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ABSTRACT

Large language model (LLM) agents have shown great potential in solving real-
world software engineering (SWE) problems. The most advanced open-source
SWE agent can resolve over 27% of real GitHub issues in SWE-Bench Lite. How-
ever, these sophisticated agent frameworks exhibit varying strengths, excelling in
certain tasks while underperforming in others. To fully harness the diversity of
these agents, we propose DEI (Diversity Empowered Intelligence), a framework
that leverages their unique expertise. DEI functions as a meta-module atop ex-
isting SWE agent frameworks, managing agent collectives for enhanced problem-
solving. Experimental results show that a DEI-guided committee of agents is able
to surpass the best individual agent’s performance by a large margin. For instance,
a group of open-source SWE agents, with a maximum individual resolve rate of
27.3% on SWE-Bench Lite, can achieve a 34.3% resolve rate with DEI, making a
25% improvement and beating most closed-source solutions. Our best-performing
group excels with a 55% resolve rate, securing the highest ranking on SWE-Bench
Lite. Our findings contribute to the growing body of research on collaborative Al
systems and their potential to solve complex software engineering challengesﬂ

Each column is an issue in SWE-Bench Lite. A colored grid means the issue is resolved.

INTEGRAT-

(a) matplotlib sphinx django
A
Aider
Moatless
Agentless 1 | || | _ _
OpenDevin I O I | L]
DEI (ours) 1 || | ] D
oracle{ | | | | L 11 | | |
(b) ! (c)
40 | e e
Q\°30 11 | Agent 1 —> Candidate Patch 1 DE!
2 ! ! Candidate Patch 2 LD
220 | Github Codebase | Review
2 10 ! : :—-» Agent2 —»| Candidate Patch 3 l
1@ I Candidate Patch 4
| sl 1
& F S @ ¢ || Issue Description —> Agent3 —s{Gandidate Paich’s Best Patch
BRSSP AU .
S A 2 <

Figure 1: Different SWE agents (Aider, Moatless, Agentless, OpenDevin) resolve very different sets
of issues (the colored girds in Fig 1a), despite having similar resolve rates (Fig 1b). Our proposed
DEI Committee takes candidates patches and tries to select the best, oracle choice (Fig 1¢), improv-

ing the resolve rate significantly to be better than any single agent in the committee.

!Code, data, and generations are released at https://github.com/Salesforce AIResearch/swecomm,


https://github.com/SalesforceAIResearch/swecomm
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1 INTRODUCTION

Recent advancements in large language models (LLMs) have transformed software engineering
(SWE) and other domains. Originally developed as chatbots (Schulman et al.,[2022; OpenAl-Team,
2024), LLMs have evolved into the core of Al agents, capable of understanding and generating
human-like conversations, as well as autonomously executing actions in both real-world and digital
environments. SWE agents, a specialized subset of these Al agents, integrate these capabilities with
software engineering tools and techniques for tasks like code generation, automated testing, and
project management, aiming to identify and resolve practical software issues (Zhang et al., [2024).

In this paper, we study one specific task of SWE agents — resolving real-world GitHub issues based
on their descriptions. Automatically fixing a bug in a code repository is an extremely challenging
task that involves navigating extensive codebases, understanding complex function interactions, de-
tecting subtle errors, and generating the correct fix patch. The large action space of SWE agents,
together with long trajectories, inevitably result in the diversity of Github issue solutions, as shown
in We have observed that different SWE agents resolve very different sets of issues (the
colored girds in[Figure Th), despite having similar resolve rates (Figure Ib). This is probably due to
different skill sets of SWE agents. For instance, OpenDevin (Wang et al., 2024¢) explicitly instructs
the LLM to first replicate the bug in an issue and executes its replication in a development workspace
to provide feedback for its generated patches, but other agents like Moatless Tools (Orwalll 2024)
and Agentless (Xia et al.,|2024) do not actually execute code in the issue-specific repository.

A garden’s beauty never lies in one flower. Diversity in all its forms is the path to greatness.

Similarly, the trend in the SWE agent community reflects this diversity—no single agent framework
dominates in all capabilities. It is the flourishing variety within this community that sparks new
ideas and leads to the development of better agents.

The variety in SWE agent capabilities inspires us to develop DEI, Diversity Empowered
Intelligence, a framework that leverages the strengths of diverse agents. DEI aims to harness these
varied skills to tackle a broader range of problems more effectively with a multi-agent ensemble sys-
tem and a re-ranking pipeline, as showcased in[Figure Te. DEI functions as a meta-module that can
be integrated with any existing agent framework, enabling scalable management and collaboration
among agents to form a more powerful multi-agent software engineering organization.

We evaluate DEI on 7 groups of candidate agents on SWE-Bench Lite. 3 of the 7 are different runs
of a single open-source SWE agent. The other 4 are different agents that are on the SWE-Bench
Lite leaderboard, including a group that contains only open-source agents. Through experiments,
we find that different agents show a great level of diversity in the issues they resolve: a group of
agents with an average resolve rate of 26.6% can collectively solve 54.3% of issues if there is an
oracle reviewer that can consistently select the best candidate. DEI, as a first step towards harnessing
such diversity, can improve the group’s resolve rate to 34.3% (1 25%), suggesting that LLMs are
great code reviewers. These findings mirror the benefits of diversity in the tech industry, where
diverse perspectives and skills lead to greater innovation and problem-solving capabilities.

To summarize, our contributions are the following:

* For the first time, we comprehensively evaluate the diversity of solutions provided by SWE agents,
revealing significant differences in the types of GitHub issues resolved by various agents, despite
similar overall resolve rates. These findings suggest a substantial potential to improve overall
performance by effectively leveraging the diverse expertise of these agents together.

* This paper introduces DEI, a multi-agent meta-policy module designed to harness the diversity of
SWE agents and seamlessly facilitate collaboration among agents with different specialties. By
employing a multi-stage rating and re-ranking pipeline, DEI consistently improves issue resolu-
tion, demonstrating a 25% performance boost on the SWE-Bench Lite leaderboard.

2 RELATED WORK

We review the work in fundamental language agent architecture, recent developments for SWE
agents, and multi-agent or ensemble methods in this section.
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Fundamental Language Agent Pioneering Al agent methods along this line of work include
ReAct (Yao et al., [2023)), Reflexion (Shinn et al., 2023, CodeAct (Wang et al.l [2024b), etc., in
which ReAct interprets the user query, generates functional API calls, and gets the tool outputs
in real time; Reflexion further appends failed trial experience into the memory, enabling effective
retrials to prevent repetitive errors. CodeAct (Wang et al., |2024b), instead of generating function
calls, uses code generation to consolidate Al agents’ actions into a unified action space.

Software Engineering Agent We present the SWE agents which have disclosed the technical de-
tails on the SWE-bench Lite leaderboard. Alibaba Lingma Agent (Ma et al.l 2024) constructs a
repository knowledge graph to represent code and dependencies, using a Monte Carlo tree search-
based strategy for repository exploration, and generates patches to address real-world GitHub issues.
AutoCodeRover (Zhang et al.,[2024)) adds advanced code search tools, such as abstract syntax trees,
and spectrum-based fault localization to the agent for enhancing context understanding and issue res-
olution. Code-R (Chen et al., 2024)) chooses a multi-agent framework with pre-defined task graphs
to resolve Github issues. Agentless (Xia et al.,[2024), is a simplified two-phase approach for solv-
ing software development problems. It focused on localization and repair without relying on LLMs
to make decisions, highlighting the potential of straightforward techniques in autonomous software
development. OpenDevin (Wang et al.,[2024c) is a hub of community-contributed agents including
CodeAct (Wang et al. 2024b), browser agent, GPTSwarm (Zhuge et al., 2024), and task-specific
micro agents. Finally, SWE-agent (Yang et al[2024) developed agent-computer interface that con-
sists of LM-friendly commands and environment feedback to enable LM agents to autonomously
use computers to solve software engineering tasks.

Multi and Ensemble Agents Recent works observe that organizing multiple specialized Al
agents (Hong et al, 2024} |Li et al) 2023} [Liu et al.| [2024) enable the task decomposition ability
of an agent system, which improves the task-resolving performance. Current multi-agent frame-
works are categorized into three types based on their execution patterns. Firstly, static agent working
flow (Wu et al.| |2024; |Github), |2023)), which pre-defines the agent execution flows and ignites agent
transitions via specified conditions. Controlling a multi-agent system with pre-determined states
is robust, though losing flexibility in terms of unseen states or conditions. Secondly, ensemble via
self-consistency (Wang et al.| 2023)), LLM-as-a-judge (Zheng et al.|[2023)), group chatting (Wu et al.,
2023 [Hong et al.| 2024; [Wang et al.|, 2024a; |Chen et al., [2023)). This is built upon an environment
where multiple agents send messages to each other in a group channel such that their thoughts are
ensembled. Variants of group chatting includes debating (Liang et al.| 2023} [Chan et al.| 2023)) and
model-wise ensembling (Wang et al., 2024a). Last but not least, hierarchical task assignment (Liu
et al.l 2024} 2023). Organizing multi-agent in a hierarchical structure benefits the top-down task
decomposition and thus enables efficient multi-agent collaboration.

3 INTEGRATING EXPERTISE OF SWE AGENTS

3.1 BACKGROUND

Resolving issues in SWE-Bench. One important task in software engineering is to resolve issues
raised by developers. SWE-Bench curates instances of this task by collecting successfully resolved
issues from open-source repositories on Github. Each instance in SWE-Bench consists of a textual
issue description, a version of the repo just before the issue was resolved, and (hidden) unit tests that
went from fail to pass after the human-written patch. To resolve an instance, the model is required
to generate a patch that can pass these unit tests.

SWE Agents. In this paper, we use the term “SWE agents’ﬂto refer to any LLM-based system that
generates patches to solve issues in a code base, e.g., an instance in SWE-Bench. While the specific
implementation varies, a typical SWE agent usually gives their underlying LLM several tools in the
form of callable functions to navigate through the code base, find relevant context, edit files, and run
tests. The workflow of SWE agents involves multiple LLM calls, each taking some or all outputs
from previous steps as input.

! According to our definition, SWE-agent (Yang et al., 2024) is an instance of SWE agents, and Agentless
(Xia et al.}[2024), despite the name, is another.
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3.2 DIVERSITY OF SWE AGENTS

We consider two types of diversity: intra-agent diversity and inter-agent diversity.

Intra-agent diversity is defined as the degree to which different runs of the same agent solve dif-
ferent problem instances. It is most likely from the non-determinism of the underlying LLM due
to sampling in decoding and mixture-of-experts architecture (Chann, [2023). Since the workflow of
SWE agents involves multiple steps and LLM calls, a slight difference in an earlier step can easily
propagate and result in significant differences in the final outcome.

Inter-agent diversity is defined as the degree to which different agents solve different problem in-
stances. Besides sharing the potential causes of intra-agent diversity, inter-agent diversity is also
largely because of differences in agent design, including different tools, workflows, and prompts.

3.3 APPROACH
3.3.1 SWE AGENT PROBLEM FORMULATION

We formulate the SWE agent problem under the contextual Markov decision process (CMDP) frame-
work (Hallak et al., |2015), represented by the tuple M = (S,C, A, R, P, po, p). Here, S denotes
the state space, which encompasses all possible states the agent could encounter, such as the current
status of files. The context space, C, includes relevant repository information and issue descrip-
tions. The action space, A, represents all potential actions or tools the SWE agent can utilize, such
as search or editing. The context-dependent reward function, R : S x A x C — R, as-
signs scores based on the actions taken by the agent. For instance, the reward is high if the agent
successfully addresses an issue, while it is low if the action results in new bugs in the repository.
The context-dependent transition function, P : S x A x C — A(S), defines how the state of the
repository or information changes following a specific action. The context-dependent initial state
distribution is denoted by pg : C — A(S), and p € A(C) represents the context distribution.

Given the initial context ¢ ~ p and initial state sg ~ po(- | ¢), at each time step ¢, the agent follows
apolicy m : S x C — A(A) to select an action a; ~ 7(s¢, ¢) and receives a reward R (s, at, ¢). The
environment then transitions to the next state s;11 ~ P(- | s, at, ¢), providing the agent with a new
state observation. As the iteration progresses to time 7', a sampled trajectory 7 := {s, as, 74} is
obtained. The objective of an SWE agent is to maximize the cumulative reward along the trajectory,
which is captured by the value function:

T
max V™(p) = mngT ZR(st,at,c) |c~pim (1)
t=0

3.3.2 OUR FRAMEWORK: DIVERSITY EMPOWERED INTELLIGENCE (DEI)

Many efforts have been made to implement sophisticated agent systems that aim to achieve the
objective described in Eq. [T} However, as discussed in Section|[I] these systems often exhibit vary-
ing levels of effectiveness across different contexts. It is challenging to devise a single agent that
can consistently perform well across all possible contexts. Formally, suppose there are N agent
policies, denoted as {my,m2,...,mn}, Where each policy is tailored to address a specific con-
text {p1, p2,...,pn}. The union of these contexts is a subset of the entire context space, i.e.,
p1Up2aU---Upny C p. For each agent policy 7;, the objective is:

T
m; = max[E, Z’R(st,at,c) e~ pim|. 2)

™
t=0

However, an agent policy m; may perform poorly in a different context p; (where j # ). To
address this limitation, we propose our framework: Diversity Empowered Intelligence (DEI). The
DEI framework leverages the strengths of each agent in their respective contexts to enhance overall
performance across all contexts.
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We introduce a meta-policy, denoted as mpg;, which aims to optimally select among the available
agent policies based on the context. The goal of mpgy is defined as:

T
et = maxEe, |Er | R(s,ar,0) | m(e)| | 3)
t=0
where 7(c) denotes the selection of the optimal agent policy from {7y, 72, ..., x5} based on the

observed context c. By dynamically choosing the most suitable agent policy for each context, the
DEI framework seeks to maximize the expected cumulative reward across all possible contexts.

3.3.3 DEIBASE: A SIMPLE YET EFFECTIVE IMPLEMENTATION

We present DEIBASE, a simple yet powerful implementation of the DEI framework, tailored for
SWE-Bench like problems. The context in the setup includes the repository, along with relevant
files and issue descriptions. The meta-policy’s action space consists of the final patches generated
by different agent frameworks, each specialized in addressing various aspects of the problem.

DEIBASE utilizes a Large Language Model (LLM) as a code review committee. The LLM evaluates
candidate patches by analyzing the state of the code base before and after the proposed changes,
in conjunction with the contextual information from the issue descriptions. It produces detailed
explanations for each patch, justifying the modifications based on the identified issues, the context,
and the specific changes made.

While other methods of code review and scoring, such as rule-based approaches, can be incorporated
into our framework, the use of an LLM-based committee offers a unique advantage. LLMs often
excel at evaluating solutions when evaluation is easier than generation. DEIBASE thus serves as
an effective baseline for LLM-based SWE evaluation, highlighting potential performance variations
among diverse SWE agents and showcasing the capabilities of our method.
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Figure 2: Framework Overview. DEI first examines the code base before and after a candidate
patch, along with other relevant contexts. Then, it generates an explanation for the issue, the context,
and the patch and tries to justify the patch. With its own explanation, it scores the candidate patches
and picks the top-scoring ones as more likely to be correct.

As demonstrated in[Figure 2] DEIBASE is given multiple candidate patches for a single issue. These
patches might be from running a single SWE agent multiple times or running multiple SWE agents.
DEIBASE gives each candidate patch a score and then selects the top-scoring candidates as the
patches most likely to work. Prompts and example inputs/outputs can be found in Appendix

Step 1: Input Construction. Four inputs are given to DEIBASE for each patch: the issue descrip-
tion itself, relevant context (code snippets identified by an SWE agent as relevant to the issue), code
before the patch, and code after the patch. The form of inputs reflects two design choices. First,
the entire repository is often too large to fit directly in the context limit of LLMs, so we use the
relevant context instead to save token costs and help the model focus. Second, the format of a patch
is not the easiest for an LLM to read as it switches back and forth between the pre-change code and
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the changed code, so we give the code before and after the patch separately to the model for easier
understanding. In practice, we directly use the relevant code spans identified by Moatless Tools, an
open-source SWE Agent (Orwall, [2024). There might be potential ways of improving the quality of
relevant code spans by making them specific to both the issue and the candidate patch, rather than
solely dependent on the issue itself.

Step 2: Explanation Generation. To help the model better “understand” the patch before scoring,
we instruct it to generate various explanations regarding the patch in a specified order. The order is
decided so that the earlier explanations can also help the later ones. We describe each explanation
in the order they are generated here: 1) Issue explanation explains what the issue is about and what
problem it may be causing. 2) Context explanation explains how and why each relevant code span
(there might be many of these) is relevant to the issue. 3) Location explanation explains if and why
the patch is modifying the correct part of the code that’s faulty. 4) Patch explanation explains if
and how the patch is fixing the issue. 5) Conflict detection is about checking whether the patch
conflicts with other relevant code snippets. We explicitly instruct the model to refer back to the
earlier explanations while generating the later ones.

Step 3: Patch Scoring. Based on its own explanations, the model is asked to give the candidate
patch a score of 1 to 10. We give the model detailed rubrics of what violations/mistakes lead to
higher score deductions and what should only be considered minor violations. For example, if the
model finds the modification location to be wrong, it is considered a serious mistake. We score each
candidate multiple times and average the score. To encourage diverse outputs, we use an inference
temperature of 1.2

4 EXPERIMENTS

We aim to answer two research questions with our experiments: 1) How diverse are LLM-based
SWE agents in terms of intra- and inter-agent diversity? 2) To what extent can DEI harness the
diversity and increase the performances of these SWE agents?

4.1 EXPERIMENT SETUP
4.1.1 BENCHMARK AND AGENTS

Benchmark. We conduct our experiments on SWE-Bench Lite, a 300-instance subset sampled from
the full SWE-Bench for providing a more self-contained evaluation of functional bug fixes (Jimenez
etal.,[2024). Compared to the full SWE-Bench, SWE-Bench Lite has significantly more submissions
on the leaderboard for us to conduct a more comprehensive analysis of inter-agent diversity.

Agents. For intra-agent diversity, we consider three well performing open-source agents on the
SWE-Bench Lite leaderboard: Agentless (Xia et al., [2024), Moatless (Orwall, 2024), and Aider
(Gauthier, 2024) by running them 10 times with the same parameters. For inter-agent diversity, we
consider 10 agents that have similar resolve rates, all between 26.0% and 31.0% on the leaderboard
by directly using their submitted patches to the SWE-Bench issues. For the evaluation of DEIBASE
on different agents, we consider 3 groups of agents that are submitted to SWE-Bench Lite before
August 15, 2024, including one group consisting of only open-source agents. For the evaluation of
DEIBASE on multiple runs of a single agent, we use the generations of the three aforementioned
agents — Agentless, Moatless Tools, and Aider. More details can be found in Appendix [A.4]

4.1.2 EVALUATION METRICS

We use the same set of metrics for both intra- and inter-agent diversity as these metrics are defined for
multiple candidate solutions without requiring them to come from the same candidate. We assume
there are n candidates in total, and we are computing “@Xk” metrics over all of its subsets with k
candidates.

Resolve rate measures how good a SWE agent is. It is defined as the percentage of issues resolved
by the agent. We measure both single SWE agents and DEI with it to see how much DEI helps.

Union@k measures the best case performance of £ candidates, assuming an oracle reranker to
always pick the best candidate. For any set of size k, if an issue is resolved by one of the k candidates,
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it is counted as solved for Union@¥k. We compute the average of resolve rates over all possible sets
of size k.

Intersect@k measures the worst case performance of k candidates, assuming an adversarial

reranker that always picks the worst candidate. An issue is considered resolved if only all k£ candi-
dates resolve it.

Average @k measures the average case performance by computing the average number of problems
solved by k candidates, assuming a random reranker that picks a random candidate.

DEI@k measures the performance of our method by computing the number of problems solved by
the top-1 candidate deemed by DEI. The better our reranking mechanism is at telling good solutions
from bad ones, the higher DEI@K is.

Our research questions can be answered by the gaps between these metrics. Union @k - Intersect @
measures how diverse the agents are, while DEI@k - Average @k measures how much DEI helps
in selecting the correct candidate. Note that when there are more than % candidates, we consider all

possible subsets of size k¥ when computing the “@k” benchmarks. We report the mean and standard
deviation of the benchmarks over all subsets.

4.2 MAIN RESULTS

4.2.1 RESEARCH QUESTION 1: HOW DIVERSE ARE LLM-BASED SWE AGENTS?

To answer this question, we report the “@k” metrics of 10 different agents and 10 runs of single

agents in [Figure 3}
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Figure 3: How different metrics change as more candidate solutions are involved. In all 4 scenarios,
there is a huge gap between Union@k and Average@k. The concrete dots are expectation over all
possible subsets of size k, while the shaded area corresponds to the standard deviation.

Several observations can be made about the results:

SWE agents resolve very different sets of issues across agents and agent runs. Their full poten-
tial is far from fully released. In all four subfigures, the gap between Union@k and Average @k,
as well as between Average@k and Intersect@Xk, is large. As k — the number of candidates — gets
larger, the gap also gets larger. For 2 of the 4 settings, Union@k is more than 2x larger than Aver-
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age@k for £ = 10. The other 2, Union@k is more than 1.5x larger than Average@k for k = 10.
This indicates that current SWE agents are potentially capable of resolving a lot more issues, if we
have a reranker that can tell which candidates are correct.

Different agents resolve more distinct issues than different runs of a single agent. In other
words, diversity does empower intelligence. The absolute/relative difference between Union @k
and Average @k is much larger in the first subfigure than in the following three subfigures. For the
“10 different agents” setting, as k approaches 10, the distinct issues resolved are 2x the average
number of issues resolved by a single agent in the group.

Table 1: Resolve rates of top submissions on SWE-Bench Lite (cutoff date: Aug 15, 2024). We evaluate 3
DEI Committees formed by different groups of agents. Each DEI Committee outperforms the best agent in it
significantly. DEIBASE-Open, formed by 4 open-source agents can beat many closed-source agents.

DEI Group % Resolve System Open Src Trajs  Open Candidates Backend LLM
1 55.0 DEIBASE-1 v v X gptdo
1 50.6 Cosine Genie X X - “Fine-tuned OpenAI”
1 43.0 CodeStory Aide X X - gptdo, Claude 3.5 Sonnet
- 38.0 Abente AT MentatBot X X - gptd4o
2 37 DEIBASE-2 v v X gptd4o
Open 34.3 DEIBASE-Open 4 4 4 gptdo
- 34.0 Bytedance MarsCode X X - gptdo
- 33.0 Alibaba Lingma X! X - gpt-4-1106-preview
2 31.3 Factory Code Droid X X - “Anthropic and OpenAI”
2 30.6 AutoCodeRover X X - gptd4o
2 29.6 Amazon Q Dev. X X - Unknown
2 28.3 CodeR X! X - gpt-4-1106-preview
2 28.0 MASAI X! X - Unknown
27.6 SIMA X! v /3 gptdo
Open 27.3 Agentless v v - gptdo
Open 26.6 Moatless Tools v v - Claude 3.5 Sonnet
- 26.6 IBM Research Agent X X - Unknown
Open 26.3 Aider 4 X - gpt4o, Claude 3 Opus
Open 26.0 OpenDevin + CodeAct v v - gptdo

! Their repo has no code yet.
2 An earlier version is open-source. The current one is not.
% Candidates are generated by a “modification of moatless tools”.

4.2.2 RESEARCH QUESTION 2: HOW MUCH DOES DEI HELP?

We apply DEIBASE to the candidates in as they are added to the group. Our findings are:

DEIBASE helps in most cases. For most values of & in all subfigures, we observe a significant
improvement of DEI@k over Average @k, indicating that DEIBASE selects correct candidates much
better than a random baseline.

DEIBASE helps more when the candidates come from different agents. This finding resonates
with a similar finding from research question one: Since candidates from multiple agents have a
larger potential for improvement (Union@k - Average@k), the actual improvements created by
DEIBASE (DEI@k - Average@k) are also larger. This suggests that given a limited budget of
candidates, it would be better to choose a diversity of agents over multiple runs of the same agent.

As k gets larger, DEIBASE’s improvement first increases and then plateaus. While larger k&
generally indicates higher DEI@k, the margin gets smaller and there are cases when an increase in
k results in a slight drop in performance. This suggests that the current DEIBASE is not ideal for a
large group of agents and there is still room for a better reranking mechanism.

Based on the lessons above, we propose three DEIBASE groups in which each candidate is from
a different agent and no more than 5 candidates exist for each instance. The members of these
DEIBASE groups and their performance are reported in[Table | DEIBASE-1 consists of the top 2
agents. DEIBASE-2 consists of 5 closed-source agents that have high performance on the leader-
board. DEIBASE-Open consists of 4 open-source agents so that we know future researchers can run
the entire pipeline. As shows, all three DEIBASE instances outperform the best candidate
in the group. Surprisingly, DEIBASE-Open shows a 7% increase in resolve rates and beats most of
the closed-source systems.
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Figure 4: How the performance of DEIBASE changes as the LLM is given more votes for scoring.

4.3 ABLATION AND ANALYSES

In this subsection, we demonstrate some ablation studies to investigate the effectiveness of different
components in the framework, in order to answer the following questions. To advocate for open
science, all the ablation experiments are conducted on either our own reproduction of open-source
SWE agents or their official generations.

Question 1: Does DEI get better with more votes?

Answer 1: Yes. Arguably, DEI itself has the same potential characteristics as SWE agents that may
cause diverse outputs. However, unlike SWE agents whose outputs are patches, DEI’s output is an
integer score, which can easily be aggregated and averaged. This is why we give DEI more votes
and rerank the candidates according to the average score. In most DEIBASE experiments, we allow
10 votes for each candidate patch. To investigate whether more votes lead to better patch reviewing,
we directly take the scores generated for DEIBASE-Open, DEIBASE-Agentless, DEIBASE-Aider,

and DEIBASE-Moatless, and check for various values of m, how the first m scores can help us find
the best patch.

As demonstrated in[Figure 4] more votes generally lead to better resolve rates. Another finding is that
for 3 out of the 4 evaluation settings, DEIBASE was able to get much better performance than the
average candidate with only one vote. Even when DEIBASE wasn’t able to get better than average
with one vote, it managed to get an improvement with only three votes. These results suggest that
DEIBASE itself also produces diverse outputs, but it is easier to aggregate them via score averaging.

Question 2: Are the explanations necessary?

Answer 2: Yes. We remove the part about asking for explanations from the prompt and compare
DEIBASE-Open, DEIBASE-Agentless, DEIBASE-Aider, and DEIBASE-Moatless under the same
evaluation setting with and without explanations. We report their resolve rates in[Table 2] For all 4

settings we evaluated, DEIBASE with explanations performs slightly better than DEIBASE without
explanations.

Table 2: Comparing DEIBASE’s resolve rates with and without explanations.

Open Agents  Agentless Aider Moatless
DEIBASE w/ expl. 34.6 26.0 24.6 25.6
DEIBASE w/ o expl. 323 23.0 233 25.3
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5 CONCLUSION

In this paper, we present Diversity Empowered Intelligence (DEI), a meta-policy module designed to
integrate with any existing SWE agent frameworks to enable scalable management and collaboration
among specialized agents, thereby fostering a more powerful software engineering organization.
Through extensive evaluations, we find that different agents show a great level of diversity in the
issues they resolve: a group of agents with an average resolve rate of 26.6% can actually solve 54.3%
of the issues if we have an oracle that selects the correct candidate. DEI, as our first step towards
harnessing such diversity, can improve the group’s resolve rate to 34.3% (+7%), suggesting that
LLMs are great code reviewers. These findings mirror the benefits of diversity in the tech industry,
where diverse perspectives and skills lead to greater innovation and problem-solving capabilities.

DEI represents our initial step toward realizing a fully automated organizational AI. We believe that
the full potential of multi-agent Al systems extends beyond enhancing task completion accuracy
with agentic workflows, which is the current focus of most industry practices. Instead, DEI offers a
horizontal, scaling-out approach that facilitates the collaboration and integration of existing diverse
agents without necessitating refactoring of engineering work. This capability not only optimizes and
speeds up immediate software development tasks but also sets the groundwork for future innovations
in Al-driven organizational management.
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A APPENDIX

A.1 ANALYZING DIFFERENT SWE AGENTS

In this section, we analyze the issues in SWE-Bench Lite resolved by the 4 open-source agents in
DEIBASE-Open and try to attribute why they are solving different issues. We have access to the
implementation of these open agents and, therefore, can better analyze their performance.

A.1.1 WHAT ISSUES DO DIFFERENT AGENTS RESOLVE?

When combined, the 4 agents resolved 137 / 300 issues. A Venn Diagram of the sets of resolved
issues is shown in Figure[5} Table [3|shows the number of issues resolved in each repository. From
the table, we observe that the issues uniquely solved by only one agent are about 10% of all
issues resolved by that agent.

By further looking at the number of uniquely resolved issues in each repository, we find that the
uniquely resolved issues for aider, moatless, and agentless are more evenly distributed
across repositories, while those for opendevin are skewed towards django, indicating a larger
difference between opendevin and other open-source agents.

The larger difference between opendevin and the other three is also shown in Table 4] where
we list the number of commonly solved issues for all agent pairs. The commonality between
opendevin and the others is smaller than that within the others. This difference is reflected by
the length of generated patches and the number of locations edited in Table 5 as opendevin is
editing significantly more files and creating significantly longer patches.

aider agentless
moatless opendevin
80 82

Figure 5: Venn diagram of the solved issues.

Table 4: Commonly resolved issues between pairs of agents.

aider moatless agentless opendevin

aider - 53 52 44
moatless 53 - 51 47
agentless 52 51 - 48
opendevin 44 47 48 -
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Table 3: Number of resolved issues in each repository. p/q indicates that there are ¢ issues resolved
in total by that agent, while p indicates there are p issues uniquely solved by that agent and not
solved by others.

aider  moatless agentless opendevin

astropy/astropy 0/0 0/1 0/1 0/2
django/django 4/37 4/41 1/37 7146
matplotlib/matplotlib 1/4 1/5 0/5 1/3
mwaskom/seaborn 0/1 0/1 0/2 0/2
pallets/flask 0/0 0/0 0/0 0/0
psf/requests 0/3 0/3 1/4 0/1
pydata/xarray 0/1 0/1 0/1 0/0
pylint-dev/pylint 0/0 1/1 1/1 0/0
pytest-dev/pytest 1/6 0/3 1/6 0/3
scikit-learn/scikit-learn 0/10 1/8 0/8 2/5
sphinx-doc/sphinx 0/2 0/2 0/3 1/3
sympy/sympy 3/15 4/14 4/14 2/13
Total 9/79 11/80 8/82 13/78

Table 5: Mean and standard deviation of generation lengths (by character) and number of locations
edited.

aider moatless agentless opendevin
patch length mean 1140.2  1005.3 750.6 57890.8
patch length std 499.3 4422 152.7 30557.0
num. locations edited mean 1.7 14 1.2 4.6
num. locations edited std 0.7 0.6 0.4 1.9

We further analyze if there is an observable pattern of issue description that correlates with the
uniquely solved issues. To do that, we create vector embeddings for the issue statements using
voyage—code-2 EL and project them to 2-dimension using t-SNE (Van der Maaten & Hinton)
2008). As shown in Figure [f] the representations of the uniquely resolved issues are not really sep-
arated. At least from this figure, we do not observe a clear pattern correlating issue description
embeddings and agents’ ability to solve them.

—1.5
-2.0 C - )
] ® o
-2.5
-3.0 o @ ® PS
-35
-4.0 ®
_45 aider @
¢ moatless
_so] @ agentless ()
opendevin

54‘5 54‘0 54‘5 74‘0 74‘5 8.‘0
Figure 6: t-SNE visualization of the issues uniquely resolved by the agents.

However, this could also be because of the quality of embeddings, which is why we need qualitative
analysis on the resolved issues.

An empirical analysis of multiple SWE agents (Meng et al., 2024)) found that the commonly solved
issues are generally better in quality than the less commonly solved ones. The quality metrics
include reproducible examples, resolve solutions, quality of file-level location, quality of line-level
location, etc. These metrics are annotated by human annotators.

Zhttps://docs.voyageai.com/docs/embeddings
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In the next section, we analyze qualitatively the issues uniquely resolved by the open agents and
attribute why that is the case. We try to answer the question: why do different agents resolve
different issues?

A.1.2 WHY DO DIFFERENT AGENTS RESOLVE DIFFERENT ISSUES?

Different tool sets for bug localization. Among the four open agents we tested, moat less is the
only one that uses embedding-based retrieval to find which file and which line to make changes to
the code. The other agents provide LLMs with tools like file viewer, AST search and string search
and also prompt the model with a summary of the file structure. The extra tool of embedding-based
retrieval gives moatless some chance to better localize the bug. For example, sympy-23262 is
an issue only resolved by moatless. The other three agents were not able to correct locate the
file to edit: sympy/utilities/lambdify.py, while moatless did. This is also the case
for django-15790, where the issue description mentions “template”. The files modified by the other
three agents all have “template” in their paths. However, moat less was the only agent that found
the correct file to modify: django/core/checks/templates.py.

Bug reproduction and iterative testing. Among the 4 agents, OpenDevin is the only one that
tries to reproduce the bug and create a test script before fixing it. It is also the only one with a larger
cost limit and more rounds of model calls. While this is making its generations much longer and cost
more, it also allows OpenDevin to solve 13 unique issues, especially the one with reproducible
tests in their description. For example, for the following issue sympy-15609, although all 4 agents
located the bug in sympy/printing/latex.py, OpenDevin was the only one that made use
of the reproduction test in the following issue description and eventually resolve the issue. This is
also the case for sphinx-8435, which also contains reproducible tests.

sympy—-15609, Issue description:

Indexed matrix—expression LaTeX printer is not compilable
‘Y'python

i, j, k = symbols("1 j k")

M = MatrixSymbol ("M", k, k)

N = MatrixSymbol ("N", k, k)

latex ((MxN) [1, JI])

RN

The LaTeX string produced by the last command is:

AN

\sum_{i_{1}=0}"{k - 1} M _{i, _i 1} N_{_i 1, 3}

AN

LaTeX complains about a double subscript ‘_‘.
This expression won’t render in MathJax either.

Plausibility tests and mixing models. aider runs multiple iterations with different models — gpt-
40 and Claude 3 Opus — when one iteration does not produce plausible patches. It checks plausibility
by using a python linter to find syntax errors and running pre-existing tests to make sure the changes
do not break the code base. With these plausibility tests, aider can run multiple rounds to generate
patches for a single issue until it solves them.

Other ad hoc factors and spurious features. SWE agents are complex systems with LLM
calls, agent tool implementations, and other components chained together. This makes it re-
ally hard to attribute their performance differences for many reasons: 1) LLMs are sensitive
to even very slight changes in prompts (Sclar et al.| [2023), 2) LLMs are probabilistic and
non-deterministic, and 3) software engineering issues are complicated problems. For exam-
ple, although aider and agentless are conceptually identical in bug localization, there are
still many cases where they found different files to modify. For sympy-13971, aider found
the correct file sympy/series/sequences.py while agentless found the wrong file
sympy/printing/latex.py.
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A.1.3 CAN WE DETERMINE WHAT AGENT TO USE FOR EACH ISSUE IN ADVANCE?

Given the explanations in the previous section, it might seem tempting to learn a classifier to select
the best agent for an issue instead of selecting the best generation of multiple agents. However, such
a classifier doesn’t work well. We tried training several classifiers with the embeddings of issue
description input and outputs which of the four agents to use. We trained it on a randomly sampled
subset with 150 issues in SWE-Bench and evaluated it on the remaining 150 issues. As listed in
Table[6] the classifiers we trained are either worse or slightly better than randomly picking an agent
in terms of resolve rate.

While there are many factors that may impact an agent’s performance, they might not be fully re-
flected in the issue description. Also, the representations of the issues might not capture all these
factors, as Figure [f] shows. We recognize the potential of training a DEI policy using a pretrained
LLM and a carefully curated dataset. Such a trained model could serve as a better judge model, dy-
namically composing and sequencing different policies’ partial solutions to address complex issues.

Table 6: Resolve Rates with Different Issue Classifiers

input output accuracy
random baseline - which agent to use 26.6%
classifier 1 issue description which agent to use 25.6%
classifier 2 issue description + file structure which agent to use 27.0%
DEIBASE issue desc. + file structure + generations ~ which patch is best 33.3%

A.2 CAN DEI PROVIDE FEEDBACKS FOR PATCH REFINEMENT?

To some extent, yes.

We conduct experiments on Agentless generations to evaluate whether DEI explanations can help
the model refine its potentially wrong generation.

We sampled 10 issues that were not solved by Agentless and got low scores from DEI. We modified
the bug-fixing part of the agentless framework to include DEI’s output and refined the patches for at
most 5 rounds.

Once a patch gets more than 5 points from DEI, we stop refining it. With this refine process, the
number of fixed issues among the 10 went from 0 to 1, 2, 3, 5, S in the 5 rounds. This result
indicates that DEI feedback is not just useful for selecting the best candidate, but also for refining
incorrect patches.

A.3 WHEN DOES DEI FAIL?

DEI follows our rubric to score the patches. Each stage in its analysis corresponds to some points in
the scoring rubric and, therefore, needs to be analyzed separately.

We analyzed 20 of 35 failure cases of DEI in DEI-Open by manually annotating the stages (location
explanation, patch explanation, conflict detection) where DEI failed to make the correct decision.
For each case, we analyze for one false positive patch and one false negative patch. We list the
results in Table[7l

Note that each row can sum up to more than 20, because there can be multiple stages where DEI
makes mistakes. From this table, we find that DEI tends to be misled during the patch explanation
stage of an incorrect patch. For a correct patch, it tends to mistakenly “find” conflicts with the
existing code. Fewer errors are made during the location explanation stage. This indicates that DEI
is better at telling if the patch is modifying the correct file.
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Table 7: The number of DEI failures in different stages for different types of errors, among 20
annotated issues.

Location Explanation ~ Patch Explanation = Conflict Detection

False Positive 5 10 7
False Negative 4 2 15

A.4 AGENTS EVALUATED

We add the following agents to the DEI Committee (the one in Figure 3) in the following order (the
order is generated by randomly shuffling their chronological order using python’s random shuffle
function with a random seed of 42):

1. 20240612 IBM Research Agentl101

2. 20240612 MASAI gptdo

3. 20240604 CodeR

4. 20240523 aider

5. 20240630 agentless gptdo

6. 20240617 moatless gptdo

7. 20240725 opendevin codeact v1.8 claude35sonnet

8. 20240706 sima gptéo

9. 20240621 autocoderover-v20240620

10. 20240509 amazon-g-developer—-agent-20240430-dev

A.5 PROMPTS AND EXAMPLES

A.5.1 PROMPTS

System Prompt:
You are an expert in python for software engineering and code review. Your responsibility is to review the patches generated by
language models to fix some issues and provide feedback on the quality of their code.
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User Prompt: I want you to evaluate an LLM-generated candidate patch that tries to resolve an issue in a codebase.

To assist you in this task, you are provided with the following information:

- You are given an issue text on a github repository (wrapped with <issue_description> </issue_description>).

- You are also given some identified code spans that are relevant to the issue. Each code span is wrapped with <code_span
file_path=FILE_PATH span_id=SPAN_ID > </code_span>>tags, where FILE_PATH is the path to the file containing the code span,
and SPAN_ID is the unique identifier for the code span. Each code span also comes with the line numbers for you to better
understand the context.

- You are given the candidate patch that tries to resolve the target issue. For your convenience, you are given the hunks of original
code and the code after applying the patch. The code before the patch is wrapped with <before_patch> </before_patch>and the
code after the patch is wrapped with <after_patch> </after_patch>. Note that the file names in before_patch starts with *a/> and
the file names in after_patch starts with ’b/’.

Here’s what you want to do:

1. Understand the issue. Explain in your own words what the issue is about. —Output your explanation in <is-
sue_exp > </issue_exp>tags.

2. Understand the identified code spans. First provide a list of the span ids. Then explain how each of the identified code spans are
relevant to the issue. Output your explanation in <code_span_exp> </code_span_exp > tags.

3. Understand the candidate patch. First curate a list of modified hunks. For each modified hunk, explain what it’s doing. Output
your explanation in the <patch_exp> </patch_exp>field.

4. Check if the patch is fixing the correct function or not. Output your explanation in the <cor-
rect_location_exp> </correct_location_exp>field.

5. Check if the patch is introducing any new issues, especially if it contradicts with any of the identified code spans. Output your
explanation in the <new_issues_exp> </new_issues_exp > field.

6. Check if the patch can fix the issue. Compare the generated patch agains the common mistakes made by LLMs and
see if it falls into any of the categories. Be ruthless to point out any potential mistakes. Output your explanation in the
<fix_issue_exp> </fix_issue_exp>field.

7. Finally, give me your score. Wrap your score in <score></score>tags. Make sure to include in these tags only an integer,
nothing else.

Here’s the scoring rubric:

Your score should be an integer between 0 and 10, where higher scores indicate better quality.

You should give a score of -1 if you think the patch is invalid or there is something wrong with it.

For every contradiction between the identified code spans and the patch, you should deduct 1 point from the score. If you think the
patch is not fixing the correct function, you should give a 0.

If you think the patch is introducing new issues, you should deduct 2 points from the score.

Your scoring should only be about the correctness of the patch, not about its quality or style.

<issue_description> {issue_text} </issue_description>

<before_patch>{before_patch} </before_patch>

<after_patch> {after_patch} </after_patch>

{code_spans}

Again, make sure your output ends with <score></score>tags containing only an integer. For example, if your score is 8, the
final part of output should look like this: <score>8</score>>It should not contain any other information or characters.
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A.5.2 EXAMPLE 1

We list two candidate patches for the same issue (sympy-13971) and the evaluation for the candi-
dates generated by DEL In this case, DEI was able to give a high score to the correct candidate and
a lower score to the incorrect candidate.

Candidate Patch 1 (Incorrect):

diff --git a/sympy/printing/latex.py b/sympy/printing/latex.py
index 364b24ale5..43d57015c3 100644

-—— a/sympy/printing/latex.py

+++ b/sympy/printing/latex.py

@@ -1655,6 +1655,10 @@ def _print_SegFormula (self, s):

else:

printset = tuple(s)

+ return (r"["

+ + r", ".join(self. print(el) for el in printset)
+ + rll]ll)

+

return (r"\left["

+ r", ".Jjoin(self. print(el) for el in printset)

+ r"\right]")

Candidate Patch 2 (Correct):

diff -—-git a/sympy/printing/latex.py b/sympy/printing/latex.py
index 364b24ale5..9%edbaadc30 100644

-—— a/sympy/printing/latex.py

+++ b/sympy/printing/latex.py

@@ -1655,9 +1655,9 @R def _print_SegFormula(self, s):

else:

printset = tuple(s)

- return (r"\left["

+ return (r"\left["

+ r", ".join(self. print(el) for el in printset)
- + r"\right]")

+ + r"\right]")

_print_SegPer = _print_SeqFormula
_print_SegAdd = _print_SeqgFormula
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DEI Output for Candidate 1 (Incorrect Candidate, Final score = 2):

1. Understanding the issue:

<issue_exp>

The issue pertains to how the ‘SeqFormula()‘ command in the SymPy library is rendered in Jupyter

Notebooks. Currently, the sequence output is backslash-escaping the square brackets producing

expressions like “\left\[0, 1, 4, 9, ... \right\]* which do not render properly in markdown cells. The

desired output is an expression that does not backslash-escape the square brackets, like ‘[0, 1, 4, 9,
1

</issue_exp>

2. Understanding the identified code spans:

List of span ids:

- LatexPrinter. _print_SeqFormula

Explanation of each code span:

<code_span_exp>

The identified code span ‘LatexPrinter._print_SeqFormula‘ in ‘sympy/printing/latex.py‘ handles
the LaTeX formatting of sequence output. Specifically, it creates a LaTeX string representing the
sequence by encasing it in ‘\left\[...\right\]‘, which introduces backslash-escaped square brackets
because of the ‘\[...\]° LaTeX format convention. This contributed to the issue’s improper rendering
in markdown cells when copied from Jupyter.

</code_span_exp>

3. Understanding the candidate patch:

List of modified hunks:

- Hunk modifying return statements in ‘_print_SeqFormula‘.

Explanation of each modified hunk:

<patch_exp>

The candidate patch modifies the return statement of ‘_print_SeqFormula‘ which previously returned
the sequence encased in ‘\left\[...\right\]. The patch adds a new return statement that uses just
‘[...]* for the sequence (without the ‘\left* and ‘\right), preventing the backslash-escaping of square
brackets. The original line is retained (but will not execute, given the placement of the new return line
above it).

</patch_exp>

4. Checking if the patch is fixing the correct function:

<correct_location_exp>

Yes, the patch modifies the correct function ‘_print_SeqFormula‘® where the issue arises from. This
function is responsible for rendering LaTeX sequence outputs.

</correct_location_exp>

5. Checking if the patch introduces any new issues:

<new_issues_exp>

The patch introduces a redundancy and maintains the old behavior, since both modified hunks are
present. The original ‘return (r”\left\[‘ code is kept after the new ‘return (r”[”¢ added in the patch.
This means the second return statement (‘\left\[‘ one) is unreachable. Ideally, to correct the issue
properly, the original return should be replaced rather than decomposing/unreachable placement.
</new_issues_exp>

6. Checking if the patch can fix the issue:

<fix_issue_exp>

The patch can fix the issue because it generates a sequence in ‘[ ... ]° without backslash-escapes
by rendering it directly. However, since the problematic return code \( \left\[wallaover Jpreserved
(UnPerf=167**, the cleaned refactor redundancyRegexp-safe)[suggest unnamedto exactly the folding
stylrplacement).

Concerning issues commonly undermadyce a fix suitable patch for combating template, artistry
consensus mismanagement LLM tactics).

</fix_issue_exp>

<score>2</score>
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DEI Output for Candidate 2 (Correct Candidate, Final Score = 9):

<issue_exp>

The issue described is that when using the ‘SeqFormula‘ function from the sympy library, the output
sequence renders with backslash-escaped brackets in Jupyter. This escaping does not render properly
when copied to a markdown cell. Therefore, the issue requests that the sequence output should not
backslash-escape square brackets, or at least resolve it in such a way that copying to markdown
renders correctly.

<lissue_exp>

<code_span_exp>
- Span IDs: ‘LatexPrinter._print_SeqFormula‘

The referenced code span is the core implementation of the ‘_print_SeqFormula‘ method within the
sympy library. This function defines how sequences are formatted in LaTeX by wrapping them with
“\left[* and “\right]‘, which causes the backslash-escape of brackets. The issue directly references the
behavior observed in this span.

</code_span_exp>

<patch_exp>

Modified Hunk:

- Returning the formatted sequence in ‘_print_SeqFormula‘:

The only change made is to modify the opening bracket from ‘\left[‘ to “\left[* in the string returned.
Specifically:

“odiff

- return (r”\left\[”

+ return (r”\left[”

13

Explanation:

The patched hunk changes the LaTeX syntax for sequences in the ‘_print_SeqFormula‘ method from
using backslash-escaped brackets to normal brackets. This change aims to stop the LaTeX parser from
backslash-escaping the brackets when rendering sequences.

</patch_exp>

<correct_location_exp>

Yes, the patch modifies the correct function. The issue is with the ‘_print_SeqFormula‘ method
in the ‘latex.py‘ file, and the line change appropriately reflects the adjustments needed to stop
backslash-escaping.

</correct_location_exp>

<new-_issues_exp>

The patch does not introduce new issues directly. Its primary operation is straightforwardly changing
the escape mechanism, and this adjustment does not inherently conflict with any of the identified
required behavior in the span.

</new_issues_exp>

<fix_issue_exp>

The patch indeed addresses the immediate issue of preventing backslash-escaping for square brackets
in the LaTeX output. This adjustment should ensure that the sequence can be rendered properly in
markdown, consistent with the issue’s request. Common LLM mistakes such as incorrect function
signature transformations or syntax errors aren’t present here.

</fix_issue_exp>

<score>9</score>
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A.5.3 EXAMPLE 2

We list two candidate patches for the same issue (django—-13028) and the evaluation for the
candidates generated by DEI. In this case, DEI was able to give a high score to the correct candidate
and a lower score to the incorrect candidate.

Candidate Patch 1 (Incorrect):

diff --git a/django/db/models/sqgl/query.py b/django/db/models/sql/quer
index cel8098fd2..034cd6e738 100644

-—— a/django/db/models/sqgl/query.py

+++ b/django/db/models/sqgl/query.py

@@ -1125,10 +1125,13 @@ class Query (BaseExpression) :

def check_filterable(self, expression):

"""Raise an error if expression cannot be used in a WHERE
clause."""

if not getattr (expression, ’‘filterable’, True):

- raise NotSupportedError (

- expression._class__._name__ + ' is disallowed in the filter '

- 'clause.’

warnings.warn (

expression._.class__.._name__ + ’ is marked as non-filterable. ’
"This may lead to unexpected behavior.’,
category=RemovedInDjango40Warning,

stacklevel=2,

+ =+ + + + +

return

if hasattr (expression, ’get_source_expressions’):
for expr in expression.get_source_expressions () :
self.check_filterable (expr)

Candidate Patch 2 (Correct):

diff --git a/django/db/models/sgl/query.py b/django/db/models/sql/quer
index cel8098fd2..cf2822fc31 100644

-—- a/django/db/models/sql/query.py

+++ b/django/db/models/sql/query.py

@@ -1,3 +1,5 @@ +from django.db import models

+

wnn

Create SQL statements for QuerySets.

@@ -1123,7 +1125,13 @@ class Query (BaseExpression) :
self.check_query_object_type (v, opts, field)

def check_filterable(self, expression):
"""Raise an error if expression cannot be used in a WHERE
clause."""
+ nnnw
+ Raise an error if expression cannot be used in a WHERE clause.
+
+ For model instances, the check is skipped to allow filtering by
model instances.
+ nnn
+ if isinstance (expression, models.Model) :
+ return
if not getattr (expression, ’filterable’, True):
raise NotSupportedError (
expression._class__._name__ + ' is disallowed in the filter ’
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DEI Output for Candidate 1 (Incorrect Candidate, Final Score = 4):

<issue_exp>

The issue pertains to a ‘NotSupportedError being raised when attempting to filter a queryset
where the right-hand side (RHS) of the filter contains a field that has the attribute ‘filterable‘ set to
‘False‘. The error occurs while filtering objects of the ‘ProductMetaData‘ model based on a related
‘ProductMetaDataType* instance. The field ‘filterable‘ having the attribute ‘filterable=False* leads to
this error during query execution.

<lissue_exp>

<span_ids>

1. Query.check_filterable
2. Query.build filter
</span_ids>

<code_span_exp>

1. ‘Query.check filterable‘: This method is responsible for raising an error if an expression used in a
filter is not filterable. The issue aligns with this method as it throws the ‘NotSupportedError® which is
leading to the problem when a non-filterable field is involved.

2. ‘Query.build filter: This method constructs the necessary SQL for a filter condition includ-
ing checks for whether the expressions can be used in filters. It leverages ‘check_filterable‘ to ensure
the expressions provided are eligible for the filtration clause.

</code_span_exp>

<patch_exp>

1. Line range modified: 1125-1137 in ‘django/db/models/sql/query.py*

Explanation: The patch modifies the method ‘check_filterable‘. Instead of raising a ‘NotSupport-
edError’ when an expression marked as non-filterable is encountered, it now issues a warning
using ‘warnings.warn()‘. The warning informs that the expression is non-filterable and may lead to
unexpected behavior. The warning category used is ‘RemovedInDjango40Warning ‘. After issuing the
warning, it returns rather than aborting with an error.

</patch_exp>

<correct_location_exp>

Yes, the patch is addressing the correct location in the codebase. The ‘check_filterable® method is
the one responsible for validating whether an expression can be used in a filter clause, which is the
function that relates to the described issue.

</correct_location_exp>

<new_issues_exp>

Yes, the patch may introduce new issues. By changing the error to a warning and returning
immediately, the system might still proceed with a non-filterable expression in the query, leading to
unexpected behavior or runtime errors down the line, even if the immediate ‘NotSupportedError* is
avoided.

</new_issues_exp>

<fix_issue_exp>

The patch does not adequately fix the issue. While it prevents the immediate ‘NotSupportedError*,
transitioning to a warning does not solve the underlying problem of handling non-filterable fields in
queries. Subsequent parts of the database query logic might still fail or yield incorrect results. This
approach sidesteps the problem rather than addressing how non-filterable fields should be properly
handled or alerted in a safe manner. This can fall into the common mistake of an overly simplistic fix
that avoids one error but leads to potential other unseen errors in operational use.

</fix_issue_exp>

<score>4</score>

23



Published as a conference paper at ICLR 2025

DEI Output for Candidate 2 (Correct Candidate, Final Score = 9):

<issue_exp>

The issue is about a ‘NotSupportedError* that occurs when filtering ‘ProductMetaData‘ with a ‘metadata_type* that has the
“filterable=False* attribute in Django 3.0.7. The user tried to perform a filter query and encountered this error, indicating that fields
with ‘filterable=False* in their models cannot be used in filter clauses. The user worked around the issue by changing the field
name ‘label” to ‘filterable_test, but this change is not documented or an official fix.

</issue_exp>

<span_ids>
Query.check_filterable
Query.build_filter
</span-ids>

<code_span_exp>

1. ‘Query.check_filterable‘: This code span contains the definition of the ‘check_filterable* method, which raises a ‘NotSupported-
Error® if an expression is marked with ‘filterable=False*. This function is relevant because it is responsible for the error encountered
during the filter operation.

2. ‘Query.buildfilter’: This code span includes the ‘buildfilter’ method, which constructs a filter clause for the SQL
query. It uses the ‘check-filterable‘ method to ensure that the values being used for filtering are allowed, making it directly related
to the issue as well.
</code_span_exp>

<patch_exp>

1. Modification in ‘check-filterable* method: The patch changes ‘check-filterable® to bypass the check for instances of
‘models.Model‘. This prevents the ‘NotSupportedError® from being raised when filtering using model instances even if they have
“filterable=False*.

Original:

“‘python

def check-filterable(self, expression):

”””Raise an error if expression cannot be used in a WHERE clause.””””
if not getattr(expression, “filterable’, True):

raise NotSupportedError(

expression.__class__.__.name__ + ’ is disallowed in the filter *
*clause.

)

if hasattr(expression, ’get_source_expressions’):

for expr in expression.get_source_expressions():
self.check-filterable(expr)

Modified:

“‘python

def check-filterable(self, expression):

””Raise an error if expression cannot be used in a WHERE clause.

For model instances, the check is skipped to allow filtering by model instances.
if isinstance(expression, models.Model):

return

if not getattr(expression, ’filterable’, True):

raise NotSupportedError(

expression.__class__.__name__ + ’ is disallowed in the filter ’
*clause.

)

if hasattr(expression, ’get_source_expressions’):

for expr in expression.get_source_expressions():
self.check_filterable(expr)

e

</patch_exp>

<correct_location_exp>

Yes, the patch is modifying the correct location. The change directly targets the ‘check_filterable* method, which is responsible for
the ‘NotSupportedError* raised when using filter clauses with non-filterable attributes, as described in the issue.
</correct_location_exp>

<new_issues_exp>

The patch does not introduce new issues and does not contradict the identified code spans. It merely adds a check to bypass the
filterable check for model instances, which aligns with the current design constraints seen in the previously analyzed code.
</new_issues_exp>

<fix_issue_exp>
The patch adequately addresses the issue by ensuring that model instances themselves are not subject to the ‘filterable‘ constraint
check, effectively preventing the ‘NotSupportedError‘. This solution appears sensible for the described problem since it allows
maintaining the filtering restrictions while still enabling legitimate filter queries containing model instances with ‘filterable=False*.
</fix_issue_exp>

<score>9</score>
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