Published as a Tiny Paper at ICLR 2023

PRUNE AND TUNE: IMPROVING EFFICIENT PRUNING
TECHNIQUES FOR MASSIVE LANGUAGE MODELS

Aaquib Syed, Phillip Huang Guo, & Vijaykaarti Sundarapandiyan*
University of Maryland

College Park, Maryland 20742, USA

{asyed04, phguo, vsundarl}Qumd.edu

ABSTRACT

Massive language models with billions of parameters have significant compute
expenses and thus can benefit from pruning. Pruning techniques for massive mod-
els are typically iterative and require extensive weight retraining after pruning.
SparseGPT, a recently introduced one-shot technique for pruning such models,
enables pruning without retraining. We improve upon SparseGPT by fine-tuning
during pruning with minimal training steps, and we perform experiments against
magnitude pruning and find that our iteratively fine-tuned SparseGPT models sig-
nificantly outperform their magnitude pruning counterparts at high sparsity.

1 INTRODUCTION

Large Language Models (LLMs) have become immensely popular in natural language processing
due to their unprecedented performance on a variety of tasks. However, state-of-the-art Generative
Pre-trained Transformer models use billions of parameters and continue to scale up their parameter
count for even better performance (Wei et al., 2022)), requiring significant energy and compute for
training and inference (Bender et al.,|2021). Thus, the previous literature has proposed techniques
to prune LLMs while preserving accuracy (Guo et al.,2019;|Wang et al.| [2020).

In the literature, pruning techniques are largely classified as either iterative or one-shot (Zhang et al.,
2022al)). Iterative pruning techniques use some heuristic to prune weights of a model, then retrain the
remaining weights of the model to regain accuracy, then re-prune/retrain again. For large models,
this latter step can be quite expensive as the model may have to undergo extensive retraining with as
many steps as original training took (Samar, [2022).

Recently, Frantar & Alistarh|(2023)) proposed SparseGPT, a one-shot pruning method that works for
massive language models that updates non-pruned weights without retraining in order to maintain
accuracy. The original paper proposes follow-up research on fine-tuning SparseGPT models to
further improve model performance on higher sparsities. We follow up on the original SparseGPT
research to examine fine-tuning models after pruning. Additionally, we propose an iterative pruning
technique that prunes models to a higher degree of sparsity while maintaining performance.

2 METHODS

We implement the SparseGPT pruning method along with magnitude pruning (pruning the low-
est magnitude weights) for LLMs. We selected magnitude pruning as a benchmark to compare
SparseGPT with as [Samar| (2022) demonstrated that iterative magnitude pruning with fine-tuning
can succeed for multi-billion parameter models. Due to limited compute, we prune 125 million and
1.3 billion parameter models in the open-source Meta OPT family (Zhang et al.| 2022b).

We test SparseGPT across three areas: pruning alone, pruning and fine-tuning once (i.e., non-
iterative), and iterative pruning and fine-tuning. We evaluate all of our models using perplexity,
a standard information-theoretic assessment of model predictive power (Chen et al. |{1998), on the
WikiText2 test corpus and fine-tune our models on the WikiText2 train corpus. We limit model

*All authors provided equal contributions.

Published as a Tiny Paper at ICLR 2023

fine-tuning to only 1000 training steps (see [A.1.2)) since fully retraining the model would defeat
the one-shot purpose of SparseGPT. By keeping the number of training steps small, we maintain
SparseGPT’s computational advantages while being able to compare relative performance.

3 EXPERIMENTS

We conduct experiments to examine fine-tuning SparseGPT. In total, we test SparseGPT one-shot
pruning, non-iterative SparseGPT pruning and fine-tuning, iterative SparseGPT pruning and fine-
tuning, magnitude one-shot pruning, and iterative magnitude pruning and fine-tuning.

OPT-125M Performance on Raw Wikitext-2 OPT-1.3B Performance on Raw Wikitext-2

1000

3
8
38

3
8

N\

Perplexity (Log Scae)
»
Perplexity (Log Scale)

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
Sparsity Sparsity

Iterative SparseGPT Finetuned SparseGPT = SparseGPT One-Shot terative SparseGPT Finetuned SparseGPT —+— SparseGPT One-Shot
—a—lterative Magnitude ~ —e—Magnitude One-Shot Magnitude Mag One-Shot

Figure 1: The log-scale graphs of the pruned model perplexity scores on Wikitext-2-raw-v1. “Fine-
tuned” denotes non-iterative pruning then fine-tuning. Left: OPT-125M, right: OPT-1.3B.

As the graphs in Figure || demonstrate, SparseGPT iterative pruning and fine-tuning is the best
technique beyond 0.4 sparseness on OPT-125M and 0.6 sparseness on OPT-1.3B. We find that
SparseGPT non-iterative pruning and fine-tuning is better than no fine-tuning in all cases, but is
beaten out significantly by both iterative pruning and fine-tuning methods beyond 0.5 sparseness.

Comparing like techniques across both 125M and 1.3B, we find that SparseGPT iterative and mag-
nitude iterative pruning perform similarly up to .5 sparseness, and then SparseGPT performs ex-
ponentially better than magnitude beyond .5 sparseness. We also replicate the results in [Frantar &
Alistarh| (2023)) by showing that SparseGPT one-shot pruning is better in all cases than magnitude
one-shot pruning. The exact values of the models at each sparsity and linear-scale graphs can be

seen in[A.2]

4 DISCUSSION

Our key result is showing iteratively fine-tuning SparseGPT models, even with limited steps, enables
better relative model performance at higher sparsity. Additionally, iterative fine-tuning allows further
pruning of models up to 80% sparsity with limited perplexity loss. We hope these encouraging
results can help provide better accessibility of LLMs to those without the necessary resources to
load and infer on the dense models. Furthermore, we hope our work can aid in reducing the carbon
footprints of these models by reducing the energy costs of inference.

As an additional impact, magnitude pruning has been shown to result in “lottery ticket” models
which have the ability to be pruned and then retrained to similar or higher levels of accuracy than
the original (Frankle & Carbin, [2019). Our results suggest that SparseGPT may serve as a more ef-
fective strategy for finding better lottery tickets. Furthermore, since SparseGPT-pruned models don’t
require as much retraining, we hypothesize that lottery tickets can be searched for and discovered
faster with SparseGPT, aiding in the overall discovery of better lottery tickets.

4.1 FUTURE WORK

As we only examined smaller models, future research pruning models that are closer to the state-of-
the-art in both parameter size and training regime is needed. Additionally, testing the lottery ticket
hypothesis with SparseGPT pruning and fine-tuning as well as testing alternative pruning schedules
for iterative fine-tuning (see that match the recent literature would be beneficial.

Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that all authors of this work meet the URM criteria of ICLR 2023 Tiny
Papers Track.

REFERENCES

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
Dangers of Stochastic Parrots: Can Language Models Be Too Big? . In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, pp. 610-623, Virtual Event
Canada, March 2021. ACM. ISBN 978-1-4503-8309-7. doi: 10.1145/3442188.3445922. URL
https://dl.acm.org/doi/10.1145/3442188.3445922,

Stanley F Chen, Douglas Beeferman, and Roni Rosenfeld. Evaluation Metrics For Language
Models. pp. 81295 Bytes. Carnegie Mellon University, 1998. doi: 10.1184/R1/6605324.
V1. URL https://kilthub.cmu.edu/articles/Evaluation_Metrics_For_
Language_Models/6605324/1. Artwork Size: 81295 Bytes.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Train-
able Neural Networks, March 2019. URL http://arxiv.org/abs/1803.03635.
arXiv:1803.03635 [cs].

Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can Be Accurately
Pruned in One-Shot, January 2023. URL http://arxiv.org/abs/2301.00774.
arXiv:2301.00774 [cs].

Fu-Ming Guo, Sijia Liu, Finlay S. Mungall, Xue Lin, and Yanzhi Wang. Reweighted Proximal
Pruning for Large-Scale Language Representation, December 2019. URL http://arxiv.
org/abs/1909.12486. arXiv:1909.12486 [cs, stat].

Anshul Samar. Creating Sparse GPT-3 Models with Iterative Prun-
ing, November 2022. URL https://www.cerebras.net/blog/
creating—-sparse—-gpt—-3-models—-with—-iterative—-pruning/.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured Pruning of Large Language Models.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 6151-6162, 2020. doi: 10.18653/v1/2020.emnlp-main.496. URL http:
//arxiv.orqg/abs/1910.04732. arXiv:1910.04732 [cs, stat].

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent Abilities of Large Language
Models, October 2022. URL http://arxiv.org/abs/2206.07682. arXiv:2206.07682
[cs].

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. PLATON: Pruning Large Transformer Models with Upper Confidence Bound of
Weight Importance. In Proceedings of the 39th International Conference on Machine Learn-
ing, pp. 26809-26823. PMLR, June 2022a. URL https://proceedings.mlr.press/
v162/zhang22ao.html. ISSN: 2640-3498.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: Open Pre-trained Transformer Language Models, June 2022b. URL http:
//arxiv.orqg/abs/2205.01068. arXiv:2205.01068 [cs].

https://dl.acm.org/doi/10.1145/3442188.3445922
https://kilthub.cmu.edu/articles/Evaluation_Metrics_For_Language_Models/6605324/1
https://kilthub.cmu.edu/articles/Evaluation_Metrics_For_Language_Models/6605324/1
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/1909.12486
http://arxiv.org/abs/1909.12486
https://www.cerebras.net/blog/creating-sparse-gpt-3-models-with-iterative-pruning/
https://www.cerebras.net/blog/creating-sparse-gpt-3-models-with-iterative-pruning/
http://arxiv.org/abs/1910.04732
http://arxiv.org/abs/1910.04732
http://arxiv.org/abs/2206.07682
https://proceedings.mlr.press/v162/zhang22ao.html
https://proceedings.mlr.press/v162/zhang22ao.html
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

Published as a Tiny Paper at ICLR 2023

A APPENDIX

A.1 FURTHER METHODS
A.1.1 ITERATIVE PRUNING AND FINE-TUNING

We modify the SparseGPT pruning method to allow for iterative pruning: in every iteration, we
force the mask of zeros to include all previously pruned weights so that they will not be overridden.
The magnitude pruning method by default does this since pruned weights have the lowest possible
magnitude of 0. We test iterative pruning and fine-tuning using a pruning schedule of sparsities. For
example, with a pruning schedule of [.2, .4, .8], the model is first pruned to 20% sparsity and fine-
tuned (with all of pruned weights staying 0), then pruned to 40% overall sparsity (with the original
20% of pruned weights staying pruned) and fine-tuned, then finally to 80% sparsity and fine-tuned.
For all of the iterative models in our experiments, we use a pruning schedule of sparsities between 0
and .8 in increments of 0.1.

A.1.2 TRAINING HYPERPARAMETERS

For every fine-tuning process, we use the AdamW optimizer with a learning rate of 1e-5. We train on
1000 steps with only 1 epoch for all our experiments. This way, both pruning techniques are given
the same number of fine-tuning steps for each sparsity level to make our comparisons as fair as
possible. Note that overall, iterative pruning and fine-tuning technically use more training steps for
higher sparsities than non-iterative pruning and fine-tuning since they undergo multiple fine-tuning
loops.

A.1.3 REPRODUCIBILITY

We provide our entire codebase for reproducibility (GitHub link). The codebase has the functionality
to mask models using both SparseGPT pruning and magnitude pruning, fine-tune models without
affecting the pruned weights, and generate graphs of the model performances as shown in the paper.

A.2 TABLE OF PERPLEXITY SCORES

It is hard to compare the relative performance of the pruned models at low levels of sparsity using
just Figure [} Thus, we provide the exact perplexity scores of the pruned models.

Table 1: OPT-125M performance (perplexity) on raw Wikitext-2

Sparsity Iter. SGPT FT SGPT SGPT 1-Shot Mag. 1-Shot Iter. Mag

0.0 15.5491 16.4101 15.5491 17.0491 15.8655
0.1 16.0961 15.7595 15.1254 16.7757 17.5614
0.2 17.0278 16.1470 15.6511 16.9124 18.8294
0.3 17.9596 16.5344 16.1768 18.9990 20.0973
04 19.8166 22.1526 23.2115 33.2227 23.5373
0.5 21.6736 27.7708 30.2461 183.0424 26.9772
0.6 35.2026 137.5923 247.3005 842.4491 71.2146
0.7 48.7316 247.4137 464.3548 2236.3359 115.4521

0.8 119.1989 1245.6981 1542.4082 2314.5171 333.2517

https://github.com/Aaquib111/Sparse-GPT-Finetuning

Published as a Tiny Paper at ICLR 2023

Table 2: OPT-1.3B performance (perplexity) on raw Wikitext-2

Sparsity Iter. SGPT FT SGPT SGPT 1-Shot Mag. 1-Shot Iter. Mag

0.0 11.3793 10.3865 9.1898 10.9398 11.3793
0.1 13.5108 10.9680 10.6489 10.4941 13.5108
0.2 12.1721 10.5371 9.8145 10.3464 12.1721
0.3 16.0246 10.7993 10.7234 13.3030 14.0246
04 17.0493 13.5449 17.7923 65.2450 15.0493
0.5 19.2984 18.1016 20.5491 486.0790 17.2984
0.6 27.2359 90.9736 190.9837 2351.1123 39.2359
0.7 32.8878 205.8477 385.1699 2487.8091 90.8878
0.8 96.0358 933.2617 1398.8472 2876.3818 397.0358

A.3 LINEAR-SCALE GRAPHS OF PERPLEXITY SCORES

We also provide the linear-scale graphs of perplexity for our two models to emphasize the difference
in model performance at high sparsity. We used the log-scale graphs in the paper because model
performances at low sparsities are indiscernible in the linear-scale graph.

OPT-125M Performance on Raw Wikitext-2 OPT-1.3B Performance on Raw Wikitext-2
2500 3000

2000 2500

2000

> >
.5 1500 '5
s 3 1500
L 1000 [}
o 2 1000
500 500
o _{,——/ . —
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8
Sparsity Sparsity
Iterative SparseGPT Finetuned SparseGPT SparseGPT One-Shot Iterative SparseGPT Finetuned SparseGPT SparseGPT One-Shot
—+—lterative Magnitude ~ —e—Magnitude One-Shot —a—Iterative Magnitude ~ —e—Magnitude One-Shot

Figure 2: The linear-scale graphs of the pruned model perplexity scores on Wikitext-2-raw-v1. Left:
Pruned versions of OPT-125M. Right: Pruned versions of OPT-1.3B.

	Introduction
	Methods
	Experiments
	Discussion
	Future Work

	Appendix
	Further Methods
	Iterative Pruning and Fine-Tuning
	Training Hyperparameters
	Reproducibility

	Table of Perplexity Scores
	Linear-Scale Graphs of Perplexity Scores

