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Abstract

We consider the problem of distributed averaging of sensitive attributes in a net-
work of agents without central coordinators, where the graph of the network has
an arbitrary degree sequence (degrees refer to numbers of neighbors of vertices).
Usually, existing works solve this problem by assuming that either (i) the agents
reveal their degrees to their neighbors or (ii) every two neighboring agents can per-
form handshakes (requests that rely on replies) in every exchange of information.
However, the degrees suggest the profiles of the agents and the handshakes are im-
practical upon inactive agents. We propose an approach which solves the problem
with privatized degrees and without handshakes upon a stronger self-organization.
In particular, we propose a simple gossip algorithm that computes averages that
are biased by the variance of the degrees and a mechanism that corrects that bias.
We will suggest a use case of the proposed approach that allows for fitting a linear
regression model in a distributed manner, while privatizing the target values, the
features and the degrees. We will provide theoretical guarantees that the mean
squared error between an estimated regression parameter and a true regression pa-
rameter is O( 1

n ), where n is the number of agents. We will show on synthetic graph
datasets that the theoretical error is close to its empirical counterpart. Also, we
will show on synthetic graph datasets and real graph datasets that the regression
model fitted by our approach is close to the solution when locally privatized values
are averaged by central coordinators.

1 Introduction

Over the last decade there has been significant interest in self-organizing distributed systems, where
the nodes (agents) in a communication network collaborate without central coordinators. One basic
task corresponds to the problem where every agent has an individual value and every agent would
like to know the average of those values. As we will argue, existing works usually assume a form
of handshakes between every two neighboring agents in every exchange of information, i.e., when
one agent uses information of a second agent, this second agent becomes aware of this and must
actively help the process. However, there exist practical scenarios where such interaction is time
consuming due to inactivity of some agents.

To give an illustrative example on communication without handshakes, let us consider a group of
researchers who aim at solving a particular problem. The researchers can follow each other, and
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thus read each other’s currently best strategy in each other’s most recently published paper. The
researchers work on their solution strategy individually and without necessarily directly contacting
others, attempting to improve their current solution strategies based on their individual skills and
the ideas read in the papers of the followed colleagues. They hope that at some point one of them
will find a fully satisfactory solution.

Regarding our setting, we model the agents by a graph where neighboring agents are connected by
edges. The agents have sensitive attributes, such as their degree (the number of neighbors), which
they aim to privatize before sharing them with other agents as otherwise the sensitive attributes
would suggest their profile. We remark that the agents hide (add appropriate noise to) their sensitive
attributes on their own (without central coordinators).

Regarding our approach, the agents commit to a simple gossip algorithm for distributed averaging.
In particular, every agent hides their sensitive attributes under differential privacy noise (differential
privacy is a conventional guarantee of data privacy) and makes them visible to the neighbors.
Then, every agent repeatedly computes the averages over the values revealed by their neighbors
and updates the displayed value by the computed average. At some point this will converge, and
the computed averages will result in the averages that are biased by the variance in the degrees (the
averages are biased when the graph is non-regular). We will provide a mechanism that combines
such biased averages so that the bias is corrected. We remark that our approach is characterized
by self-organization: handshake-free interaction and asynchrony.

We will suggest a use case of our approach for fitting a simple linear regression model, while
privatizing the target values, the features and the degrees. We will provide theoretical guarantees
that the mean squared error between an estimated regression parameter and a true regression
parameter is O( 1

n ), where n is the number of agents. We will show on synthetic graph datasets
that the theoretical error is close to its empirical counterpart. Also, we will show on synthetic
graph datasets and real graph datasets that the regression model fitted by the unbiased averages
computed by our strategy is close to the solution that relies on central coordinators.

We briefly motivate several elements of our setting. Usually, there are two common types of
information flow (Giakkoupis, 2011): pulling, where an agent asks its neighboring agent for its
value, and pushing, where an agent sends its value to a neighboring agent. In this paper, we study
a weak form of pulling where an agent obtains the current value of a neighbor without the neighbor
being aware of this. In particular, every agent continuously publishes its current values so that
its neighbors can obtain it, but there is no other communication (e.g., there is no communication
process to build overlay networks (Jelasity et al., 2009) that can improve distributed computations).
Since the agents do not exchange handshakes (like in the Transport Layer Security protocol),
information dissemination is more robust against inactive agents. Further, we assume that the
degree is a sensitive attribute because in some contexts it suggests the profile of an agent (Hay
et al., 2009; 2010). Finally, we mention that our approach applies for graphs with power-law degree
sequences which, as suggested by Zipf’s law, are common in real-world (e.g., computer, social,
biological) networks.

Outline. In Section 2, we precise our setting. In Section 3, we provide the literature study. In
Section 4, we state our approach. In Section 5, we relate our approach to a use case on linear
regression. In Section 6, we provide theoretical guarantees for the mean squared error between
an estimated regression parameter and a true regression parameter. In Section 7, we discuss the
experiments on synthetic graph datasets and real graph datasets. In Section 8, we conclude.
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2 Preliminaries

In this section, we will precise our setting and notation by describing the graph model (the model
for the communication network of agents) and the attack model (the model for data privacy).

Graph model. We model our network of agents by a graph G = (V,E), where V is the set of
vertices (v ∈ V is a vertex) and E is the set of edges (each edge is a tuple of two vertices). We
denote the order of the graph, i.e. |V |, by n. We denote the degree of a vertex v by dv. This way,
we denote the degree sequence of G by d = (d1, . . . , dn). Further, we denote the minimum degree
and the maximum degree by dmin and dmax, respectively.

We highlight that we will follow the notation where lower-case characters (e.g., x) indicate scalars
or maps, bolded lower-case characters (e.g., x) indicate vectors, bolded upper-case characters (e.g.,
X) indicate matrices, and upper-case characters (e.g., X) do not have a strictly assigned role but
they usually indicate random variables or sets. Also, for x ∈ N, we define [x] as {1, . . . , x}. For
k ∈ Z and x ∈ Rn, we denote the k-th raw moment 1

n

∑n
i=1 x

k
i by µx,k (when k = 1, we denote it

by µx). Similarly, for k, l ∈ Z and x,y ∈ Rn , we will denote 1
n

∑n
i=1 x

k
i y
l
i by µxkyl . Finally, we

denote the vector of 1’s by 1. We provide the tables summarizing the notations in Section A.

Our graph G is an undirected graph with no self-loops or multiple edges. We will model G by a
random graph (a graph with fixed vertices but the presence of the edges being determined by draws
from probability distributions) drawn from the configuration model which is defined as follows:
Definition 1. The configuration model is the probability distribution over graphs that is
parametrized by a degree sequence d, so that for i ∈ [n − 1] and j ∈ {i + 1, . . . , n}, edge (vi, vj) is
present with probability

didj
(
∑n
i′=1 di′)− 1 .

Attack model. We assume that the agents are honest-but-curious, i.e., all agents follow the
established protocols (they are honest), but they try to use the available information to infer
sensitive information of other agents (they are curious). We remark that in our setting where agents
publish information and can see published information from others but no other communication is
possible, it is straightforward to protect against agents which are malicious in the sense they deviate
from the protocol in order to obtain more information. Protecting against agents which deviate
from the protocol to influence the result of the computation, e.g., by publishing false information
(also called data poisoning), is out of the scope of this paper.

We remark that we interpret a basic dataset as a table with instances over rows and (scalar)
attributes over its columns. We introduce a simplified version of the (ε, δ)-indistinguishability
proposed by Dwork et al. (2006), commonly known as differential privacy:
Definition 2. Let ε, δ ≥ 0. A randomized algorithm A is (ε, δ)-differentially private if and only
if for all tuples (D,D′) in a collection where datasets D and D′ differ only in the attribute of one
instance, and for all S ⊆ image(A) we have

Pr(A(D) ∈ S) ≤ eε Pr(A(D′) ∈ S) + δ.

In local differential privacy, the common idea is to add noise to attributes. We refer to such
attributes as sensitive attributes. In central differential privacy, central coordinators add noise
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to statistics computed from attributes, thus it is more common to refer to sensitive statistics as
opposed to sensitive attributes. In this work, we will focus on local differential privacy.

A classic strategy to guarantee (ε, δ)-differential privacy is to generate noisy values from the Gaus-
sian mechanism. We define the Gaussian mechanism in the context of local differential privacy:
Definition 3. Let ε, δ > 0. Let X ⊆ R. Let x ∈ X be a scalar attribute. Let xmin and xmax be,
respectively, the smallest and the largest element in X. The Gaussian mechanism is a mechanism
that privatizes x by taking an observation of the following random variable:

N
(
x,

2 log(1.25/δ)∆2
2(x)

ε2

)
,

where

∆2(x) = ‖xmax − xmin‖2 (2.1)

is the l2 sensitivity. (The definition can be generalized to vector attributes.)

We also give a definition of (ε, δ)-differential privacy for graph data (extends Definition 2):
Definition 4. Let ε, δ ≥ 0. A randomized algorithm A is (ε, δ)-differentially private if and only if
for all triples (D,D′, vo) datasets D,D′ differ only in vertex vo and its attributes (i.e., the difference
is in the label value and the presence/absence of one edge), and for all S ⊆ image(A) we have

Pr(A(D) ∈ S) ≤ eε Pr(A(D′) ∈ S) + δ.

3 Literature study

We are not aware of another approach of distributed averaging without handshakes and privatized
degrees to which we could directly compare our approach. This way, we will discuss some works
with partial solutions and give some reference works that were taken as building blocks.

If the degree was not a sensitive attribute, our problem can be solved by a gossip algorithm that
corrects the bias by an application of the Metropolis–Hastings algorithm (Hastings, 1970). More
specifically, in every gossip iteration, an agent can make use of the degrees of its neighbors to correct
the bias from every value that will be included in the average.

Further, if handshakes among agents were allowed, the community could solve the problem by
making use of an agreed-upon overlay network (a network “built” on top of the initial one). Though,
even if overlay networks were possible, such solution would be characterized by the trade-off between
robustness and communication delay, whereas in this work we try to maintain both. For example,
the spanning tree overlay network guarantees unbiased averages and requires only few handshakes
though it is vulnerable to node failure.

Then, there are several gossip algorithms that solve our problem by relying on handshakes. Boyd
et al. (2006) require the agents to agree on an independent edge set (so-called matching). Kempe
et al. (2003) assume that every agent knows if a sent message failed to reach its destination. Bellet
et al. (2019) assume that an agent always accepts a message sent to it. Dellenbach et al. (2018),
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every two neighbors initialize their communication by sharing a value related to a positive noise for
one and a negative noise for other. Ridgley et al. (2019) use pushing as opposed to pulling, which
in some contexts results in a weaker notion of self-organization.

We remark that garbled circuits (Gascón et al., 2017; Nikolaenko et al., 2013) is a common alter-
native for gossip algorithms. However, they rely on public-key cryptography and the exchange of
public keys is a form of handshakes.

Now we introduce the reference works that were taken as building blocks. Oliveira (2009) gave a
theorem on the matrix norm between the adjacency matrix of an Erdős–Rényi random graph and its
expectation. Such result is useful for obtaining guarantees for distributed computations on graphs
modelled by the Erdős–Rényi random graph, and it has motivated us to work on establishing a sim-
ilar groundwork for graph models with arbitrary degree sequences. Regarding other works, Iutzeler
et al. (2013) provided analysis of a gossip algorithm for distributed averaging on graphs with ar-
bitrary degree sequences. Chierichetti et al. (2011) considered graph models characterized by a
power-law degree sequence. Bellet et al. (2019) provided a definition of differential privacy for
gossip algorithms. Lindell and Pinkas (2009) provided a compendium on privacy-preserving dis-
tributed averaging techniques (though this work focuses more on security than data privacy). Aysal
et al. (2009) considered a gossip algorithm that is asynchronous. Bell et al. (2020) applied unbiased
averages that were computed in a distributed manner for fitting a regression model.

4 Approach

In this section, we will describe the simple gossip algorithm that enables distributed averaging
in communication networks without central coordinators. Then, we will provide a bias removal
mechanism so that the simple gossip algorithm can be applied for computing unbiased averages.

4.1 The simple gossip algorithm

Let ◦ in d◦−1 denote the operator for the element-wise power. We define the simple gossip algorithm:

Algorithm 1: SimpleGossip (SiGo)
Input : A ∈ [0, 1]n×n : adjacency matrix of the graph of agents

itgo ∈ N : number of gossip iterations
w ∈ Rn

Output: z ∈ Rn
d←

∑n
i=1 A·,i

T← diag(d◦−1)A
z← 1

n1TTitgow

We remark that matrix T is the transition matrix and acts as an averaging operator. The con-
struction of T involves the complete adjacency matrix A which suggests that the operation is
synchronous. However, Boyd et al. (2006) mentions that such algorithm can be executed asyn-
chronously (the involvement of A is partial in every iteration). We use the synchronous version for
simplicity.

5



Under review as submission to TMLR

For Algorithm 1 to converge (elements of z get close to each other), it is required that itgo is high
enough and G is a simple, connected graph with at least one odd cycle. Kermarrec and van Steen
(2007) indicate that itgo = dlogne is sufficient for SiGo to converge, when logn is approximately
the diameter of G and the degree sequence d is power-law. We state a theorem for the value of the
output of the algorithm when the algorithm converges and prove it in Subsection B.1:
Theorem 1. Let w ∈ Rn (the theorem holds when this value is a random vector). For every j ∈ [n],

SiGo ((wi)ni=1)j ≈
1
n

1
µd

n∑
i=1

diwi, (4.1)

where SiGo ((.)ni=1)j is j-th element of the output of Algorithm 1.

We remark that Theorem 1 is convenient to use for graphs modelled by the configuration model
(Definition 1) since their expected degree sequence is the degree sequence that parametrizes the
configuration model. We conclude that the theorem shows that the resulting average is biased by
µd and di (for every i ∈ [n]) when di 6= µd (i.e. the graph is non-regular). To give an example, we
will show that the squared difference between the output of Algorithm 1 and the average µw over
the elements of w is non-zero. For j ∈ [n], we have

(
SiGo ((wi)ni=1)j − µw

)2
≈

(
1
n

1
µd

n∑
i=1

diwi − µw

)2

(by Theorem 1)

=
(
µdw
µd
− µw

)2
, (4.2)

which is not equal to 0 when the graph is non-regular, as only then µdw = µdµw.

4.2 The bias removal mechanism

We will devise a bias removal mechanism to correct the bias illustrated by Equation 4.2.

We give an example of how the community can compute an unbiased estimate of µw using sev-
eral runs of Algorithm 1. Firstly, the community performs two runs of Algorithm 1 (executed
sequentially or in parallel), with inputs (wid−1

i )ni=1 and (d−1
i )ni=1, resulting in

SiGo
(
(wid−1

i )ni=1
)
j
≈ 1
n

1
µd

n∑
i=1

wi = µw
µd
, (by Theorem 1)

SiGo
(
(d−1
i )ni=1

)
j
≈ 1
n

1
µd

n∑
i=1

1 = 1
µd
, (by Theorem 1)

where j ∈ [n]. Then, the community can compute

SiGo
(
(wid−1

i )ni=1
)
j

SiGo
(
(d−1
i )ni=1

)
j

≈ µw. (4.3)
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Let k ∈ Z and let j ∈ [n]. We generalize Equation 4.3:

SiGo
(
(wki d−1

i )ni=1
)
j

SiGo
(
(d−1
i )ni=1

)
j

≈
1
n

1
µd

∑n
i=1 di(wki d

−1
i )

1
n

1
µd

∑n
i=1 di(d

−1
i )

(by Theorem 1) (4.4)

= 1
n

n∑
i=1

wki = µwk .

Further, we define U-statistics which generalizes the notion of unbiased estimates:

Definition 5. Let r ≥ 1 be a natural number. Let n ≥ r be a natural number. For i ∈ [n], let
xi ∈ Rr be an observation of a random vector. Let φ : Rr → R. The value

1(
n
r

) (n
r)∑
i=1

φ(xi,1, . . . , xi,r)

is a U-statistic of degree r and kernel φ.

We conclude that the estimates obtained from the bias removal mechanism (Equation 4.4) are U-
statistics of degree 1 and kernel φ : x 7→ xk for k ∈ Z. We remark that U-statistics of degree 1 are
present in some machine learning applications, for example, in classic strategies for fitting linear
regression models and bootstrap aggregation in random forests.

5 Use case on linear regression

We will show a use case for applying our approach for fitting a linear regression model, where every
agent is attributed a sensitive individual value which is derived from their sensitive degrees, and
every agent learns the regression model of those individual values.

We start by defining the simple linear regression model (with one feature and one-dimensional
target value) of our use case. For every i ∈ [n],

yi = θ0 + θ1xi + ξreg,i, (5.1)

where θ0, θ1 ∈ R are regression parameters, Ξreg,i ∼ uni[−lreg/2, lreg/2] is independent, mean-0
regression noise, lreg is the length of the interval of the regression noise, ξreg,i is an observation of
Ξreg,i, xi = (di − µd)2 are features, and yi are target values.

In regression, a common way to estimate the regression parameters θ0, θ1 is to perform computations
from pairs (yi, xi). We denote the estimates of θ0, θ1 by θ̂0, θ̂1, respectively.

Now we will show a basic strategy to obtain the estimates of the regression parameters from unbiased
averages. Let X =

[
1 x

]
∈ Rn×2, where x is the vector of features (over all agents). Let y denote

the vector of target values. Let θ̂ denote the vector of the estimates of the regression parameters.
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The regression model (Equation 5.1) can be expressed and rearranged as follows:

y = Xθ̂ ⇐⇒ XTy = XTXθ̂

⇐⇒ θ̂ = (XTX)−1XTy

⇐⇒ θ̂ =
(

1
n

XTX
)−1 1

n
XTy, (5.2)

since
( 1
nXTX

)−1 = n
(
XTX

)−1. We have that

1
n

XTX =
[

1 1
n

∑
i xi

1
n

∑
i xi

1
n

∑
i x

2
i

]
=
[

1 µx
µx µx2

]
, (5.3)

1
n

XTy =
[ 1
n

∑
i yi

1
n

∑
i yixi

]
=
[
µy µyx

]
, (5.4)

thus the estimates of the regression parameters can be computed from the values µx, µx2 , µy and
µyx. By Definition 5, the values µx, µx2 , µy and µyx are U-statistics of degree 1.

Using Algorithm 1 and its bias removal mechanism (Equation 4.4), the values µx, µx2 , µy, µyx can
be computed from SiGo

(
(d−1
i )ni=1

)
j
, SiGo

(
(xid−1

i )ni=1
)
j
, SiGo

(
(x2
i d
−1
i )ni=1

)
j
, SiGo

(
(yid−1

i )ni=1
)
j
,

SiGo
(
(yixid−1

i )ni=1
)
j
, where j ∈ N. Though we leave a remark that the community needs to firstly

compute µd ≈ 1
SiGo((d−1

i
)n

i=1)
j

because for executing Algorithm 1 with some of the other inputs, it

is required to firstly compute the features xi = (di − µd)2 which involves µd.

We will elaborate on the strategy which can be used by every agent for keeping their sensitive
attributes differentially private. Firstly, we split our privacy budget (ε, δ) evenly in five parts (i.e.,
ε/5, δ/5) because the community executes Algorithm 1 with five different sensitive attributes (as
suggested in the previous paragraph, these are d−1

i , xid−1
i , x2

i d
−1
i , yid−1

i and yixid
−1
i ) to obtain

the U-statistics for regression, and thus we hide every input under independent and appropriate
noise. Such even split is suboptimal because some of those inputs are correlated, though this aspect
is outside the scope of this work. We remark that the even split is appropriate for the Gaussian
mechanism (Definition 3) as suggested by the textbook on differential privacy by Dwork et al. (2014)
Further, instead of adding noise to the inputs of Algorithm 1, we could split the privacy budget to
two parts and hide only the attributes di and the target values yi. However, in the end we would
not necessarily have significantly more accurate estimations of the U-statistics as the computations
of the features amplify the noise. Also, such strategy would complicate the theoretical guarantees
derived later.

We will define the privatized inputs to Algorithm 1. Let k, l,m ∈ Z. A privatized input νi,(k,l,m)
(with respect to the sensitive attribute yki xlidmi ) is an observation of the following random variable:

Ξdp,i,(k,l,m) ∼ N
(
yki x

l
id
m
i , σ

2
dp,(k,l,m)

)
, (5.5)

where

σ2
dp,(k,l,m) = 2 log(1.25/(δ/5))∆2

2(yki xlidmi )
(ε/5)2 (by Definition 3)

=
50 log

( 25
4

1
δ

)
∆2

2(yki xlidmi )
ε

. (5.6)
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We have derived the l2 sensitivities (Equation 2.1) required for regression in Subsection C.1. Further,
we have described the clipping of the five privatized inputs needed for regression in Subsection C.2.

6 Error analysis

In this section, we will discuss the total theoretical error and the total empirical empirical error
between an average of privatized attributes (Equation 5.5) computed by Algorithm 1 and its bias
removal mechanism (Equation 4.4) and an average computed centrally and without privatization.

Firstly, for k, l ∈ Z, we define the unbiased averages computed by our approach from privatized
attributes as follows:

Ssa,dp,go
(k,l) =

SiGo
(
(Ξdp,i,(k,l,−1))ni=1

)
j

SiGo
(
(Ξdp,i,(0,0,−1))ni=1

)
j

, (similarly as in Equation 4.4), (6.1)

where Ξdp,i,(k,l,−1) is defined in Equation 5.5 and j ∈ [n] is chosen arbitrarily because we assume
that Algorithm 1 is run for enough iterations to converge. We remark that the superscripts in
Ssa,dp,go

(k,l) indicate the presence of the three components that contribute to the error: “sa” stands for
finite sampling of individual values, “dp” stands for differential privacy for sensitive attributes and
“go” stands for the application of Algorithm 1 and its bias removal mechanism.

Further, we define the averages computed centrally, without sampling of individual values and
without privatization as follows:

S(k,l) = 1
n

n∑
i=1

Y kreg,ix
l
i, (6.2)

where, for i ∈ [n], Yreg,i is a random variable with

E[Yreg,i] = yi, (6.3)

var (Yreg,i) = var (Ξreg,i) =
l2reg

12 . (6.4)

Theoretical error. Now we define the total theoretical error as follows:

etheo,total
(k,l) = E

[(
S(k,l) − Ssa,dp,go

(k,l)

)2
]
,

where Ssa,dp,go
(k,l) is defined in Equation 6.1 and S(k,l) is defined in Equation 6.2.

We will state a theorem on the asymptotic theoretical guarantees for the total theoretical error in
the estimates required for regression.
Theorem 2. For (k, l) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)}, we have

etheo,total
(k,l) = O

(
1
n

)
,

when the privacy budget (ε, δ) is not extremely low and not extremely high.
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We remark that in Theorem 2 we have (k, l) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)} since for fitting a linear
regression model we aim for the estimates µ̂x, µ̂x2 , µ̂y, µ̂yx as suggested by Equations 5.3, 5.4.
Thus, etheo,total

(0,1) is related to µ̂x, etheo,total
(0,2) is related to µ̂x2 , etheo,total

(1,0) is related to µ̂y, and etheo,total
(1,1)

is related to µ̂yx.

We will sketch the proof of Theorem 2 by decomposing the total error into three components: the
error due to sampling, the error due to differential privacy noise, and the error due to Algorithm
1 and its bias removal mechanism. We remark that for error decomposition, we have followed the
lecture notes by Rosenberg (2016). We start by applying the triangle inequality as follows:

etheo,total
(k,l) = E

[(
S(k,l) − Ssa,dp,go

(k,l)

)2
]

≤ E
[(
S(k,l) − ssa

(k,l)

)2
]

+ E
[(
ssa

(k,l) − S
sa,dp
(k,l)

)2
]

+ E
[(
Ssa,dp

(k,l) − S
sa,dp,go
(k,l)

)2
]
, (6.5)

where

ssa
(k,l) = 1

n

n∑
i=1

yki x
l
i, (6.6)

Ssa,dp
(k,l) = 1

n

n∑
i=1

Ξdp,i,(k,l,0), (6.7)

Ξdp,i,(k,l,0) is defined in Equation 5.5, S(k,l) is defined in Equation 6.2, Ssa,dp,go
(k,l) is defined in Equation

6.1, and (k, l) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)} as required for regression (Equations 5.3, 5.4). We
proceed with defining the theoretical error due to sampling by

etheo,sa
(k,l) = E

[(
S(k,l) − ssa

(k,l)

)2
]
. (6.8)

In Subsection B.2, we show that

etheo,sa
(k,l) =

{
1
n

l2reg
12 µx2l when k = 1,

0 when k = 0.
(6.9)

Then, we define the theoretical error due to differential privacy by

etheo,dp
(k,l) = E

[(
ssa

(k,l) − S
sa,dp
(k,l)

)2
]
. (6.10)

In Subsection B.3, we show that

etheo,dp
(k,l) ≈ 1

n
σ̃2

dp,(k,l,0), (6.11)

where the clipped standard deviation σ̃dp,(k,l,0) is defined in Equation B.10. Finally, we define the
theoretical error due to Algorithm 1 and its bias removal mechanism by

etheo,go
(k,l) = E

[(
Ssa,dp

(k,l) − S
sa,dp,go
(k,l)

)2
]
. (6.12)
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In Subsection B.4, we show that

etheo,go
(k,l) ≈ 1

n
σ̃2

dp,(k,l,0) + µ2
ykxl − 2

µ2
ykxl

µd

√
n

√
2µd√

µd2 σ̃dp,(0,0,−1)
fdaw

( √
n√

2µd2 σ̃dp,(0,0,−1)

)
+
(

1
n

µd2

µ2
d

σ̃2
dp,(k,l,−1) +

µ2
ykxl

µ2
d

)
n

µ2
d

µd2 σ̃2
dp,(0,0,−1)

(√
n

√
2

√
µd2 σ̃dp,(0,0,−1)

fdaw

( √
n√

2µd2 σ̃dp,(0,0,−1)

)
− 1
)
,

(6.13)

where fdaw(x) = e−x
2 ∫ x

0 e
t2 dt and σ̃dp,(0,0,−1) (Equation B.10) is neither close to 0 (privacy budget

is extremely high) nor high (privacy budget is extremely low). In Subsections B.2, B.3, B.4 we
conclude that etheo,sa

(k,l) , etheo,dp
(k,l) and etheo,dp

(k,l) are O( 1
n ), thus etheo,total

(k,l) is also O( 1
n ).

Empirical error. We proceed with the definitions of the empirical errors in a similar way as was
done for the theoretical errors. We define the empirical error due to sampling:

eemp,sa
(k,l) =

(
1
n

n∑
i=1

(yi − ξreg,i)kxli −
1
n

n∑
i=1

yki x
l
i

)2

, (6.14)

where the term (yi − ξreg,i)k = (θ0 + θ1xi)k and (k, l) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)} as required for
regression (Equations 5.3, 5.4). Also, we define the empirical error due to differential privacy:

eemp,dp
(k,l) =

(
1
n

n∑
i=1

yki x
l
i −

1
n

n∑
i=1

νi,(k,l,0)

)2

. (6.15)

Then, we define the empirical error due to Algorithm 1 and its bias removal mechanism:

eemp,go
(k,l) =

(
1
n

n∑
i=1

νi,(k,l,0) −
SiGo

(
(νi,(k,l,−1))ni=1

)
j

SiGo
(
(νi,(0,0,−1))ni=1

)
j

)2

, (6.16)

where j ∈ [n] is chosen arbitrarily as for the theoretical error. Finally, we combine the three
components to the total empirical error:

eemp,total
(k,l) =

(
1
n

n∑
i=1

(yi − ξreg,i)kxli −
SiGo

(
(νi,(k,l,−1))ni=1

)
j

SiGo
(
(νi,(0,0,−1))ni=1

)
j

)2

. (6.17)

7 Experiments

In this section, we will specify our hypotheses and experiments, and interpret the results.

We have conducted two sets of experiments to verify the following hypotheses. The first hypothesis
is that the total theoretical error (Equation 6.5) is close to the total empirical error (Equation 6.17).
We state the details of the experiment for verifying it:
Experiment 1. We will obtain the errors due to sampling (Equations 6.14, 6.9), the errors due
to differential privacy (Equations 6.15, 6.11), the errors due to Algorithm 1 and its bias removal
mechanism (Equations 6.16, 6.13), and the total errors (Equations 6.17, 6.5) for each estimate
µ̂x, µ̂x2 , µ̂x, µ̂yx. The vertical axis will be the error scale, and the horizontal axis will indicate
n ∈ {28, 28 + 27, 29, 29 + 28, 210, 210 + 29}.

11
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The second hypothesis is that the regression parameters computed by Algorithm 1 and its bias
removal mechanism lead to a lower mean squared error between the true target values and the
predicted target values (over a test set) compared to the parameters computed by Algorithm 1
without its bias removal mechanism. We state the details of the experiment for verifying it:

Experiment 2. We will compare the estimates θ̂0, θ̂1 (Equation 5.2) obtained using our approach to
a baseline and a naive approach. The comparison will take the mean squared error between the true
target values and and the predicted target values over a test set. In particular, in each experiment
iteration, we will construct a test set by generating a power-law degree vector d′ of size 27 (Subsection
C.3) and generate a vector y′i (Equation 5.1). Then, we will predict y′pred,i = θ̂0 + θ̂1(d′i − µ̂d)2 and
compute the mean squared error 1

27

∑27

i=1
(
y′pred,i − y′i

)2. For the baseline, we take the case when
the estimates are computed centrally (Equation 6.6). For a naive approach, we take the case when
the estimates are computed by Algorithm 1 and its bias removal mechanism is disabled. The privacy
budget for the baseline and the naive approach is split in four even parts (the privacy budget in our
approach is split in five even parts). The vertical axis will indicate the mean squared error, and the
horizontal axis will indicate ε ∈ {2−2, 20, 22, 24, 26, 28}.

We fix the number of experiment repetitions to itexp = 211. Regarding randomization, in every
experiment repetition we generate new features and target values (for synthetic graphs, we generate
a new degree sequence and a new graph). In Subsection C.3, we discuss generation of synthetic
graphs with power-law degree sequences. In Subsection C.4, we provide the values of the remaining
experiments parameters. In Subsection C.5, we provide secondary hypotheses and experiments.

The synthetic dataset. In Experiment 1, the total theoretical error approaches the total empirical
error, illustrated by Figure 1. (Here, we only interpret the total errors for the estimate µ̂yx, i.e.
(k, l) = (1, 1). The remaining interpretations are moved to Subsection C.6). The difference between
the two errors is mainly due to the approximation using the heuristics (Equations B.15, B.16).

Figure 1: Comparison of the total errors (Equations 6.5, 6.17) for the estimate µ̂yx, i.e. (k, l) = (1, 1)

In Experiment 2, the proposed approach performs better than the naive approach upon lower and
higher privacy budget but not an intermediate one, illustrated in Figure 2. This suggests that the
bias suggested by Equation 4.2 can get lower than the error due to differential privacy, as in the
naive approach the privacy budget is split in four even parts as opposed to five.

12
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Figure 2: Comparison of our approach (Algorithm 1 and its bias removal mechanism) to the baseline
(centralized averaging) and the naive approach (Algorithm 1 without its bias removal mechanism)

The experiments on the synthetic dataset were run on a home machine and took 1 hour and 43
minutes. The most time consuming operation was the matrix power (last line of Algorithm 1).
The storage is mostly affected by the adjacency matrix of the graph. Our implementation becomes
inappropriate to execute in practical time and ordinary memory when n gets around 213.

The real datasets. We consider the graphs of the email-Eu-core network dataset and the au-
tonomous systems AS-733 dataset, both of which are part of SNAP (Leskovec and Krevl, 2014).
The former graph has 1005 vertices, 25571 edges and its diameter is 7; and the latter graph has
6474 vertices, 13895 edges and its diameter is 9. We have processed the graphs by Step 3 of the
procedure described in Subsection C.3 (this guarantees that Algorithm 1 converges and dmax stays
not too high). We also remove the self-loops. Further, we fix the number of experiment repetitions
to itexp = 27 (opposed to itexp = 211 since in the experiments on the real datasets we do not
generate graphs).

We will interpret the results in Experiment 2. Algorithm 1 and its bias removal mechanism performs
better than the naive approach, illustrated in Figure 3 Unlike for the synthetic dataset, Algorithm
1 with its bias removal mechanism performs better over all evaluated privacy budget values. This is
the case because the average degree in the network is higher than for the synthetic dataset, which
results in a higher bias.

Figure 3: Comparing our approach (Algorithm 1 and its bias removal mechanism) to the baseline
(centralized averaging) and the naive approach (Algorithm 1 without its bias removal mechanism).
The email network dataset is on the left and the autonomous systems dataset is on the right
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The experiment on the real datasets was run on a home machine and took 3 minutes for the email
network dataset and 10 hours and 45 minutes on the autonomous systems dataset.

8 Conclusion

Algorithm 1 with its bias removal mechanism performs better than the naive approach for graphs
with higher average degree partially because in such case the bias outweighs a lower split of the
privacy budget (four rather than five parts). We remind that the even privacy split is suboptimal.

Further, the application of the Gaussian mechanism to privatize the degrees is suboptimal since
degrees are natural numbers and the Gaussian mechanism produces real values. A more suitable
strategy could be an application of a differential privacy mechanism that is appropriated for discrete
values, e.g., the discrete Gaussian mechanism proposed by Canonne et al. (2020).

We remark that, in the regression model, features other than xi = (di − µd)2 are possible. For this
work, we chose (di−µd)2 because such choice guarantees the bias when the averages are computed
by Algorithm 1 and it also leads to convenient clipping as (di − µd)2 is non-negative.

Finally, we remark that our approach might be applicable for estimating the unbiased sample
variance which is a U-statistic of degree 2. That is, for z ∈ Rn, the unbiased sample variance
is defined as 1

n(n−1)
∑
j>i(zi − zj)2 = 1

n−1
∑n
i (zi − µz)2, and our approach can compute µz and

1
n

∑n
i (zi − µz)2.
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A Notation

Table 1: Summary of general notation

Notation Meaning Comments
x lower-case character indicates a scalar sometimes denotes a map to a scalar
x bolded lower-case character indicates a vector –
X bolded upper-case character indicates a matrix –
X upper-case character indicates a non-scalar a random variable, a set, . . .
xi i-th element of x –
[x] {1, . . . , x}, x ∈ N –
µxkyl

1
n

∑n
i=1 x

k
i y
l
i, k, l ∈ Z notation µxy implies k = 1, l = 1

1 vector of 1’s (of appropriate length) –

Table 2: Summary of notation related to graphs

Notation Meaning Comments
V set of vertices a vertex represents an agent
E set of edges an edge represents a link between two agents
G graph equivalent to a tuple (V,E)
n number of vertices or order of a graph equivalent to |V |
d (d1, . . . , dn) (degree sequence) –
dmin lowest degree in a degree sequence –
dmax highest degree in a degree sequence –

B Proofs

B.1 Theorem 1

Proof. Our proof is based on a manipulation of the adjacency matrix which allows for a favorable
eigendecomposition. Even though T is not symmetric, we can define

X = diag(d◦1/2)Tdiag(d◦−1/2), (B.1)

where ◦ denotes the operator for the element-wise power. We remark that X is symmetric. Both T
and X have a largest eigenvalue 1, which has multiplicity 1 if G is connected. The right eigenvector
of T is 1, i.e., 1 = T1. It follows that

diag(d◦1/2)1 = Xdiag(d◦1/2)1,

so diag(d◦1/2)1 is an eigenvector of X with eigenvalue 1, normalizing this eigenvector gives

v1 = diag(d◦1/2)1
√
nµd

, (B.2)
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since
√∑n

i=1(
√
di)2 = √nµd. We are interested in 1

n1TTitgow. As X is symmetric, it has real
eigenvalues and orthogonal eigenvectors. Let X = UΛUT be the eigenvalue decomposition of X,
where Λ is a diagonal matrix of eigenvalues in decreasing order, implying Λ1,1 = 1. We can also
see that U:,1 = v1. For a sufficiently high itgo, it holds that

1
n

1TTitgow = 1
n

1T
(
diag(d◦−1/2)Xdiag(d◦1/2)

)itgo
w (by Equation B.1)

= 1
n

1Tdiag(d◦−1/2)Xitgodiag(d◦1/2)w

= 1
n

1Tdiag(d◦−1/2)UΛitgoUTdiag(d◦1/2)w

≈ 1Tdiag(d◦−1/2)Udiag(1, 0, . . . , 0)UTdiag(d◦1/2)w

= 1
n

1Tdiag(d◦−1/2)v1vT
1 diag(d◦1/2)w

= 1
n

1Tdiag(d◦−1/2)diag(d◦1/2)1
√
nµd

1Tdiag(d◦1/2)
√
nµd

diag(d◦1/2)w (by Equation B.2)

= 1
nµd

1
n

(1T1)1Tdiag(d)w

= 1
nµd

1Tdiag(d)w

= 1
n

1
µd

n∑
i=1

diwi.

B.2 Error due to sampling

We will provide some guarantees for the theoretical error due to sampling. We firstly remark the
true average S(k,l) defined in Equation 6.2 involves random variables only for the individual values
yi. The features xi are scalars because they only depend on the degrees di and their mean µd, and
we define the regression model (Equation 5.1) when the graph of agents is already generated. In
other words, the randomness in the graph generation will not be considered in the error due to
sampling. For (k, l) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)} as required for regression, we have

etheo,sa
(k,l) = E

[(
S(k,l) − ssa

(k,l)

)2
]

(by Equation 6.8)

= Ei=1,...,n
Yreg,i

( 1
n

n∑
i=1

Y kreg,ix
l
i −

1
n

n∑
i=1

yki x
l
i

)2
 (by Equations 6.2, 6.6)

= E
[(
S(k,l) − µykxl

)2]
= E

[
S2

(k,l)

]
− 2µykxlE

[
S(k,l)

]
+ µ2

ykxl . (B.3)

We state a rearranged variance formula that we will use later:
E[Z2] = var (Z) + E2[Z], (B.4)
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where Z is any random variable. Further, for k ∈ {0, 1}, we derive

E[S(k,l)] = E

[
1
n

n∑
i=1

Y kreg,ix
l
i

]

= 1
n

n∑
i=1

E
[
Y kreg,i

]
xli

= 1
n

n∑
i=1

yki x
l
i (by Equation 6.3)

= µykxl , (B.5)

var
(
S(k,l)

)
= var

(
1
n

n∑
i=1

Y kreg,ix
l
i

)

= 1
n2 var

(
n∑
i=1

Y kreg,ix
l
i

)

= 1
n2

n∑
i=1

var
(
Y kreg,ix

l
i

)
= 1
n2

n∑
i=1

x2l
i var

(
Y kreg,i

)
=
{

1
n2

l2reg
12
∑n
i=1 x

2l
i when k = 1,

0 when k = 0,
(by Equation 6.4)

=
{

1
n

l2reg
12 µx2l when k = 1,

0 when k = 0.
(B.6)

Now we are ready to continue the derivation of the theoretical error due to sampling:

etheo,sa
(k,l) = E

[
S2

(k,l)

]
− 2µykxlE

[
S(k,l)

]
+ µ2

ykxl (by Equation B.3)

= var
(
S(k,l)

)
+ E2[S(k,l)]− 2µykxlE

[
S(k,l)

]
+ µ2

ykxl (by Equation B.4)

=
{

1
n

l2reg
12 µx2l + µ2

yxl − 2µyxlµyxl + µ2
yxl when k = 1,

µ2
xl − 2µ2

xl + µ2
xl when k = 0,

(by Equations B.5, B.6)

=
{

1
n

l2reg
12 µx2l when k = 1,

0 when k = 0,

We conclude that etheo,sa
(0,l) = 0 and etheo,sa

(1,l) = O( 1
n ).
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B.3 Error due to differential privacy

We will provide some guarantees for the theoretical error due to differential privacy. For (k, l) ∈
{(0, 1), (0, 2), (1, 0), (1, 1)} as required for regression, we have

etheo,dp
(k,l) = E

[(
ssa

(k,l) − S
sa,dp
(k,l)

)2
]

(by Equation 6.10)

= Ei=1,...,n
Ξdp,i,(k,l,0)

( 1
n

n∑
i=1
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i −

1
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 (by Equations 6.6, 6.7)

= E
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)2
]

= µ2
ykxl − 2µykxlE

[
Ssa,dp

(k,l)

]
+ E

[(
Ssa,dp

(k,l)

)2
]
. (B.7)

We derive

E[Ssa,dp
(k,l) ] = E

[
1
n

n∑
i=1

Ξdp,i,(k,l,0)

]

= 1
n

n∑
i=1

E
[
Ξdp,i,(k,l,0)

]
= 1
n

n∑
i=1

yki x
l
i

= µykxl , (B.8)

var
(
Ssa,dp

(k,l)

)
= var

(
1
n

n∑
i=1

Ξdp,i,(k,l,0)

)

= 1
n2 var

(
n∑
i=1

Ξdp,i,(k,l,0)

)

= 1
n2

n∑
i=1

var
(
Ξdp,i,(k,l,0)

)
= 1
n
σ2

dp,(k,l,0). (by Equation 5.6) (B.9)

However, the variance σ2
dp,(k,l,m) is larger than what we have in practice because we clip the sensitive

attributes as discussed in Subsection C.2. Since we use the Gaussian mechanism where differential
privacy noise comes from the normal distribution, we approximate the variance of the clipped
privatized attributes using the formula for the variance of the truncated normal distribution. This
way, for i ∈ [n] and appropriate k, l,m, we have

σ̃2
dp,(k,l,m) = σ2

dp,(k,l,m)

(
1 + αφ(α)− βφ(β)

ω(β)− ω(α) −
(
φ(α)− φ(β)
ω(β)− ω(α)

)2
)
, (B.10)
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where α = a−νi,(k,l,m)
σdp,(k,l,m)

, β = b−νi,(k,l,m)
σdp,(k,l,m)

, a is the lowest value to which νi,(k,l,m) is clipped, b is the
highest value to which νi,(k,l,m) is clipped, φ is the probability density function of the standard
normal distribution and ω is the cumulative distribution of the standard normal distribution.

We remark that we approximate the variance of the clipped privatized attributes that were generated
from the Gaussian mechanism as opposed to generating the privatized attributes from the truncated
normal distribution since we have not found the differential privacy guarantees for the truncated
normal distribution.

Now we are ready to continue the derivation of the theoretical error due to differential privacy:

etheo,dp
(k,l) = µ2

ykxl − 2µykxlE
[
Ssa,dp

(k,l)

]
+ E

[(
Ssa,dp

(k,l)

)2
]

(by Equation B.7)

= µ2
ykxl − 2µykxlE

[
Ssa,dp

(k,l)

]
+ var

(
Ssa,dp

(k,l)

)
+ E2[Ssa,dp

(k,l) ] (by Equation B.4)

≈ µ2
ykxl − 2µ2

ykxl + 1
n
σ̃2

dp,(k,l,0) + µ2
ykxl (by Equations B.10, B.8)

= 1
n
σ̃2

dp,(k,l,0).

We conclude that etheo,dp
(k,l) = O( 1

n ).
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B.4 Error due to Algorithm 1 and its bias removal mechanism

We will provide some guarantees for the theoretical error due to Algorithm 1 and its bias removal
mechanism. For (k, l) ∈ {(0, 1), (0, 2), (1, 0), (1, 1)} as required for regression, we have

etheo,go
(k,l) = E

[(
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(k,l) − S
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(by Equation 6.12)
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We express
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Thus,
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(B.14)

We state some heuristics for a Gaussian variable Z with mean µ and variance σ2 (µ and σ are not
too close to 0 and σ not too high):

E
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1
Z

]
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√

2
σ
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2σ

)
, (B.15)

E
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√
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2σ

)
− 1
)
, (B.16)

where fdaw(x) = e−x
2 ∫ x

0 e
t2 dt is known as the Dawson function, and the comparison

of the heuristics to a sample of 1
Z is performed on stats stack exchange (linguisticturn ,

https://stats.stackexchange.com/users/328865/linguisticturn). This way,
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We continue the derivation of the theoretical error due to Algorithm 1 and its bias removal mech-
anism from Equation B.11:
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Since our analysis relies on the heuristics so that
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we state a weak conclusion that etheo,go
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n ). We support this claim by indicating that
fdaw(
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which result in etheo,go
(k,l) = O( 1

n ).

C Secondary material

C.1 Sensitivity derivations

We will use the Gaussian mechanism for generating differential privacy noise, thus will derive the
sensitivity terms for the five sensitive attributes. We note that the sensitivity terms 2.1 involves
the identity functions because we are concerned with local differential privacy. We give a list of
individual descriptions:
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• The sensitive attribute d−1
i . We assume that dmin = 3. Based on Definition 4, adjacents

datasets of graph data differ in 1 edge, thus

∆2(d−1) = arg max
d′∈[dmin,dmax]

∥∥∥∥ 1
d′
− 1
d′ + 1

∥∥∥∥
2

=
∥∥∥∥ 1
dmin(dmin + 1)

∥∥∥∥
2

= 1
12

• The sensitive attribute xid−1
i . Firstly, we assume that ∆2(xd−1) ≤ 2∆2(x)∆2(d−1) claim-

ing that, for scalars a ≥ a′ ≥ 0 and b ≥ b′ ≥ 0, we have

(ab− a′b′) ≤ 2ab+ 2a′b′ − a′b− ab′

= 2(a− a′)(b− b′)
⇐⇒ ab+ 3a′b′ ≥ a′b+ ab′.

Then,

∆2(x) = arg max
d′∈[dmin,dmax]

∥∥(d′ − µd)2 − (d′ + 1− µd)2∥∥
2

=
∥∥(dmax − µd)2 − (dmax + 1− µd)2∥∥

2

• The sensitive attribute x2
i d
−1
i . Similarly as for the sensitive attribute xid−1

i , we assume
that ∆2(x2d−1) ≤ 2∆2(x2)∆2(d−1), where

∆2(x2) = arg max
d′∈[dmin,dmax]

∥∥(d′ − µd)4 − (d′ + 1− µd)4∥∥
2

=
∥∥(dmax − µd)4 − (dmax + 1− µd)4∥∥

2

• The sensitive attribute yd−1
i . Similarly as for the sensitive attribute xid−1

i , we assume that
∆2(yd−1) ≤ 2∆2(y)∆2(d−1). Then, we claim that

∆2(y) = lreg,

as that’s the largest difference between two independent values of regression noise, and
state that in our setting the agents know lreg (otherwise the agents could not compute this
sensitivity). We highlight that in our setting every agent i knows its individual target value
yi = θ0 +θ1xi+ξreg,i though not its individual components θ0, θ1, µd and ξreg,i. We assume
that θ1 is sufficiently lower than lreg so that the influence of the sensitive attribute di in
∆2(y) is insignificant (and thus absent in the calculation) as θ1xi is already hidden under
regression noise

• The sensitive attribute yixid−1
i . Similarly as for the sensitive attribute xid−1

i , we assume
that ∆2(yxd−1) ≤ 3∆2(y)∆2(x)∆2(d−1), though here we have a coefficient 3 because we
have three sensitivity terms as opposed to two
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C.2 Clipping of differentially private values

We describe the clipping of the five privatized inputs needed for regression: νi,(0,0,−1), νi,(0,1,−1),
νi,(0,2,−1), νi,(1,0,−1), νi,(1,1,−1). Our sensitive attributes do not span over the set of real numbers,
thus the privatized values should stay in the original domains as the sensitive attributes. We
have that d−1 ≥ 1

dmax
because we had fixed dmax. Then, we have xi = (di − µd)2 ≥ 0 and

x2
i = (di − µd)4 ≥ 0 because squared real numbers are always non-negative. Finally, we assume

that yi ≥ 0.

We will clip the privatized inputs at their bounds, though above we listed only the lower bounds
of the elements of the sensitive attributes, and clipping them only at the lower bound would shift
away (bias) the mean of the privatized attributes from the mean of the sensitive attributes. To
avoid this shift, we fix upper bounds at the distance equal to the difference between a sensitive
attribute and its lowers bound. This way, for i ∈ N,

1
dmax

≤ νi,(0,0,−1) ≤ νi,(0,0,−1) +
(
νi,(0,0,−1) −

1
dmax

)
= 2νi,(0,0,−1) −

1
dmax

,

0 ≤ νi,(0,1,−1) ≤ 2νi,(0,1,−1),

0 ≤ νi,(0,2,−1) ≤ 2νi,(0,2,−1),

0 ≤ νi,(1,0,−1) ≤ 2νi,(1,0,−1),

0 ≤ νi,(1,1,−1) ≤ 2νi,(1,1,−1).

C.3 Generation of graph datasets with power-law degree sequences

We describe the procedure that we followed to generate graphs with power-law degree sequences:

1. We generate a power-law degree sequence d′ = (d′1, . . . , d′n) whose every element is gener-
ated (drawn independently) from the following probability distribution:

fpow (d′ | γ) = d′−γ∑dmax−3
d′=1 d′−γ

,

where γ > 1 and the support of the distribution is [1, dmax−3]. We remark that a power-law
degree sequence is characterized by a higher proportion of vertices being attributed with
lower degrees and a lower proportion of vertices being attributed with higher degrees

2. We generate a graph using the configuration model (Definition 1), parametrizing it with
the degree sequence previously generated power-law degree sequence

3. For i ∈ [n], we check if di > dmax − 3 and if so remove arbitrary edges that involve vertex
i until di = dmax − 3. Then, for i ∈ [n − 1], we add edge (vi, vi+1); and for i = n, we add
edge (vn, v1) so that there is at least one cycle in the graph, which guarantees that the
graph is connected. If, for example, edge (vi, vi+1) was already present, we would try to
add a subsequent edge that is absent, that is, we would check edges (vi, vi+2), (vi, vi+3),
. . ., (vi, vi−1). This guarantees that the degree of each vertex increases by 2. Further, if
edge (v1, v3) is absent, we add it also because this guarantees that there is at least one
cycle of odd length in the graph, as the presence of edges (v1, v2), (v2, v3) is assured by
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the previously mentioned procedure that connects the graph. Finally, if the degrees of
some vertices are still lower than 3, we add some arbitrary edges so that the degree of
every vertex is at least 3. Since the resulting graph is connected and has at least one cycle
of odd length, the principles of DeGroot learning suggest that the averages computed by
Algorithm 1 will eventually involve the values of all agents in the network and thus the
algorithm will converge. We denote the degree sequence that results after the addition and
removal edges by d = (d1, . . . , dn). We remark that min(d) = dmin = 3 and max(d) = dmax

C.4 Remaining experiment parameters

We list the values to which we will fix the parameters of the experiment setting (unless indicated
differently in experiment descriptions):

• The order of the graph: n = 210

• The differential privacy parameters: (ε, δ) = (22, 2−7)

• The number of gossip iterations: itgo = 210

• The significance level αci = 0.05. We will compute the confidence intervals based on
Student’s t-distribution. That is, for a vector z of length itexp and whose elements are scalars
(e.g., mean squared errors), we have the confidence interval [µz− lci/2, µz+ lci/2], where µz
and σz are the sample mean and the unbiased sample standard deviation computed from
the elements of z,

lci = 2q
(

1− αci

2 | itexp − 1
) σz√

itexp

is the length of the confidence interval and q is the quantile function of Student’s t-
distribution

• The true parameters of the regression model: θ0 = 212, θ1 = 20

• The length of the support of the uniform distribution for regression noise: lreg = 23

• The scale parameter of the probability distribution used to generate the degree sequence:
γ = 2

• The highest degree: dmax = 26

C.5 Secondary hypotheses and experiments

We have conducted two sets of experiments to verify the following secondary hypotheses.

The third (in total) hypothesis is that larger graphs lead to more precise estimations of the regression
parameters. We state the details of the experiment for verifying it:
Experiment 3. Similarly as in Experiment 2, we will evaluate the estimates θ̂0, θ̂1 expressed
in Equation 5.2 by computing the mean squared error between the true values and the predicted
values over a test set. In the illustration, we will have a curve for each parameter γ ∈ {2, 3, 4}.
The vertical axis will indicate the mean squared error, and the horizontal axis will indicate n ∈
{28, 28 + 27, 29, 29 + 28, 210, 210 + 29}.
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The fourth hypothesis is that the number of gossip iterations approximately equal to the logarithm
of the number of vertices of a graph with a power-law degree sequence is sufficient for Algorithm 1
to converge. We state the details of the experiment for verifying it:

Experiment 4. We will evaluate the variance of the sample that contains the estimates θ̂1 obtained
over all agents. This variance indicates the convergence of Algorithm 1 because the computation of
θ̂1 involves all four estimates µ̂x, µ̂x2 , µ̂y, µ̂yx. In the illustration, we will have a curve for each
parameter itgo ∈ {24 ≈ log 210, 210, 211}. The vertical axis will indicate the variance of the elements
of θ̂1, and the horizontal axis will indicate n ∈ {28, 28 + 27, 29, 29 + 28, 210, 210 + 29}.

We interpret the results on Experiment 3 on the synthetic dataset. The mean squared error de-
creases when the number of vertices increases, illustrated in Figure 4. The illustration also suggests
that the decrease is smoother when the scale parameter γ is lower. This happens because for higher
γ the degree sequence is likely to miss some higher values in the interval [dmin, dmax], and thus the
estimates θ̂0, θ̂1 will lead to a poor fit once the test set happens to include a feature computed using
a degree value that was absent upon computing the estimates for the initial fit. However, for γ = 2
and lower n values we still have wider confidence intervals which is also caused by a poor fit.

Figure 4: Comparison of the mean squared errors between the true values and the predicted values
(over a test set) over several choices of γ

We interpret the results on Experiment 4 on the synthetic dataset. The variance of the sample
that contains the estimates θ1 over all agents approaches a limit once itgo reaches 210, illustrated in
Figure 5. As observed in Experiment 2, for lower n values the confidence intervals are wider due to
a poor fit. For this reason, we evaluate the convergence looking at higher n values. When itgo = 24,
the variance of the parameter estimates is already significantly low though not yet at the limit.

28



Under review as submission to TMLR

Figure 5: Comparison of the variance of the sample that contains the estimates θ̂1 (over all agents)
over several choices of itgo

The complete run of experiments on the synthetic dataset performed on a home machine took 5
hours and 45 minutes.

We interpret the results on Experiment 1 in on the real datasets. In Table 3, we provide the details
of the convergence on the real graph datasets. We remark that itgo = 24 is not enough for Algorithm
1 to converge on the autonomous systems dataset. The better performance on the email network
dataset can be explained by the presence of a lower diameter.

Table 3: Comparison of the variance of the sample that contains the estimates θ̂1 (over all agents)
over several choices of itgo

itgo var(θ̂1) (email network) var(θ̂1) (autonomous systems)
24 ≈ 10−3 ≈ 102

210 ≈ 10−30 ≈ 10−15

211 ≈ 10−30 ≈ 10−28

The complete run of experiments on the real datasets performed on a home machine and took 5
minutes for the email network dataset and 19 hours and 58 minutes on the autonomous systems
dataset.

C.6 Continuation of Experiment 1 on the synthetic dataset

We will interpret the remaining results on Experiment 1. The theoretical errors for the estimates
of the U-statistics required for regression approximate the empirical errors significantly closely, as
illustrated by Figures 6, 7, 8, 9. In Figure 6, we observe that the theoretical error due to sampling
is very close to the empirical error. In Figure 7, the theoretical error due to differential privacy
is sometimes lower than the empirical error. This effect comes from the approximation (Equation
B.10) of the variance of the clipped noisy values, which neglects the fact that a significant portion
of clipped noisy values should be at the extremes of the interval (the shape of the probability
distribution should have increasing curves at the boundaries as opposed to the drastic disappearance
of the tails as in the truncated normal distribution). In Figure 8, the theoretical error due to
Algorithm 1 and its bias removal mechanism is sometimes lower than the empirical error. This
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effect comes from the same reason as for the error due to differential privacy noise and also due
to the use of the approximation for the reciprocal of a random value obtained from the heuristics
given in Equations B.15, B.16. The heuristics worsen when the mean of the random variable gets
closer to 0, which, in our case, happens when dmax increases. The total error is illustrated in Figure
9.

Figure 6: Comparison of the theoretical error and the empirical error due to sampling (Equations
6.8, 6.14) for the estimate µ̂y, µ̂yx

Figure 7: Comparison of the theoretical error and the empirical error due to differential privacy
(Equations 6.10, 6.15) for the estimates µ̂x, µ̂x2 , µ̂y, µ̂yx
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Figure 8: Comparison of the theoretical error and the empirical error due to Algorithm 1 and its
bias removal mechanism (Equations 6.10, 6.15) for the estimates µ̂x, µ̂x2 , µ̂y, µ̂yx

Figure 9: Comparison of the total errors (Equations 6.5, 6.17) for the estimates µ̂x, µ̂x2 , µ̂y, µ̂yx
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