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Abstract

We show that unsupervised sequence-001
segmentation performance can be transferred002
to extremely low-resource languages by pre-003
training a Masked Segmental Language Model004
(Downey et al., 2021) multilingually. Further,005
we show that this transfer can be achieved006
by training over a collection of low-resource007
languages that are typologically similar (but008
phylogenetically unrelated) to the target009
language. In our experiments, we transfer010
from a collection of 10 Indigenous American011
languages (AmericasNLP, Mager et al., 2021)012
to K’iche’, a Mayan language. We compare013
our multilingual model to a monolingual014
(from-scratch) baseline, as well as a model015
pre-trained on Quechua only. We show that016
the multilingual pre-trained approach yields017
consistent segmentation quality across target018
dataset sizes, exceeding the monolingual019
baseline in 6/10 experimental settings. Our020
model yields especially strong results at small021
target sizes, including a zero-shot performance022
of 20.6 F1. These results have promising023
implications for low-resource NLP pipelines024
involving human-like linguistic units, such as025
the sparse transcription framework proposed026
by Bird (2020).027

1 Introduction028

Unsupervised sequence segmentation (at the word,029

morpheme, and phone level) has long been an030

area of interest in languages without whitespace-031

delimited orthography (e.g. Chinese, Uchiumi032

et al., 2015; Sun and Deng, 2018), morphologi-033

cally complex languages without rule-based mor-034

phological anlayzers (Creutz and Lagus, 2002),035

and automatically phone-transcribed speech data036

(Goldwater et al., 2009; Lane et al., 2021) respec-037

tively. It has been particularly important for lower-038

resource languages in which there is little or no039

gold-standard data on which to train supervised040

models (Joshi et al., 2020).041

In modern neural end-to-end systems, unsu- 042

pervised segmentation is usually performed via 043

information-theoretic alogrithms such as BPE (Sen- 044

nrich et al., 2016) and SentencePiece (Kudo and 045

Richardson, 2018). However, the segmentations 046

they produce are largely non-sensical to humans 047

(Park et al., 2021). The motivating tasks listed 048

above instead require unsupervised approaches that 049

correlate more closely with human judgements 050

of the boundaries of linguistic units. For exam- 051

ple, in a human-in-the-loop framework such as 052

the sparse transcription proposed by Bird (2020), 053

lexical items are automatically proposed to native 054

speakers for confirmation, and it is important that 055

these candidates be (close to) sensical, recogniz- 056

able pieces of language. 057

In this paper, we investigate the utility of re- 058

cent models that have been developed to conduct 059

unsupervised segmentation as a byproduct of a lan- 060

guage modeling objective (e.g. Kawakami et al., 061

2019; Downey et al., 2021, see Section 2). The key 062

idea is that recent breakthroughs in crosslingual 063

language modeling and transfer learning (Conneau 064

and Lample, 2019; Artetxe et al., 2020, inter alia) 065

can be leveraged to facilitate transferring unsuper- 066

vised segmentation performance to a new target 067

language, using these types of language models. 068

Specifically, we investigate the effectiveness of 069

multilingual pre-training in a Masked Segmental 070

Language Model (Downey et al., 2021) when ap- 071

plied to a low-resource target. We pre-train our 072

model on the ten Indigenous languages of the 2021 073

AmericasNLP shared task dataset (Mager et al., 074

2021), and apply it to another low-resource, In- 075

digenous, and morphologically complex language 076

of Central America: K’iche’ (quc), which at least 077

phylogenetically is unrelated to the pre-training 078

languages (Campbell et al., 1986). 079

We hypothesize that multilingual pre-training 080

on similar, possibly contact-related languages, will 081

outperform both a monolingual baseline trained 082
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from scratch and a model pre-trained on a single083

language (Quechua) with the same amount of pre-084

training data. We also expect that the pre-trained085

models will perform increasingly better than the086

monolingual baseline the smaller the target corpus087

is.088

Indeed, our experiments show that a pre-trained089

multilingual model provides stable performance090

across all dataset sizes and far exceeds the mono-091

lingual baseline at low-to-medium target sizes.092

We additionally show that the multilingual model093

achieves a zero-shot segmentation performance of094

20.6 F1 on the K’iche’ data, where the monolin-095

gual baseline yields a score of zero. These results096

suggest that transferring from a multilingual model097

can greatly assist unsupervised segmentation in098

very low-resource languages, even those that are099

morphologically rich. It also supports the idea that100

transfer from multilingual models works at a more101

moderate scale than is typical for recent crosslin-102

gual models.103

In the following section, we overview work re-104

lating to unsupervised segmentation, crosslingual105

pre-training, and transfer-learning (Section 2). We106

then introduce the multilingual data used in our107

experiments, and the additional pre-processing we108

performed to prepare the data for pre-training (Sec-109

tion 3). Next we provide a brief overview of the110

type of Segmental Language Model used in our ex-111

periments, as well as our multilingual pre-training112

process (Section 4). After this, we describe our113

experimental process applying the pre-trained and114

from-scratch models to varying target data sizes115

(Section 5). Finally, we discuss the results of our116

experiments and their significance for low-resource117

pipelines, both within unsupervised segmentation118

and for other NLP tasks more generally (Sections119

6 and 7).120

2 Related Work121

Work related to the present study largely falls either122

into the field of (unsupervised) word segmentation,123

or the field(s) of crosslingual language modeling124

and transfer learning. To our knowledge, we are125

the first to propose a multilingual model for unsu-126

pervised word/morpheme-segmentation.127

Unsupervised Segmentation Current state-of-128

the-art unsupervised segmentation has largely been129

achieved with Bayesian models such as Hierarchi-130

cal Dirichlet Processes (Teh et al., 2006; Goldwater131

et al., 2009) and Nested Pitman-Yor (Mochihashi132

et al., 2009; Uchiumi et al., 2015). Adaptor Gram- 133

mars (Johnson and Goldwater, 2009) have been suc- 134

cessful as well. Models such as Morfessor (Creutz 135

and Lagus, 2002), which are based on Minimal De- 136

scription Length (Rissanen, 1989) are also widely 137

used for unsupervised morphology. 138

As Kawakami et al. (2019) note, most of these 139

models have weak language modeling ability, be- 140

ing unable to take into account much other than 141

the immediate local context of the sequence. An- 142

other line of techniques has focused on models that 143

are both strong language models and good for se- 144

quence segmentation. Many are in some way based 145

on Connectionist Temporal Classification (Graves 146

et al., 2006), and include Sleep-WAke Networks 147

(Wang et al., 2017), Segmental RNNs (Kong et al., 148

2016), and Segmental Language Models (Sun and 149

Deng, 2018; Kawakami et al., 2019; Wang et al., 150

2021; Downey et al., 2021). In this work, we con- 151

duct experiments using the Masked Segmental Lan- 152

guage Model of Downey et al. (2021), due to its 153

good performance and scalability, the latter usually 154

regarded as an obligatory feature of multilingual 155

models (Conneau et al., 2020a; Xue et al., 2021, 156

inter alia). 157

Crosslingual and Transfer Learning Crosslin- 158

gual modeling and training has been an especially 159

active area of research following the introduction 160

of language-general encoder-decoders in Neural 161

Machine Translation, offering the possibility of 162

zero-shot translation (i.e. translation for language 163

pairs not seen during training; Ha et al., 2016; John- 164

son et al., 2017). 165

The arrival of crosslingual language model pre- 166

training (XLM, Conneau and Lample, 2019) fur- 167

ther demonstrated that large models pre-trained on 168

multiple languages yielded state-of-the-art perfor- 169

mance across an abundance of multilingual tasks 170

including zero-shot text classification (e.g. XNLI, 171

Conneau et al., 2018), and that pre-trained trans- 172

former encoders provide great initializations for 173

MT systems and language models in very low- 174

resource languages. 175

Since XLM, numerous studies have attempted to 176

single out which components of crosslingual train- 177

ing contribute to transferability from one language 178

to another (e.g. Conneau et al., 2020b). Others have 179

questioned the importance of multilingual training, 180

and have instead proposed that even monolingual 181

pre-training can provide effective transfer to new 182

languages (Artetxe et al., 2020). Though some like 183
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Lin et al. (2019) have tried to systematically study184

which aspects of pre-training languages/corpora185

enable effective transfer, in practice the choice is186

often driven by availability of data and other ad-hoc187

factors.188

Currently, large crosslingual successors to XLM189

such as XLM-R (Conneau et al., 2020a), MASS190

(Song et al., 2019), mBART (Liu et al., 2020), and191

mT5 (Xue et al., 2021) have achieved major suc-192

cess, and are the starting point for a large portion193

of multilingual NLP systems. These models all194

rely on an enormous amount of parameters and195

pre-training data, the bulk of which comes from196

very high-resource languages. In contrast, in this197

paper we assess whether multilingual pre-training198

on a suite of very low-resource languages, which199

combine to yield a moderate amount of unlabeled200

data, can provide good transfer to similar languages201

which are also very low-resource.202

3 Data and Pre-processing203

We draw data from three main datasets. We use the204

AmericasNLP 2021 open task dataset (Mager et al.,205

2021) to pre-train our multilingual models. The206

multilingual dataset from Kann et al. (2018) serves207

as segmentation validation data for our pre-training208

process in these languages. Finally, data from Ty-209

ers and Henderson (2021) is used as the training210

set for our experiments transferring to K’iche’, and211

Richardson and Tyers (2021) provides the valida-212

tion and test data for these experiments.213

AmericasNLP 2021 The AmericasNLP data214

consists of train and validation files for ten low-215

resource Indigenous languages of Central and216

South America: Asháninka (cni), Aymara (aym),217

Bribri (bzd), Guaraní (gug), Hñähñu (oto), Nahu-218

atl (nah), Quechua (quy), Rarámuri (tar), Shipibo219

Konibo (shp), and Wixarika (hch). For each lan-220

guage, AmericasNLP also includes parallel Span-221

ish sets, which we do not use. The data was orig-222

inally curated for the AmericasNLP 2021 shared223

task on low-resource Machine Translation. (Mager224

et al., 2021).1225

We augment the Asháninka and Shipibo-Konibo226

training sets with additional available monolin-227

gual data from Bustamante et al. (2020),2 which is228

linked in the official AmericasNLP repository. We229

1https://github.com/AmericasNLP/
americasnlp2021

2https://github.com/iapucp/
multilingual-data-peru

add both the training and validation data from this 230

corpus to the training set of our splits. 231

To pre-process for a multilingual language mod- 232

eling setting, we first remove lines that contain urls, 233

copyright boilerplate, or that contain no alphabetic 234

characters. We also split lines that are longer than 235

2000 characters into sentences/clauses where ev- 236

ident. Because we use the Nahuatl and Wixarika 237

data from Kann et al. (2018) as validation data, we 238

remove any overlapping lines from the Americas- 239

NLP set. We create a combined train file as the 240

concatenation of the training data from each of the 241

ten languages, as well as a combined validation file 242

likewise. 243

Because the original ratio of Quechua training 244

data is so high compared to all other languages 245

(Figure 1), we downsample it to 215 examples, the 246

closest order of magnitude to the next-largest train- 247

ing set. A plot of the balanced (final) composition 248

of our AmericasNLP train and validation sets is 249

seen in Figure 2. 250

To compare the effect of multilingual and mono- 251

lingual pre-training, we also pre-train a model on 252

Quechua alone, since it has by far the most data 253

(Figure 1). However, the full Quechua training set 254

has about 50k fewer lines than our balanced Ameri- 255

casNLP set (Figure 2). To create a fair comparison 256

between multilingual and monolingual pre-training, 257

we additionally create a downsampled version of 258

the AmericasNLP set of equal size to the Quechua 259

data (120,145 lines). The detailed composition of 260

our data is available in Appendix A. 261

Figure 1: Original (imbalanced) language composition
of the AmericasNLP training set

Kann et al (2018) The data from Kann et al. 262

(2018), originally curated for a segmentation task 263

on polysynthetic low-resource languages, contains 264

morphologically segmented sentences for Nahuatl 265

and Wixarika. We use these examples as valida- 266
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Figure 2: Final language composition of our Americas-
NLP splits after downsampling Quechua

tion data for segmentation quality during the pre-267

training process. We clean this data in the same268

manner as the AmericasNLP sets.269

K’iche’ data The K’iche’ data used in our study270

was curated for Tyers and Henderson (2021). The271

raw (non-gold-segmented) data, used as the train-272

ing set in our transfer experiments, comes from a273

section of this data web-scraped by the Crúbadán274

project (Scannell, 2007). This data is relatively275

noisy, so we clean it by removing lines with urls276

or lines where more than half of the characters are277

non-alphabetic. We also remove duplicate lines.278

The final data consists of 47,729 examples and is279

used as our full-size training set for K’iche’. Our280

experiments involve testing transfer at different re-281

source levels, so we also create smaller training282

sets by downsampling the original to lower orders283

of magnitude.284

For evaluating segmentation performance on285

K’iche’, we use the segmented sentences from286

Richardson and Tyers (2021),3 which were cre-287

ated for a shared task on morphological segmen-288

tation. These segmentations were created by a289

hand-crafted FST, then manually disambiguated.290

Because gold-segmented sentences are so rare, we291

concatenate the original train/validation/test splits292

and then split them in half into final validation and293

test sets.294

3https://github.com/ftyers/
global-classroom

4 Model and Pre-training 295

This section gives an overview of the Masked Seg- 296

mental Language Model (MSLM), introduced in 297

Downey et al. (2021), along with a description of 298

our pre-training procedure. 299

MSLMs An MSLM is a variant of a Segmen- 300

tal Language Model (SLM) (Sun and Deng, 2018; 301

Kawakami et al., 2019; Wang et al., 2021), which 302

takes as input a sequence of characters x and out- 303

puts a probability distribution for a sequence of seg- 304

ments y such that the concatenation of y is equiv- 305

alent to x: π(y) = x. An MSLM is composed of 306

a Segmental Transformer Encoder and an LSTM- 307

based Segment Decoder (Downey et al., 2021). See 308

Figure 3. 309

The MSLM training objective is based on the 310

prediction of masked-out spans. During a forward 311

pass, the encoder generates an encoding for every 312

position in x, for a segment up to k symbols long; 313

the encoding at position i− 1 corresponds to every 314

possible segment that starts at position i. Therefore, 315

the encoding approximates 316

p(xi:i+1, xi:i+2, ..., xi:i+k|x<i, x≥i+k) 317

To ensure that the encodings are generated based 318

only on the portions of x that are outside of the 319

predicted span, the encoder uses a Segmental At- 320

tention Mask (Downey et al., 2021) to mask out 321

tokens inside the segment. Figure 3 shows an ex- 322

ample of such a mask with k = 2. 323

Finally, the Segment Decoder of an SLM deter- 324

mines the probability of the jth character of the 325

segment of y that begins at index i, yij , using the 326

encoded context: 327

p(yij |yi0:j , x<i, x≥i+k) = Decoder(hij−i, y
i
j−1) 328

The output of the decoder is not conditional 329

on the determination of other segment boundaries. 330

The probability of y is modeled as the marginal 331

probability over all possible segmentations of x. 332

Because directly marginalizing is computationally 333

intractable, the marginal is computed using dy- 334

namic programming over a forward-pass lattice. 335

The maximum-probability segmentation is deter- 336

mined by Viterbi decoding. The training objective 337

optimizes language-modeling performance, which 338

is measured in Bits Per Character (bpc). 339

Pre-training Procedure In our experiments, we 340

test the transferability of multilingual and monolin- 341

gual pre-trained MSLMs. The multilingual models 342
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Figure 3: Masked Segmental Language model (left)
and Segmental Attention Mask (right). (Figure 3 in
Downey et al., 2021)

are trained on the AmericasNLP 2021 data (see343

Section 3). Since SLMs operate on plain text, we344

can train the model directly on the multilingual345

concatenation of this data, and evaluate it by its lan-346

guage modeling performance on the concatenated347

validation data. As mentioned in Section 3, we348

create two versions of the multilingual pre-trained349

model: one trained on the full AmericasNLP set350

(∼172k lines) and the other trained on the down-351

sampled set, which is the same size as the Quechua352

training set (∼120k lines). We designate these mod-353

els MULTI-PTfull and MULTI-PTdown respectively.354

Our pre-trained monolingual model is trained on355

the full Quechua set (QUECHUA-PT).356

Each model is an MSLM with four encoder lay-357

ers, hidden size 256, feedforward size 512, and358

four attention heads. Character embeddings are359

initialized using Word2Vec (Mikolov et al., 2013)360

over the training data. The maximum segment size361

is set to 10. The best model is chosen as the one362

that minimizes the Bits Per Character (bpc) loss on363

the validation set. For further pre-training details,364

see Appendix B.365

To evaluate the effect of pre-training on the seg-366

mentation quality for languages within the pre-367

training set, we also log MCC between the model368

output and gold-segmented secondary validation369

sets available in Nahuatl and Wixarika (Kann et al.,370

2018, see Section 3). Figure 4 shows the un-371

supervised segmentation quality for Nahuatl and372

Wixarika almost monotonically increases during373

pre-training (MULTI-PTfull).374

Figure 4: Plot of segmentation quality for Nahuatl and
Wixarika during multilingual pre-training (measured
by Matthews Correlation Coefficient with gold segmen-
tation)

5 Experiments 375

We evaluate whether multilingual pre-training fa- 376

cilitates effective low-resource transfer learning for 377

segmentation. To do this, we pre-train SLMs on 378

one or all of the AmericasNLP 2021 languages 379

(Mager et al., 2021) and transfer it to a new target 380

language: K’iche’ (Tyers and Henderson, 2021). 381

As a baseline, we train a monolingual K’iche’ 382

model from scratch. We evaluate performance with 383

respect to the size of the target training set, simulat- 384

ing varying degrees of low-resource setting. To do 385

this, we downsample the K’iche’ training set to 8 386

smaller sizes, for 9 total: {256, 512, ... 215, 47,729 387

(full)}. For each size, we both train a monolingual 388

baseline and fine-tune the pre-trained models we 389

describe in Section 4.4 390

Architecture and Modeling All models are 391

Masked Segmental Language Models (MSLMs) 392

with the architecture described in Section 4. The 393

only difference is that the baseline model is initial- 394

ized with a character vocabulary only covering the 395

particular K’iche’ training set (size-specific). The 396

character vocabulary of the K’iche’ data is a subset 397

of the AmericasNLP vocabulary, so we are able to 398

transfer the multilingual models without changing 399

the embedding and output layers. The Quechua 400

vocabulary is not a superset of the K’iche’, so we 401

add the missing characters to the Quechua model’s 402

embedding block before pre-training (these are 403

randomly initialized). The character embeddings 404

4All of the data and software required to run these experi-
ments can be found at (url redacted)
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for the baseline are initialized using Word2Vec405

(Mikolov et al., 2013) on the training set (again,406

size-specific).407

Evaluation Metrics SLMs can be trained in ei-408

ther a fully unsupervised or “lightly” supervised409

manner (Downey et al., 2021). In the former case,410

only the language modeling loss (Bits Per Char-411

acter, bpc) is used to pick parameters and check-412

points. In the latter, the segmentation quality on413

gold-segmented validation data can be considered.414

Though our validation set is gold-segmented, we415

pick the best parameters and checkpoints based on416

bpc only, simulating the unsupervised case. How-417

ever, to monitor the change in segmentation quality418

during training, we also use Matthews Correlation419

Coefficient (MCC). This measure frames segmen-420

tation as a character-wise binary classification task421

(i.e. boundary vs. no boundary), and measures422

correlation with the gold segmentation.423

To make our results comparable with the wider424

word-segmentation literature, we use the scoring425

script from the SIGHAN Segmentation Bakeoff426

(Emerson, 2005) for our final segmentation F1. For427

each model and target size, we choose the best428

checkpoint (by bpc), apply the model to the com-429

bined validation and test set, and use the SIGHAN430

script to score the output.431

For comparison to the Chinese Word-432

Segmentation and speech literature, any whitespace433

segmentation in the validation/test data is discarded434

before it is fed to the model. However, SLMs435

can also be trained to treat spaces like any other436

character, and thus could be able to take advantage437

of existing segmentation in the input. We leave438

this for future work.439

Parameters and Trials For our training proce-440

dure (both training the baseline from scratch and441

fine-tuning the pre-trained models) we tune hyper-442

parameters on three of the nine dataset sizes (256,443

2048, and full) and choose the optimal parameters444

by bpc. For each of the other sizes, we directly445

apply the chosen parameters from the tuned dataset446

of the closest size (on a log scale). We tune over447

five learning rates and three encoder dropout values.448

As in pre-training, we set the maximum segment449

length to 10. For more details on our training pro-450

cedure, see Appendix B.451

6 Results 452

The results of our K’iche’ transfer experiments at 453

various target sizes can be found in Table 1. In 454

general, the (full) pre-trained multilingual model 455

(MULTI-PTfull) demonstrates good performance 456

across dataset sizes, with the lowest segmenta- 457

tion performance (20.6 F1) being in the zero-shot 458

case and the highest (40.7) achieved on 214 ex- 459

amples. The monolingual baseline outperforms 460

MULTI-PTfull at the two largest target sizes, as 461

well as at size 4096 (achieving the best overall F1 462

of 44.8), but performs very poorly under 2048 ex- 463

amples, and has no zero-shot ability. 464

Interestingly, other than in the zero-shot case, 465

QUECHUA-PT and the comparable MULTI-PTdown 466

perform very similarly to each other. However, the 467

zero-shot transferability of MULTI-PTdown is al- 468

most twice that of the model trained on Quechua 469

only. MULTI-PTfull exceeds both MULTI-PTdown 470

and QUECHUA-PT by a wide margin in every set- 471

ting. Finally, all models show increasing perfor- 472

mance until about size 4096, after which more tar- 473

get examples don’t provide a large increase in seg- 474

mentation quality. 475

Interpretation These results show that MULTI- 476

PTfull provides consistent performance across tar- 477

get sizes as small as 512 examples. Even for size 478

256, there is only a 9% (relative) drop in quality 479

from the next-largest size. Further, the pre-trained 480

model’s zero-shot performance is impressive given 481

the baseline is effectively 0 F1. 482

On the other hand, the performance of the mono- 483

lingual baseline at larger sizes seems to suggest 484

that given enough target data, it is better to train a 485

model devoted to the target language only. This is 486

consistent with previous results (Wu and Dredze, 487

2020; Conneau et al., 2020a). However, it should 488

also be noted that MULTI-PTfull never trails the 489

baseline by more than 5.2 F1. 490

One less-intuitive result is the dip in the base- 491

line’s performance at sizes 8192 and 214. We be- 492

lieve this discrepancy may be partly explainable 493

by sensitivity to hyperparameters in the baseline. 494

Though the best baseline trial at size 2048 ex- 495

ceeds MULTI-PTfull by a small margin, the base- 496

line shows large variation in performance across 497

the top-four hyperparameter settings at this size, 498

where MULTI-PTfull actually performs better on 499

average and much more consistently (Table 2). We 500

thus believe the dip in performance for the baseline 501
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Model
Target Language Segmentation F1

0 256∗ 512 1024 2048∗ 4096 8192 214 215 47,729 (full)∗

MULTI-PTfull 20.6 34.0 37.4 37.4 38.2 40.5 38.6 40.7 38.9 38.2
MULTI-PTdown 15.0 25.1 25.7 29.3 32.5 33.2 33.3 31.5 33.6 31.9
QUECHUA-PT 7.6 29.9 31.0 30.4 30.7 31.0 29.9 33.6 31.8 33.3
MONOLINGUAL 0.002 4.0 3.3 10.3 39.2∗ 44.8 29.4 39.5 44.1 43.2

Table 1: Segmentation quality on the combined validation and test set for each model, at each target training set size.
Star indicates size at which hyperparameter tuning is conducted. For tuned sizes, showing only the performance
of the model with the best bpc. *See Table 2: the best baseline trial achieved slightly better performance than
MULTI-PTfull, but the former is far more sensitive to variation due to hyperparameters at this size

Model
Target Language Segmentation F1

256∗ 2048∗ 47,729 (full)∗

MULTI-PTfull 34.2 ± 0.6 (1.8%) 38.1 ± 0.4 (1.0%) 39.4 ± 1.1 (2.8%)
MULTI-PTdown 25.7 ± 0.6 (2.3%) 30.5 ± 2.3 (7.5%) 31.7 ± 0.6 (1.9%)
QUECHUA-PT 30.1 ± 0.2 (0.7%) 31.4 ± 0.6 (1.9%) 32.7 ± 0.7 (2.1%)
MONOLINGUAL 4.2 ± 0.5 (11.9%) 36.5 ± 6.8 (18.6%) 44.7 ± 2.0 (4.5%)

Table 2: Variation of segmentation quality across the best four hyperparameter combinations for a single size (by
bpc; mean ± standard deviation (stdev ÷ mean); models ranked by mean minus stdev)

at sizes 8192 and 214 may be due to an inability to502

extrapolate hyperparameters from other experimen-503

tal settings.504

7 Analysis and Discussion505

Standing of Hypotheses Within the framework506

of unsupervised segmentation, these results provide507

strong evidence that relevant linguistic patterns can508

be learned over a collection of low-resource lan-509

guages, and then transferred to a new language510

without much (or any) target training data. Further,511

it is shown that the target language need not be512

(phylogenetically) related to any of the pre-training513

languages, even though details of morphological514

structure are ultimately language-specific.515

The hypothesis that multilingual pre-training516

yields increasing advantage over a from-scratch517

baseline at smaller target sizes is also strongly sup-518

ported. This result is consistent with related work519

showing this to be a key advantage of the multilin-520

gual approach (Wu and Dredze, 2020).521

The hypothesis that multilingual pre-training522

also yields better performance than monolingual523

pre-training given the same amount of data seems524

to receive mixed support from our experiments.525

On one hand, the comparable multilingual model526

has a clear advantage over the Quechua model in527

the zero-shot setting, and outperforms the latter in 528

5/10 settings more generally. However, because the 529

Quechua data lacks several frequent K’iche’ char- 530

acters (and these embeddings remain randomly ini- 531

tialized), it is unclear how much of this advantage 532

comes from the multilingual training per-se. In- 533

stead, the advantage may be due to the multilingual 534

model’s full coverage of the target vocabulary— 535

an advantage which may disappear at larger tar- 536

get sizes. Further analysis of this hypothesis will 537

require additional investigation. 538

Significance The above results, especially the 539

strong zero-shot transferability of segmentation per- 540

formance, suggest that the type of language model 541

used here learns some abstract linguistic pattern(s) 542

that are generalizable across languages, and even 543

to new ones. It is possible that these generaliza- 544

tions could take the form of abstract stem/affix or 545

word-order patterns, corresponding roughly to the 546

lengths and order of morphosyntactic units. Be- 547

cause MSLMs operate on the character level (and 548

in these languages orthographic characters mostly 549

correspond to phones), it is also possible the model 550

could recognize syllable structure in the data (the 551

ordering of consonants and vowels in human lan- 552

guages is relatively constrained), and learn to seg- 553

ment on syllable boundaries. 554
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It is also helpful to remember that we select the555

training suite and target language to have some556

characteristics in common that may help facilitate557

transfer. The AmericasNLP languages are almost558

all morphologically rich, with many considered559

polysynthetic (Mager et al., 2021), a feature that560

K’iche’ shares (Suárez, 1983). Further, all of the561

languages, including K’iche’, are spoken in coun-562

tries where either Spanish or Portuguese are the563

official language, and have very likely had close564

contact with these Iberian languages and borrowed565

lexical items. Finally, the target language family566

(Mayan) has also been shown to have close his-567

torical contact with the families of several of the568

AmericasNLP set (Nahuatl, Rarámuri, Wixarika,569

Hñähñu), forming a Linguistic Area or Sprachbund570

(Campbell et al., 1986).571

It is possible that one or several of these shared572

characteristics facilitates the strong transfer shown573

here, in both our multilingual and monolingual pre-574

trained models. However, our current study does575

not conclusively show this to be the case. Lin et al.576

(2019) show that factors like linguistic similarity577

and geographic contact are often not as important578

for transfer success as non-linguistic features such579

as the raw size of the source dataset. Indeed, the580

fact that our Quechua pre-trained model performs581

similarly to the comparable multilingual model (at582

least at larger target sizes) suggests that the benefit583

to using MULTI-PTfull could be interpreted as a584

combined advantage of pre-training data size and585

target vocabulary coverage.586

The nuanced question of whether multilin-587

gual pre-training itself enables better transfer588

than monolingual pre-training requires more study.589

However, taking a more pragmatic point of view,590

multilingual training can be seen as a methodol-591

ogy to 1) acquire more data than is available from592

any one language and 2) ensure broader vocabulary593

overlap with the target language. Our character-594

based model is of course different from more com-595

mon word- or subword-based approaches, but with596

these too, attaining pre-trained embeddings that597

cover a novel target language is an important step598

in cross-lingual transfer (Garcia et al., 2021; Con-599

neau et al., 2020a; Artetxe et al., 2020, inter alia)600

Future Work We believe some future studies601

would shed light on the nuances of segmentation602

transfer-learning. First, pre-training either multilin-603

gually or monolingually on languages that are not604

linguistically similar to the target language could605

help isolate the advantage given by pre-training on 606

any language data (vs. similar language data). 607

Second, we have noted that monolingual pre- 608

training on a language that does not have near-full 609

vocabulary coverage of the target language leaves 610

some embeddings randomly initialized, yielding 611

worse performance at small target sizes. Pre- 612

training a model on a single language that happens 613

to have near-complete vocabulary coverage of the 614

target could give a better view of whether mul- 615

tilingual training intrinsically yields advantages, 616

or whether monolingual training is disadvantaged 617

mainly due to this lack of vocabulary coverage. 618

8 Conclusion 619

This study has shown that unsupervised sequence 620

segmentation ability can be transferred via multi- 621

lingual pre-training to a novel target language with 622

little or no target data. The target language also 623

need not be from the same family as a pre-training 624

language for successful transfer. While training a 625

monolingual model from scratch on large amounts 626

of target data results in good segmentation quality, 627

our experiments show that pre-trained models, es- 628

pecially multilingual ones, far exceed the baseline 629

at small target sizes (≤1024), and seem to be much 630

more robust to hyperparameter variation at medium 631

sizes (2048, 8192, 214). 632

One finding that may have broader implications 633

is that pre-training can be conducted over a set of 634

low-resource languages with some typological or 635

geographic connection to the target, rather than 636

over a crosslingual suite centered around high- 637

resource languages like English and other Euro- 638

pean languages. Most modern crosslingual mod- 639

els have huge numbers of parameters (XLM has 640

570 million, mT5 has up to 13 billion, Xue et al., 641

2021), and are trained on enormous amounts of 642

data, usually bolstered by hundreds of gigabytes 643

in the highest-resource languages (Conneau et al., 644

2020a). 645

In contrast, our results suggest that effective 646

transfer may be possible at smaller scales, by com- 647

bining the data of low-resource languages and train- 648

ing moderately-sized, more targeted pre-trained 649

multilingual models (our model has 3.15 million 650

parameters). Of course, this study can only support 651

this possibility within the unsupervised segmenta- 652

tion task, so future work will be needed to inves- 653

tigate whether transfer to and from low-resource 654

languages can be extended to other tasks. 655
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A AmericasNLP Datasets1034

Composition The detailed composition of our1035

preparation of the AmericasNLP 2021 train-1036

ing and validation sets can be found in Tables1037

3 and 4 respectively. train_1.mono.cni,1038

train_2.mono.cni, train_1.mono.shp,1039

and train_2.mono.shp are the additional1040

monolingual sources for Asháninka and Shipibo-1041

Konibo obtained from Bustamante et al. (2020).1042

train_downsampled.quy is the version of1043

the Quechua training set downsampled to 2151044

lines to be more balanced with the other lan-1045

guages. train.anlp is the concatenation of1046

the training set of every language before Quechua1047

downsampling, and train_balanced.anlp1048

is the version after Quechua downsampling.1049

train_downsampled.anlp is the version of1050

our multilingual set downsampled to be the same1051

size as train.quy. MULTI-PTfull is pre-trained1052

on train_balanced.anlp, MULTI-PTdown1053

is pre-trained on train_downsampled.anlp,1054

and QUECHUA-PT is pre-trained on train.quy.1055

Citations A more detailed description of the1056

sources and citations for the AmericasNLP set can1057

be found in the original shared task paper (Mager1058

et al., 2021). Here, we attempt to give a brief listing1059

of the proper citations.1060

All of the validation data originates from Americ-1061

asNLI (Ebrahimi et al., 2021) which is a translation1062

of the Spanish XNLI set (Conneau et al., 2018) into1063

the 10 languages of the AmericasNLP 2021 open1064

task.1065

The training data for each of the languages1066

comes from a variety of different sources. The1067

Asháninka training data is sourced from Ortega1068

et al. (2020); Cushimariano Romano and Se-1069

bastián Q. (2008); Mihas (2011) and consists of1070

stories, educational texts, and environmental laws.1071

The Aymara training data consists mainly of news1072

text from the GlobalVoices corpus (Prokopidis1073

et al., 2016) as available through OPUS (Tiede-1074

mann, 2012). The Bribri training data is from six1075

sources (Feldman and Coto-Solano, 2020; Margery,1076

2005; Jara Murillo, 2018a; Constenla et al., 2004;1077

Jara Murillo and Segura, 2013; Jara Murillo, 2018b;1078

Flores Solórzano, 2017) ranging from dictionaries1079

and textbooks to story books. The Guaraní train-1080

ing data consists of blogs and web news sources1081

collected by Chiruzzo et al. (2020). The Nahuatl1082

training data comes from the Axolotl parallel cor-1083

pus (Gutierrez-Vasques et al., 2016). The Quechua 1084

training data was created from the JW300 Cor- 1085

pus (Agić and Vulić, 2019), including Jehovah’s 1086

Witnesses text and dictionary entries collected by 1087

Huarcaya Taquiri (2020). The Rarámuri training 1088

data consists of phrases from the Rarámuri dictio- 1089

nary (Brambila, 1976). The Shipibo-Konibo train- 1090

ing data consists of translations of a subset of the 1091

Tatoeba dataset (Montoya et al., 2019), translations 1092

from bilingual education books (Galarreta et al., 1093

2017), and dictionary entries (Loriot et al., 1993). 1094

The Wixarika training data consists of translated 1095

Hans Christian Andersen fairy tales from Mager 1096

et al. (2018). 1097

No formal citation was given for the source of 1098

the Hñähñu training data (see Mager et al., 2021). 1099

B Hyperparameter Details 1100

Pre-training The character embeddings for our 1101

multilingual model are initialized by training 1102

CBOW (Mikolov et al., 2013) on the Americas- 1103

NLP training set for 32 epochs, with a window 1104

size of 5. Special tokens like <bos> that do not 1105

appear in the training corpus are randomly initial- 1106

ized. These pre-trained embeddings are not frozen 1107

during training. 1108

We pre-train for 16,768 steps, using the Adam 1109

optimizer (Kingma and Ba, 2015). We apply a lin- 1110

ear warmup for 1024 steps, and a linear decay af- 1111

terward. We sweep eight learning rates on a grid of 1112

the interval [0.0005, 0.0009] and encoder dropout 1113

values {12.5%, 25%}. A dropout rate of 6.25% 1114

is applied both to the embeddings before being 1115

passed to the encoder, and to the hidden-state and 1116

start-symbol encodings input to the decoder (see 1117

Downey et al., 2021). Checkpoints are taken every 1118

128 steps. 1119

K’iche’ Transfer Experiments Similar to the 1120

pre-trained model, character embeddings are ini- 1121

tialized using CBOW on the given training set for 1122

32 epochs with a window size of 5, and these em- 1123

beddings are not frozen during training. 1124

All models are trained using the Adam optimizer 1125

(Kingma and Ba, 2015) for 8192 steps on all but 1126

the two smallest sizes, which are trained for 4096 1127

steps. A linear warmup is used for the first 1024 1128

steps (512 for the smallest sets), followed by linear 1129

decay. We set the maximum segment length to 1130

10. A dropout rate of 6.25% is applied to the input 1131

embeddings, plus h and the start-symbol for the 1132

decoder. Checkpoints are taken every 64 steps for 1133

13



sizes 256 and 512, and every 128 steps for every1134

other size.1135

For all training set sizes, we sweep 5 learning1136

rates and 3 encoder dropout rates, but the swept1137

set is different for each. For size 256, we sweep1138

learning rates {5e-5, 7.5e-5, 1e-4, 2.5e-4, 5e-4}1139

and (encoder) dropout rates {12.5%, 25%, 50%}.1140

For size 2048, we sweep learning rates {1e-4, 2.5e-1141

4, 5e-4, 7.5e-4, 1e-3} and dropouts {12.5%, 25%,1142

50%}. For the full training size, we sweep learn-1143

ing rates {1e-4, 2.5e-4, 5e-4, 7.5e-4, 1e-3} and1144

dropouts {6.5%, 12.5%, 25%}.1145
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