined as:

L= Et,Xo,ewN(O,l),ms,c,Y|N9 (tv Xta ms,c, Y) - V;f|2 2)
Following SD3 (Esser et al., 2024), we use Logit-Normal Sampling in training.

Multi-Task Joint Learning. While our model is primarily designed for video generation, we leverage
a large volume of image data in training. Following existing T2V foundation models (OpenAl, 2024
Kong et al.| 2024; |Chen et al., 2025), we progressively adjust the image-to-video ratio throughout
training. Initially, we train with pure text-image pairs to establish a connection between textual
prompts and high-level visual semantics. As training progresses, we inject video data, gradually
decreasing the image-to-video ratio to 0.1. This image-video joint learning strategy expands our
training data and enables our model to tackle various image tasks, including T2I and SISR.

Unlike standard T2V foundation models, our training data include a substantial portion of low-
resolution, watermarked, text-dominated, and concisely captioned data. To effectively utilize the
available training data, we implement multi-task learning, thanks to our proposed conditional adapter.
At each training step, we randomly sample a video input, assign a set of qualified tasks that fits it,
and select one task to construct the conditional input for training. For each qualified task set, the
selection probability of tasks like T2I, T2V, and 12V is tripled compared to other tasks, ensuring that
the learning process pay more attention to more challenging problems.

Resolution Progressive Training. Our training pipeline is structured into multiple stages with
progressively increased spatial and temporal resolutions. Initially, we train our model on low-
resolution data (e.g., 49 x 128 x 224) at a low computational cost. We then increase the resolution
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Table 2: Resolution progressive training recipe for 8B MfM.

Training Stage Dataset SP | bs/GPU | Learning rate | #iters | #seen samples
128px 1o images || g6 lo-4 170k 700M
360px 1162%“1\//'1 el 2 8e-5 100k 100M
720px 116811\\44 e 1 5e-5 50k 12M

Multi-res | |00 IMAZES | 1 5e-5 40k M

to 89 x 352 x 640 to enhance the model’s fine-grained understanding of text-motion relationships.
Subsequently, the training resolution is increased to 97 x 720 x 1280 to capture intricate details.
Finally, we conclude the training pipeline with a multi-resolution stage using NaViT (Dehghani et al.|
2023b)). In this stage, the model is fed high-quality videos with their native aspect ratios, dynamically
adjusting the durations to limit the total sequence length. This multi-resolution fine-tuning stage
enables our model to generate videos at arbitrary resolutions. During training, we randomly replace
10% (30%) of text prompts with null-text prompts for T2V/I. For tasks other than T2V/I, we randomly
zero the 3D conditional inputs with a chance of 10%. The detailed training recipe for our 8B model
is summarized in Table We adopt Fully Sharded Data Parallelism (FSDP) (Zhao et al., [2023) and
Sequence-Parallelism (SP) (Li et al.l 2022)) to achieve efficient and scalable training of MfM.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Training Data Preparation. Our training data are collected from a variety of sources, including
publicly available academic datasets, Internet resources, and proprietary datasets. We adopt a data
curation pipeline similar to GoKu (Chen et al.| [2025) to filter the collected data, obtaining 160M HQ
text-image pairs and 40M HQ text-video pairs. We also retrieve 80M relatively LQ text-video pairs
for training. We utilize RAFT (Teed & Deng|, 2020) to obtain motion scores by computing the mean
optical flow of video clips, which are integrated into our MfM model training via AdaLLN.

Note that we use significantly fewer text-video pairs than the main T2V models (Polyak et al., 2025}
Ma et al.l 2025 [Kong et al.l 2024; Team| 2025) to train our MfM model. However, our MfM
framework leverages a multi-task data augmentation strategy to expand the effective training data
distribution (please refer to Appendix for details), with which we significantly expand the model’s
exposure to diverse conditioning scenarios without requiring additional data collection. For all tasks,
we employ a lightweight depth model (Yang et al., 2024a)) to predict the depth maps of the inputs on
the fly. We concatenate these depth maps into the 3D conditional inputs as depicted in Figure 3]

Evaluation. We utilize the widely used VBench (Huang et al.,2024) to evaluate MfM’s performance
on T2V and 12V tasks. While a benchmark is proposed in VACE (Jiang et al., [2025) to evaluate a
model’s multi-task capacity, only one video is open-sourced for each task, and many tasks supported
by MfM are not involved in VACE. Therefore, we build an MfM-benchmark, which comprises 480
samples (30 per task) distributed across 16 distinct generation/manipulation tasks (please refer to
Appendix for details). For all experiments, we maintain the same MfM inference parameters: 30
diffusion steps with a classifier-free guidance scale of 9.0.

Regarding evaluation metrics, on VBench we adopt a comprehensive set of perceptual metrics:
aesthetic quality, imaging quality, motion smoothness, dynamic degree, object class accuracy, multiple
object handling, spatial relationship preservation, scene consistency, appearance style, temporal style,
and overall consistency (higher scores indicate better performance across all metrics). Meanwhile,
we rank the competitors for each metric and calculate the average rank over all metrics for each
method. For some tasks on MfM-benchmark, we also use reference-based metrics, including FID,
PSNR, SSIM, and LPIPS, to quantify the fidelity of generated content.

4.2 EXPERIMENTAL RESULTS ON T2V AND I2V

Since most of the existing methods use two separate models for T2V and I2V tasks, we present
the quantitative comparison in two tables. The results of T2V are shown in Table [3] We can see
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Table 3: Quantitative comparison of T2V generation performance on the VBench-T2V benchmark.
Comparison baselines are selected from VBench leaderboard. For each dimension, the best result
is in bold, the second best result is underscored and the third best result is italic. (Aesth: Aesthetic
Quality; Img: Imaging Quality; Mul.Obj: Multiple Objects; Temp: Temporal Style; Consist: Overall
Consistency; Avg: Average Ranking.)

Model \Motion Dynamic Aesth. Img. Object Mul.Obj. Spatial Scene Appear. Temp. Consist.\Avg.
MM 0.983 0.819 0.645 0.662 0.927 0.782 0.802 0.546 0.251 0.247 0.277 |2.86
Wan2.1 ((Team/[2025)) 0969 0943 0.615 0.672 0942 0.814 0.810 0.536 0.211 0.256 0.274 |3.77
Hunyuan ((Kong et al.|2024)) 0.989 0708 0.603 0.675 0.861 0.685 0.686 0.538 0.198 0.238 0.264 |5.73
Sora ((OpenAl!|2024})) 0987  0.799 0.634 0.682 0.939 0.708 0.742 0.569 0.247 0250 0.262 |3.27
Gen-3 ((RunwayML{|2023)) 0.992  0.601 0.633 0.668 0.878 0.536  0.650 0.545 0243 0.247 0.266 |4.77
PikaLabs ((Labs|[2023)) 0.995 0475 0.620 0.618 0.887 0.430 0.610 0.498 0.222 0.242 0.259 |6.95

LTX-Video ((HaCohen et al.|2024)) | 0.989  0.543  0.598 0.602 0.834 0.454 0.654 0.510 0.214 0226 0.251 |7.82
CogVideoX1.5 ((Yang et al.[[2024c))| 0.981  0.561 0.620 0.653 0.834 0.672  0.794 0.532 0.246 0.254 0.274 |5.23
EasyAnimate ((Xu et al.[[2024)) 0980 0571 0.694 0.585 0.895 0.668 0.761 0.543 0.230 0.246 0.264 |4.59

Table 4: Quantitative comparison of I2V generation performance on the VBench-I2V benchmark.
Comparison baselines are selected from VBench leaderboard. For each dimension, the best result
is in bold and the second best result is underscored. (IS. Consist: Image Subject Consistency; IB.
Consist: Image Background Consistency.)

Model | IS. Consist. IB. Consist. Motion Dynamic Aesth. Img. | Avg.
MfM 0.982 0.991 0.987 0.613 0.608 0.718 | 3.33
Wanx-12V (Team/[2025) 0.973 0.981 0.978 0.678 0.615 0.708 | 5.50
Hunyuan-12V (Kong et al.|[2024) 0.988 0.992 0.994 0.239 0.617 0.700 | 3.67
Magi-1 (Sand-AI{[2025) 0.983 0.990 0.986 0.682 0.647 0.697 | 3.50
Step-Video (Ma et al.[[2025) 0.978 0.986 0.992 0.487 0.622 0.704 | 3.83
DynamicCrafter (Xing et al.|2023) 0.981 0.986 0.973 0.474 0.664 0.693 | 5.33
VideoCrafter-I2V (Chen et al.![2024a) 0911 0913 0.980 0.226 0.607 0.716 | 7.83
12VGen-XL (Zhang et al.|[2023b) 0.975 0.976 0.983 0.249 0.653 0.698 | 5.83
CogvideoX-I12V (Yang et al.|[2024c) 0.971 0.967 0.984 0.331 0.618 0.700 | 6.17
Consistl2V (Ren et al.|[2024) 0.958 0.959 0.973 0.186 0.590 0.669 | 9.50

that MfM achieves the best average rank (2.86) among all models evaluated. In particular, MfM
exhibits well-balanced performance across multiple dimensions, ranking the best in appearance and
overall consistency, and the second in dynamic degree, aesthetic quality, multiple object generation,
and spatial relation generation, which are essential for producing visually coherent videos aligned
with textual descriptions. In comparison, the larger models such as Wan2.1 (14B), Hunyuan (13B)
and the commercial models such as Sora can achieve impressive scores in specific dimensions, but
their overall performance is compromised by notable weaknesses in other dimensions. For instance,
Wan2.1 ranks last in motion smoothness, while Hunyuan shows deficiencies in appearance style,
resulting in jerky movements, visual distortions, or monotonous video style in some scenarios. The
visual comparison can be found in Figure[d] where Wan2.1 generates a bicycle without a rider and
fails to depict the slowing motion instruction given in the prompt. Similarly, Sora and Hunyuan fail to
accurately represent the slowing motion. Hunyuan also exhibits distortion in the bicycle’s handlebars
as the sequence progresses. Our MfM successfully generates a motion-consistent video with the
bicycle correctly slowing down, demonstrating superior temporal coherency.

The results of 12V are shown in Table |4, We see that MfM also achieves the best average rank
(3.33). In particular, it excels in imaging quality and achieves very balanced performance across static
consistency and dynamic generation. In comparison, although Hunyuan-I2V achieves the highest
scores in consistency and motion smoothness, its performance in dynamic degree and aesthetic
qualities is substantially lower, resulting in an average rank of only 3.67, lower than MfM and Magi-1.
Visual comparisons of I2V generation are provided in the Appendix.

Finally, it is worth mentioning that our MfM achieves competitive results in both T2V and 12V
generation tasks using a single unified model, while previous approaches such as Wan and Hunyuan
rely on separate specialized models for each generation paradigm. The unified nature of MfM reduces
overall model parameters and ensures consistent visual quality between text and image conditioning.

4.3 PERFORMANCE ON MULTIPLE VIDEO MANIPULATION TASKS

Beyond T2V and I2V generation, our MfM supports 16 distinct tasks through a unified model. Given
that our primary focus is on video generation and manipulation, while the image tasks and data are
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Sora Wan2.1
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Figure 4: Qualitative comparison of T2V generation results on the prompt “a bicycle slowing down
to stop.” More visual comparisons are provided in the Appendix.

Table 5: Performance comparison on multiple video manipulation tasks.

Task Method \ Reference-based Metrics \ No-reference Perceptual Metrics
\ FID| PSNRT SSIM?1 LPIPSHAesth. Img. Motion Consist. Temp.
MM 51.03 21.31 0.830 0.112 | 0.560 0.767 0.994  0.220 0.985

VINP  VACE ({Jiang et al.| 2025)) 6751 1741 0534 0256 | 0569 0757 0990 0224 0983

ProPainter ((Zhou et al]2023)) | 119.93 2040 0.880  0.118 | 0.417 0739 0992 0206 0.985
4415 1821 033  0.168 | 0539 0745 0992 0216 0974
5434 1616 0500 0310 | 0.567 0736 0987 0211 0971

94.69 1449 0416 0414 | 0.550 0.736 0988 0211 0971
174.61 1796 0571 0475 | 0.484 0.671 0982  0.214 0.972

3198 1995 0.583 0.203 | 0.525 0.730 0.981 0225  0.966

FLF2V  Wanx ((Team][2025)) 3824 1828 0512 0244 | 0520 0.742 0990 0229 0.978
Hunyuan ((Kong etal [2024) | 118.18 10.17 0.372 0419 | 0476 0598 0992 0225 0.985

VOUTP

MIM 76.54 1793 0.810 0.176 | 0.582 0.756 0.993  0.230  0.985
VCOLOR  colormnet ((Yang et al.|[2024b)) | 77.08  17.47  0.812  0.160 | 0.594 0.758 0.990  0.230  0.980
TCVC ((Zhang et al.|[2023c} 82.42 20.69 0.699 0201 | 0553 0.720 0.991 0.228  0.984

used to aid video task training, we perform evaluation on a subset of video tasks with established
baselines for comparison. Specifically, we select four representative tasks, including video inpainting,
video outpainting, video transition and video colorization, for experiment since they have competitive
baseline models and standardized evaluation protocols. Table 5] presents quantitative comparisons on
our established MfM-Benchmark. Visual comparisons can be found in the Appendix.

Our experimental results demonstrate MfM’s excellent versatility and effectiveness as a unified video
foundation model across diverse manipulation tasks. First, MfM shows consistent advantages in
reference-based metrics. In particular, it achieves FID improvements ranging from 16.4% to 72.9%
over the specialized models of these tasks. In addition to reference-based metrics, MfM exhibits
impressive temporal coherence, which demonstrates MfM’s strong ability to seamlessly transition
between different operations: inferring complex motion change from two frames, preserving spatial
coherence during region manipulation, and maintaining consistent appearance while modifying visual
attributes. Meanwhile, with MfM the knowledge learned from one task can benefit another task. For
example, the capability developed for handling boundaries in outpainting can enhance performance
in inpainting; similarly, the motion-inference ability required for video translation contributes to the
temporal coherence observed in colorization tasks. In summary, MfM can effectively capture the
principles underlying diverse video manipulation tasks and achieve competitive performance without
requiring separate architectures for each manipulation paradigm.

4.4 THE BENEFIT OF MULTI-TASK TRAINING TO VIDEO GENERATION

We conduct a series of ablation studies to validate that our multi-task training strategy benefits
video generation, and to examine the influence of different auxiliary tasks and our design choices.
Specifically, initialized from a T2V baseline model, we train models under several settings with the
same number of training iterations, including: (i) training with the pure T2V paradigm, (ii) T2V
augmented with a single auxiliary task, (iii) our final MfM, and (iv) MfM without depth conditioning.
The results on the VBench-T2V benchmark are reported in Table[6]
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Table 6: Ablation study on multi-task training versus single-task training on VBench-T2V. The best
result is in bold, the second best result is underscored. Meanwhile, box means better than T2V
training paradigm while blue box means worse than T2V training paradigm.

Paradigm | Motion Dynamic Aesth. Img. Object Mul.Obj. Spatial Scene Appear. Temp. Consist.
T2V | 0.987 0.806  0.617 0.599 0.926  0.705 0.638 0.502 0.232 0.249 0.263
T2V+I2V 0.988 0.778  0.612 0.601 0.918  0.665 0.611 0.533 0.236 [ 0.248 0.261
T2V+VCOLOR | 0.987 0.764  0.621 0.609 0.948  0.723 0.593 0.543 0.233 0.251 0.265
T2V+VSR 0.989 0.792  0.621 | 0.597 0.930 | 0.664 0.608 0.555| 0.230 0.252 | 0.261
T2V+VINP 0.990 0.778  0.623 0.610 0.945 0.767 0.652 0.537  0.229 0.247 0.265

T2V+VOUT 0.988 0.722 | 0.625 0.614 0.948 0.753 0.612 0.520 | 0.229 0.250 © 0.261
T2V+FLF2V 0.985 0.847  0.620 0.613 0.960 | 0.658 0.619 0.531 0.233  0.252 | 0.262
T2V+FLC2V 0.984 0.875 | 0.615 0.598 0.919 0.695 0.663 0.568 | 0.231 0.250 | 0.262
T2V+VEXT 0.988 0.722° " 0.626 0.615 0.941 0.761 0.621 0.563 0.235 0.251 | 0.263

MfM w/o Depth | 0.988 0.819  0.623 [ 0.584 0.908 0.659 0.675 10472 0.232° 0.248 0.264
MM w/ Depth | 0.988 0903  0.625 0.608 0.953 0.723 0.677 0.536 0.237 0.253  0.266

First, we see that all variants outperform the baseline on Scene metrics, validating the value of
adding auxiliary tasks on scene detail generation. Beyond this, different tasks can yield distinct gains.
For example, VINP and VOUT boost semantic metrics (e.g., Object, Multi-Object). In contrast,
VEXT improves perceptual quality (Aesthetic, Imaging Quality). Interestingly, most variants degrade
Dynamics, whereas FLF2V and FLC2V improve it. This is because both of them require interpolating
realistic motion between states, providing temporally grounded, geometrically constrained signals to
supervise the model to learn motion realism, temporal consistency, and dynamic integrity, resulting
in smoother, more structured temporal dynamics.

Second, MfM consistently outperforms the pure T2V baseline across all metrics. This is because
compared with T2V that relies solely on high-level text signal, MfM leverages complementary low-
and mid-level signals (e.g., color stability, spatial completion, motion plausibility). This multi-
task synergy improves not only semantic alignment, but also detail coherence and visual realism.
Moreover, MfM adaptively balances task-specific inductive biases, avoiding overfit to any single
objective. We attribute this to multi-task regularization: diverse supervisory signals encourage the
model to learn richer, more generalizable video representations. Notably, FLF2V and FLC2V serve
as temporal regularizers, counteracting dynamics degradation seen with other auxiliary tasks alone.
Visual illustrations are presented in the Appendix.

Finally, removing depth conditions consistently degrades performance across all metrics, including
Dynamics (—10%), Imaging Quality (—4%), and Scene Consistency (—12%). This demonstrates
that geometric cues from the 3D depth map serve as a powerful complement to multi-task learning,
significantly enhancing motion dynamics, perceptual quality, and scene-level coherence.

5 CONCLUSION

In this work, we introduced MfM (Many-for-Many), a unified video foundation model capable
of handling diverse visual generation and manipulation tasks through a single parameter-efficient
architecture. Specifically, we designed a lightweight adapter to effectively unify various 2D and
3D conditions into a uniform representational space, enabling seamless integration into our video
generation pipeline. By employing progressive joint image-video learning and multi-task training
strategies, we not only enabled multiple visual generation and manipulation capabilities within a
single model but also transferred the knowledge from other image tasks to video generation. This
knowledge sharing significantly reduced the required amount of costly text-to-video training data
and enhanced the fundamental video generation capabilities. As validated in our experiments, MfM
achieved competitive or superior performance compared to specialized models and even commercial
systems while using much fewer training data and model parameters.

Limitations. Despite the demonstrated effectiveness, we acknowledge certain limitations of our
proposed MfM. Currently, MfM processes 1D conditions (text) and 2D/3D conditions (masks, pixels,
depth) separately before implicitly fusing them through self-attention in DiT blocks. In future work,
we will explore the use of vision-language models rather than text-only encoders to perform explicit
multimodal fusion earlier in the pipeline, which could enhance performance on tasks requiring
comprehensive understanding of complex input conditions.
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6 ETHICS STATEMENT

This work does not involve any human subjects or sensitive personal data. The usage of all datasets
strictly complies with their respective licenses.

Our methods are intended solely for academic and scientific purposes. We do not foresee direct
harmful applications, but acknowledge that misuse could occur if applied without proper safeguards.
We encourage responsible use of the research outcomes, with attention to fairness, transparency, and
legal compliance.

7 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All details of the proposed
model, preprocessing steps of datasets and algorithms with full hyperparameter settings and training
procedures provided are described in the main text.
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A APPENDIX

In this appendix, we provide visual demonstrations and the following supporting materials to the

main paper:

* Declaration of LLM Assistance;

* The hyper-parameters and inference latency of 2B&8B MfM (referring to Sec. 3 in the main
paper);

* The details of our data augmentation strategy and MfM-Benchmark construction (referring to Sec.
4.1 in the main paper);

* Visual results of T2V generation on VBench (referring to Sec. 4.2 in the main paper);

* Visual results of I2V generation on VBench (referring to Sec. 4.2 in the main paper);

* User study of 12V generation;

* Visual results of multi-task generation on MfM-Benchmark (referring to Sec. 4.3 in the main
paper);

* Visual results of T2V generation with or without multi-task training (referring to Sec. 4.4 in the
main paper);

¢ Failure cases of MfM;

* Details about training data;

* Ablation study on sampling probability;

¢ Evaluation results on MovieGen Benchmarks;

* Ablation study on task interactions between different tasks;

¢ Quantitative Gains of Q-K Normalization and 3D RoPE;

* Ablation study on model adaptation to new tasks.

For better viewing experience, we uploaded the video demos to a dedicated anonymous website
https://anonymous.4open.science/w/MfMPage-2602/, where the videos can be played directly in the
browser. Note that, due to the significant number of high-quality video files included in our demon-
strations, initial page loading may require several minutes to complete. We appreciate your patience
during this process, as the complete visual experience is essential to understand the capabilities and
performance of our approach.

A.1 DECLARATION OF LLM ASSISTANCE
We use ChatGPT-5 to assist with the refinement of this manuscript. After drafting the full text, we

provided selected passages to the models for suggestions on grammar, clarity, and conciseness. All
revisions were reviewed and finalized by the authors to ensure accuracy and appropriateness.

A.2 THE HYPER-PARAMETERS AND INFERENCE LATENCY OF 2B&8B MFM
Table 7: Hyper-parameters of our 2B and 8B model variants.
Model Size | Layers | Attention Heads | Head Dim | FFN Dim | Cross-Attn Dim

2B 28 28 64 7168 (1792, 2048)
8B 40 48 64 12288 (3072, 2048)

In Table[7] we present the detailed hyper-parameter settings of our two MfM variants. The larger
model has 8 billion parameters with 40 layers, 48 attention heads, and a hidden dimension of 3, 072,
whereas the smaller model has 2 billion parameters with 28 layers, 28 attention heads, and a hidden
dimension of 1, 792.

In Table[8] we report the inference latency of our model under different resolutions. For inference,
we adopt sequence parallelization and Teacache (Liu et al.| 2024) to improve efficiency. Notably, due
to the unified adapter interface and the simple additive integration of adapter outputs into the latent
features, the inference cost remains nearly constant across tasks.
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Table 8: Model Inference Time of 2B&8B MfM

Model  Resolution  Steps Time

2B [97,128,224] 30 5.80s
2B [97,360,640] 30 16.12s
2B [97,720,1280] 30 2:05
&B [97,128,224] 30 9.03s
8B [97,360,640] 30 32.90s
8B [97,720,1280] 30 4:19

A.3 THE DETAILS OF MFM-BENCHMARK CONSTRUCTION

For multi-task data augmentation strategy, we applied the following enhancement pipeline:

1. Text-to-Video (T2V): We used the original captions as conditioning input.

2. Image-to-Video (I2V): We used the first frame and caption as conditioning input.

3. Video Extension (VEXT): We extracted the first 8 frames as conditioning input to generate

10.

11.

12.

13.
14.

15.

16.

the remaining frames.

. Video Inpainting (VINP): We applied random masks to interior regions covering 1/9 to 1/4

of the total pixels.

. Video Outpainting (VOUTP): We generated boundary masks covering 1/8 to 1/4 of the total

width/height.

. Video Colorization (VCOLOR): We converted the ground-truth videos to grayscale.
. First-Last-Frame-to-Video (FLF2V): We used the first and last frames as conditioning input

to generate the intermediate 95 frames.

. First-Last-Clip-to-Video (FLC2V): We used the first 8 frames and last 8 frames as condi-

tioning input.

. Video Super-Resolution (VSR): We applied random downsampling factors between 2x and

6 and used the downsampled videos as conditioning input.

Video Editing (VEDIT): We used the original videos as conditioning input, replacing the
original captions with style instruction prompts (e.g., “change the video to oil painting
style™).

Text-to-Image (T2I): We used the first frame at the ground-truth.

Image Super-Resolution (SISR): We used the first frames at the ground truth an downscaled
them with downsampling factors between 2x and 6x.

Image Inpainting (IINP): We sampled the first frames and randomly masked them like VINP.

Image Outpainting JOUTP): we sampled the first frames and randomly masked them like
VOUTP.

Image Coloraization (ICOLOR): We sampled the first frames and converted them to
grayscale.

Image Editing (IEdit): We sampled the first frames and replaced the original captions with
instruction prompts such as VEDIT.

For MfM-benchmark, first, we collected 1500 videos of 1280x720 of resolution and their accom-
panying captions from Pexels (Pexels| [2025)), selecting only those containing more than 97 frames.
We then applied a two-stage quality filtering process: (1) removing blurry videos by calculating
the CV2.Laplacian (Bradski, 2000) score for each frame and excluding those below a threshold
of 200, and (2) evaluating motion dynamics using RAFT (Teed & Deng| [2020) and retaining only
videos with motion scores exceeding 5. This filtering resulted in our final dataset of 480 high-quality
videos, which serve as ground-truth for reference-based metrics. We standardized each video to 97
frames and divided them into 16 segments for consistent processing. Final, we applied the above
enhancement pipeline to prepare the condition.

16



Under review as a conference paper at ICLR 2026

VEDIT VSR VEXT

T2I

ISR IOUTP IINP

ICOLOR

IEDIT

Figure 5: Visual illustrations for different tasks supported by our MfM.

Visual illustrations of these tasks are shown in Figure[3] Figure [T4] Figure[T3] Figure[T6] Figure 17}
Video demonstrations are also available at https://anonymous.4open.science/w/MfMPage-2602/.

A.4 VISUAL RESULTS OF T2V GENERATION ON VBENCH

Our comprehensive qualitative analysis spans four diverse text-to-video generation scenarios—coastal
beach oil painting with waves, person walking in snowstorm, koala playing piano in forest, and bicycle
slowing down—as illustrated in Figures[6] [7] [8]and[0] We compare MfM with Wan2.1 2025),
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Hunyuan (Kong et al., [2024)), Sora (OpenAl, 2024), Gen-3 (RunwayML| 2023), PikaLabs (Labs|
2023)), LTX-Video (HaCohen et al.,[2024), CogVideoX1.5 (Yang et al.,2024c)), and EasyAnimate (Xu
et al.,|2024). From these figures and the demo videos in our provided anonymous website, we can
have the following observations.

Wanx2.1 exhibits prompt comprehension failures across multiple dimensions. For example, it fails
to capture motion elements—generating a moving bicycle in Figure 9] that shows no deceleration,
and even producing backwards walking motion in Figure[/} contradicting natural human movement.
Hunyuan produces near-identical frames in the beach scene (Figure[6), where waves show negligible
movement. Additionally, Hunyuan demonstrates limited stylistic interpretation capability, completely
missing the oil painting aesthetic in Figure[6] Sora produces significant contextual mismatches in
several scenarios. Notably, it generates an urban nighttime scene instead of a snowstorm in Figure
While Sora delivers reasonable visual quality, it frequently produces minimal frame-to-frame
progression, which is particularly evident in the bicycle sequence, where speed reduction is barely
perceptible. Gen-3 generally provides good visual quality but struggles with specific prompt elements.
It fails to accurately render koala coloration in Figure[8] producing an unnatural scenario where the
koala is in the piano. In Figure[9] it shows a riderless bike with non-diminishing dust effects that
physically contradict the slowing action specified in the prompt.

PikalLabs demonstrates framing issues across multiple scenarios. In Figure[7} the human subject
appears too small to effectively convey walking motion. This problem is even more pronounced in
Figure[9] where an inappropriately wide urban composition makes the bicycle barely visible. LTX-
Video exhibits the most severe quality limitations, consistently delivering washed-out, minimalist
renderings across all scenarios. Most problematically, LTX-Video demonstrates dramatic mid-
sequence discontinuities in Figure[8] completely changing the scene halfway through. CogVideoX
generates video with small motion changes and cannot adapt to the style prompting (Figure [6)).
Easyaimate completely misidentifies the requested animal in Figure 8] rendering a panda instead of a
koala. In Figure[9] it shows an inappropriate close-up framing of a stationary bicycle wheel, making
the slowing action impossible to perceive. In contrast, MfM demonstrates superior results across all
scenarios, achieving an ideal balance of prompt fidelity, motion physics, and visual quality.

A.5 VISUAL RESULTS OF I2V GENERATION ON VBENCH

Our qualitative analysis spans four diverse cases—swimming turtle, dog carrying a soccer ball, fishing
boat navigation, and galloping horses—as illustrated in Figures and [13] These scenarios
were selected to evaluate model performance across a spectrum of challenges, including animal
locomotion, object interaction, environmental dynamics, and atmospheric conditions. We compare
our MfM with Wanx-I12V (Team, [2025), Hunyuan-I12V (Kong et al., [2024)), Magi-1 (Sand-Al} 2025),
Step-Video (Ma et al., 2025), DynamicCrafter (Xing et al.| |2023), VideoCrafter-I2V (Chen et al.,
2024a), 2VGen-XL (Zhang et al.l 2023b)), CogvideoX-I12V (Yang et al.,[2024c)), ConsistI2V (Ren
et al.,|2024). From these figures and the demo videos in our provided anonymous website, we can
have the following observations.

Hunyuan-I2V demonstrates minimal temporal progression across all scenarios, producing sequences
with negligible motion variation. This is particularly evident in the turtle (Figure and fishing
boat (Figure[I2) examples. Furthermore, Hunyuan-I2V introduces anatomical inconsistencies in the
horse sequence, rendering equine subjects with only three legs in later frames—a critical biological
implausibility. Wanx-I2V can produce reasonable animal movement, but sometimes fail to capture
essential action descriptors. For example, it fails to generate the “navigating” movement explicitly
specified in the boat prompt (Figure[I2Z). StepVideo-I12V suffers from visual artifacts across multiple
dimensions, including anatomical anomalies (abnormal turtle fin articulation in Figure[I0)), subject
identity inconsistencies (altered dog appearance in Figure[TT]), and most strikingly, fundamental scene
misinterpretation in the horse sequence. CogVideo-I12V demonstrates object consistency failures,
including problematic size variations in the turtle sequence and unstable object interactions in the
dog example. DynamiCrafter exhibits even more pronounced temporal instability, with objects and
environmental elements changing unnaturally between consecutive frames—most evident in the
inconsistent appearance of soccer ball and geometric distortions of the dog subject in Figure
VidCrafter and ConsistI2V both struggle with maintaining prompt fidelity, frequently altering the
fundamental identity characteristics in the conditioning image. This prompt deviation is particularly
pronounced in the dog sequence (Figure[TT]), where breed characteristics, coat patterns, and contextual
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Table 9: User votes on 10 image-to-video generation outputs

Method ‘ MfM VIV;{‘,X H“I‘;{;‘an Stei’zv\}de‘) Magi-1 C‘)Igzv\‘,deo I2VGenXL DynCrafter VidCrafter ConsistI2V
Top-1 Rates | 64.29% 20.00% 143%  429%  000% 571%  4.29% 0.00% 0.00% 0.00%
Top-3 Rates | 85.71% 71.43% 40.00% 41.43% 12.86% 30.00%  12.86%  0.00% 429% 1.43%

elements shift significantly from the reference image. In contrast, our MfM and Magi-1 achieve both
robust identity preservation and convincing motion dynamics in all test cases.

A.6 USER STUDY OF I2V GENERATION

To comprehensively evaluate MfM’s effectiveness in generative tasks, we conduct a user study
specifically focused on image-to-video (I2V) generation, comparing against nine I2V generation
methods whose models are publicly available: Wanx-12V (Teaml 2025), Hunyuan-12V (Kong et al.,
2024])), StepVideo-12V (Ma et al.| [2025)), Magi-1 (Sand-AlL 2025), Cogvideo-I2V (Yang et al., 2024c),
I2VGenXL (Zhang et al., 2023b)), DynamiCrafter (Xing et al.| 2023), VideoCrafter (Chen et al.,
2024a), and ConsistI2V (Ren et al., 2024)). The user study comprised 10 test cases encompassing
various content categories, including animal motion, human activities, scenic close-ups, and vehicular
movement. We invited 10 participants and asked them to rank the top three generated videos for
each case based on visual quality and semantic consistency. Table [0 presents the average Top-1
and Top-3 rates for all methods. The results clearly show that MfM outperforms all competitors,
achieving a 64.29% Top-1 rate and an 85.71% Top-3 rate. Wanx-I2V ranks second with 20.00%
Top-1 and 71.43% Top-3 rates, respectively. Hunyuan-I12V and StepVideo-I2V demonstrate moderate
performance with Top-3 rates of approximately 40%, despite Top-1 rates below 5%. Notably, Magi-1,
DynamiCrafter, VideoCrafter, and ConsistI2V fail to secure any Top-1 selections and exhibit minimal
presence in Top-3 rankings. These results reveal MfM’s superior capability in generating high-quality
image-to-video content that consistently meets human evaluation criteria.

A.7 VISUAL RESULTS OF MULTI-TASK GENERATION

The visual results of four representative video tasks, including VINP, VOUTP, VCOLOR and FLF2V,
are illustrated in Figure [T14] Figure[T3] Figure [T6] Figure[17] respectively.

For VINP, we compare our MfM with VACE (Jiang et al., 2025)) and ProPainter (Zhou et al., 2023)
across three diverse scenarios in Figure [I4] We see that MfM demonstrates superior performance
in maintaining visual fidelity and temporal consistency. Specifically, both MfM and VACE produce
reasonably coherent results in the first and third cases, where they successfully reconstruct the masked
region with detail preservation and natural integration with the surrounding environment. However, in
the second case, VACE shows inconsistencies in intensity distribution and color. ProPainter exhibits
severe blurring and artifacts in the inpainted region, failing to properly reconstruct the subject and
completely losing the details.

For VOUTP, we compare MfM with VACE (Jiang et al., | 2025)), Follow-Your-Canvas (FYC) (Chen
et al., 2024b)), and M3DDM (Fan et al., 2023). The comparisons on three diverse scenarios are
illustrated in Figure MIfM demonstrates exceptional consistency and contextual understanding
across all test cases. VACE shows moderate capabilities but with noticeable limitations. While
it produces acceptable wave continuation in the ocean scene, it generates noticeable brightness
mismatches between the original and generated regions in the second case. FYC suffers from the
brightness mismatches in the second case; what’s more, it fails to complete the leg of the person in
the first frame of the first case. M3DDM exhibits significant limitations in this task. It generates
blurred outputs and visually jarring discontinuities around the generated areas.

For VCOLOR, we compare MfM with Colormnet (Yang et al., 2024b) and TCVC(Zhang et al.|
2023c) in Figure[I6] We see that MfM demonstrates excellent contextual understanding performance
and maintains superior temporal color stability between adjacent frames. Compared with other
baselines, it achieves more complete colorization coverage without introducing grayscale artifacts
while preserving realistic lighting conditions. Colormnet shows reasonable performance on these
cases but suffers from saturation issues in the last two cases. TCVC exhibits substantial limitations
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across all test scenarios, with large portions remaining in grayscale and the overall color tone
appearing excessively dull and lifeless.

For FLF2V, we compare MfM with Wanx-FLF2V and Hunyuan (with keyframe
LoRA) 2024). The comparisons on three scenarios are illustrated in Figure[I7] We see
that both MfM and Wanx-FLF2V deliver natural motion interpolation between the first frame and the
last frame without jarring transitions, as shown in the first and third cases. But Wanx-FLF2V performs
abnormally in the second case, where the video frames are unexpectedly compressed vertically at
the end, altering the aspect ratio. Hunyuan exhibits severe limitations in the first and third cases.
It produces intermediate frames with a different viewpoint and a noticeably darkened color tone,
resulting in jarring visual transitions.

A.8 VISUAL RESULTS OF ABLATION STUDY

The ablation study results on four scenarios are illustrated in Figure [I8] which provides visual
evidence to support that multi-task training significantly improves the temporal dynamics of the
generated videos. We can see that T2V w/ MfM demonstrates cinematographic qualities, including
smooth and flexible camera movements, as well as vivid and evolving patterns. For instance, in the
first case, the varying angle of the video effectively captures the dynamic essence of ’gain speed’;
in the second case, dynamic color transitions and the natural progression of pyrotechnic effects are
illustrated; in the third case, the train is portrayed with appropriate motion blur; and in the fourth,
the celestial progression is dramatically captured, with the sun emerging and intensifying across the
horizon, accompanied by corresponding atmospheric lighting changes. In contrast, T2V w/o MfM
exhibits minimal camera movement, with limited perspective variation and an almost static side view
throughout the sequence. Furthermore, in the last case, T2V w/o MfM produces nearly identical
frames of a static sun, with little temporal progression.

A.9 FAILURE CASES

While MfM demonstrates strong performance across T2V and I2V generation tasks, it also occasion-
ally produces failure cases, as illustrated in Figure[T9] First, in complex interaction scenarios, MfM
may produce physically implausible object relationships. For instance, in the basketball dunking
sequence (first row), the ball incorrectly traverses the net rather than entering the basket properly.
Similarly, in the burger eating sequence (second row), the burger wrapper abruptly merges into the
burger in the intermediate frames. Second, MfM also exhibits limitations in generating videos that
contain words; this is particularly evident in the cyberpunk cityscape (third row) and the animated
panda scene (fourth row). Finally, for sequences involving rapid motion, we observe temporal artifacts
manifesting as duplicated or misplaced features. This is exemplified in the cat playing sequence
(fifth row), where an anomalous second tail-like object appears near the cat’s head in intermediate
frames. Meanwhile, in the sword fighting sequence (last row), the character on the right undergoes
noticeable variations and distortions in the intermediate frames. Future work will be conducted to
further improve the performance of MfM on these scenarios.

A.10 DETAILS ABOUT TRAINING DATA

Regarding our training data, over 70% of them are collected from publicly available sources, including

Panda70M (Chen et al.L 2024c), Koala36M (Wang et al.| [2025)), InternVid [Wang et al.| (2023)),
OpenVid (Nan et al.}[2024), and WebVid (Bain et al., 2021)), complemented by a small portion of
proprietary data. For images, the primary source is LAION-5B (Schuhmann et al| [2022).

To ensure data quality, we adopt a multi-stage filtering pipeline:

* Video Segmentation: We first apply PySceneDetect for coarse scene boundaries. Then,
we extract frame-level features using DINOv2 (Oquab et al} [2023)), compute inter-frame
similarity, and further split clips at low-similarity points. Videos shorter than 2 seconds are
removed.

* Video Quality Filtering: Each segmented clip is evaluated along several dimensions: 1)
basic metadata (FPS, resolution, bitrate) extracted directly from video; 2) average aesthetic
score using a pretrained aesthetic model; 3) overlay text ratio via a pretrained OCR model;

20



Under review as a conference paper at ICLR 2026

4) watermark detection through a dedicated watermark model; 5)for motion quality, we
compute optical flow using RAFT (Teed & Deng|, [2020), then filter out clips with insufficient
motion.

* Semantic Content Filtering: To identify and remove potential low-quality or undesirable
content, we employ a fine-tuned VideoLLaMA3 (Zhang et al} [2025)) model to detect unsafe
content, low-light or blurry scenes, overexposed frames, black borders, abrupt perspective
shifts, and static-image animations.

* Video Captioning: For caption generation, we use Tarsier2 2025)), prompting
it to produce two complementary captions: a short global summary and a long, detailed

description. These two captions are merged to form the final caption for each clip.

A.11 ABLATION STUDY ON SAMPLING PROBABILITY

We chose to assign 3x higher sampling probability to the basic generation tasks for two main reasons.
First, these three tasks (T2V, 12V, and T2I) represent the core generation capabilities most commonly
required in practical scenarios. Unlike editing tasks, which provide strong and explicit conditioning
signals, these basic generation tasks rely on weaker supervision and are therefore significantly harder
to optimize. Allocating additional sampling probability ensures that the backbone generative ability
is sufficiently strengthened during pretraining.

Second, we conducted an ablation study to investigate how different sampling ratios affect model
performance. Specifically, we compared four settings: 1) Equal sampling probability across all tasks
2) 2x sampling probability for the three basic tasks 3) 3 sampling probability for the three basic
tasks 4) 4 x sampling probability for the three basic tasks.

The evaluation results on VBench-T2V are shown in the Table[T0] Among all configurations, the
3x sampling strategy consistently achieves the strongest overall performance across most metrics,
demonstrating that an appropriately biased multi-task sampling schedule can effectively enhance
generative capability without increasing the training budget.

In contrast, sampling ratios that allocate insufficient training budget to the basic generation tasks (e.g.,
1x or 2x) lead to under-optimized T2V performance. In these settings, the T2V task does not receive
enough updates to fully benefit from the complementary supervision provided by other tasks.

Conversely, overemphasizing the basic tasks (e.g., 4x) weakens the regularization effect brought by
the editing tasks. This reduces multi-task synergy and results in performance degradation across
several metrics.

As an extreme case, assigning zero probability to all other tasks degenerates the training back to a
pure T2V paradigm, which—as demonstrated in the Table[6]of the main paper—performs worse than
our mixed MfM training framework. This further validates that the improvements are not solely due
to the basic tasks themselves, but arise from the interaction among diverse tasks under a well-balanced
sampling strategy.

Table 10: Quantitative comparison of T2V generation performance with different sampling probability
on the VBench-T2V benchmark. For each dimension, the best result is in bold, the second best result
is underscored.

Model | Motion Dynamic Aesth. Img. Object Mul.Obj. Spatial Scene Appear. Temp. Consist.

Ix ]0.9865 0.6528 0.5822 0.5493 0.8726 0.6395 0.6026 0.4789 0.2254 0.2299 0.2507
2x 109664 0.8750 0.5520 0.5420 0.7642 0.3361 0.4578 0.4942 0.2285 0.2272 0.2495
3x 109922 0.8889 0.5911 0.5853 0.8861 0.5160 0.5851 0.4869 0.2289 0.2341 0.2483
4x 109810 0.6667 0.5834 0.5791 0.8441 0.4177 0.4977 0.4680 0.2277 0.2393 0.2470

A.12 EVALUATION RESULTS ON MOVIEGEN BENCHMARKS

Besides VBench, we also adopt another widely used benchmark — the MovieGen Benchmark
[2025)) released by Meta (hereafter referred to as the MovieGen Benchmark) — for further
evaluation. This benchmark provides broader coverage across key evaluation dimensions and includes
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diverse motion categories (i.e., high, medium, and low motion prompts). It has also been adopted by

recent state-of-the-art works such as Veo 3 (Googlel [2025)) and Goku (Chen et al.| [2025)). Since the

MovieGen Benchmark does not provide official evaluation metrics, we employ the same set of video
quality evaluation metrics used in VBench to measure the performance of different models on several
key metrics. The results of open-sourced models are presented in Table [TT]

Table 11: Quantitative comparison of T2V generation performance on the MovieGen benchmark.

Model | Aesthetic. Imaging Dynamic Temporal Consistency Avg. Rank.
MIfM (8B) 0.6136 0.6887 0.7188  0.2615 0.2615 2.2
Wanx (14B) 0.6428  0.7265 0.2969  0.2474 0.2474 34
Hunyuan (13B) 0.6044  0.6483 0.5469  0.2651 0.2651 24
Opensora (11B) 0.6311 0.6180 0.5156  0.2688 0.2588 2.6
Cogvideo (5B) 0.5634 0.6104 0.4844  0.2452 0.2452 4.8
EasyAnimate (12B)| 0.5439  0.5697 0.4322  0.1375 0.1375 6.2
LTX-video (0.98B) | 0.5087 0.5603 0.3438  0.2063 0.2063 6.8

The results on the MovieGen benchmark further demonstrate the advantages of our MfM. In particular,
MIfM (8B) achieves the best performance on video dynamics and the second-best results on image
quality and overall consistency, closely matching or even surpassing those much larger models such
as Wanx (14B), Hunyuan (13B), and OpenSora (11B). Note that our MfM model achieves this
performance by training on only 160M images and 120M video clips, far less than those models
like Wanx and Hunyuan, which are trained on billion-scale datasets.

Regarding long-duration video generation, our model is primarily trained on clips of 97 frames.
Extending the temporal window significantly increases the computational and memory cost during
training, and thus long-duration generation is currently beyond the intended scope of this work. A
promising direction is to adapt our MfM framework to a streaming or chunk-wise generation pipeline,
which would enable arbitrarily long videos. We consider this as an important extension in future
work.

A.13 ABLATION STUDY ON TASK INTERACTIONS BETWEEN DIFFERENT TASKS

Given the large number of possible task combinations, it is infeasible to conduct an exhaustive
ablation over all of them. Therefore, we select a subset of representative tasks (T2V, VINP, FLF2V,
VColor) to study task interactions. In particular, starting from a T2V-only checkpoint, we evaluate
mixing strategies including: T2V only, T2V + any single task, T2V + any two tasks, and T2V + all
selected tasks. The evaluation results on VBench-T2V are summarized in Table [[2}

Table 12: Quantitative comparison of different task interactions. For each dimension, the best result
is in bold, the second best result is underscored.

Model |Motion Dynamic Aesth. Img. Object Mul.Obj. Spatial Scene Appear. Temp. Consist.

T2V [0.9915 0.6556 0.5931 0.5448 0.8869 0.5457 0.6112 0.5065 0.2214 0.2379 0.2520
T2V+VCOLOR 0.9892 0.6111 0.5881 0.5484 0.8339 0.5122 0.4326 0.5000 0.2317 0.2406 0.2519
T2V+VINP 0.9887 0.6944 0.5770 0.5402 0.8703 0.5655 0.5714 0.4833 0.2333 0.2288 0.2474
T2V+FLF2V 0.9911 0.7778 0.5930 0.5437 0.8932 0.6006 0.5098 0.4935 0.2295 0.2415 0.2464
T2V+FLF2V+VCOLOR 0.9846 0.7639 0.5743 0.5725 0.8623 0.5358 0.6515 0.5291 0.2298 0.2419 0.2551
T2V+VINP+FLF2V 0.9925 0.8472 0.5947 0.5808 0.9090 0.5983 0.5261 0.5356 0.2291 0.2421 0.2551
T2V+VINP+VCOLOR 0.9870 0.7778 0.5816 0.5785 0.8576 0.5816 0.5150 0.5007 0.2347 0.2333 0.2445

T2V+FLF2V+VCOLOR+VINP| 0.9922  0.8750 0.5911 0.5853 0.8861 0.5760 0.5851 0.4969 0.2289 0.2372 0.2553

As shown in the table, in most cases, when both tasks improve performance on certain metrics,
incorporating them into the mixed training pipeline also brings benefits (e.g., dynamic, appearance).
However, when one task improves performance while another negatively affects it, the final mixed
results vary across metrics. For example, for object and multiple object metrics, integrating FLF2V
leads to significant gains. When further combining it with VCOLOR, the mixed model still improves
upon the T2V baseline, but the magnitude of improvement narrows because VCOLOR has a mild
negative effect on single-object and multi-object generation accuracy. Conversely, mixing VINP and
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VCOLOR with T2V can degrade performance on temporal style, though VCOLOR alone improves
general generation quality.

Interestingly, we also observe cases where two individually harmful tasks produce unexpected im-
provements when combined. For instance, VINP and FLF2V each weaken some metrics, but together,
they significantly improve scene and overall consistency. We attribute this to the complementary
regularization effects they impose on holistic video understanding: although VINP primarily focuses
on spatial completion and FLF2V on temporal completion, each task alone may bias optimization in
an unbalanced direction, whereas their combination better constrains the model and leads to improved
global metrics like overall consistency.

Finally, when all tasks are included in training, the model achieves substantial gains on most metrics
(e.g., motion, dynamic, image quality, appearance, overall consistency). Some metrics drop slightly
compared to T2V-only training due to the absence of regularization from tasks that specifically benefit
them. For example, as shown in Table [f] of the main paper, metrics such as aesthetics and scene
benefit greatly from incorporating video-extension and first-last-clip-to-video tasks.

However, it is difficult to accurately evaluate the effect of each individual task and all possible
combinations, given the enormous combinatorial space and the complex interactions among tasks.
Therefore, throughout this work, we focus on assessing the overall performance of the model under
mixed-task training—examining whether the model can simultaneously learn 10+ editing capabilities
while leveraging their interactions to improve video generation ability.

A.14 QUANTITATIVE GAINS OF Q-K NORMALIZATION AND 3D ROPE

To better clarify the contribution of Q—K Normalization and 3D Rotary Position Embedding (3D
RoPE), we performed an ablation study by finetuning a 2B-parameter checkpoint for an additional
10K training steps under three settings: (1) full model, (2) removing Q—-K Norm, and (3) removing
3D RoPE. We report the results on the VBench-T2V benchmark in Table [[3]

Table 13: Quantitative gain of Q-K normalization and 3D Rotary Position Embedding.

Model \Motion Dynamic Aesth. Img. Object Mul.Obj. Spatial Scene Appear. Temp. Consist.
MfM-baseline [0.9922 0.8889 0.5911 0.5853 0.8861 0.5160 0.5851 0.4869 0.2289 0.2341 0.2483

MIM (w/o Q-K Norm)| NA NA NA NA NA NA NA NA NA NA NA
MIM (w/o RoPE) 0.9659 0.8472 0.3149 0.3628 0.0973 0.0000 0.0089 0.0022 0.2200 0.0423 0.0584

In our experiments, the model consistently collapses after 3K steps once Q—K Normalization is
removed. This collapse manifests as exploding attention activations and rapidly diverging losses,
preventing further training. This confirms that Q—K Norm is critical for stabilizing large-scale
DiT-based video generation models, especially under our multi-task many-for-many training regime
where diverse conditioning signals create additional gradient variance.

Unlike Q-K Norm, removing 3D RoPE does not cause training divergence; however, it leads to
substantial degradation across all VBench metrics. The drop is particularly severe for spatial-semantic
metrics such as Object, Multiple Objects, Spatial, and Scene. Without 3D RoPE, the model frequently
fails to place objects in correct spatial locations or maintain consistent geometry throughout the video,
resulting in near-zero performance on these categories. This demonstrates that 3D RoPE is crucial
for modeling the joint spatial-temporal structure of video tokens.

A.15 ABLATION STUDY ON MODEL ADAPTATION TO NEW TASKS.

To evaluate the models adaptation capacity after multi-tasks training, we performed the following
experiment: starting from the original T2V model, we conducted 10K-step T2V-only training (Model
1) and multi-task training (Model 2, excluding VINP tasks). After training, we fine-tuned both
models on the new VINP task and compared their adaptation performance. The results, shown in the
Table[T4] demonstrate that the multi-task model adapts more effectively to the new task, highlighting
the benefits of our unified multi-task pretraining approach.
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1242

1243

1244 Table 14: Performance comparison on video inpainting task.

1245 Method | Reference-based Metrics | No-reference Perceptual Metrics

124

9 43 | FVD| PSNR?T SSIM?T LPIPS| | Aesth.t Img.t MotionT Consist.] Temp.T

1248 Model 1| 758.894 28.740 0.699  0.296 | 0.5284 0.7201 0.9940  0.2258  0.9894
1249 Model 2 | 740.026 29.113 0.709  0.286 | 0.5339 0.7347 0.9939  0.2281  0.9890
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1204 Figure 6: T2V generated videos with prompt ”a beautiful coastal in spring, waved lapping on sand,
1295 oil painting”.
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a person walking in the snowstorm

-

MfM
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Easyanimate CogvideoX LTX-Video PikalLabs

Figure 7: T2V generated videos with prompt ”a person walking in the snowstorm”.
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A Kkoala bear playing piano in the forest
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Figure 8: T2V generated videos with prompt “a koala bear playing piano in the forest”.
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A bicycle slowing down to stop
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Figure 9: T2V generated videos with prompt ”a bicycle slowing down to stop”.
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a sea turtle swimming in the ocean under the water.
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Figure 10: 12V generated videos with prompt “a sea turtle swimming in the ocean under the water”.
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a dog carrying a soccer ball in its mouth. -
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Figure 11: 12V generated videos with prompt ”a dog carrying a soccer ball in its mouth”.
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1674 Figure 12: 12V generated videos with prompt "a blue fishing boat is navigating in the ocean next to a

1615 cruise ship”.
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Figure 13: 12V generated videos with prompt “a couple of horses are running in the dirt”.
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Figure 14:

Visual comparison on task of video inpainting.
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Figure 15: Visual comparison on task of video outpainting.
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Figure 16: Visual comparison on task of video colorization.
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Figure 17: Visual comparison on task of first-last-frame to video.
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T2V w/o MfM T2V w/ MfM

T2V w/o MfM_ T2V w/ MfM

T2V w/o MfM T2V w/ MfM

time lapse of sunrise on mars

T2V w/o MfM T2V w/ MfM

Figure 18: Ablation study on t2v task using MfM with/without multi-task training.
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Figure 19: Failure cases of our MfM.
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