
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZATION ERROR MINIMIZED DEEP LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the vast applications and rapid development of deep learning (DL), under-
standing and improving the generalization ability of deep neural networks (DNNs)
remains a fundamental challenge. To tackle this challenge, in this paper, we first
establish a novel bias-variance decomposition framework to analyze the general-
ization error of DNNs. Based on our new generalization error formula, we then
present a new form of DL dubbed generalization error minimized (GEM) DL by
jointly minimizing the conventional optimization target and an analytical proxy
for the generalization error. Extensive experimental results show that in com-
parison with DNNs trained within the standard DL, GEM DNNs have smaller
generalization errors and better generalization ability, thereby improving DNN
prediction accuracy. Notably, GEM DL can increase prediction accuracy by as
much as 13.19% on ImageNet in the presence of data distribution shift between
training and testing.

1 INTRODUCTION

In the past decade, deep neural networks (DNNs) have demonstrated impressive success in a wide
range of applications. In spite of this, the overfitting problem remains prevalent and significant,
greatly affecting the generalization performance of DNNs. Broadly speaking, overfitting is a phe-
nomenon that DNNs perform good or even perfect on training data, but much worse on new, unseen
data. In other words, DNNs that suffer from overfitting have poor generalization ability.

In the literature, the overfitting issue of DNNs has been extensively studied. Theoretical frame-
works, such as bias-variance tradeoff (Geman et al., 1992) and generalization bounds (Kawaguchi
et al., 2017) shed some light on the generalization behavior of DNNs and provide practitioners with
qualitative guidance to train DNNs with better generalization. However, it’s rare or difficult for
them to be directly applied in learning algorithms to prevent overfitting. On the other hand, there are
also a myriad of empirical works that manage to reduce overfitting and train DNNs with improved
generalization performance. These empirical works, in general, lack strong theoretical foundations,
resulting in limited universality and explainability. To overcome these drawbacks, the purpose of
this paper is to bridge the gap between these two lines of research.

To begin with, we define the generalization error of a learned DNN as the expectation of the squared
difference between training performance and testing performance of the DNN. Using this definition,
we then establish a novel bias-variance decomposition framework within which the generalization
error of the learned DNN can be decomposed into the sum of three terms: (1) the expectation of
conditional testing variance, (2) the expectation of conditional training variance, and (3) the expec-
tation of bias between training and testing. In parallel, we also define the conditional generalization
error of a learned DNN given its weight vector, which can be decomposed similarly into the sum
of conditional testing variance, conditional training variance, and bias between training and testing.
The decomposition formula has clear implications on how to design an effective learning algo-
rithm. It suggests that to achieve a small generalization error, we should search for a model that
minimizes these three terms jointly with the conventional training objective such as the empirical
negative log-likelihood risk in the case of classification. Among the three terms, it is difficult to
represent the conditional training variance analytically. To make such a joint optimization prob-
lem tractable, we further propose analytical proxies for the generalization error and the conditional
generalization error. Upper bound the expectation of conditional training variance by the uncondi-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tional training variance. By demonstrating empirically that the unconditional training variance is
negligible in comparison with the generalization error, it turns out that the analytical proxies are
close approximations to the generalization error and the conditional generalization error. Based on
the analytical proxy of the conditional generalization error, we then modify the conventional deep
learning (DL) by jointly optimizing the conventional training loss and the analytical proxy, yielding
a new form of DL dubbed generalization error minimized (GEM1) DL. To verify the effectiveness of
GEM DL, we conducted extensive experiments for image classification on CIFAR-100 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009). It is shown, by experiments, that for a variety of
DNN architectures, in comparison with DNNs trained within the conventional DL, GEM DNNs
trained within GEM DL indeed have smaller generalization errors and better generalization ability,
achieving consistent gains in prediction accuracy. It’s worth noting that GEM DL can outperform
the convention DL by up to 13.19% in accuracy on ImageNet when there is a data distribution shift
between training and testing. Moreover, the superior performance of GEM DL over the conventional
DL is demonstrated in few-shot and imbalanced data scenarios as well.

The major contributions of this paper are summarized as follows:

• We give new definitions of generalization error and conditional generalization error of a
learned DNN, and establish novel bias-variance decomposition formulas for them, offering
new insights into the generalization behavior of DNNs.

• We present analytical proxies (i.e., close approximations) for the generalization error and
the conditional generalization error.

• Based on the new bias-variance decomposition and analytical proxies, we develop a new
training framework dubbed GEM DL, which jointly minimizes the conventional training
loss and the analytical proxy for the conditional generalization error.

• The superior performance of GEM DL over the conventional DL is further confirmed by
extensive experiments on CIFAR-100 and ImageNet for a variety of DNN architectures and
different application scenarios including JPEG compression, Gaussian blurring, few-shot
learning and imbalanced data scenarios.

2 RELATED WORK

Extensive efforts have been made in recent years to understand generalization in DL. Among them
are a body of principled mathematical works on deriving generalization bounds (Kawaguchi et al.,
2017; Xu & Raginsky, 2017; Jakubovitz et al., 2019; Jiang et al., 2019; Neu et al., 2021), which
upper bound the population risk by terms related to the training data and the model’s properties.
While significant progress has been made, many of these established bounds remain loose or even
vacuous, offering limited insight into the remarkable generalization abilities of neural networks
observed in practice (Gastpar et al., 2023). Moreover, although generalization bounds are primarily
developed to explain generalization behavior and provide generalization guarantees, they often fall
short in being applied to improve generalization in DL empirically.

Also related to this above line of theoretical works are those works on bias-variance tradeoff (Geman
et al., 1992; Domingos, 2000). It is well known that the expected error on an unseen test sample can
be decomposed into the bias, which measures the discrepancy between the model class and the data
distribution, and the variance, which measures the variability of the model given the randomness
involved in training. Conventional wisdom suggests that as a model’s complexity—often measured
by the number of its parameters—increases, its variance increases while its bias decreases (Geman
et al., 1992). This belief has long influenced model selection practices, advocating for a model that
is neither too simple nor too complex in order to strike the optimal balance between bias and vari-
ance, thereby minimizing generalization error. However, this view has been called into question by
numerous recent works (Zhang et al., 2017a; Novak et al., 2018; Neal et al., 2018; Belkin et al.,
2019; Yang et al., 2020), which present evidence that modern neural networks often benefit from
increased capacity, contradicting the classical bias-variance tradeoff. Controversy aside, like gener-
alization bounds, the classical bias-variance decomposition primarily serves as theoretical guidance

1Throughout the paper, GEM will stand for either “generalization error minimized” or “generalization error
minimization”.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

for model selection but does not directly contribute to training a given DNN model with reduced
generalization error.

In contrast, in this paper, we analyze, for any given learned DNN, its generalization error and con-
ditional generalization error defined as the unconditional and conditional expectation of the squared
difference between training performance and testing performance of that DNN. We establish a new
form of bias-variance decomposition, which can be applied directly to train a given DNN model
with reduced generalization error and better generalization performance by jointly minimizing the
conventional training loss and the analytical proxy for the conditional generalization error. Its prac-
ticality is similar to that of existing empirical methods aimed at reducing overfitting and improving
generalization of DNNs, including weight decay (Krogh & Hertz, 1991), early stopping (Morgan
& Bourlard, 1989), dropout (Srivastava et al., 2014), label smoothing (Szegedy et al., 2016), con-
fidence penalty (Pereyra et al., 2017), and data augmentation such as Cutout (DeVries & Taylor,
2017), Mixup (Zhang et al., 2017b) and Cutmix (Yun et al., 2019). Compared to these empirical
methods, our approach is grounded in solid mathematical foundations, as it directly leverages the
new bias-variance decomposition formula. More importantly, our method is orthogonal to existing
techniques in modern DL designed to improve DNN generalization, as it can further enhance DNN
performance when combined with those methods.

3 GENERALIZATION ERROR ANALYSIS

3.1 DEFINITION OF GENERALIZATION ERROR

Let (X,Y) be a pair of random variables, the distribution of which governs training data,
where X represents an input to a DNN, and Y is the ground truth label of X . Let D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} be a training set with size n, where {(xi, yi)}ni=1 is a sequence
of independent copies of (X,Y). Let fθ denote a DNN architecture parameterized by a weight vec-
tor θ, which, given θ, outputs fθ(x) in response to an input x. When a learning algorithm endowed
with a loss function L(fθ(x), y) is applied to D and the DNN architecture, a learned model fθ̂ is
generated, where θ̂ is the learned weight vector. In general, θ̂ is a solution or an approximate solution
to

min
θ

1

n

n∑
i=1

L(fθ(xi), yi) ≈ min
θ

E[L(fθ(X), Y)], (1)

where “≈” is valid with high probability by the law of large numbers. Once the trained model fθ̂ is
obtained, we can measure its training performance by

Ω(D, θ̂) =
1

n

n∑
i=1

L(fθ̂(xi), yi).

Let (U, V) be another pair of random variables, the distribution of which governs testing data, where
U represents an input to a DNN, and V is the ground truth label of U . In general, (X,Y) and (U, V)
may or may not have the same probability distribution. Let T = {(u1, v1), (u2, v2), . . . , (um, vm)}
be a testing set with size m, where {(uj , vj)}mj=1 is a sequence of independent copies of (U, V).
Applying the trained model fθ̂ to T , one can measure its testing performance by

Ω(T, θ̂) =
1

m

m∑
j=1

L(fθ̂(uj), vj).

Note that since D is random, so is fθ̂. Define the generalization error of fθ̂ as

Γ = E
[
Ω(D, θ̂)− Ω(T, θ̂)

]2
, (2)

where the expectation is taken with respect to D, T , and all other random elements involved in
the training process. Throughout this paper, T is assumed to be independent of D and the training
process. Given any θ, let

Γ(θ) = E
[
Ω(D, θ̂)− Ω(T, θ̂)

∣∣∣θ̂ = θ
]2

. (3)

In view of the law of total expectation, it follows that Γ = E[Γ(θ̂)]. Subsequently, we refer to Γ(θ)

as the conditional generalization error of fθ̂ given θ̂ = θ. The smaller Γ is, the better fθ̂ generalizes.
Thus, to attain fθ̂ with better generalization, one should take Γ into consideration during training.
In order to implement this idea, we first analyze Γ through a nice bias-variance decomposition.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 DECOMPOSITION OF GENERALIZATION ERROR

We begin with the preparation of some quantities which come handy in the subsequent decompo-
sition. Note that since θ̂ depends only on D and the training process, it follows that T and θ̂ are
independent. Given θ̂ = θ, let

K(θ) = E
[
Ω(T, θ̂)

∣∣∣θ̂ = θ
]
= EU,V [L(fθ(U), V)] , (4)

where EU,V denotes the expectation with respect to (U, V). Similarly, given θ̂ = θ, let

J(θ) = E
[
Ω(D, θ̂)

∣∣∣θ̂ = θ
]
. (5)

Note that K(θ) and J(θ) are the conditionally expected testing performance and the conditionally
expected training performance given θ̂ = θ, respectively.
Theorem 1. Let Γ and Γ(θ) be the generalization error and conditional generalization error defined
in (2) and (3). Then the following hold:

Γ(θ) = Var(Ω(T, θ̂)
∣∣∣θ̂ = θ) + Var(Ω(D, θ̂)

∣∣∣θ̂ = θ) + [J(θ)−K(θ)]2 , (6)

and

Γ = E
[
Var(Ω(T, θ̂)

∣∣∣θ̂)]+ E
[
Var(Ω(D, θ̂)

∣∣∣θ̂)]+ E
[
J(θ̂)−K(θ̂)

]2
, (7)

where

Var(Ω(T, θ̂)|θ̂) = ET

[
(Ω(T, θ̂)−K(θ̂))2

∣∣∣θ̂]
is the conditional variance of Ω(T, θ̂) given θ̂ and

Var(Ω(D, θ̂)|θ̂) = ED|θ̂

[
(Ω(D, θ̂)− J(θ̂))2

∣∣∣θ̂]
is the conditional variance of Ω(D, θ̂) given θ̂.

Proof. By assumption, T is independent of D and θ̂. For any θ, it can be verified that

Γ(θ) = E
[
(Ω(D, θ̂)− Ω(T, θ̂))2

∣∣∣θ̂ = θ
]

= ED|θ̂=θET

[
(Ω(D, θ̂)− Ω(T, θ̂))2

∣∣∣θ̂ = θ
]

(8)

= ED|θ̂=θ

[
Var(Ω(T, θ̂)|θ̂ = θ) + (Ω(D, θ̂)−K(θ̂))2

∣∣∣θ̂ = θ
]

(9)

= Var(Ω(T, θ̂)|θ̂ = θ) + ED|θ̂=θ

[
(Ω(D, θ̂)−K(θ̂))2

∣∣∣θ̂ = θ
]

= Var(Ω(T, θ̂)|θ̂ = θ) + Var(Ω(D, θ̂)|θ̂ = θ) + [J(θ)−K(θ)]2, (10)

where (8) follows from the fact that T is independent of (D, θ̂), (9) follows (4), and (10) is due to
(5). This completes the proof of (6). The decomposition (7) follows from (6) and the law of total
expectation.

From Theorem 1, the generalization error Γ is decomposed into three meaningful terms, namely (1)
the expectation of conditional testing variance E[Var(Ω(T, θ̂)|θ̂)], (2) the expectation of conditional
training variance E[Var(Ω(D, θ̂)|θ̂)], and (3) the expectation of bias between training and testing
E[J(θ̂) − K(θ̂)]2. In the next section, we will leverage this result to propose a new form of deep
learning.

4 GENERALIZATION ERROR MINIMIZED DL

4.1 PROXIES FOR Γ(θ) AND Γ

In order to attain a DNN model fθ̂ with small generalization error, it follows from Theorem 1 that a
desirable learning algorithm should generate θ̂ so that both Γ(θ̂) and the conventional training loss
E[L(fθ̂(X), Y)] are small. Expand the last term in (6), and rewrite Γ(θ̂) as follow

Γ(θ̂) = Var(Ω(T, θ̂)|θ̂) +K2(θ̂) + Var(Ω(D, θ̂)|θ̂) + J(θ̂)[J(θ̂)− 2K(θ̂)]. (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Since T and θ̂ are independent, the first two terms on the right side of (11) have neat analytical
expressions, which will be clear later. The fourth term therein is generally small since J(θ̂) is
related to the conventional training loss E[L(fθ̂(X), Y)], and the training process aims to minimize
it. Hence, the fourth term on the right side of (11) can be ignored. The third term on the right side
of (11), however, is problematic; it is intractable due to the intervolving nature between D and θ̂. To
tackle this problem, we go back to (7) and examine how large the expectation of conditional training
variance E[Var(Ω(D, θ̂)|θ̂)] could be. At this point, we invoke the following proposition:

Proposition 1. Let Var(Ω(D, θ̂)) be the unconditional training variance. Then we have the follow-
ing upper bound

E
[
Var(Ω(D, θ̂)

∣∣∣θ̂)] ≤ Var(Ω(D, θ̂)). (12)

Proof. This is a simple consequence of the law of total variance.

Intuitively, the unconditional training variance Var(Ω(D, θ̂)) should be small, given the fact that
Ω(D, θ̂) is always small as long as θ̂ is effectively optimized on D. This is indeed confirmed later
by our numerical analysis in A.1, which shows empirically that Var(Ω(D, θ̂)) ≪ Γ in practice. As
a result, it follows from (12) that the expectation of conditional training variance E[Var(Ω(D, θ̂)|θ̂)]
is even more negligible. This, combined with Markov inequality, further implies that with high
probability, Var(Ω(D, θ̂)|θ̂) is negligible as well and hence can be ignored from (11). Therefore,
both Γ(θ̂) and Γ can be approximated, respectively, by

Γ(θ̂) ≈ Γ̂(θ̂) = Var(Ω(T, θ̂)|θ̂) +K2(θ̂) (13)

and

Γ ≈ Γ̂ = E[Var(Ω(T, θ̂)|θ̂)] + E[K2(θ̂)]. (14)

Hereafter, Γ̂(θ̂) and Γ̂ are referred to as proxies for Γ(θ̂) and Γ, respectively.

Since T is independent of θ̂, the proxy Γ̂(θ), given θ̂ = θ, depends only on the distribution of (U, V),
but not on the testing dataset T itself, and actually has a neat analytical expression, as shown below:

Γ̂(θ) = Var(Ω(T, θ̂)|θ̂ = θ) +K2(θ)

= Var(Ω(T, θ)) +K2(θ)

=
1

m

(
E[L(fθ(U), V)]2 −K2(θ)

)
+K2(θ)

=
1

m
E[L(fθ(U), V)]2 +

m− 1

m
K2(θ)

=
1

m
E[L(fθ(U), V)]2 +

m− 1

m
(E[L(fθ(U), V)])2 (15)

where (15) is due to (4).

Two special cases are particularly interesting: Case 1 where (U, V) and (X,Y) have the same
distribution; Case 2 where (U, V) and (X,Y) have different distributions, but the distribution of
(U, V) can be obtained from (X,Y) through common signal processing such as JPEG compression,
Gaussian blurring, etc. In these two special cases, Γ̂(θ) can be rewritten as

Γ̂(θ) =
1

m
E[L(fθ(X), Y)]2 +

m− 1

m
(E[L(fθ(X), Y)])2 (16)

in Case 1, and as

Γ̂(θ) =
1

m
E[L(fθ(X̂), Y)]2 +

m− 1

m
(E[L(fθ(X̂), Y)])2 (17)

in Case 2, where X̂ is a processed version of X . Each expected value in (16) and (17) can be
approximated by its respective empirical mean over a mini-batch of the training dataset D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 GEM DEEP LEARNING

Based on our discussions above, instead of minimizing the conventional training loss

LERM (θ) = E[L(fθ(X), Y)] (18)

where ERM stands for empirical risk minimization, our proposed GEM DL minimizes both
LERM (θ) and the generalization error proxy Γ̂(θ) jointly. Define

LGEM (θ) = E[L(fθ(X), Y)] + λE[L(fθ(U), V)]2 + β(E[L(fθ(U), V)])2 (19)

where (U, V) is replaced by (X,Y) in Case 1, and by (X̂, Y) in Case 2, and where λ ≥ 0 and β ≥ 0
are two hyperparameters. In other words, in GEM DL we solve the following optimization problem
instead

min
θ

LGEM (θ) (20)

where the hyperparameter β is introduced to give us more flexibility without being restricted to the
relationship β = (m− 1)λ as shown in (15) to (17). Note that on the right side of (19), the second
expectation is the second moment, and the term after β is the squared mean.

By minimizing LGEM (θ), we essentially guide the training process to search for a DNN model
with small generalization error while minimizing the empirical risk, so as to prevent overfitting and
improve generalization.

4.3 APPLICATION TO CLASSIFICATION

Despite its universality, in this paper we apply GEM DL to the classification task only, given the
popularity of the latter in DL applications. In multiclass classification, a DNN fθ(x) = pθ(·|x)
is mathematically a mapping from an input x ∈ X to a probability vector pθ(·|x) ∈ ∆C , where
C is the number of all possible classes. Conventionally, the loss function for classification is the
negative log-likelihood (NLL) loss, i.e., L(fθ(x), y) = − log pθ(y|x), where y is the ground truth
label corresponding to x. Therefore, for the classification task, we have

LGEM (θ) = E[− log pθ(Y |X)] + λE[− log pθ(V |U)]2 + β(E[− log pθ(V |U)])2 (21)

where (U, V) is replaced by (X,Y) in Case 1, and by (X̂, Y) in Case 2.

When label smoothing (LS) Szegedy et al. (2016) is applied to regularize L(fθ(x), y) =
− log pθ(y|x), we simply replace the the first term on the right side of (21) by

E[−(1− α) log pθ(Y |X) + αDKL(u∥pθ(·|X))], (22)

yielding

LGEM (θ) = E[−(1− α) log pθ(Y |X) + αDKL(u∥pθ(·|X))]

+ λE[− log pθ(V |U)]2 + β(E[− log pθ(V |U)])2 (23)

where (U, V) is replaced by (X,Y) in Case 1, and by (X̂, Y) in Case 2, u is a uniform distribution
over all C possible classes, α controls the strength of the smoothing effect, and DKL(u∥pθ(·|X)) is
the divergence between u and pθ(·|X).

The same principle adopted in (22) and (23) will be applied to handle other regularization terms for
ERM as well, which will not affect the terms related to Γ̂(θ) in LGEM (θ), in order to guarantee the
orthogonality of GEM to the existing DL pipeline. As a result, GEM is completely plug-and-play,
meaning that there’s no need to tweak anything in the existing training pipeline except for a slight
modification to the objective function, which introduces negligible extra complexity.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We benchmark GEM on two popular image classification datasets, namely CIFAR-100 (Krizhevsky
et al., 2009) and ImageNet (Deng et al., 2009).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

CIFAR-100: For all experiments on this dataset, including those for GEM and other compared
methods, we follow the training recipe from CRD (Tian et al., 2019) without any adjustment. The
evaluated model architectures are MobileNetV2 (Sandler et al., 2018), ShuffleNetV2 (Ma et al.,
2018), WideResNet (Zagoruyko & Komodakis, 2016), ResNet (He et al., 2016) and VGG (Simonyan
& Zisserman, 2014). On this dataset, we set (λ, β) = (0.005, 0.05) for LGEM , and the same
hyperparameters are shared across all models.

ImageNet: For all experiments on this dataset, including those for GEM and other compared meth-
ods, we employ the standard training recipes from PyTorch (Paszke et al., 2019) without any adjust-
ment. The evaluated model architectures are ShuffleNetV2, SqueezeNet (Iandola et al., 2016) and
ResNet. On this dataset, we set (λ, β) = (0.002, 0.01) for LGEM , and the same hyperparameters
are shared across all models.

5.2 STANDARD TASKS

In this subsection, all experimental results correspond to Case 1 mentioned in Section 4.1, where
(U, V) and (X,Y) follow the same distribution, as is typically assumed for datasets like CIFAR-100
and ImageNet. Results for Case 2 will be presented in the next subsection.

Results on CIFAR-100. The performance of GEM is shown in Table 1. We compare it with the
baseline ERM and another competitive method dubbed DOM (Lin et al., 2024) which also targets
to address the overfitting problem. Across all the six tested models, GEM consistently provides
significant gains over the compared methods, demonstrating its effectiveness in improving the gen-
eralization of DNNs.

Table 1: Top-1 test accuracy (%) on CIFAR-100. The baseline ERM results are from Tian et al.
(2019), while the results of DOM and GEM are averaged over 3 runs and reported with the stan-
dard deviation. Note that we highlight the best results in bold, and ∆ stands for the performance
improvement over ERM.

Method MobileNetV2 ShuffleNetV2 WRN-40-2 resnet32 resnet20 vgg8

ERM 64.60 71.82 75.61 71.14 69.06 70.36

DOM 65.07 ± 0.23 72.62 ± 0.30 76.19 ± 0.40 71.25 ± 0.36 69.16 ± 0.23 70.43 ± 0.24
∆ +0.47 +0.80 +0.58 +0.11 +0.10 +0.07

GEM 65.99 ± 0.59 73.17 ± 0.30 76.93 ± 0.31 71.95 ± 0.30 69.84 ± 0.18 71.04 ± 0.18
∆ +1.39 +1.35 +1.32 +0.81 +0.78 +0.68

Results on ImageNet. In Table 2, we demonstrate the performance of GEM compared to ERM and
DOM. It’s shown that GEM consistently improves the performance over ERM for all tested models,
while DOM fails to show gain on any model. Thus, the effectiveness of GEM is further verified on
large-scale dataset, where overfitting has already been largely mitigated by the abundance of training
data and strong training recipes.

Table 2: Top-1 test accuracy (%) on ImageNet. The ERM and DOM results are based on our
reproduction following the standard Pytorch training recipes. More reimplementation details about
DOM can be found in A.4.

Method ShuffleNetV2 SqueezeNetV1.1 ResNet18 ResNet34

ERM 59.17 57.95 69.76 73.31

DOM 58.67 56.78 68.99 72.73
∆ -0.50 -1.17 -0.77 -0.58

GEM 59.99 58.33 70.09 73.51
∆ +0.82 +0.38 +0.33 +0.20

5.3 ADDITIONAL TASKS

GEM in Case 2. To validate the effectiveness of GEM in Case 2 as mentioned in Section 4.1, we
consider two types of common image processing: JPEG compression and Gaussian blurring.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

JPEG compression is of particular interest due to its widespread use in real-world applications.
However, DNNs trained with high quality images often generalize badly to low quality JPEG com-
pressed images (Yang et al., 2021b; Zheng et al., 2023; Salamah et al., 2024). To address this issue,
GEM in Case 2 can be applied. Specifically, we train ResNet18 on the ImageNet training set using
LGEM in Case 2, where X̂ is a JPEG compressed version of X with some JPEG quality factor q2.
We then evaluate the trained model on JPEG compressed versions of the ImageNet validation set
with varying values of q. For all experiments, we use the TorchJPEG (Ehrlich et al., 2020) library
to compress images. Results are shown in Fig. 1(a). As noted in the literature, the model trained
with high quality images using ERM indeed generalizes poorly to low quality images, resulting in
over 26% accuracy degradation at q = 10. In contrast, when GEM in Case 2 is applied, where X̂ is
a JPEG compressed version of X with q = 30, the trained model performs comparably to the ERM
baseline at the highest quality level while consistently and increasingly outperforming the baseline
as q decreases. In the case where X̂ is a JPEG compressed version of X with q = 10, GEM sacri-
fices a bit of performance at high quality levels, but in turn obtains a substantial improvement at low
quality levels, achieving 13.19% gain over the baseline at q = 10.

Gaussian blurring is another important case to examine, as it simulates real-world scenarios where
a camera is not properly focused on the object of interest. Using a setup similar to that of JPEG
compression, we train ResNet18 on the ImageNet training set using LGEM in Case 2, where X̂ is a
Gaussian blurred version of X with a fixed Gaussian kernel size of 9 and some standard deviation
σ. We then evaluate the trained model on Gaussian blurred versions of the ImageNet validation set
with the same kernel size and varying values of σ. As shown in Fig. 1(b), the results for Gaussian
blurring follow a similar pattern to those for JPEG compression. When X̂ is produced by Gaussian
blurring with σ = 1, GEM outperforms the baseline ERM on all blurred validation sets, and roughly
maintains the performance on the raw validation set. On the other hand, when X̂ is produced by
Gaussian blurring with σ = 3, GEM sacrifices more at low blurring levels, but in turn obtains a
significant improvement at high blurring levels, achieving 6.56% gain over the baseline at σ = 3.

(a) (b)

Figure 1: Top-1 test accuracy (%) comparison on ImageNet in the case where (U, V) and (X,Y)
have different distributions, but the distribution of (U, V) can be obtained from (X,Y) through
common signal processing such as (a) JPEG compression, and (b) Gaussian blurring.

Few-shot learning. In the few-shot scenario, DNNs are trained with limited amount of data. Fol-
lowing Yang et al. (2021a), we sample class-balanced subsets from the CIFAR-100 training set
to serve as small training sets used in few-shot learning. To be specific, we collect four subsets
of CIFAR-100 training set by retaining 10%, 25%, 50% and 75% of the training images. Then, we
train MobileNetV2 with GEM and ERM on these balanced subsets using the same training recipe for
CIFAR-100 as mentioned in Section 5.1, and evaluate the trained models on the complete CIFAR-
100 testing set. For fair comparison, the same subsets are used for both GEM and ERM. Note that
the few-shot scenario falls into Case 1 where (U, V) and (X,Y) have the same distribution, so we
apply GEM in Case 1 accordingly.

As shown in Fig. 2, GEM consistently outperforms ERM with a large margin, and the performance
improvement gradually increases as the training set becomes smaller and smaller, showing the ex-
ceptional ability of GEM to mitigate overfitting on small datasets. This trend in performance gain

2The quality factor q of JPEG is an integer ranging from 1 to 100. A lower q indicates more compression
and consequently lower quality of the compressed image.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

makes intuitive sense as DNNs suffer more from overfitting with smaller training sets, so that GEM
can achieve more gain by reducing generalization error. Note that λ and β in few-shot learning are
increased to 0.01 and 0.2 to better handle the increase in overfitting.

(a) (b)

Figure 2: (a) Top-1 test accuracy (%) comparison on CIFAR-100 in few-shot scenario using different
percentages of training samples. Results are averaged over 3 runs. (b) The accuracy gain achieved
by GEM compared to the baseline ERM.

Imbalanced dataset. We also test the behavior of GEM on imbalanced datasets. Following Cao
et al. (2019), we create imbalanced subsets of the CIFAR-100 training set by reducing the number
of training examples per class and keep the testing set intact. Same as Cao et al. (2019), two modes
of imbalance are considered, namely long-tailed imbalance (Cui et al., 2019) and step imbalance
(Mateusz et al., 2018). Long-tailed imbalance results in an exponential decrease in the number of
samples across different classes, while in the step imbalance setting, all minority classes have the
same sample size, so do all frequent classes. In the case of step imbalance, half of the classes are
minority classes, while the other half are frequent classes. Moreover, in both imbalance modes, an
imbalance factor, defined as the ratio between sample sizes of the least frequent class and the most
frequent class, is used to measure the degree of imbalance. Clearly, a smaller imbalance factor stands
for higher degree of imbalance. In our evaluation, we consider four different imbalance factors: 0.01,
0.02, 0.05 and 0.1. Again, we train MobileNetV2 with GEM and ERM on these imbalanced subsets
using the same training recipe for CIFAR-100 as mentioned in Section 5.1, and (λ, β) values for
GEM are the same as those used in few-shot learning. Note that there’s a distribution shift between
(U, V) and (X,Y) due to the class imbalance of the training set; however, this type of distribution
shift cannot be characterized by any common signal processing over the data, and therefore the
imbalance data scenario doesn’t fall into either Case 1 or Case 2. Nevertheless, we still apply GEM
in Case 1 for this task.

As shown in Fig. 3, in both imbalance modes, GEM outperforms ERM by a large margin under high
imbalance factors, i.e., when the degree of imbalance is low, while the gain gradually diminishes
with the presence of more imbalance. This trend in performance gain comes naturally as GEM in
Case 1 doesn’t take the distribution shift between training and testing into consideration. Therefore,
the gain is becoming less and less with increased imbalance which induces increased distribution
shift. Actually, it’s quite surprising to see that GEM maintains its effectiveness in some cases where
it’s not specially designed for. A more general form of GEM that can better address class imbalance
or the out-of-distribution (OOD) issue in broad sense is left to be explored in future work.

5.4 ANALYSIS AND DISCUSSION

Generalization error curves. In Fig. 4(a)-(c), we plot the generalization error curves for Mo-
bileNetV2, ShuffleNetV2 and WRN-40-2 trained on CIFAR-100. Two types of curve are depicted
for (1) the squared difference between training NLL loss and test NLL loss, and (2) the difference
between test error and training error, respectively. The former is a more direct reflection of the gen-
eralization error Γ defined in this paper, while the latter relates more closely to the generalization
performance of DNNs. In comparison with ERM, GEM consistently leads to less generalization
error at the end of training in both types of generalization curve. Moreover, Fig. 4(d) shows the gen-
eralization error curves for MobileNetV2 trained on the 10% balanced subset of CIFAR-100 which
is used in the few-shot learning scenario. In this case, GEM results in a significant reduction in gen-
eralization error compared to ERM, not just at the end of training but throughout the entire training

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) long-tailed imbalance (b) step imbalance (c)

Figure 3: (a) Top-1 test accuracy (%) comparison on CIFAR-100 with long-tailed imbalance using
different imbalance factors. Results are averaged over 3 runs. (b) Top-1 test accuracy (%) com-
parison on CIFAR-100 with step imbalance using different imbalance factors. Results are averaged
over 3 runs. (c) The accuracy gain achieved by GEM compared to the baseline ERM under both
imbalance modes.

process. Therefore, it’s confirmed that GEM can indeed effectively reduce the generalization error
and help DNNs generalize better.

(a) MobileNetV2 (b) ShuffleNetV2 (c) WRN-40-2 (d) Few-shot

Figure 4: Generalization error curves for (a) MobileNetV2, (b) ShuffleNetV2, (c) WRN-40-2 trained
on CIFAR-100, and (d) MobileNetV2 trained on CIFAR-100 under the 10% few-shot scenario. The
figures in the first row depict the squared difference between training NLL loss and test NLL loss,
while those in the second row depict the difference between test error and training error.

Compatibility with the existing regularization. For all conducted experiments, we didn’t change
anything in the default DL pipeline, where many regularization techniques including data augmen-
tation like mixup, cutmix, etc., weight decay, and label smoothing have already been embedded to
prevent overfitting and improve generalization. Nonetheless, GEM can still make further improve-
ment. Therefore, it’s confirmed empirically that GEM is compatible with the existing regularization,
and can be easily applied in a plug-and-play manner.

6 CONCLUSION

The paper studies generalization error in DL and provides a novel learning algorithm to reduce it. A
novel bias-variance decomposition is established to analyze the generalization error between train-
ing and testing, based on which we propose a new learning framework dubbed GEM by jointly
minimizing the conventional training loss and an analytical proxy for the conditional generalization
error. The proposed method is applied to classification and experimentally evaluated on popular im-
age classification datasets, where it consistently and significantly mitigates overfitting and improves
generalization performance of DNNs across a variety of scenarios. Overall, GEM is a simple yet
effective approach to improving generalization, backed by solid theoretical support.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Please refer to our source code provided in the Supplementary Material to reproduce our experimen-
tal results.

REFERENCES

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9268–9277, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th international
conference on machine learning, pp. 231–238. Morgan Kaufmann Stanford, 2000.

Max Ehrlich, Larry Davis, Ser-Nam Lim, and Abhinav Shrivastava. Quantization guided jpeg arti-
fact correction. Proceedings of the European Conference on Computer Vision, 2020.

Michael Gastpar, Ido Nachum, Jonathan Shafer, and Thomas Weinberger. Fantastic generalization
measures are nowhere to be found. arXiv preprint arXiv:2309.13658, 2023.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Daniel Jakubovitz, Raja Giryes, and Miguel RD Rodrigues. Generalization error in deep learning.
In Compressed Sensing and Its Applications: Third International MATHEON Conference 2017,
pp. 153–193. Springer, 2019.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 1(8), 2017.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934–12949, 2022.

Runqi Lin, Chaojian Yu, Bo Han, and Tongliang Liu. On the over-memorization during natural,
robust and catastrophic overfitting. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Buda Mateusz, Maki Atsuto, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural networks, 106(2018):249–259, 2018.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers.
arXiv preprint arXiv:2206.02680, 2022.

Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedforward nets:
Some experiments. Advances in neural information processing systems, 2, 1989.

Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-
Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.
arXiv preprint arXiv:1810.08591, 2018.

Gergely Neu, Gintare Karolina Dziugaite, Mahdi Haghifam, and Daniel M Roy. Information-
theoretic generalization bounds for stochastic gradient descent. In Conference on Learning The-
ory, pp. 3526–3545. PMLR, 2021.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Ahmed H Salamah, Kaixiang Zheng, Linfeng Ye, and En-Hui Yang. Jpeg compliant compression
for dnn vision. IEEE Journal on Selected Areas in Information Theory, 2024.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Inter-
national Conference on Learning Representations, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learn-
ing algorithms. Advances in neural information processing systems, 30, 2017.

Zhiqiu Xu, Yanjie Chen, Kirill Vishniakov, Yida Yin, Zhiqiang Shen, Trevor Darrell, Lingjie Liu,
and Zhuang Liu. Initializing models with larger ones. In The Twelfth International Conference
on Learning Representations, 2023.

Chuanguang Yang, Zhulin An, Linhang Cai, and Yongjun Xu. Hierarchical self-supervised aug-
mented knowledge distillation. arXiv preprint arXiv:2107.13715, 2021a.

En-Hui Yang, Hossam Amer, and Yanbing Jiang. Compression helps deep learning in image classi-
fication. Entropy, 23(7):881, 2021b.

Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance trade-
off for generalization of neural networks. In International Conference on Machine Learning, pp.
10767–10777. PMLR, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017b.

Kaixiang Zheng, Ahmed H Salamah, Linfeng Ye, and En-Hui Yang. Jpeg compliant compression for
dnn vision. In 2023 IEEE International Conference on Image Processing (ICIP), pp. 1875–1879.
IEEE, 2023.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving the robustness of deep
neural networks via stability training. In Proceedings of the ieee conference on computer vision
and pattern recognition, pp. 4480–4488, 2016.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–
13008, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 NUMERICAL ANALYSIS ON Var(Ω(D, θ̂)) AND Γ

To justify the approximation introduced in Section 4.1, we conduct some numerical analysis on
Var(Ω(D, θ̂)) and Γ through experiments. Specifically, we train MobileNetV2, ShuffleNetV2 and
WRN-40-2 using ERM on CIFAR-100, each with three runs. Then, we measure the squared dif-
ference between training NLL loss and test NLL loss at the end of training and average over three
runs. The resulting value serves as an approximation of the generalization error Γ defined in (2).
Similarly, we approximate Var(Ω(D, θ̂)) by the sample variance of the training NLL loss at the end
of training over three runs. In Table 3, we compare the resulting Γ with Var(Ω(D, θ̂)), and it’s clear
that Var(Ω(D, θ̂)) is 4 to 8 orders of magnitude smaller than Γ. This supports our claim in Section
4.1 that Var(Ω(D, θ̂)) ≪ Γ in practice, and consequently justifies the approximation made therein.
Note that the training set D is indeed random in this numerical analysis because random cropping
and flipping are applied in the data augmentation.

Table 3: Comparison between Γ and Var(Ω(D, θ̂)) on CIFAR-100.

MobileNetV2 ShuffleNetV2 WRN-40-2

Γ 1.33 1.21 1.03
Var(Ω(D, θ̂)) 5.07× 10−4 6.86× 10−8 1.90× 10−7

A.2 IMPLEMENTATION OF GEM

In this section, we present Algorithm 1 as the pseudo-code of GEM in Case 1 in a Pytorch-like style.

Algorithm 1 Pseudo-code of GEM in Case 1 in a Pytorch-like style.

z: DNN output logits
y: the ground truth label
λ: the weight for the second moment
β: the weight for the squared mean
α: the amount of label smoothing

ce_ls = F.cross_entropy(z, y, label_smoothing=α)
ce = F.cross_entropy(z, y, reduction=’none’)
ce_mean = torch.mean(ce)
second_moment = torch.mean(ce**2)
squared_mean = ce_mean**2

GEM
gem_loss = ce_ls + λ * second_moment + β * squared_mean

A.3 GUIDANCE FOR HYPERPARAMETERS SELECTION

Qualitatively speaking, λ in LGEM should not be too large. At the beginning of training, DNNs
are randomly initialized, so the loss L(fθ(x), y) = − log pθ(y|x) is generally quite large, which is
much greater than 1. Therefore, further squaring it will result in a even larger value. Consequently,
if λ is not small enough, DNNs will suffer from slow convergence or even gradient explosion at
the beginning of training. As for β, it’s suggested by (16) and 17 that β should not be less than
λ. Empirically, selecting β to be about an order of magnitude greater than λ often gives good
results. Actually, as long as λ and β are appropriately small to avoid slow convergence and gradient
explosion at the beginning of training, and β is not less than λ, the experimental results are generally
not sensitive to hyperparameters tuning.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 REIMPLEMENTATION DETAILS ABOUT DOM

The DOM method compared in this paper corresponds to DOMRE in the original paper. On CIFAR-
100, we use 0.45 as the loss threshold for DOM as provided in the original paper. Also, the warm-up
epoch is aligned with the first learning rate decay at the 150th epoch as suggested in the original
paper.

As for ImageNet, since the original paper didn’t evaluate DOM on ImageNet, we don’t have a
direct reference of hyperparmeters. Therefore, we adopt the adaptive loss threshold proposed in
their Appendix G, setting it to 40% as suggested therein. Again, the warm-up epoch is aligned with
the first learning rate decay for SqueezeNetV1.1, ResNet18 and ResNet34, while for ShuffleNetV2
which is trained using a cosine annealing learning rate scheduler for 600 epochs, we follow the
convention in the original paper and align the warm-up epoch with the midpoint of training, i.e., the
300th epoch.

A.5 MORE BENCHMARK COMPARISON IN CASE 1

Dropout and confidence penalty are two popular regularization techniques used to improve DNN
generalization performance. In this section, we compare GEM in Case 1 with these two benchmarks
empirically.

It’s observed that the overconfidence of a DNN is a sign of overfitting and poor generalization
(Szegedy et al., 2016). Thus, Pereyra et al. (2017) proposed to penalize confident predictions to
improve DNN generalization performance. Since a confident prediction generally corresponds to
pθ(·|X)) with low entropy, they enforce confidence penalty (CP) by introducing a negative entropy
regularizer into the learning objective, which is formulated as

LCP (θ) = E[− log pθ(Y |X)− ηH(pθ(·|X))], (24)
where H(·) is the entropy of a probability distribution, and η controls the strength of the confidence
penalty.

Under the experimental setting for CIFAR-100 reported in Section 5, we perform a grid search for η
over {0.1, 0.25, 0.5, 1.0, 1.5} following the original paper and choose η = 1 as the optimal weight.
The comparison between CP and GEM in Case 1 on CIFAR-100 is presented in Table 4. Clearly,
GEM outperforms CP in general by a large margin.

Table 4: Top-1 test accuracy (%) on CIFAR-100.

Method MobileNetV2 ShuffleNetV2 WRN-40-2 resnet32 resnet20 vgg8

ERM 64.60 71.82 75.61 71.14 69.06 70.36

CP 65.14 ± 0.77 73.46 ± 0.25 76.35 ± 0.16 71.21 ± 0.25 69.07 ± 0.29 70.97 ± 0.25
∆ +0.54 +1.64 +0.74 +0.07 +0.01 +0.61

GEM 65.99 ± 0.59 73.17 ± 0.30 76.93 ± 0.31 71.95 ± 0.30 69.84 ± 0.18 71.04 ± 0.18
∆ +1.39 +1.35 +1.32 +0.81 +0.78 +0.68

Dropout is yet another benchmark we compare with. Due to its long history, most modern DNNs
have be designed with dropout layer in mind. However, for all DNN architectures we consider on
CIFAR-100, only WideResNet (Zagoruyko & Komodakis, 2016) has incorporated dropout. There-
fore, we only test dropout on this family of networks, where the designer finds dropout helpful. By
varying the width and depth of WideResNet, we get three DNNs namely WRN-40-2, WRN-40-1,
and WRN-16-2. For all of them, we set the dropout probability to be 0.3 following the original paper
(Zagoruyko & Komodakis, 2016). The experimental setting is identical to the one reported in Sec-
tion 5 and the hyperparameters for GEM also remain unchanged. The results in Table 5 show that
dropout doesn’t consistently improve the performance over the standard ERM, and always performs
worse than GEM in Case 1.

A.6 COMPARING WITH STABILITY TRAINING IN CASE 2

Stability Training (ST) (Zheng et al., 2016) is a method specially designed to improve DNN’s gen-
eralization (robustness) to low quality images, whose loss is computed from both the training data

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Top-1 test accuracy (%) on CIFAR-100.

Method WRN-40-2 WRN-40-1 WRN-16-2

ERM 75.61 71.98 73.26

Dropout 76.68 ± 0.21 71.71 ± 0.19 73.33 ± 0.20
∆ +1.07 -0.27 +0.07

GEM 76.93 ± 0.31 72.09 ± 0.28 73.61 ± 0.45
∆ +1.32 +0.11 +0.35

X and processed training data X̂ , thus providing a fair comparison with GEM in Case 2. The
minimization objective of ST is

LST (θ) = E[− log pθ(Y |X) + τH(pθ(·|X), pθ(·|X̂))], (25)

where H(·, ·) denotes the cross entropy between two probability distributions, and τ controls the
strength of the stability term.

In Fig. 5, we compare GEM in Case 2 against ST under the JPEG compression scenario. Following
the suggestion in the original paper, we set τ = 0.01 for ST. Clearly, GEM outperforms ST in both
cases where X̂ is a JPEG compressed version of X with q = 10 and q = 30.

(a) X̂ is compressed with q = 10. (b) X̂ is compressed with q = 30.

Figure 5: Top-1 test accuracy (%) comparison on ImageNet in the presence of JPEG compressed
images.

A.7 ANALYSIS ON SYNTHETIC DATASET

Spiral dataset is a classical synthetic dataset for binary classification. In order to analyze the differ-
ence between the models learned by GEM and ERM, we conduct a toy experiment on a synthetic
spiral dataset and visualize the resulting decision boundaries.

We first create a spiral dataset with 2 classes, each consisting of 500 samples. Then, we split the
dataset into training and testing sets with 4:1 ratio. A five-layer fully connected neural network,
comprising four hidden layers each with a width of 1024, is constructed as the model to be trained.
An Adam optimizer (Kingma, 2014) with learning rate 0.001 is used to train the model. When the
model is trained using ERM, the test accuracy is 96.5%, and the decision boundary is visualized in
Fig. 6(a). In the case of GEM, the test accuracy reaches 98.5%, and the learned decision boundary
is visualized in Fig. 6(b). From the plots, we can clearly see that the decision boundary learned by
ERM has some zigzag and dent (highlighted by red circles), while the decision boundary learned
by GEM is much smoother and demonstrates a desirable central symmetry pattern. This clearly
indicates that the model trained by GEM successfully captures the true data distribution, while the
one trained using ERM overfits the noise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) ERM (b) GEM

Figure 6: Visualization of decision boundaries learned by a simple neural network using (a) ERM
and (b) GEM on a synthetic spiral dataset.

A.8 RESULTS ON TRANSFORMER-BASED MODELS

To verify the effectiveness of GEM on transformer-based models, we conduct more experiments on
CIFAR-100 with 4 different transformer-based DNNs namely ViT-T (Xu et al., 2023), MobileViTv2-
0.5 (Mehta & Rastegari, 2022), DeiT-Ti (Touvron et al., 2021), and EfficientFormer-L1 (Li et al.,
2022). The training recipe is adopted from Xu et al. (2023) without modification and the hyperpa-
rameters of GEM remain the same as the ones reported in Section 5. Note that the training recipe for
transformer-based models includes much stronger regularization such as mixup, cutmix, randaug-
ment (Cubuk et al., 2020), random erasing (Zhong et al., 2020), label smoothing and so on. Results
are presented in Table 6, demonstrating that GEM can achieve notable performance improvements
over ERM, even in scenarios where strong regularization is already applied.

Table 6: Top-1 test accuracy (%) on CIFAR-100.

Method ViT-T MobileViTv2-0.5 DeiT-Ti EfficientFormer-L1

ERM 71.84 ± 0.08 79.32 ± 0.01 71.79 ± 0.11 80.26 ± 0.31

GEM 72.13 ± 0.24 79.79 ± 0.36 72.29 ± 0.17 80.59 ± 0.10
∆ +0.29 +0.48 +0.51 +0.33

A.9 STANDARD DEVIATION FOR RESULTS IN FIGURES

For better reproducibility, we present in Fig. 7 the standard deviation bars for results in Figs. 2 and
3.

(a) (b) (c)

Figure 7: Standard deviation bars for results in (a) few-shot scenario, (b) long-tail imbalance sce-
nario, and (c) step imbalance scenario.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.10 RESULTS ON FEW-SHOT TRANSFER LEARNING

In few-shot learning scenario, transfer learning often provides better performance than training from
scratch. Therefore, instead of training a MobileNetV2 model on CIFAR-100 from scratch, we try
to leverage the MobileNetV2 released by PyTorch which is pretrained on ImageNet. We completely
freeze the feature extractor of the pretrained model and only fine-tune the classification head with
30 epochs in few-shot scenarios using different percentages of training samples. It turns out that
transfer learning can indeed improve the performance at 10%, 25% and 50% configurations over
training from scratch, while being worse than training from scratch at 75% scenario. Therefore,
we compare between ERM and GEM only in 10%, 25% and 50% cases, as shown in Table 7. In
general, GEM can still achieve some performance gain, especially when the data is more limited.
However, the gains achieved by GEM are not as much as those it gets where the models are trained
from scratch, since (1) the optimization is limited to the fully connected layer, and (2) not much
overfitting is observed during fine-tuning.

Table 7: Top-1 test accuracy (%) on CIFAR-100.

10% 25% 50%

ERM 47.36 ± 0.26 51.97 ± 0.13 55.27 ± 0.21

GEM 47.80 ± 0.23 52.11 ± 0.19 55.29 ± 0.16
∆ +0.45 +0.14 +0.02

18

	Introduction
	Related Work
	Generalization Error Analysis
	Definition of Generalization Error
	Decomposition of Generalization Error

	Generalization Error Minimized DL
	Proxies for () and
	GEM Deep Learning
	Application to Classification

	Experiments
	Experimental Settings
	Standard Tasks
	Additional Tasks
	Analysis and Discussion

	Conclusion
	Appendix
	Numerical analysis on Var((D,)) and
	Implementation of GEM
	Guidance for Hyperparameters Selection
	Reimplementation Details About DOM
	More Benchmark Comparison in Case 1
	Comparing with Stability Training in Case 2
	Analysis on Synthetic Dataset
	Results on Transformer-based Models
	Standard Deviation for Results in Figures
	Results on Few-shot Transfer Learning

