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Abstract

Image steganography hides multiple images for
multiple recipients into a single cover image. All
secret images are usually revealed without authen-
tication, which reduces security among multiple
recipients. It is elegant to design an authentication
mechanism for isolated reception. We explore
such mechanism through sufficient experiments,
and uncover that additional authentication infor-
mation will affect the distribution of hidden in-
formation and occupy more hiding space of the
cover image. This severely decreases effective-
ness and efficiency in large-capacity hiding. To
overcome such a challenge, we first prove the au-
thentication feasibility within image steganogra-
phy. Then, this paper proposes an image steganog-
raphy network collaborating with separate au-
thentication and efficient scheme. Specifically,
multiple pairs of lock-key are generated during
hiding and revealing. Unlike traditional meth-
ods, our method has two stages to make appro-
priate distribution adaptation between locks and
secret images, simultaneously extracting more
reasonable primary information from secret im-
ages, which can release hiding space of the cover
image to some extent. Furthermore, due to sepa-
rate authentication, fused information can be hid-
den in parallel with a single network rather than
traditional serial hiding with multiple networks,
which can largely decrease the model size. Exten-
sive experiments demonstrate that the proposed
method achieves more secure, effective, and ef-
ficient image steganography. Code is available
at https://github.com/Revive624/Authentication-
Image-Steganography.
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Figure 1. Overview of our AIS compared with traditional methods.
(a) shows the process of other traditional methods. Secret images
are revealed without certification. (b) shows the process of our
method. Correct keys are required to reveal the secret images.

1. Introduction
1.1. Overview and problems

Image steganography involves embedding secret images
within a cover image. The recipients can reveal hidden
images from the stego image. For effective image steganog-
raphy, the stego image should closely resemble the cover im-
age, and recovered images must closely match the original
secret images. Due to confidentiality, image steganography
has been widely employed in digital watermarking (Zhang
et al., 2024; Wang et al., 2023), Internet of Things (IoT)
(Khari et al., 2020), military communications (Pratik et al.,
2022), quantum computing (Bharatwaj & Hasabnis, 2024),
healthcare (Issac & Kumar, 2023), and various domains.

Learning-based image steganography has become main-
stream. Deep Neural Networks (DNNs) (Baluja, 2017;
2019; Zhang et al., 2020a) are introduced in image steganog-
raphy, hiding secret images in a cover image. Some GANs-
based methods (Hayes & Danezis, 2017; Chen et al., 2022;
Kishore et al., 2022; Li et al., 2023) are proposed with a gen-
erator for hiding and a discriminator for identifying. Some
methods (Jing et al., 2021; Lu et al., 2021; Guan et al., 2022)
regard concealing and revealing as a pair of reversible pro-
cesses, and introduce Invertible Neural Networks (INNs) to
hide and reveal images with shared parameters. Recently,
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diffusion-based models (Yu et al., 2024; Yang et al., 2024)
have provided secure and robust steganography. However,
current methods still suffer from three major defects.

(1) Lack of authentication. As shown in Figure 1, all secret
images are revealed at once, without verifying the identity
of recipients. This defect among multiple recipients can
lead to unauthorized access and serious information leakage,
which fails to meet practical application requirements.

(2) Low quality when hiding multiple images. Large-
capacity hiding methods (Lu et al., 2021; Guan et al., 2022)
hide all secret images in the limited space of a cover image.
When the space is insufficient to accommodate more secret
information, the network may either sacrifice the space of
the cover image or lose secret information, both reducing
transmission effectiveness.

(3) Large increase in model size and computational cost.
For traditional methods of serial hiding (Guan et al., 2022;
Zhou et al., 2024), multiple networks are required to be
assembled to hide secret images. This results in a linear
growth in model size and computational cost as the number
of secret images increases.

1.2. Exploration and Challenges

In order to address non-authentication and achieve isolated
reception, it is elegant to introduce an authentication mech-
anism. Following IIS (Zhou et al., 2024), we establish
an authentication-based image steganography network.
Through embedding additional lock information in the cover
image, a corresponding key is required to recover the secret
images. Furthermore, an authentication-free network is
built, which removes authentication while preserving the
hiding network. Based on the above two methods, we con-
duct comparison experiments to evaluate the effectiveness
of authentication and its influence on hiding process on
DIV2K dataset.

In such comparison, through a large number of samples and
lots of statistics, Jensen-Shannon (JS) divergence and Peak
Signal-to-Noise Ratio (PSNR) are calculated to quantify
the global and local differences between cover and stego
images generated by authentication-based method (blue)
and authentication-free variant (red), as shown in Figure 2.
From (a), blue spots show a general distribution of higher
overall JS divergence and lower PSNR. This indicates that
authentication-based method may cause more significant
alterations in the global distribution and also reduce the local
similarity to the cover images. From (b), authentication-
based method shows a great decline in PSNR and SSIM on
average, indicating that the additional lock information will
decrease the similarity between cover and stego images.

Based on the insights gained from the results, our explo-
ration of authentication mechanism highlights rwo crit-

50

20 ..t + Authentication-based
) - Authentication-free

Peak Signal-to-Noise Ratio

00 o1 02 03 04 05 o6 07 08 09 0s 0000 1
Jensen-Shannon Divergence JS Div

(@) (b)

Param

Figure 2. (a) Comparisons of JS Divergence and PSNR between
cover and stego images of authentication-free and authentication-
based methods. (b) Comparisons of PSNR, SSIM, JS Diver-
gence and model parameters between authentication-free and
authentication-based methods on average.

ical challenges for building authentication-based image
steganography, which further motivates our improvement
on embedding lock information.

(1) Embedding authentication information while main-
taining the quality of stego and revealed secret images.
Due to the inconsistent distribution of secret images and
locks, the embedded information usually occupies consid-
erable hiding space of the cover image, resulting in a great
drop in the quality of both stego and revealed secret images
and reducing the transmission effectiveness.

(2) Integrating authentication while limiting the model
size. Compared to authentication-free method, the param-
eter number of authentication-based method grows from
16.3M to 19.9M, shown in Figure 2 (b). The extra parame-
ters bring additional computational cost and severely reduce
transmission efficiency.

1.3. Solution

To overcome the challenges of existing methods, we propose
an Efficient and Separate Authentication Image Steganogra-
phy Network (AIS) with two collaborative stages, consisting
of an Invertible Authentication Network (IAN) and an In-
vertible Hiding Network (IHN), respectively.

In the first stage, IAN introduces an authentication mech-
anism. The mechanism embeds locks in secret images to
ensure that only recipients with correct keys can access the
hidden secret images. Locks and keys are generated from a
dynamic lock-key generation strategy by learning features
of both the cover and secret images. What is more, different
from traditional one-stage methods, our IAN fuses the locks
and secret images. Then, such fused information will be
embedded in the cover image in the second stage (IHN).
This will produce a better distribution adaptation and may
free up space for hiding information. Additionally, IAN
extracts more reasonable primary information from secret
images. This reduces the secret information to be hidden.
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All above strategies can both achieve isolated reception and
produce high-quality stego and revealed secret images.

In the second stage, IHN utilizes the fused lock and secret
information with better distribution adaptation in the hiding
process to produce high-quality stego images. Furthermore,
due to separate authentication, IHN can hide all secret im-
ages in parallel. This approach only requires training a
single hiding network, unlike serial hiding methods that
require an extra network for each secret image. The main
contributions of our method are summarized as follows:

* We propose an Authentication Invertible Steganogra-
phy (AIS) collaboratively consisting of an Invertible
Authentication Network (IAN) and an Invertible Hid-
ing Network (IHN). The network enables isolated re-
ception and enhances security among multi-recipients.

* The proposed IAN can generate pairs of lock-key and
fuse the locks and secret images to make distribution
adaptation. This will decrease the locks occupation of
the hiding space in cover images.

* The proposed IAN also contains learnable mappings to
extract more reasonable primary information from se-
cret images, producing high-quality stego and revealed
secret images on the basis of isolated reception.

» The proposed IHN employs the fused secret and lock
information to produce stego images. IHN also allows
for efficient parallel hiding of secret images, requir-
ing only a single network to be trained, significantly
reducing the model size and computational cost.

2. Related Work

2.1. Authentication-Free Image Steganography

Image steganography aims to conceal secret images within a
single cover image, allowing recipients to accurately reveal
the hidden information. Baluja (Baluja, 2017; 2019) pro-
posed the first deep neural network for image steganography.
HiNet (Jing et al., 2021) used INNs for reversible hiding
and revealing in frequency domain. ISN (Lu et al., 2021)
extended INNs to parallel processing in spatial domain for
multiple secret images. DeepMIH (Guan et al., 2022) ex-
plored a serial hiding strategy with an importance map for
optimized spatial utilization. InvMIHNet (Chen et al., 2024)
achieved large-capacity hiding by splicing multiple images
into a single secret image. Recently, CRoSS (Yu et al.,
2024) explored DDIM Inversion to transform secret images
into stego images without a cover image. However, these
methods do not support recipient verification and reveal all
secret images simultaneously. This increases the risk of
unauthorized access and reduces practical flexibility.

2.2. Authentication-Based Image Steganography

Image steganography with certification is challenging, as it
requires embedding authentication information while min-
imizing the impact on stego and revealed secret images.
Kweon et al. (Kweon et al., 2021) proposed a key mech-
anism based on an encoder-decoder structure. IIS (Zhou
et al., 2024) dynamically generated global and local keys
for each image, embedding fused keys into stego images via
an INN structure for authentication. DiffStega (Yang et al.,
2024) achieved coverless steganography through diffusion
models, where an image prompt serves as a private key
guiding the revealing. Although these methods enable au-
thentication, the authentication information often degrades
the quality of hiding and recovery, reducing transmission
effectiveness. Furthermore, these methods typically have
large model sizes, struggling to balance verifiability and
efficiency in large-capacity hiding.

2.3. Invertible Neural Networks

Invertible Neural Networks (INN’s) establish a bijective map-
ping between data distribution p, and latent distribution p..
Dinh et al. (Dinh et al., 2015; 2017) introduced coupling
layers in generative flow models. Gilbert et al. (Gilbert
et al., 2017) explored the reversibility of INNs. Kingma et
al. (Kingma & Dhariwal, 2018) improved generative flow
models using invertible 1 x 1 convolutional layers. Xiao et al.
(Xiao & Liu, 2020) proposed matrix exponential coupling
layers for improved density estimation performance. Ardiz-
zone et al. (Ardizzone et al., 2019) proposed Conditional
Invertible Neural Networks (CINNs), where a condition
guides the generation. Koehler et al. (Koehler et al., 2021)
theoretically explored the depth and condition of normaliz-
ing flows, which highlights the trade-off between authenti-
cation and generation quality in image steganography.

To address these challenges, we propose distribution adapta-
tion and secret information extraction. This enables isolated
reception while ensuring high quality for both stego and
revealed secret images. Separate authentication promotes
parallel hiding, thereby reducing the model size.

3. Method

In this part, we first demonstrate the feasibility of incor-
porating authentication in our two-stage image steganogra-
phy. Then, we detail the structure of our proposed Efficient
and Separate Authentication Image Steganography Network
(AIS), consisting of an Invertible Authentication Network
(IAN) and an Invertible Hiding Network (IHN), as shown
in Figure 3. TAN embeds locks in secret images and verifies
keys during the revealing process, while extracting more
reasonable primary information of secret images. [HN hides
extracted information in the cover image and reveals it from
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Figure 3. The detail structure of Invertible Authentication Network (IAN) and Invertible Hiding Network (IHN). ® represents Hadamard
product. @ represents element-wise addition. (C) represents channel concatenation. (S) represents channel split.

the stego image. Locks and keys for IAN are generated by
a dynamic generation module, a simplified UNet structure
(Ronneberger et al., 2015). Further details are provided in
Appendix B.

3.1. Feasibility of Authentication

Image steganography involves hiding and revealing pro-
cesses, which can be modeled as a normalizing flow f
(Dinh et al., 2015). x denotes the data domain of secret
images and z denotes the latent domain. The probability
distribution p, () of the secret images can be derived via
the change-of-variable formula:

5f9($)> 7 )

Pz (;0) = p=(fo(x)) - ’det ( ox

where det( ) denotes the determinant. Given data samples
{x*} ¥ |, the parameters 6 can be optimized by maximizing

log likelihood loss:
det (af olz )>D )
ox?

To incorporate authentication information, we adopt the
conditional normalizing flow framework (Ardizzone et al.,
2019; 2021; Wen et al., 2023). The lock and key are denoted
by c and ¢, respectively. The forward mapping is defined
as: z = fg(z, c) and the backward mapping is defined as:
z = fy(x, ). The change-of-variable formula is:

det (afea(if’c))‘ G

N

L0=3" (fog(p-o(a')) +og

i=1

Paje(@]c;0) = p=(fo(,¢)) -

Through the flow, the distribution of the secret images is
influenced by the authentication information of the lock.

Through training, & can be shifted away from the distribu-
tion of x when given the wrong key, while & can approx-
imate the distribution of x when given the correct key. A
detailed proof is provided in Appendix A.2.

3.2. Overall framework

In the forward hiding process, IAN first generates locks
with the dynamic lock-key generation module. Then, locks
and secret images are fused to make distribution adaptation.
Meanwhile, IAN extracts more reasonable primary informa-
tion from the secret images. The cover image is transformed
into the frequency domain to match the extracted informa-
tion in size. Both the cover image and extracted information
are fed into the IHN to produce the stego image, while re-
dundant information is omitted during transmission. In the
backward revealing process, following IIS (Zhou et al.,
2024), redundancy is restored using a Redundancy Predic-
tion Module to better fit the latent distribution. The primary
information is recovered through the reverse process of IHN.
Then, a key is generated by the dynamic lock-key genera-
tion module, and used in the IAN for verification, gradually
decoupling the complete secret image.

3.3. Invertible Authentication Network

IAN comprises several authentication invertible blocks, a
Haar Downsampling Module and a Haar Upsampling Mod-
ule. To enable isolated reception, each secret image is pro-
cessed independently rather than as a combined input.

In the forward hiding process, the Haar Downsampling
Module transforms a RGB secret image S, RP*3*HxW
from the spatial domain to the frequency domain
SpeRBx12x(H/2)x(W/2) = G is then decomposed into a
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low-frequency component S;eRE*3>(H/2)x(W/2) and a
high-frequency component Sj, ER 5> 9> (H/2)x(W/2) '\yhich
are fed into the authentication invertible blocks. The trans-
formation in the i*" block is described by:

et =2+ a(yh),
Yyt =y @exp(B(z't, L)) + v(a" T, L),

where z and y represent the low-frequency and high-
frequency components, L denotes the lock, ® is Hadamard
product, exp(+) is exponential function. The functions «(+),
B(-) and ~y(-) are learnable mappings based on DenseNet
structures (Huang et al., 2017). Unlike general INNs, AN
concatenates x**! and the lock L along the channel dimen-
sion as inputs to these mappings. Through these learnable
mappings, IAN makes distribution adaptation between locks
and secret images, outputting the extracted information S,
with 3 channels and redundant information Rj,.

“

In the backward revealing process, since Ry, in the for-
ward process is omitted, an auxiliary variable is intro-
duced. Following (Xiao et al., 2023), a latent variable
R, €RE*9x(H/2)x(W/2) i5 sampled from a Gaussian dis-
tribution. The invertible blocks iteratively recover the secret
images from this latent variable under the key K for verifi-
cation. The reverse transformation is given by:

— (y* (e K)) @ exp(~Bla’! K)),
1 a(y) )

y'

I =z

where x represents the revealed extracted information, y de-
notes the auxiliary latent variable. The parameters of «(-),
B(-) and ~y(-) are shared between the forward and backward
processes. The key K must closely match the embedded
lock L for accurate decoupling of the secret image. Oth-
erwise, deviations in the key will introduce errors, causing
the revealed secret image to diverge from the original secret
image. Given the correct key, the revealed secret image S,
is reconstructed using the Haar Upsampling Module.

3.4. Invertible Hiding Network

The Invertible Hiding Network (IHN) consists of several
hiding invertible blocks, a Discrete Wavelet Transformation
(DWT) module and an Inverse Discrete Wavelet Transfor-
mation (IWT).

In the forward hiding process, the RGB cover image
C,€RB*3XHXW i transformed from the spatial domain to
the frequency domain C; eRB*12x(H/2)x(W/2) yiz DWT.
This transformation not only aligns C'y with S, in dimen-
sions, but also enhances hiding quality and robustness
against steganalysis (Guan et al., 2022). Thanks to sep-
arate authentication in IAN, IHN can hide secret images in
parallel. The secret image components S22 are concate-
nated along the channel dimension and, together with C/,

are fed into the invertible blocks. The computation within
the i*" invertible block is described as:

2 =2t a(y),

V=g @A) ),
where x and y represent the cover and secret information,
respectively. The functions «(-), 8(+) and ~y(-) share the
same structure as those in the IAN. The forward process
produces a stego image 7'y and redundant information R,,
and T’ is restored to the spatial domain 7" via IWT.

In the backward revealing process, following (Zhou et al.,
2024), a Redundancy Prediction Module (RPM) is em-
ployed to ensure reversibility and enhance the quality of
revealed secret images. RPM is a learnable module with
a residual structure as described in (Mou et al., 2023). It
adapts an auxiliary variable R, from the stego image 7' to
closely approximate R,. This ensures the reversibility of the
invertible blocks and preserves high fidelity in the revealed
secret images. Using 2, and the frequency-domain stego
image T', the reverse computation is defined as:

= (Y — (@) @ exp(—B(z"11)),
_ 7
T —aly), @

y'

33 =z

where the invertible blocks gradually decouple the extracted
information from the stego image. Channel split outputs the
revealed extracted information .S,...

3.5. Loss Functions

Stego images should closely resemble the cover images.
The hiding loss is defined as:

Ly = L3(Co,T) + L2(Cy, Th), ()

where Lo represents the Mean Square Error (MSE) loss,
T; and C} are the low-frequency components of 7" and C,,
after DWT. The low-frequency loss part enhances visual
similarity and improves resistance to steganalysis (Guan
et al., 2022).

Revealed secret images should closely match the original
secret images for effective transmission. Thus, the revealing
loss consists of:

7_252 (S, S5

L, = 252(53,51 —i—ZJS Sk, St,)

&)

where 7S denotes Jensen-Shannon Divergence loss, which
further improves the quality of S;., (Chen et al., 2024).



Efficient and Separate Authentication Image Steganography Network

Table 1. Comparisons between our method and baselines hiding 2, 3, 4, 5 secret images, on DIV2K dataset and ImageNet dataset.

DIV2K IMAGENET
N METHOD  PARAMS  FLOPs TIME
COVER-STEGO SECRET-REVEAL COVER-STEGO SECRET-REVEAL

PSNRT SSIM{ LPIPS| PSNR{ SSIM{ LPIPS| PSNRt? SSIM{ LPIPS| PSNRT SSIM{ LPIPS|

ISN 3.17M 414.1G 46.0Ms 34.661 0.845 0.502 33.734 0.858 0.474 34.489 0.833 0.358 33.470 0.835 0.516

2 DEEPMIH 12.42M  426.5G  103.4mMs 37.460  0.871 0.209 35.969 0.910 0.206 37.209  0.863 0.364 33.723  0.885 0.736
1Is 22.30M  718.0G  180.4Ms  34.619  0.845 0.592 37.471 0.909 0.236 34751  0.854 0.528 38.106  0.900 0.278
AIS(OURS) 5.57TM 186.0G 69.8Ms 42.141 0.913 0.130 38.088 0.944 0.201 41.345 0.917 0.176 35.802 0.911 0.455
ISN 3.34M 436.4G  49.41ms  31.233 0.850 0.564 30.049 0.840 1.136 33.525 0.826 0.576 31.849 0.811 0.891

3 DEEPMIH 19.44M  676.4G  157.1ms 31.286  0.768 1.089 27.298  0.832 2.260 33.995 0.819 0.365 29.560  0.837 0.949
1Is 33.40M 1076.4G  264.6Ms 30.395  0.799 1.030 33.347  0.850 0.537 28.299  0.725 1.515 31.249  0.804 0.821
AIS(OURS) 5.76M 192.1G 87.5Ms 34.721 0.904 0.396 34.761 0.903 0.420 33.334 0.849 0.511 32.033 0.854 0.790
ISN 3.51M 458.6G 50.4ms 29.488 0.712 1.148 29.862 0.786 1.251 32.299 0.816 0.618 30.264 0.807 1.093

4 DEEPMIH  26.46M  926.3G  218.3Ms 28.978  0.682 1.438 23.581 0.740 4.702 31.286  0.776 0.948 26.068  0.768 3.062
1Is 4451M  1434.7G  344.8Ms  27.121 0.746 4.107 29.970  0.841 3.230 27.708  0.699 1.929 27.820  0.769 2314
AIS(OURS) 5.95M 198.2G 102.3Ms  34.947 0.887 0.608 34.100 0.908 0.591 31.711 0.863 0.915 31.048 0.841 0.901
ISN 3.68M 480.9G 51.7Ms 26.735 0.650 2.443 27.374 0.713 2.366 30.522 0.777 1.018 29.077 0.790 1.544

5 DEEPMIH  33.48M 1176.1G  269.1Ms  29.477  0.692 1.594 22.189  0.716 5.880 32.507  0.792 . 26.308  0.786 3.069
1Is 55.62M  1793.0G  439.6Ms  26.676  0.741 3.194 28.676  0.825 2.147 24.345  0.650 3.927 26.293  0.747 2.817
AIS(OURS) 6.15M 204.3G 121.1mMs  36.149 0.887 0.334 30.765 0.854 1.141 32.767 0.841 0.585 30.060 0.833 1.055

Due to strict authentication, keys should closely match the
ISN DeepMIH 1S AlS(ours)

generated locks. This is represented by the key loss:
N
Ly=)_ Li(L' K, (10)
i=1
where £, represents the Mean Absolute Error (MAE) loss.
The authentication mechanism requires that entering a

wrong key should cause the revealed information to diverge
from the secret image. This is enforced by the triplet loss:

N
Li=Y maz{0,L(S., S},)— L2(S5, S},)+margin},

i=1 (1 1)
where S,.,, is a negative sample generated using a random
key during the revealing process, and margin is a constant
set to 1 (Schroff et al., 2015).

Following literature (Zhou et al., 2024), a redundancy loss
is defined to ensure similarity between the predicted redun-
dancy and the forward output of the redundant information:

N
L,=> Ly(R,R}). (12)
i=1

The overall training loss is the weighted sum of the above
losses:

L=MNLj+XoL;.+XsL,+ Ly + L; + Lp, (13)
where A1, A2, A3 are hyper-parameters that balance the
contribution of each loss term.

4. Experiments

We compare our method with three baselines: ISN (Lu
et al., 2021), DeepMIH (Guan et al., 2022) and IIS (Zhou

cover

secrets
reveals

Figure 4. The visual results of experiment of our AIS method and
baselines on DIV2K dataset, hiding 5 secret images.

et al., 2024) in terms of PSNR, SSIM and LPIPS, on DIV2K
dataset and ImageNet dataset. The training settings and
details are provided in Appendix C.

4.1. Quality Analysis

Quantitative Results. Table 1 presents quantitative com-
parisons. The results for the revealed secret images are
reported as averages. For clarity, LPIPS values are scaled
by 103. On DIV2K dataset, our AIS achieves superior
performance across all metrics. For stego images, PSNR,
SSIM, and LPIPS show improvements of 5.062 dB, 0.096,
and 0.512, respectively. For the revealed secret images,
PSNR, SSIM, and LPIPS are optimized by 2.063 dB, 0.046,
and 0.047, respectively. On ImageNet dataset, our AIS
achieves SSIM improvements of 0.043 and 0.026 for stego
images and revealed secret images, respectively. Similar
enhancements are observed in PSNR and LPIPS.
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Figure 5. The visual results of experiments on the effectiveness of
the authentication mechanism. Different forms of wrong keys are
used to verify the uniqueness of the correct key.

Table 2. Detection accuracy on SRNet and ZhuNet among base-
lines and our AIS method.

07
METHODS ACCURACY (%)

SRNET ZHUNET LWENET
ISN 73.50 67.80 67.30
DEEPMIH 60.95 74.00 89.55
1S 61.70 81.75 62.20
AIS(OURS) 52.80 (8.15%)) 61.40(6.40%|) 51.75(10.45%)

Qualitative Results. Figure 4 presents the visual compar-
isons between our method and other baselines. Residual
errors, amplified by a factor of 10, are used to emphasize dif-
ferences between the generated images and the ground-truth
images. From the results, significant color distortions appear
in the stego images and revealed secret images from other
methods. This indicates that a single cover image cannot
effectively accommodate information from multiple secret
images, leading to color loss. In contrast, our AIS method,
which hides only extracted information, narrows the gap
between the stego and cover images while preserving the
fine details of the secret images.

The above results demonstrate that our AIS method signifi-
cantly improves both the stego and revealed secret images.
Our method effectively extracts more reasonable primary
features of secret images, reducing the information needed
for hiding and revealing. Meanwhile, our AIS integrates
the lock with the secret images, partially avoiding embed-
ding information that has an inconsistent distribution in the
cover image. This may reduce the occupation of hidden
space. Both allow a single cover image to accommodate
more secret images, while preserving sufficient information
for high-quality restoration.

4.2. Security Analysis
4.2.1. EFFECTIVENESS OF AUTHENTICATION

To demonstrate the effectiveness of our proposed authen-
tication mechanism, we simulate attempts to reveal secret
images using random keys on DIV2K dataset. As shown in
Figure 5, we use incorrect keys, such as all zeros, all ones,
Gaussian distribution, uniform distribution, and a key of
another secret image. The restored images are almost indis-
tinguishable. Clearly, information revealed using randomly

original ISN DeepMIH 1ns AlS(ours)

DAL AL AL AL AN
B2 A B B2 BA D

cover

secrets
mask

residual

Figure 6. Visual results on ManTraNet among baselines and our
AIS method.

generated keys is almost meaningless among unauthorized
recipients.

These results imply that the authentication mechanism ef-
fectively identifies recipients. Secret images are restored
independently with correct keys. When using a forged key,
the revealed secret images become severely corrupted. This
enhances the system’s security against attacks and provides
flexibility in sending different images to different recipients.

4.2.2. RESISTANCE AGAINST STEGANALYSIS

Steganalysis methods aim to detect hidden information in
stego images. A robust steganography method must per-
form well in both quality and resistance to steganalysis.
Otherwise, attackers can easily identify stego images, com-
promising transmission confidentiality and integrity.

Detection of Stego Image. We test our method against three
state-of-the-art steganalysis methods, SRNet (Boroumand
et al., 2019), ZhuNet (Zhang et al., 2020b), and LWENet
(Weng et al., 2022). 1000 cover-stego image pairs are gen-
erated using baselines and our AIS on ImageNet dataset.
Table 2 shows that our AIS achieves the lowest detection
accuracy among all methods, decreasing by 8.15%, 6.40%
and 10.45%. This improvement is due to the proposed IAN
in our method, which reduces the amount of hidden informa-
tion, making stego and cover images harder to distinguish.

Detection of Secret Information. To evaluate potential in-
formation leakage, we employ ManTraNet (Wu et al., 2019),
a method designed to detect the locations of hidden data
within an image. The white regions in the mask highlight
detected anomalies. Figure 6 shows fewer abnormal ar-
eas detected by ManTraNet in stego images of our method.
While the white areas detected in other methods reveal con-
tours of hidden secret images, those detected in our AIS
hardly reveal any meaningful information. These results
demonstrate superior security of our method in preventing
information leakage.
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Table 3. Ablation experiments on the channel number of extracted
information in the proposed IAN.

COVER-STEGO SECRET-REVEAL

CHANNELS

PSNRT SSIM{ LPIPS| PSNR} SSIM{ LPIPS]

12 33.488 0.876  0.639 27.846 0.790  2.542

9 30.568 0.845  1.232 27751 0.819  3.079

6 20472 0.798  1.548  26.767 0.791  3.094
3(0URS)  36.149 0.887  0.334  30.765 0.854  1.141

4.3. Efficiency Analysis

Table 1 summarizes parameter number, Floating-point Op-
erations (FLOPs), and inference time. Across all settings of
N, our AIS uses fewer parameters than IIS and DeepMIH.
Notably, when N = 5, AIS requires only 6.15M parame-
ters, far fewer than IIS (55.62M) and DeepMIH (33.48M).
In terms of FLOPs, our AIS shows superior computational
efficiency, saving an average of 252.35G compared to ISN.
Additionally, our method significantly reduces inference
time compared to DeepMIH and IIS. Due to the superior
design of AIS, parallel hiding significantly reduces model
size and computational cost. As the number of secret images
increases, our method retains its efficiency advantage. This
scalability demonstrates its suitability for large-capacity
steganography applications.

4.4. Ablation Studies
4.4.1. EXTRACTION CHANNELS

The proposed IAN extracts features of 3 channels from
secret images, focusing on retaining the primary information.
To assess the performance among different channel numbers,
we conduct ablation experiments on DIV2K dataset. The
results summarized in Table 3 show that 3 channels yield
the best quality for both stego and revealed secret images.
This indicates that increasing the channel number intensifies
recovery errors caused by the proposed IHN, leading to
significant information loss and degraded image quality in
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Figure 7. (a) Comparisons of PSNR, SSIM, JS Divergence and

model parameters between authentication-free method and our AIS.

(b) Comparisons of mean and standard deviation between secret
images and locks in one-stage method and extracted information
in our method.
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Figure 8. (a) Example of hiding process of one-stage method and
our two-stage AIS method. (b) Comparisons of information en-
tropy of hidden information and PSNR of revealed secret images
between one-stage method and our two-stage AIS method.

scenarios with more channels.

4.4.2. EFFECTIVENESS OF DISTRIBUTION ADAPTATION

To demonstrate the IAN’s effectiveness of distribution adap-
tation in our AIS method (blue), we compare it with an
authentication-free variant (red) modified from AIS and a
one-stage authentication method on DIV2K dataset. As
illustrated in Figure 7 (a), our method achieves a lower
overall JS Divergence and higher PSNR and SSIM. This
suggests that distribution adaptation partially avoids embed-
ding information with inconsistent distribution in the cover
image. Moreover, due to parallel hiding, only a small num-
ber of parameters has been increased. (b) shows the mean
and standard deviation to compare the information distribu-
tion between the one-stage method and our two-stage AIS
method. In one-stage method, the distribution of locks (

) and secret images (green) is inconsistent, whereas our
AIS (purple) achieves a more consistent distribution. This
indicates that the proposed IAN adapts secret images and
locks to fused information with a consistent latent distribu-
tion. Through such adaptation, AIS may avoid the additional
lock information to occupy the hiding space, enhancing the
quality of both stego and revealed secret images.

4.4.3. EFFECTIVENESS OF PRIMARY INFORMATION

To evaluate the effectiveness of the primary information ex-
tracted by the proposed IAN, we compare our method with
one-stage method without extraction on DIV2K dataset. (a)
shows the difference of the hiding and revealing processes
between one-stage method and our two-stage AIS. This in-
stance displays that the secret image can be restored from
the primary information. In (b), a boxplot compares infor-
mation entropy between extracted information (blue) and
secret images (red), and another boxplot compares PSNR
of revealed secret images between one-stage method (red)
and our AIS (blue). Compared to one-stage method, our
AIS decreases the average information entropy by 1.85, but
improves the average PSNR by 2.086 db. The results indi-
cates that our method may filter the redundant information
to some extent, and contains less redundant information,
extracting more reasonable primary information while pre-
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serving the quality of the revealed secret images.

5. Conclusion

This paper demonstrates the feasibility of an authentication
mechanism and proposes an Efficient and Separate Authen-
tication Image Steganography (AIS) method. AIS embeds
locks in secret images. Distribution adaptation partially
releases the space in cover images and extracts primary in-
formation for hiding, enhancing the quality of both stego
and secret images. A correct key is needed to recover the
secret image, achieving isolated reception among different
recipients. Due to separate authentication, only a single
network needs to be trained, significantly limiting the model
size. The specially designed two-stage method enables se-
cure, effective, efficient, and flexible image steganography.
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A. Derivations
A.1. Derivation of Equation (2)

In Maximum Likelihood Estimation (MLE), the likelihood function L(f|x) can be calculated as:
L(0|z) = p(x]0). (14)
Taking the logarithm on both sides, we have the log likelihood loss Lg:

Ly = log(L(0]x))
= log(p(x]0))

N .
— log [ 5('10)
N =1 (]5)
= log(p(z']0))
i=1
- : dfo ()
= Lzzl (log(pz(fg(ac ))) + log |det < o )’) .
For KL Divergence, we have:
L Pz ()
Dict(p) = [ prlaliog=Le Ehdo ”

- / pa()log (ps ())diz — / pa(@)log(pa(; 6))dz.

As the former part is constant, minimizing KL Divergence is equivalent to maximizing the latter part. We use samples
{x'}N| ~ p.(z) to estimate the expectation of this part of the formula:

N
1 -
Ly=% Z;logpm(m :0). (17)
Omitting 3; and with Equation (1), we have:
N .
) Ofo(x’
Lo=)Y_ (log(pz(fe(rﬁ)» + log |det ( J;@i )> D : (18)
i=1

The above derivation proves that maximizing Ly is equivalent to minimizing KL Divergence, aligning with the goal of
approximating p () with p,(z).

A.2. Validation of Condition c as Key

In this part, we try to prove the feasibility of adding a condition c as the key for verification. The process can be formulated as
z = fp(x,c) and & = f, *(z,¢). This implies two requirements: (a) & ~ p, () when ¢’ is consistent to c. (b) Maximizing
the distance between 2 and = when ¢’ is inconsistent to c. We start from Equation (3):

det (W‘”))‘ . (19)

ﬁx\c’(ﬂcl;g) :pz|c’(f9(xvc)‘c/) ’ O
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Case (a): With ¢’ = ¢, we have:

o (x|c’;0)d

Dzle (fo(z,c)|c) - ’det (afaa(i’c)ﬂdc

afy (2 0) dfo(x, ) (20)

Pzx|c JZ|

Il
\\ \\

z|(' .’L'|

This indicates that with ¢’ consistent to ¢, we have & ~ p,(x).

Case (b): To represent inconsistency between ¢’ and ¢, we assume that ¢’ is randomly sampled, independent from c. The
distribution p (z; 0) is modified as:

De(2;0) = /ﬁm‘cx(az\c’;ﬁ)dc’

= [ petiate o) aer (222)) e

2
:pz(fg(x,c)) det (afe 5 >‘
oo (B2 o (521
Deriving from Equation (4), we have:
9z1 Oz
‘det (8f9(3370)>’ _ ?)‘221 (gig
1 Lo (22)

B(z1,c) 35 B(z1,¢) 5(21,0) 98 da | Oy Oda
(I; € + 821 e + x e 8Z1 812 821 8952

— Blzr0)

With Equation (5), we have:

9 —1 / ,
‘det (fea(z“)> ‘ = B, 23)
Thus, p,.(x; #) can be further simplified to:
Palw36) = py(a) - P, 4

where 0 can be trained to make the distribution of # away from the distribution of 2 when ¢’ is inconsistent with c.

B. Structure of the Dynamic Generation Module

Traditional static keys pose a security risk, as the compromise of a single key could expose all secret images. To mitigate
this, we introduce a dynamic generation strategy that dynamically generates lock-key pairs, ensuring that the lock and key
for each secret image are unique. As a result, even if the key for one image is intercepted, the security of other images
remains unaffected.

In the forward hiding process, as outlined in Table 4, we utilize several convolutional layers and a max-pooling layer to
generate a global lock from the cover image and a local lock from the designated secret image. The fusion lock is then
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Table 4. The detail structure of our proposed Lock-Key Generation Module, which is composed of 4 convolutional layers and an optional
MaxPool layer.

INPUT Co (Hx W x3) St (H x W x 3) T (HxW x3) ‘ Si. (H/2x W/2x3)

CoONV (3x3, 64) + RELU CONV (3x3, 64) + RELU
LAYERS CoONV (3x3, 64) + RELU CONV (3x3, 64) + RELU
MAXPOOL (2x2) MAXPOOL (2x2) ‘
CONV (3x3, 64) + RELU CONV (3x3, 64) + RELU
CoNV (3x3,3)+ RELU CoNV (3x3, 3)+ RELU
OUTPUT LP (H/2x W/2 % 3) K*' (H/2 x W/2 x 3)

Table 5. The results of hiding 6, 7, 8 secret images with our AIS method.

COVER-STEGO SECRET-REVEAL
PSNR1T SSIMt LPIPS] PSNRtT SSIM{T LPIPS]
DIV2K 33.822 0.869 0.430 26.030 0.737 2.690

N DATASETS

6 IMAGENET  33.205 0.856 0.729 28.274 0.791 1.957
7 DIV2K 33.733 0.864 0.332 25.751 0.728 2.447

IMAGENET 34.606 0.864 0.396 27.588 0.769 1.614
3 DIV2K 29.072 0.708 1.373 25.140 0.736 3.564

IMAGENET  30.838 0.812 1.394 27.287 0.765 2.763

obtained through linear combination, formulated as: L’ = o x f(C,) + 3 x f(S?), where f represents a learnable function,
and «, B are user-defined coefficients.

In the backward revealing process, a similar structure is employed to generate the corresponding key from the stego image
and the revealed compressed secret image, as described by: K* = o x g(T') + 3 x ¢'(S!,), where o and 3 are shared with
the forward process, and ¢’ and g share the same parameters. However, the max-pooling layer is excluded in ¢’ since S, is
half the size of 7. Both the global key and local key must match the corresponding lock to ensure that only the intended
recipient can reconstruct the correct key.

C. Training Details

The proposed Efficient and Separate Authentication Image Steganography Network is trained and tested on the DIV2K and
ImageNet datasets. The DIV2K dataset consists of 800 training images cropped to 144 x 144 and 100 test images cropped to
1024 x1024. For ImageNet dataset, we randomly select 20,000 training images cropped to 144 x 144 for finetuning and
5,000 test images cropped to 256 x256. Training is performed for 100K iterations using the Adam optimizer with 5; = 0.9
and By = 0.999. The initial learning rates are set to 2 x 10~* for IAN, and 1 x 10~* for IHN and Dynamic Generation
Module, with a CosineAnnealingLLR scheduler for dynamic adjustment. The hyperparameters A1, Ao and A3 are set to 2, 4,
and 3, respectively. All experiments are conducted on a Nvidia RTX 4090 GPU.

For the three baselines, ISN is reproduced based on the original paper, while DeepMIH and IIS are retrained using open-
source codes. Performance is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM), where
higher values indicate better quality, and Learned Perceptual Image Patch Similarity (LPIPS), where lower values suggest
superior quality.

D. More Experiments

D.1. Very Large Capacity

To explore hiding with very large capacity, we conduct experiments on hiding more secret images with our proposed AIS.
From the results shown in Table 5 and Figure 9, AIS achieves high performance even hiding 8 secret images in a single
cover image. This indicates the superior effect of our proposed IAN, which integrates distribution adaptation and primary
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Figure 9. The visual results of hiding 8 secret images with our AIS method.

information extraction. Through embedding less authentication information and hiding only primary secret information,
more secret images can be hidden and revealed in high quality.

D.2. Visualization of Distribution Adaptation

To better demonstrate the effectiveness of distribution adaptation in the proposed AIS, we visualize the adapted primary
information generated by IAN in Figure 10. For comparison, we also visualize the secret images and lock information in
the traditional one-stage method. From the result, the distribution of secret images and lock information is significantly
inconsistent. When attempting to embed both the secret information and the lock information, such consistency may occupy
a large space, which reduces the quality of the stego images. Our proposed AIS makes distribution adaptation, integrating
the secret information and lock information into a representation with consistent distribution. This may release some space
for hiding more information to some extent.

D.3. Model of Redundancy Prediction Module

In the forward process of IHN, redundant information is generated, which can not be transmitted through the public channel.
Therefore, auxiliary redundancy is required to reveal the secret information. Traditional methods (Jing et al., 2021; Lu et al.,
2021; Guan et al., 2022) randomly samples a case-agnostic variable from the Guassian distribution, which is inconsistent
with the distribution of the original redundant information. This weakens reversibility of the network to some extent. The
Redundancy Prediction Module is employed to learn case-specific auxiliary redundancy with a consistent distribution. IIS
(Zhou et al., 2024) has proved the effectiveness of residual blocks on this target, for the residual structure can learn deep
features.

We conduct experiments on replacing the residual blocks with other model structure, such as UNet, Vision Transformer
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Figure 10. The visual comparison between secret and lock information of other methods and distribution adapted primary information of
our AIS.

Table 6. Comparison of different model structure as Redundancy Prediction Module.

MODEL PARAMS COVER-STEGO SECRET-REVEAL
PSNRT SSIMt LPIPS| PSNRfT SSIMT LPIPS)
UNET 1.933M  34.039 0.898 0.821 35.036 0.909 0.666
VIT 129.8M  35.758 0.920 0.414 34.318 0.879 0.498
CBAM 0.001M  35.762 0.918 0.440 34.546 0.888 0.540
GUASSIAN SAMPLING 0 29.229 0.81 1.499 30.516 0.819 1.049

RESBLOCK(OURS) 0.013M  34.721  0.904 0.396 34.761 0.903 0.420

(ViT), Convolutional Block Attention Module (CBAM). Considering the lightweight design of the module, we use a simple
form of UNet with only a single downsampling and upsampling. ViT is a simplified implement with only one layer. An
additional convolutional layer is added to CBAM to match the number of output channels. We also include the traditional
Gaussian sampling strategy in the experiments. From the results shown in Table 6, residual blocks generate stego and
revealed secret images with the best LPIPS. Compared to other model structure, residual blocks achieve a more balanced
performance between stego images and revealed secret images, while keeps the model size small.

D.4. Resistance against Real Scene Disturbance

We have conducted experiment on DIV2K dataset, hiding 3 secret images, under the perturbations of Guassian noise,
Poisson noise, and JPEG compression, respectively. We visualize some samples of revealed secret images under different
perturbation scales. From the results shown in Figure 11, our proposed AIS can withstand noise within a certain range.
When the ¢ of Guassian noise is set to 1 and the scale of Poisson noise is set to 1, the revealed secret image is almost not
affected. When the scale grows, contour information is still preserved, though noise can be observed visually. For JPEG
compression, our method can still reveal the contour information of the secret images, while the color distortion and detail
information loss are severe.

The result is mainly because our proposed AIS focus on the security of authentication mechanism. This requires that when
the key is different from the lock, the revealed information is far from the original secret images. Through such a target, the
Invertible Authentication Network is trained to be sensitive to minor disturbances. This guarantees that the key should be as
similar as possible to the corresponding lock. Otherwise, random information is introduced to the revealed information
to cover the secret information by the network. Sensitivity makes a trade-off between security and robustness. While the
authentication mechanism is effective, it also makes the network sensitive to real-world scene disturbances.
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Figure 11. The visual result of resistance against real-world scene disturbance.
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In future work, for better robustness, we suggest adding an enhancement module to enhance the key information under JPEG
compression, as well as a noise-guided module to reduce the disturbance of specific noise. Such a method has been partly
researched in (Xu et al., 2022) and can be applied to our proposed AIS. To balance robustness and security, an additional
attention block may need to be added to focus more on the difference between the key and the lock to catch slight changes.
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