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ABSTRACT

Graphs are the most ubiquitous form of structured data representation used in ma-
chine learning. They model, however, only pairwise relations between nodes and
are not designed for encoding the higher-order relations found in many real-world
datasets. To model such complex relations, hypergraphs have proven to be a natu-
ral representation. Learning the node representations in a hypergraph is more com-
plex than in a graph as it involves information propagation at two levels: within
every hyperedge and across the hyperedges. Most current approaches first trans-
form a hypergraph structure to a graph for use in existing geometric deep learning
algorithms. This transformation leads to information loss, and sub-optimal ex-
ploitation of the hypergraph’s expressive power. We present HyperSAGE, a novel
hypergraph learning framework that uses a two-level neural message passing strat-
egy to accurately and efficiently propagate information through hypergraphs. The
flexible design of HyperSAGE facilitates different ways of aggregating neighbor-
hood information. Unlike the majority of related work which is transductive, our
approach, inspired by the popular GraphSAGE method, is inductive. Thus, it
can also be used on previously unseen nodes, facilitating deployment in prob-
lems such as evolving or partially observed hypergraphs. Through extensive ex-
perimentation, we show that HyperSAGE outperforms state-of-the-art hypergraph
learning methods on representative benchmark datasets. We also demonstrate that
the higher expressive power of HyperSAGE makes it more stable in learning node
representations as compared to the alternatives.

1 INTRODUCTION

Graphs are considered the most prevalent structures for discovering useful information within a net-
work, especially because of their capability to combine object-level information with the underlying
inter-object relations (Wu et al., 2020). However, most structures encountered in practical appli-
cations form groups and relations that cannot be properly represented using pairwise connections
alone, hence a graph may fail to capture the collective flow of information across objects. In ad-
dition, the underlying data structure might be evolving and only partially observed. Such dynamic
higher-order relations occur in various domains, such as social networks (Tan et al., 2011), computa-
tional chemistry (Gu et al., 2020), neuroscience (Gu et al., 2017) and visual arts (Arya et al., 2019),
among others. These relations can be readily represented with hypergraphs, where an edge can
connect an arbitrary number of vertices as opposed to just two vertices in graphs. Hypergraphs thus
provide a more flexible and natural framework to represent such multi-way relations (Wolf et al.,
2016), however, this requires a representation learning technique that exploits the full expressive
power of hypergraphs and can generalize on unseen nodes from a partially observed hypergraph.

Recent work in the field of geometric deep learning have presented formulations on graph struc-
tured data for the tasks of node classification (Kipf & Welling, 2016), link prediction (Zhang &
Chen, 2018), or the classification of graphs (Zhang et al., 2018b). Subsequently, for data containing
higher-order relations, a few recent papers have presented hypergraph-based learning approaches
on similar tasks (Yadati et al., 2019; Feng et al., 2019). A common implicit premise in these pa-
pers is that a hypergraph can be viewed as a specific type of regular graph. Therefore, reduction
of hypergraph learning problem to that of a graph should suffice. Strategies to reduce a hypergraph
to a graph include transforming the hyperedges into multiple edges using clique expansion (Feng
et al., 2019; Jiang et al., 2019; Zhang et al., 2018a), converting to a heterogeneous graph using star
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Figure 1: (a) Example showing reduction of a hypergraph to a graph using clique and star expansion
methods. The clique expansion loses the unique information associated with the hyperedge defined
by the set of nodes {v2, v3}, and it cannot distinguish it from the hyperedge defined by the nodes
{v1, v2, v3}. Star expansion creates a heterogeneous graph that is difficult to handle using most
well-studied graph methods (Hein et al., 2013). (b) Schematic representations of two Fano planes
comprising 7 nodes and 7 hyperedges (6 straight lines and 1 circle.). The second Fano plane is a
copy of the first with nodes v2 and v3 permuted. These two hypergraphs cannot be differentiated
when transformed to a graph using clique expansion.

expansion (Agarwal et al., 2006), and replacing every hyperedge with an edge created using a cer-
tain predefined metric (Yadati et al., 2019). Yet these methods are based on the wrong premise,
motivated chiefly by a larger availability of graph-based approaches. By reducing a hypergraph to
regular graph, these approaches make existing graph learning algorithms applicable to hypergraphs.
However, hypergraphs are not a special case of regular graphs. The opposite is true, regular graphs
are simply a specific type of hypergraph (Berge & Minieka, 1976). Therefore, reducing the hyper-
graph problem to that of a graph cannot fully utilize the information available in hypergraph. Two
schematic examples outlining this issue are shown in Fig.1. To address tasks based on complex
structured data, a hypergraph-based formulation is needed that complies with the properties of a
hypergraph.

A major limitation of the existing hypergraph learning frameworks is their inherently transductive
nature. This implies that these methods can only predict characteristics of nodes that were present
in the hypergraph at training time, and fail to infer on previously unseen nodes. The transductive
nature of existing hypegraph approaches makes them inapplicable in, for example, finding the most
promising target audience for a marketing campaign or making movie recommendations with new
movies appearing all the time. An inductive solution would pave the way to solve such problems
using hypergraphs. The inductive learning framework must be able to identify both the node’s lo-
cal role in the hypergraph, as well as its global position (Hamilton et al., 2017). This is important
for generalizing the learned node embeddings that the algorithm has optimized on to a newly ob-
served hypergraph comprising previously unseen nodes, thus, making inductive learning a far more
complex problem compared to the transductive learning methods.

In this paper, we address the above mentioned limitations of the existing hypergraph learning meth-
ods. We propose a simple yet effective inductive learning framework for hypergraphs that is readily
applicable to graphs as well. Our approach relies on neural message passing techniques due to which
it can be used on hypergraphs of any degree of cardinality without the need for reduction to graphs.
The points below highlight the contributions of this paper:

• We address the challenging problem of representation learning on hypergraphs by propos-
ing HyperSAGE, comprising a message passing scheme which is capable of jointly captur-
ing the intra-relations (within a hyperedge) as well as inter-relations (across hyperedges).

• The proposed hypergraph learning framework is inductive, i.e. it can perform predictions
on previously unseen nodes, and can thus be used to model evolving hypergraphs.

• HyperSAGE facilitates neighborhood sampling and provides the flexibility in choosing dif-
ferent ways to aggregate information from the neighborhood.

• HyperSAGE is more stable than state-of-the-art methods, thus provides more accurate re-
sults on node classification tasks on hypergraphs with reduced variance in the output.
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2 RELATED WORK

Learning node representations using graph neural networks has been a popular research topic in the
field of geometric deep learning (Bronstein et al., 2017). Graph neural networks can be broadly
classified into spatial (message passing) and spectral networks. We focus on a family of spatial
message passing graph neural networks that take a graph with some labeled nodes as input and learn
embeddings for each node by aggregating information from its neighbors (Xu et al., 2019). Message
passing operations in a graph simply propagate information along the edge connecting two nodes.
Many variants of such message passing neural networks have been proposed, with some popular
ones including Gori et al. (2005); Li et al. (2015); Kipf & Welling (2016); Gilmer et al. (2017);
Hamilton et al. (2017).

Zhou et al. (2007) introduced learning on hypergraphs to model high-order relations for semi-
supervised classification and clustering of nodes. Emulating a graph-based message passing frame-
work for hypergraphs is not straightforward since a hyperedge involves more than two nodes which
makes the interactions inside each hyperedge more complex. Representing a hypergraph with a ma-
trix makes it rigid in describing the structures of higher order relations (Li et al., 2013). On the other
hand, formulating message passing on a higher dimensional representation of hypergraph using ten-
sors makes it computationally expensive and restricts it to only small datasets (Zhang et al., 2019).
Several tensor based methods do perform learning on hypergraphs (Shashua et al., 2006; Arya et al.,
2019), however they are limited to uniform hypergraphs only.

To resolve the above issues, Feng et al. (2019) and Bai et al. (2020) reduce a hypergraph to graph
using clique expansion and perform graph convolutions on them. These approaches cannot uti-
lize complete structural information in the hypergraph and lead to unreliable learning performance
for e.g. classification, clustering and active learning (Li & Milenkovic, 2017; Chien et al., 2019).
Another approach by Yadati et al. (2019), named HyperGCN, replaces a hyperedge with pair-wise
weighted edges between vertices (called mediators). With the use of mediators, HyperGCN can be
interpreted as an improved approach of clique expansion, and to the best of our knowledge, is also
the state-of-the-art method for hypergraph representation learning. However, for many cases such as
Fano plane where each hyperedge contains at most three nodes, HyperGCN becomes equivalent to
the clique expansion (Dong et al., 2020). In spectral theory of hypergraphs, methods have been pro-
posed that fully exploit the hypergraph structure using non-linear Laplacian operators (Chan et al.,
2018; Hein et al., 2013). In this work, we focus on message passing frameworks. Drawing inspi-
ration from GraphSAGE (Hamilton et al., 2017), we propose to eliminate matrix (or tensor) based
formulations in our neural message passing frameworks, which not only facilitates utilization of all
the available information in a hypergraph, but also makes the entire framework inductive in nature.

3 PROPOSED MODEL: HYPERSAGE

The core concept behind our approach is to aggregate feature information from the neighborhood
of a node spanning across multiple hyperedges, where the edges can have varying cardinality. Be-
low, we first define some preliminary terms, and then describe our generic aggregation framework.
This framework performs message passing at two-levels for a hypergraph. Further, for any graph-
structured data, our framework emulates the one-level aggregation similar to GraphSAGE (Hamilton
et al., 2017). Our approach inherently allows inductive learning, which makes it also applicable on
hypergraphs with unseen nodes.

3.1 PRELIMINARIES

Definition 1 (Hypergraph). A general hypergraph H can be represented as H = (V,E,X), where
V = {v1, v2, ..., vN} denotes a set of N nodes (vertices) and E = {e1, e2, ..., eK} denotes a set
of hyperedges, with each hyperedge comprising a non-empty subset from V. X ∈ RN×d denote the
feature matrix, such that xi ∈ X is the feature vector characterizing node vi ∈ V. The maximum
cardinality of the hyperedges in H is denoted as M = max

e∈E
|e|.

Unlike in a graph, the hyperedges of H can contain different number of nodes and M denotes the
largest number. From the definition above, we see that graphs are a special case of hypergraphs with
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M=2. Thus, compared to graphs, hypergraphs are designed to model higher-order relations between
nodes. Further, we define three types of neighborhoods in a hypergraph:

Definition 2 (Intra-edge neighborhood). The intra-edge neighborhood of a node vi ∈ V for any
hyperedge e ∈ E is defined as the set of nodes vj belonging to e and is denoted by N(vi, e)

Further, let E(vi) = {e ∈ E | vi ∈ e} be the sets of hyperedges that contain node vi.

Definition 3 (Inter-edge neighborhood). The inter-edge neighborhood of a node vi ∈ V also re-
ferred as its global neighborhood, is defined as the neighborhood of vi spanning across the set of
hyperedges E(vi) and is represented by N(vi) =

⋃
e∈E(vi)

N(vi, e).

Definition 4 (Condensed neighborhood). The condensed neighborhood of any node vi ∈ V is a
sampled set of α ≤ |e| nodes from a hyperedge e ∈ E(vi) denoted by N(vi, e;α) ⊂ N(vi, e).

3.2 GENERALIZED MESSAGE PASSING FRAMEWORK

We propose to interpret the propagation of information in a given hypergraph as a two-level ag-
gregation problem, where the neighborhood of any node is divided into intra-edge neighbors and
inter-edge neighbors. For message aggregation, we define aggregation function F(·) as a permuta-
tion invariant set function on a hypergraph H = (V,E,X) that takes as input a countable unordered
message set and outputs a reduced or aggregated message. Further, for two-level aggregation, let
F1(·) and F2(·) denote the intra-edge and inter-edge aggregation functions, respectively. Schematic
representation of the two aggregation functions is provided in Fig.2. Similar to X we also define Z
as the encoded feature matrix built using the outputs zi of aggregation functions. Message passing
at node vi for aggregation of information at the lth layer can then be stated as

x
(e)
i,l ← F1 ({xj,l−1 | vj ∈ N(vi, e;α)}), (1)

xi,l ← xi,l−1 + F2 ({x(e)
i,l |vi ∈ E(vi)}), (2)

where, x(e)
i,l refers to the aggregated feature set at vi obtained with intra-edge aggregation for edge e.

F1(·)F1(·)

F2(·)

xi

zi

vi

eA eB

Figure 2: Schematic representation of the two-
level message passing scheme of HyperSAGE,
with aggregation functions F1(·) and F2(·). It
shows information aggregation from two hyper-
edges eA and eB , where the intra-edge aggrega-
tion is from sampled sets of 5 nodes (α = 5) for
each hyperedge. For node vi, xi and zi denote the
input and encoded feature vector, respectively.

The combined two-level message passing is
achieved using nested aggregation function
F = F2. To ensure that the expressive power of
a hypergraph is preserved or at least the loss is
minimized, the choice of aggregation function
should comply with certain properties.

Firstly, the aggregation function should be able
to capture the features of neighborhood ver-
tices in a manner that is invariant to the per-
mutation of the nodes and hyperedges. Many
graph representation learning methods use per-
mutation invariant aggregation functions, such
as mean, sum and max functions (Xu et al.,
2019). These aggregations have proven to be
successful for node classification problems. For
the existing hypergraph frameworks, reduction
to simple graphs along with a matrix-based
message passing framework limits the possibil-
ities of using different types of feature aggrega-
tion functions, and hence curtails the potential
to explore unique node representations.

Secondly, the aggregation function should also preserve the global neighborhood invariance at the
‘dominant nodes’ of the graph. Here, dominant nodes refer to nodes that contain important features,
thereby, impacting the learning process relatively more than their neighbors. The aggregation func-
tion should ideally be insensitive to the input, whether the provided hypergraph contains a few large
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hyperedges, or a larger number of smaller ones obtained from splitting them. Generally, a hyperedge
would be split in a manner that the dominant nodes are shared across the resulting hyperedges. In
such cases, global neighborhood invariance would imply that the aggregated output at these nodes
before and after the splitting of any associated hyperedge stays the same. Otherwise, the learned
representation of a node will change significantly with each hyperedge split.

Based on these considerations, we define the following properties for a generic message aggregation
function that should hold for accurate propagation of information through the hypergraphs.

Property 1 (Hypergraph Isomorphic Equivariance). A message aggregation function F(·) is
equivariant to hypergraph isomorphism, if for two isomorphic hypergraphs H = (V,E,X) and
H∗ = (V∗,E∗,X∗), given that H∗ = σ •H, and Z and Z∗ represent the encoded feature matrices
obtained using F(·) on H and H∗, the condition Z∗ = σ • Z holds. Here, σ denotes a permutation
operator on hypergraphs.

Property 2 (Global Neighborhood Invariance). A message aggregation scheme F(·) satisfies global
neighborhood invariance at any node vi ∈ V for a given hypergraph H = (V,E,X) if for any
operation Γ(·), such that H∗ = Γ(H), and zi and z∗i denote the encoded feature vectors obtained
using F(·) at node vi on H and H∗, the condition z∗i = zi holds. Here Γ(H) could refer to
operations such as hyperedge contraction or expansion.

The flexibility of our message passing framework allows us to go beyond the simple aggregation
functions on hypergraphs without violating Property 1. We introduce a series of power mean func-
tions as aggregators, which have recently been shown to generalize well on graphs (Li et al., 2020).
We perform message aggregation in hypergraphs using these generalized means, denoted byMp and
provide in section 4.2, a study on their performances. We also show that with appropriate combina-
tions of the intra-edge and inter-edge aggregations Property 2 is also satisfied. This property ensures
that the representation of a node after message passing is invariant to the cardinality of the hyper-
edge, i.e., the aggregation scheme should not be sensitive to hyperedge contraction or expansion, as
long as the global neighborhood of a node remains the same in the hypergraph.

Aggregation Functions. One major advantage of our strategy is that the message passing module
is decoupled from the choice of the aggregation itself. This allows our approach to be used with a
broad set of aggregation functions. We discuss below a few such possible choices.

Generalized means. Also referred to as power means, this class of functions are very commonly
used for getting an aggregated measure over a given set of samples. Mathematically, generalized

means can be expressed as Mp =
(
1
n

∑n
i=1 x

p
i

) 1
p , where n refers to the number of samples in the

aggregation, and p denotes its power. The choice of p allows providing different interpretations to
the aggregation function. For example, p = 1 denotes arithmetic mean aggregation, p = 2 refers to
mean squared estimate and a large value of p corresponds to max pooling from the group. Similarly,
Mp can be used for geometric and harmonic means with p→ 0 and p = −1, respectively.

Similar to the recent work of Li et al. (2020), we use generalized means for intra-edge as well as
inter-edge aggregation. The two functions F1(·) and F2(·) for aggregation at node vi is defined as

F
(i)
1 (s) =

 1

|N(vi, e)||N(vi)|
∑

vj∈N(vi,e)

|E(vi)|∑
m=1

1

|N(vi, em)|

−1 xpj


1
p

(3)

F
(i)
2 (s) =

 1

|E(vi)|
∑

e∈E(vi)

(F1(s))p

 1
p

(4)

where we use ‘s’ for concise representation of the unordered set of input as shown in Eq.1. Here
and henceforth in this paper, we remove the superscript index ‘(i)’ for the sake of clarity and further
occurrences of the two aggregation functions shall be interpreted in terms of node vi. Note that
in Eq. 3 and Eq. 4, we have chosen the power term p to be same for F1 and F2 so as to satisfy
the global neighborhood invariance as stated in Property 2. Note, the scaling term added to F1

is added to balance the bias in the weighting introduced in intra-edge aggregation due to varying
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cardinality across the hyperedges. These restrictions ensure that the joint aggregation F2(·) satisfies
the property of global neighborhood invariance at all times. Proof of the two aggregations satisfying
Property 2 is stated in Appendix B.

Sampling-based Aggregation. Our neural message passing scheme provides the flexibility to adapt
the message aggregation module to fit the desired computational budget through aggregating infor-
mation from only a subset N(vi, e;α) of the full neighborhood N(vi, e), if needed. We propose to
apply sub-sampling only on the nodes from the training set, and use information from the full neigh-
borhood for the test set. The advantages of this are twofold. First, reduced number of samples per
aggregation at training time reduces the relative computational burden. Second, similar to dropout
(Srivastava et al., 2014), it serves to add regularization to the optimization process. Using the full
neighborhood on test data avoids randomness in the test predictions, and generates consistent output.

3.3 INDUCTIVE LEARNING ON HYPERGRAPHS

HyperSAGE is a general framework for learning node representations on hypergraphs, on even
unseen nodes. Our approach uses a neural network comprising L layers, and feature-aggregation is
performed at each of these layers, as well as across the hyperedges.

Algorithm 1 HyperSAGE Message Passing
Input : H = (V,E,X); depth L; weight matri-

ces Wl for l = 1 . . . L; non-linearity σ;
intra-edge aggregation function F1(·);
inter-edge aggregation function F2(·)

Output: Node embeddings zi| vi ∈ V
h0
i ← xi ∈ X | vi ∈ V
for l = 1 . . . L do

for e ∈ E do
hli ← hl−1i

for vi ∈ e do
hli ← hli + F

(i)
2 (s)

end
end
hli ← σ(Wl(hli/||hli||2)) | vi ∈ V

end
zi ← hLi | vi ∈ V

Algorithm 1 describes the forward propagation
mechanism which implements the aggregation
function F(·) = F2(·) described above. At
each iteration, nodes first aggregate information
from their neighbors within a specific hyper-
edge. This is repeated over all the hyperedges
across all the L layers of the network. The
trainable weight matrices Wl with l ∈ L are
used to aggregate information across the feature
dimension and propagate it through the various
layers of the hypergraph.

Generalizability of HyperSAGE. Hyper-
SAGE can be interpreted as a generalized for-
mulation that unifies various existing graph-
based as well as hypergraph formulations. Our
approach unifies them, identifying each of these
as special variants/cases of our method. We dis-
cuss here briefly the two popular algorithms.

Graph Convolution Networks (GCN). The GCN
approach proposed by Kipf & Welling (2016)
is a graph-based method that can be derived as
a special case of HyperSAGE with maximum
cardinality |M | = 2, and setting the agggregation function F2 = Mp with p = 1. This being a
graph-based method, F1 will not be used.

GraphSAGE. Our approach, when reduced for graphs using |M | = 2, is similar to GraphSAGE.
For exact match, the aggregation function F2 should be one of mean, max or LSTM . Further, the
sampling term α can be adjusted to match the number of samples per aggregation as in GraphSAGE.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

For the experiments in this paper, we use co-citation and co-authorship network datasets: CiteSeer,
PubMed, Cora (Sen et al., 2008) and DBLP (Rossi & Ahmed, 2015). The task for each dataset is
to predict the topic to which a document belongs (multi-class classification). For these datasets, xi
corresponds to a bag of words such that xi,j ∈ xi represents the normalized frequency of occurence
of the jth word. Additional details related to the hypergraph topology are presented in Appendix
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Table 1: Performance of HyperSAGE and other hypergraph learning methods on co-authorship and
co-citation datasets.

Co-authorship Data Co-citation Data
Method DBLP Cora Pubmed Citeseer Cora

MLP + HLR 63.6 ± 4.7 59.8 ± 4.7 64.7 ± 3.1 56.1 ± 2.6 61.0 ± 4.1
HGNN 69.2 ± 5.1 63.2 ± 3.1 66.8 ± 3.7 56.7 ± 3.8 70.0 ± 2.9
FastHyperGCN 68.1 ± 9.6 61.1 ± 8.2 65.7 ± 11.1 56.2 ± 8.1 61.3 ± 10.3
HyperGCN 70.9 ± 8.3 63.9 ± 7.3 68.3 ± 9.5 57.3 ± 7.3 62.5 ± 9.7

HyperSAGE (p = 2) 71.5 ± 4.4 69.8 ± 2.6 71.3 ± 2.4 59.8 ± 3.3 62.9 ± 2.1
HyperSAGE (p = 1) 77.2 ± 4.3 72.4 ± 1.6 72.6 ± 2.1 61.8 ± 2.3 69.3 ± 2.7
HyperSAGE (p = 0.01) 77.4 ± 3.8 72.1 ± 1.8 72.9 ± 1.3 61.3 ± 2.4 68.2 ± 2.4
HyperSAGE (p = −1) 70.9 ± 2.3 67.4 ± 2.1 68.3 ± 3.1 59.8 ± 2.0 62.3 ± 5.7

A.2. Further, for all experiments, we use a neural network with 2 layers. All models are implemented
in Pytorch and trained using Adam optimizer. See Appendix A.2 for implementation details.

4.2 SEMI-SUPERVISED NODE CLASSIFICATION ON HYPERGRAPHS

Performance comparison with existing methods. We implemented HyperSAGE for the task of
semi-supervised classification of nodes on a hypergraph, and the results are compared with state-
of-the art methods. These include (a) Multi-layer perceptron with explicit hypergraph Laplacian
regularisation (MLP + HLR), (b) Hypergraph Neural Networks (HGNN) (Feng et al., 2019) which
uses a clique expansion, and (c) HyperGCN and its variants (Yadati et al., 2019) that collapse the
hyperedges using mediators. For HyperSAGE method, we use 4 variants of generalized means Mp

with p = 1, 2,−1 and 0.01 with complete neighborhood i.e., α = |e|. For all the cases, 10 data
splits over 8 random weight initializations are used, totalling 80 experiments per method and for
every dataset. The data splits are the same as in HyperGCN described in Appendix A.1.

Table 1 shows the results obtained for the node classification task. We see that the different variants
of HyperSAGE consistently show better scores across our benchmark datasets, except Cora co-
citation where no improvement is observed compared to HGNN. Cora co-citation data is relatively
small in size with a cardinality of 3.0± 1.1, and we speculate that there does not exist enough scope
of improving with HyperSAGE beyond what HGNN can express with the clique expansion.

For the larger datasets such as DBLP and Pubmed, we see that the improvements obtained in per-
formance with HyperSAGE over the best baselines are 6.3% and 4.3% respectively. Apart from its
superior performance, HyperSAGE is also stable, and is less sensitive to the choice of data split and
initialization of the weights. This is evident from the scores of standard deviation (SD) for the vari-
ous experiments in Table 1. We see that the SD scores for our method are lower than other methods,
and there is a significant gain in performance compared to HyperGCN. Another observation is that
the HyperGCN method is very sensitive to the data splits as well as initializations with very large
errors in the predictions. This is even higher for the FastHyperGCN variant. Also, we have found
that all the 4 choices of p work well with HyperSAGE for these datasets. We further perform a more
comprehensive study analyzing the effect of p on model performance later in this section.
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Figure 3: Accuracy scores for HyperSAGE and
HyperGCN obtained for different train-test ratios
for multi-class classification datasets.

Stability analysis. We further study the sta-
bility of our method in terms of the variance
observed in performance for different ratios of
train and test splits, and compare results with
that of HyperGCN implemented under similar
settings. Fig. 3 shows results for the two learn-
ing methods on 5 different train-test ratios. We
see that the performance of both models im-
proves when a higher fraction of data is used
for training, and the performances are approx-
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Table 2: Performance of HyperSAGE for multiple values of p in generalized means aggregator (Mp)
on varying number of neighborhood samples (α).

DBLP Pubmed

α = 2 α = 3 α = 5 α = 10 α = 2 α = 3 α = 5 α = 10

p = −1 59.6 61.2 69.9 70.9 60.1 60.2 67.9 66.4
p = 0.01 61.2 64.8 73.1 77.4 65.5 67.4 73.4 72.9
p = 1 62.3 64.5 73.1 77.2 64.8 64.3 72.2 72.6
p = 2 63.1 63.8 71.9 71.5 63.7 63.9 70.8 71.3
p = 3 62.7 63.6 71.3 71.4 62.2 61.3 70.1 67.9
p = 5 62.8 63.3 69.4 70.6 62.1 60.4 69.3 68.0

Table 3: Performance of HyperSAGE and its variants on nodes which were part of the training
hypergraph (seen) and nodes which were not part of the training hypergraph (unseen).

DBLP Pubmed Citeseer Cora (citation)

Method Seen Unseen Seen Unseen Seen Unseen Seen Unseen

MLP + HLR 64.5 58.7 66.8 62.4 60.1 58.2 65.7 64.2
HyperSAGE (p = 0.01) 78.1 73.1 81.0 80.4 69.2 67.1 68.2 65.7
HyperSAGE (p = 1) 78.1 73.2 78.5 76.4 69.3 67.9 71.3 66.8
HyperSAGE (p = 2) 76.1 70.2 71.2 69.8 65.9 63.8 65.9 64.5

imately the same at the train-test ratio of 1/3.
However, for smaller ratios, we see that HyperSAGE outperforms HyperGCN by a significant mar-
gin across all datasets. Further, the standard deviation for the predictions of HyperSAGE are signif-
icantly lower than that of HyperGCN. Clearly, this implies that HyperSAGE is able to better exploit
the information contained in the hypergraph compared to HyperGCN, and can thus produce more
accurate and stable predictions. Results on Cora and Citeseer can be found in Appendix C.

Effect of generalized mean aggregations and neighborhood sampling. We study here the effect
of different choices of the aggregation functions F1(·) and F2(·) on the performance of the model.
Further, we also analyze how the number of samples chosen for aggregation affect its performance.
Aggregation functions from Mp are chosen with p = 1, 2, 3, 4, 5, 0.01 and −1, and to comply with
global neighborhood invariance, we use aggregation function as in Eq. 4. The number of neighbors
α for intra-edge aggregation are chosen to be 2, 3, 5 and 10. Table 2 shows the accuracy scores
obtained for different choices of p and α on DBLP and Pubmed datasets. For most cases, higher
value of p reduces the performance of the model. For α = 2 on DBLP, performance seems to be
independent of the choice of p. A possible explanation could be that the number of neighbors is very
small, and change in p does not affect the propagation of information significantly. An exception is
p = −1, where the performance drops for all cases. For Pubmed, the choice of p seems to be very
important, and we find that p = 0.01 seems to fit best.

We also see that the number of samples per aggregation can significantly affect the performance
of the model. For DBLP, model performance increases with increasing value of α. However, for
Pubmed, we observe that performance improves up to α = 5, but then a slight drop is observed for
larger sets of neighbors. Note that for Pubmed, the majority of the hyperedges have cardinality less
than or equal to 10. This means that during aggregation, information will most often be aggregated
from all the neighbors, thereby involving almost no stochastic sampling. Stochastic sampling of
nodes could serve as a regularization mechanism and reduce the impact of noisy hyperedges. How-
ever, at α = 10, it is almost absent, due to which the noise in the data affects the performance of the
model which is not the case in DBLP.

4.3 INDUCTIVE LEARNING ON EVOLVING GRAPHS

For inductive learning experiment, we consider the case of evolving hypergraphs. We create 4
inductive learning datasets from DBLP, Pubmed, Citeseer and Core (co-citation) by splitting each
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of the datasets into a train-test ratio of 1:4. Further, the test data is split into two halves: seen and
unseen. The seen test set comprises nodes that are part of the hypergraph used for representation
learning. Further, unseen nodes refer to those that are never a part of the hypergraph during training.
To study how well HyperSAGE generalizes for inductive learning, we classify the unseen nodes and
compare the performance with the scores obtained on the seen nodes. Further, we also compare our
results on unseen nodes with those of MLP+HLR. The results are shown in Table 3. We see that
results obtained with HyperSAGE on unseen nodes are significantly better than the baseline method.
Further, these results seem to not differ drastically from those obtained on the seen nodes, thereby
confirming that HyperSAGE can work with evolving graphs as well.

5 CONCLUSION

We have proposed HyperSAGE, a generic neural message passing framework for inductive learning
on hypergraphs. The proposed approach fully utilizes the inherent higher-order relations in a hyper-
graph structure without reducing it to a regular graph. Through experiments on several representative
datasets, we have shown that HyperSAGE outperforms the other methods for hypergraph learning.
Several variants of graph-based learning algorithm such as GCN and GraphSAGE can be derived
from the flexible aggregation and neighborhood sampling framework, thus making HyperSAGE a
universal framework for learning node representations on hypergraphs as well as graphs.
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APPENDICES

A EXPERIMENTS: ADDITIONAL DETAILS

We perform multi-class classification on co-authorship and co-citation datasets, where the task is to
predict the topic (class) for each document.

A.1 DATASET DESCRIPTION

Hypergraphs are created on these datasets by assigning each document as a node and each hyperedge
represents (a) all documents co-authored by an author in co-authorship dataset and (b) all documents
cited together by a document in co-citation dataset. Each document (node) is represented by bag-
of-words features. The details about nodes, hyperedges and features is shown in Table 4. We use
the same dataset and train-test splits as provided by Yadati et al. (2019) in their publically available
implementation 1.

Table 4: Details of real-world hypergraph datasets used in our work

Co-authorship Data Co-citation Data
DBLP Cora Pubmed Citeseer Cora

Nodes (|V|) 43413 2708 19717 3312 2708
Hyperedges (|E|) 22535 1072 7963 1079 1579
average hyperedge size 4.7±6.1 4.2±4.1 4.3 ± 5.7 3.2±2.0 3.0 ± 1.1
number of features, |x| 1425 1433 500 3703 1433
number of classes 6 7 3 6 7

A.2 IMPLEMENTATION DETAILS

We use the following set of hyperparameters similar to the prior work by Kipf & Welling (2016) for
all the models.

• hidden layer size: 32

• dropout rate: 0.5

• learning rate: 0.01

• weight decay: 0.0005

• number of training epochs: 150

• λ for explicit Laplacian regularisation: 0.001

B CHOICE OF INTER-EDGE AND INTRA-EDGE AGGREGATIONS

Proof. For any given hypergraph H1 = (V,E1,X), let vi denote a node at which global neighbor-
hood equivariance exists. The aggregation output F1(s) at vi can then be written using generalized
means Mp as

F1(s) =

 1

|N(vi, e)|
∑

vj∈N(vi,e)

xp1j

 1
p1

. (5)

To reiterate here, s denotes the unordered set of input as shown in Eq. 5. Further, the inter-edge
aggregation F2(·) can be stated as

1HyperGCN Implementation: https://github.com/malllabiisc/HyperGCN
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Figure 4: (a) Example showing node vi shared across 4 hyperedges. (b) Hyperedge eq is split into r
hyperedges to reduce the cardinality of eq . Note that the global neighborhood of vi still remains the
same, however its intra-edge neighborhood has changed due to such splitting.

F2(s) =

 1

|E(vi)|
∑

e∈E(vi)

 1

|N(vi, e)|
∑

vj∈N(vi,e)

xp1j


p2
p1


1
p2

(6)

This equation can be rewritten as

F2(s) =

 1

|E(vi)|


 1

|N(vi, eq)|
∑

vj∈N(vi,eq)

xp1
j


p2
p1

+
∑

e∈E(vi),e6=eq

 1

|N(vi, e)|
∑

vj∈N(vi,e)

xp1
j


p2
p1




1
p2

(7)
Further, let

Ψ =
∑

e∈E(vi),e6=eq

 1

|N(vi, e)|
∑

vj∈N(vi,e)

xp1j


p2
p1

, (8)

then Eq. 7 can be rewritten as

F2(s) =

 1

|E(vi)|


 1

|N(vi, eq)|
∑

vj∈N(vi,eq)

xp1j


p2
p1

+ Ψ




1
p2

(9)

Let us assume now that hyperedge eq is split into r hyperedges given by E(vi, eq) =

{eq1 , eq2 . . . eqr}. Stating the aggregation on the new set of hyperedges as F̃2(s), we assemble
the contribution from this new set of hyperedges with added weight terms wj as stated below.

F̃2(s) =

 1

|E(vi)|

 ∑
e∈E(vi,eq)

 1

|N(vi, e)|
∑

vj∈N(vi,e)

wjx
p1
j


p2
p1

+ Ψ




1
p2

(10)

For the property of global neighborhood invariance to hold at vi, the following condition should be
satisfied: F2(vi) = F̃2(vi). Based on this, we would like to solve for the weights wj . For this, we
equate the two terms and obtain 1

|N(vi, eq)|
∑

vj∈N(vi,eq)

xp1j


p2
p1

=
∑

e∈E(vi,eq)

 1

|N(vi, e)|
∑

vj∈N(vi,e)

wjx
p1
j


p2
p1

(11)
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We further solve for the variables p1, p2 and wj where Eq. 11 holds. For the sake of clarity, we first
simplify Eq. 11 using the following substitutions: α = p2

p1
, β = 1

|N(vi,eq)| and βmj =
wj

|N(vi,em)| ,
where the index m here is used to refer to the mth hyperedge from among the r hyperedges obtained
on splitting eq . Further, let zj = xp1j for vj ∈ N(vi, eq) and zmj = xp1j for vj ∈N(vi, em) and
em ∈ E(vi, eq).

Based on these substitutions, Eq. 11 can be restated as
βα(z1 + z2 + . . .+ zN )α = (β11z1 + β12z2 + . . .+ β1jzj + . . .+ β1NzN )α

+ (β21z1 + β22z2 + . . .+ β2jzj + . . .+ β2NzN )α+

...
+ (βr1z1 + βr2z2 + . . .+ βrjzj + . . .+ βrNzN )α. (12)

We seek general solutions for wj and α which holds for all values of zj ∈ [0, 1] since every element
in the normalized feature vectors xj lies in [0, 1].

For a generalized solution, the coefficients of zj on the right should be equal to the coefficient of zj
on the left. The term on the left can be reformulated as

βα(z1 + z2 + . . .+ zN )α = βα(z1 + (z2 + z3 + . . .+ zN ))α (13)

Consider the case when |z1| ≤ |z2 + z3 + . . . |, we expand Eq. 13. using binomial expansion for
real co-efficients,

βα(z1 + (z2 + z3 + . . .))α = βα(

(
α

0

)
zα1 +

(
α

1

)
zα−11 (z2 + z3 + . . .+ zN )+

...

+

(
α

α− 1

)
z1(z2 + z3 + . . .+ zN ))

= βα(zα1 + α(zα−11 z2 + zα−11 z3 + . . .+ zα−11 zN )+

...

+ αz1(z2 + z3 + . . .+ zN )α−1) (14)

Without any loss of generality, we consider splitting of hyperedge eq into r hyperedges such that
nodes vγ1 and vγ2 are not contained in the same hyperedge anymore. This implies that RHS in
Eq. 14 should not contain product terms of z1 and z2. Hence, the term zα−11 z2 should be such that

α− 1 = 0⇒ α = 1⇒ p1 = p2 (15)

Putting α = 1 and comparing the coefficients in Eq.12, we get
β = β11 + β12 + . . .+ β21 + β22 . . .+ βr1 + βr2 + . . .

1

|N(vi, eq)|
=

r∑
m=1

wj
|N(vi, em)|

(16)

wj =
1

|N(vi, eq)|
∗

(
r∑

m=1

1

|N(vi, em)|

)−1
(17)

Thus, if an edge eq is split into multiple edges E(vi, eq), then for the two aggregations to hold, the

conditions are p1 = p2 and wj = 1
|N(vi,eq)| ∗

(∑r
m=1

1
|N(vi,em)|

)−1
∀ e ∈ E(vi, eq).

While we provide above a description related to splitting a certain hyperedge eq into r hyperedges,
the derived results can be used to compute global neighborhood itself on any given node vi. Similar
to eq above, node vi together with its global neighborhood (counted as N(vi)) can be interpreted as
a virtual hyperedge that has been split into a number of hyperedges that actually exist and contain
vi. These resultant hyperdges are equivalent to the r hyperdges obtained after splitting, as stated
above.
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C STABILITY TEST ON CORA AND CITESEER
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Figure 5: Results on cora and citeseer for multiple train test ratio
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