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Abstract

We study a structured bi-level optimization problem where the upper-level objective
is a generic smooth function, and the lower-level problem corresponds to policy
optimization in a Markov Decision Process (MDP). The decision variable at the
upper level parameterizes the reward function of the lower-level MDP, and the
upper-level objective is evaluated based on the optimal policy induced by this
reward. Such formulations naturally arise in contexts such as reward shaping and
reinforcement learning (RL) from human feedback.

Solving this bi-level problem is challenging due to the non-convexity of the lower-
level objective and the difficulty of estimating the upper-level hyper-gradient. Exist-
ing methods often rely on second-order information, impose strong regularization
on the lower-level RL problem, and/or inefficiently use samples through nested-
loop procedures. In this work, we propose a single-loop, first-order actor-critic
algorithm that optimizes the upper-level objective via a penalty-based reformulation.
The algorithm introduces into the lower-level RL objective an entropy regulariza-
tion with decaying weight, which enables asymptotically unbiased upper-level
hyper-gradient estimation without requiring the solution of the exact unregularized
lower-level RL problem. Our main contribution is to establish the finite-time and
finite-sample convergence of the proposed algorithm to the original, unregularized
bi-level optimization problem. We support the theoretical results and numerically
validate our method’s convergence through simulations in synthetic environments.

1 Introduction

We study bi-level reinforcement learning (RL), a structured bi-level optimization program in which
the upper-level decision variable determines the reward function of a lower-level RL problem, and
the upper-level objective is evaluated under the lower-level optimal policy. This framework abstracts
a wide range of applications where the reward must be tuned to achieve high-level goals while
the underlying policy adapts to the reward. Examples include reward shaping [Hu et al.| [2020]],
inverse RL [Zeng et al.,|2022b]], multi-agent incentive design [Ma et al.,[2025]], contract design [Zhu
et al.,[2023|], and, notably, reinforcement learning from human feedback (RLHF), one of the central
paradigms for fine-tuning large language models (LLMs) [Chakraborty et al., 2024} |Ye et al., 2025].

Despite a recent surge of interest in bi-level optimization, bi-level RL remains challenging to solve
both in theory and practice. Existing gradient-based approaches to bi-level optimization largely
fall into two categories. The first leverages the implicit function theorem to derive the upper-level
hyper-gradient [Ghadimi and Wang|, 2018]] and then applies iterative gradient descent in this direction.
However, since the hyper-gradient depends on the Jacobian and Hessian of the lower-level objective,
these methods are difficult to apply in bi-level RL, where second-order information either requires
oracle access to the transition model or is prohibitively expensive to estimate from trajectory samples.
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The second type of methods replaces the lower-level optimality condition with an explicit penalty
term [[Kwon et al., 2023, Shen and Chen, 2023]], enabling an alternative expression of the hyper-
gradient that depends only on first-order information. While this approach bypasses Hessian and
Jacobian estimation, existing convergence analyses require strong structural assumptions on the
lower-level problem, most commonly strong convexity or the Polyak—}t.ojasiewicz (PL) condition. In
RL, however, these assumptions generally fail: the policy optimization objective may satisfy a weaker
“eradient domination” property [Agarwal et al., 2021, Mei et al.| [2020], but strong convexity and
PL condition do not hold under common policy parameterizations. As a result, existing guarantees
in bi-level optimization apply only to regularized or restricted settings of RL, leaving open the
question of whether we can provably solve the original, unregularized bi-level RL problem. Moreover,
existing penalty-based methods are often implemented in a nested-loop fashion, repeatedly solving
the lower-level problem to high precision before each upper-level update to ensure stability. The price
of this stability is inefficient use of samples in practice and limited scalability.

Our work addresses this research gap. We advance the second, penalty-based approach in the
context of RL and propose a single-loop actor-critic algorithm that provably converges to a stationary
point of the bi-level RL objective. The core idea is to enforce the PL condition at the lower level
through entropy regularization, and then gradually adjust its weight so that the regularized problem
asymptotically recovers the original one. Two important technical innovations enable finite-time and
finite-sample analysis for the algorithm. First, we introduce a new technique to tightly characterize the
iteration-wise decay of the lower-level optimality error for the regularized RL objective. Combined
with the penalty reformulation, this bound allows us to establish convergence of a fully single-loop
penalty-based algorithm in the lower-level PL/regularized RL setting, achieving a convergence rate
that surpasses the best known rate derived in Kwon et al.|[2023]] under lower-level strong convexity.

Our goal is to optimize the original, unregularized bi-level RL objective. While a large regularization
accelerates the solution of the regularized problem, it also enlarges the discrepancy between the
regularized and unregularized optima. Our second innovation addresses this trade-off by dynamically
decaying the regularization weight, allowing the algorithm to track the regularized optima as the
regularized problem gradually approaches the original one. A key challenge arises here from the
time-varying lower-level landscape, which we overcome via a novel multi-time-scale stochastic
approximation analysis. Below we detail our innovation and main technical contributions.

Main Contributions

e We establish several fundamental structural properties of bi-level RL, linking the original problem
to its entropy-regularized counterpart. In particular, we show that as the regularization weight decays,
the optimizer of the entropy-regularized RL objective converges to the unique entropy-maximizing
policy within the set of optimizers of the unregularized objective, and we provide a bound on this
rate of convergence. Absent in the prior work, this type of structural analysis plays a critical role in
justifying the use of the regularized objective as a faithful surrogate for the original formulation, and
offers insights of potential independent interest to the broader fields of reinforcement learning and
bi-level optimization.

e We present a sample-based, single-loop bi-level RL algorithm and characterize its finite-sample
complexity. The algorithm optimizes a regularized bi-level RL objective, while the regularization
weight dynamically decays over time. We prove that this algorithm converges to a stationary point of
the original bi-level objective with a sample complexity of O(e~19) through a novel five-time-scale
analysis, carefully balancing the regularization weight with the update speed of the dual variable,
upper-level decision variable, policy iterates, and value function estimates. To our knowledge, this
is the first algorithm that provably solves the unregularized bi-level RL problem, and the first that
enjoys finite-time and finite-sample guarantees.

e We show that our proposed algorithm can be instantiated with a constant regularization weight to
solve the corresponding regularized bi-level RL problem. In this setting, the algorithm reduces to a
single-loop actor-critic algorithm for regularized bi-level RL that relies solely on direct samples from
the lower-level MDP. Our finite-sample analysis reveals that the algorithm achieves a complexity of
O(e~3). This rate matches the state-of-the-art complexity of a comparable nested-loop method under
lower-level PL condition [Chen et al.,[2024], and improves over the (’)(6_3'5) complexity derived in
Kwon et al.|[2023]] under strong convexity, which is an even stronger condition.



Lower-Level Single Only Using FiI:Sl— Sample Complexity Anyt'{me
Structure Loop Order Information Valid
Kwon et al.|[2023] Strong convexity v v O(e35)F 4
Shen and Chen|[2023] PL condition X v N/A (Iteration complexity derived) -
Xiao and Chen|[2024] PL condition v v N/A (Deterministic setting studied)
Shen et al.|[2024] Regularized RL X v N/A (Iteration complexity derived)
Chakraborty et al.|[2024] Regularized RL X X N/A (Iteration complexity derived)

Thoma et al.|[2024] Regularized RL X X N/A (Iteration complexity derived) -
Xiao et al.| [2025] Strong convexity X v N/A X
Chen et al|[2024] PL condition X v O(e™?) X
Yang et al.|[2025] Regularized RL X v O(e=3%) X
Gaur et al.|[2025] Regularized RL X v O(e™?) X

This work Regularized RL v v O(e?) v
This work Original RL v v O(e19) v

Table 1: Assumption, structure, and sample complexity (measured by squared gradient norm)
of existing algorithms for bi-level optimization and RL. TThis is the complexity of the standard
F2SA (Fully First-order Stochastic Approximation) algorithm. [Kwon et al.|[2023]] also proposes a
momentum-based algorithm (F3SA) that achieves a better rate. For a fair comparison with other non-
momentum algorithms in the table, we report the complexity of F2SA. Notably, |Yang et al|[2023]]
further improve the design and analysis of momentum-based algorithms, achieving a complexity of
O(e~1%), where the key innovation is estimating the lower-level Hessian via finite differences.

1.1 Related Work

Our work relates to the increasing volume of literature on bi-level optimization. Here we discuss
the most relevant papers on first-order methods to give context to our contributions, and provide a
complete literature comparison with other first- and second-order methods in Table

The penalty reformulations were first introduced in[Kwon et al.|[2023]], Shen and Chen| [2023]]. The
former proposes a fully first-order algorithm and shows that, under lower-level strong convexity, the

algorithm converges to a stationary point of the bi-level objective with sample complexity O(e=3-%).
The latter relaxes the lower-level structure by considering the PL condition. The authors propose a
nested-loop algorithm and establish the complexity with respect to the number of outer-loop iteration.
However, the complexity with respect to the total number of samples or iterations is unknown.

The penalty reformulation has inspired several works in bi-level RL [Shen et al., 2024, [Yang et al.}
2025/ |Gaur et al., [2025]], which derive first-order expressions for the hyper-gradient and estimate
them directly from environment samples. For technical tractability, these works focus on regularized
bi-level RL, where regularization induces the PL condition for the policy optimization objective.
Their analyses largely mirror those of generic bi-level optimization under a lower-level PL condition
and do not solve the original unregularized problem. In addition, due to the nest-loop structure, these
algorithms require a target accuracy to be specified in advance to determine the number of inner-loop
iterations, making the convergence guarantees not anytime valid: there is no guarantee that the optimal-
ity gap decreases monotonically after every iteration, and running the algorithm beyond the prescribed
number of iterations does not further reduce the gap. Our paper exactly addresses these limitations.

2 Formulation

Consider an infinite-horizon discounted-reward MDP defined as M, = (S, A, P, 7., 7), where
x € R% is an exogenous control parameter. Under a fixed z, M, is a standard MDP. The state space
S and action space A are assumed to be finite. The transition kernel is denoted by P : S x A — A(S),
and we use P(s’ | s, a) to represent the probability that the next state is s’ when an agent takes action
a in state s. The reward function r,, : § x A — [0, 1] is a function of x. The discount factor is
denoted by v € (0, 1). Our paper considers the setting where the transition kernel is independent
of =, motivated by applications such as RLHF and reward shaping, where the exogenous variable
modulates the reward function but not the system dynamics.

An agent learning in this MDP may not directly observe x, and takes actions according to a policy
7S — A4, which we can represent as a table Ai € RISIXIAl Given a control-policy pair (z, 7),
we measure its performance in state s by the value function

VI’TF(S) £ EakNW("Sk),Sk+1N'P('|Sk7ak) [Z};“;O ’Ver(shak) ‘ 50 = 5] = Es’~d§,a’~w(-|s’)[rm(slv a')},



where d7 € Ag is the discounted visitation distribution under initial state s

d;r(sl) £ (1 - V)Eakmﬂr(‘|sk),sk+1~73(~\sk,ak)[Z;io ’ykl(sk = S/) | S0 = S]'
Under an initial state distribution p € Ag, we define the the expected cumulative reward under (z, )
J(x, ) £ Es V5T (s)] = ]Es~(ig,a~n(~\s)[rz(5a a)], where dz £ Esnplds]-

If = were fixed, our goal would be to find a policy that maximizes J(z, 7). In the mean time, the
exogenous controller has its own objective to optimize, anticipating the best response from the policy
optimization agent. We denote the controller’s objective by f : R x A — R. Let IT*(x) be the set
of optimal policies under control z, which we note may not be singleton, and g be a function that
maps IT*(z) to a unique optimal policy within the set (we will shortly introduce g). The controller’s
optimization problem can then be formulated as the following bi-level program

mingcra  f(z, g(II*(x))), Upper-Level

)]
s.t. II*(z) £ argmax, J(z, 7). Lower-Level RL Objective

Our goal in this paper is to solve (I). This is a challenging problem, as the lower-level objective
lacks strong structural properties and may not admit a unique solution. To introduce additional
structure and enhance the solvability, we add entropy regularization into the lower-level objective,
which leads to solution uniqueness and a strong form of “gradient domination”. We stress that the
entropy-regularized formulation serves only as an intermediate tool — our ultimate aim remains to
solve the original, unregularized problem in (I).

2.1 Entropy Regularization

We discuss the regularized objective and its structural properties. Given (z, 7) and regularization
weight 7, we define the regularized value function V%™ € RISI and expected cumulative reward .J,

V() 2 Bagnntlon)isneamPlsnan) | Lo 1 (re(n ar) = Tlogm(ax | s1)) | s0 = 3|

1
= T Bz atmlle) [re(s',a") + 7E(7, s)), Q)
JT('r’ ﬂ-) = ]Eak-N"T('|5k),Sk+1~7’('\Sk,ak) [ZZO:O 7k (Tw(ska ak) — 7log TI'(U:k ‘ Sk)) | Sg ~ p}
71 x,T
= T Bendp annclo)[ra(s,a) + T, 5)] = Eors [V (5)], 3)
where E(m,s) = =) m(a | s)logm(a | s) is the entropy function. Under regularization weight
7 < 1, we have |V.*™(s)| < By forall z, 7, s, where By = %%JA‘,

If the initial state distribution has a full support, an assumption we will shortly introduce and impose
throughout the paper, then the optimizer of J.-(x, -) is unique for any 7 > 0. We define the operator
7% : R4 — A%, which maps a control variable to the optimal policy induced by it

*

i (x) £ argmax, J,(z,7), Vo€ R% 4

As we use the regularized RL problem to approximate the original one, it is important to understand
how 7% () relates to IT* (). We make the connection in Lemma[l] under the following assumption
on initial state distribution and ergodic Markov chain. The assumption is commonly made in the RL
literature to guarantee that the Markov chain of states under any policy has a unique, well-defined
stationary distribution [Mei et al, 2020, Wu et al., [2020, [Khodadadian et al., [2022].

Assumption 1 (Sufficient Exploration) The initial state distribution p is bounded away from zero,
i.e. there exists a constant pyiy > 0 such that p(s) > pmin for all s € S. Additionally, for any 7, the
Markov chain {s;} generated by P™ following s;11 ~ P7(- | s¢) is ergodic.

Lemma 1 We define n*(x) to be the optimal policy for the original, unregularized MDP with the
largest (visitation-weighted) entropy

*(z) & argmaX s (g) Es~ar [E(m, 5)]. 5)
Then, under Assumption![l} it holds that 7*(z) is unique for all x: and is the limit point of {m%(z)}~

7 (z) = lim, o 75 ().



The uniqueness of 7*(z) is not obvious and does not directly follow from any known results in
convex optimization, since II* is not a convex set and the weighted entropy objective in (3)) is not
concave (see Lemma 3.1 of[Hazan et al,|[2019] for a proof of non-concavity). Our proof of Lemmal[T}
presented in detail in Appendix [I] exploits the strict concavity of the unweighted entropy function
E(-, s) in the interior of the the simplex, as well as the structure that IT*(z), though non-convex, is a
connected set with special structure [Zeng et al., 2023]].

Our objective in this work is to solve the optimization problem below, which corresponds to (1)) with
g mapping a set to the (unique) element of the set maximizing the weighted entropy

min, ®(x) £ f(z,7"(x)). (6)

We also define the regularized version of the objective, serving as a key intermediary in our anal-
ysis. Conceptually, the algorithm to be introduced optimizes the regularized objective @, as the
regularization attenuation drives ®. toward ®.

min, ®,(z) £ f(z,7%(z)). ™

3 Algorithm Development

In this section we develop a single-loop first-order algorithm that optimizes ® . while gradually decay-
ing 7 to zero, thereby recovering the solution to (6). The algorithm operates under stochastic gradient
samples of the upper-level objective, as well as state transition and reward samples from the lower-
level MDP. We design the algorithm based on a penalty reformulation, a technique recently developed
for solving bi-level problems with lower-level strong convexity and PL condition [Shen and Chenl
2023, [Kwon et al.| 2023]]. We begin by presenting an overview of the reformulation in our context.

3.1 Preliminaries — Penalty Reformulation

Our goal is to solve (7) via (stochastic) gradient descent. By the implicit function theorem [Ghadimi
and Wang| [2018]], V@~ () admits a closed-form expression when V2 _ J.(x,7*(x)) is invertible

Vz(I)-,—(l') = V. f(z, ’ﬂ':(gj)) + Vaf(x, W:(x))aﬂgix) ®

= Vof(z,m7(2)) = V3 o Jr (2, 05 (2)) V3 o (2,75 () T Ve fz, mr (). (9)

Obtaining unbiased samples of V, P (z) based on (9), however, poses significant challenges, as the
expression depends on second-order Jacobian and Hessian terms that cannot be efficiently estimated
from state-reward samples. The penalty reformulation is designed to provide an alternative approach
of obtaining (asymptotically) unbiased gradient estimates, only requiring first-order information.

Recall the definition of 7% (z) in @). We can re-write (7) as follows by introducing a constraint

ming . f(z,7) st Jr(z, 75 (x)) — Jo(x,m) <O0. (10)
Given a positive constant w, we define
1
Lo (@,m) 2 fla.m) + — (T, 72 (@) = Jo(a,m) ) (11)
1
@, - (z) £ ming Ly, (7, 7) = min, f(z,7) + " (JT(.Z‘, i (z)) — JT(:c,ﬂ')). (12)

We can regard L., , as the Lagrangian associated with (T0), in which 1/w plays the role of the dual
variable. To solve (10, it may be tempting to find a minimax saddle point of the Lagrangian using
gradient descent ascent. However, as pointed out in[Kwon et al|[2023]], the solution of (T0) is only
attained in the limit as the dual variable becomes infinitely large (i.e. w = 0). This motivates us
to treat w as a parameter governed by a prescribed decay schedule towards zero, rather than as a
dual variable updated via gradient ascent. It is known from [Kwon et al.| [2023]][Lemma 3.1] that
Vo ®, - (x) admits the following expression involving only first-order term

Vi@ (1) = Vily - (v, 75 (7))

'We follow the convention and use VL, (%, 7 - (%)) to denote the partial gradient with respect to =
evaluated at (z, 73, - (), i.e. VoL, 7 (2,75, (%)) = VaLlw,r(2,7) [r=rx _(z)- The same principle will be
used for other functions, such as f and J.



= Voot @) + o (Vads o mi(@) = Vado (ot ), (13)

where we define 7, () £ argmin, Ly, - (z,7) for all w,7 > 0. Importantly, V,®,, - (z) closely
tracks V,®.(x) — the distance between V,®,, -(z) and V, P, (z) scales linearly in w, a result
which we establish later in Lemmal[I]l

3.2 Single-Loop Algorithm with Decaying Penalty and Regularization

We introduce xj, as an estimate of the solution to the bi-level objective (k is the iteration index) and
design an algorithm that iteratively carries out stochastic gradient descent on xj, in an approximate
direction of V,®,,, - (zx), estimated using online samples from the MDP. Here wy, and 7, are
time-varying penalty and regularization weights. As wy, 7, decay according to carefully designed
schedules, the surrogate objective ®.,,, -, () increasingly approximates ®(zy), allowing us to solve
the original bi-level problem.

To estimate V,®,, r based on ([3), we need estimates of V..J. (zy, 7} (zx)) and
Vodo, (xx, T, - (1)) Note that V. J; (2, m) can be expressed in the simple form below

Ved-(x,7) = Esdr, anm(|s) [Vairs(s,a). (14)

Given (14), if we had access to an oracle that generates 7 = 77, (z) for any x, we would obtain
asymptotically unbiased samples of V. J., (zx, 7}, (z1)) by simply generating a Markovian chain
{sk,ax} under m = w7 (x;) and evaluating V.7, (sk, ax) along the trajectory. The same can
be done to estimate V. Jr, (v, 7y, ., (zx)) if 7, . (7x) were available. However, 7 = 77, (k)
and 7, _ (zy) are solutions to (augmented) lower-level RL problems and cannot be directly ac-
cessed. To overcome the oracle unavailability, we introduce the iterates 7y, 7r,§ as approximations of

7r (xk), 7, -, (T1), and update them via another layer of stochastic gradient ascent.

Existing bi-level RL methods [Yang et al., |2025| |Gaur et al., 2025] typically introduce a nested-loop
algorithmic structure when estimating these optimal policies, ensuring that 7, 7% from the inner
loop fully converges to 77, (z), 7, -, (Zx) up to a desired precision. However, such nested-loop
algorithms are usually inconvenient to implement in practice and require setting the precision in
advance. Our algorithm instead updates 7, 75 in the same loop as x, with a larger step size (i.e.
on a faster time scale). Specifically, we maintain policy parameters 6y, 6§ that encode 7y, 77,? (with
notation 7y = g, , w,’f = Tl'@kg) and iteratively refine them according to

_ . 1~
Or1 = O + Vo (Th, 7o, ), 01 = 0F + Oék( — Vo f(xr, moe) + wfkveJrk ($k77ref)>~

Here oy is a step size properly balanced with the decay rates of of wy, and 7%, and %9 1, %gJTk
denote stochastic samples of the true gradients. Note that Vg.J;, admits the following closed-form
expression, and can be estimated in an asymptotically unbiased manner via an actor-critic approach

Vglogﬁg(a|s)] (15)

Ve‘]‘f'(x7 7T'9) = Ed;fe T [(rw(& a) - TIOg 779(@ | S) + ’YVTmJQ (8/)) 1—~
Actor-critic methods samples stochastic gradients according to (T3)), replacing the unobservable value
function with an estimate which is updated on an even faster time scale via temporal difference

~ ~ L
learning. Specifically, we introduce two variables V;, Vi€ to track VZ&™ V™ and present their

update rules in (20), where I1p,, : RISI — RIS denotes the element-wise projection of a vector to
the interval [0, By|. The projection operator guarantees the stability of the value function estimates,
and the interval contains the true (regularization) value function under regularization weight 7, < 1.

The algorithm can be described at an abstract level as follows. We perform stochastic gradient descent
on x along the hyper-gradient direction. The hyper-gradient estimation relies on the solutions of
lower-level RL problem and the penalty-augmented RL objective, which we obtain via a single-
loop actor-critic method. Our actor—critic procedure follows the standard framework, with the key
distinction that we incorporate entropy regularization and gradually attenuate its weight over time.
Note that despite the resemblance of our actor—critic updates to existing algorithms, the analysis
is significantly more challenging in the bi-level setting. In particular, the learning targets for the



lower-level policies are non-stationary, evolving both with the penalty and regularization schedules
and with the updates of the upper-level variable. We overcome this challenge with a novel error
decomposition scheme that tightly links the sub-optimality gap of the lower-level RL problem to that
of the bi-level objective, under the shifting landscape which becomes less structured over time as the
penalty and regularization weights decay.

We formally state the updates in Algorithm|[I] in which we represent the policies through tabular
softmax parameterizatio i.e. the parameter § € RIS/l encodes the policy 7y according to

exp(0(s,a))
o (0(s, )

me(a ] s) = 5

Algorithm[T]employs three step size parameters and two penalty/regularization weights, which are
all time-decaying sequences: step size (i for upper-level variable update, step size oy, for policy
update, step size §j for value function update, penalty weight wy, and regularization 7. The step
sizes are associated with the primal variable (z)) update, and we need to choose (;, < oy < S to
approximate the nested-loop dynamics, where we run a large number of value function updates per
policy update and a large number of policy updates per upper-level variable update.

Algorithm 1 Single-Loop Actor-Critic Algorithm for Bi-Level RL

1: Initialize: control variable x¢, policy parameters 6 and 65, value function estimates Vo, VO'C €
RISI

2: for iteration k = 0,1, 2, ... do

3:  Trajectory 1:
With probability 1 — ~, restart the trajectory by taking sx41 ~ p. With probability -, continue
following the current trajectory. Take action ay ~ g, (- | Si), receive rewards r,, (sg, ax),
and observe the next state sgy1 ~ P(- | sg, ag).

4:  Trajectory 2:
With probability 1 — ~, restart the trajectory by taking Sx41 ~ p. With probability -, continue
following the current trajectory. Take action Gy ~ gz (- | Sk), receive rewards 7y, (S, Gk ),
and observe the next state 5;41 ~ P(- | 5k, a).

5:  Observe/Obtain & ~ p

6:  Control variable update:

- 1
Th1 = Tk — Ck (vxf(xk:ﬂrefvfk) + — <Vm7°m.,(5k7 ar) — Vara, (5k, ak))) . (16)

wy,

7. Policy update:
Op+1 =0 + g, (rzk (sk,ar) + T E (o, , Sk) + ’ka(skH))V@ log my, (ax | sk), (17)
01 =0 + ak((rxk(gka ar) + Tk E(mge, k) + Vi (Sk11)) Vo log mae (ay, | 5)

— Vol (zn e, &), (18)

T = softmax(f,), 7F = softmax(#F). (19)

8:  Value function update:

Viy1 = HBV(Vk: + Bres, (ray (Sk, ar) + T E(mo,,, sk) + YWi(sk41) — Vk(%))) ;
A . . . (20)
Vs = Ty (Vi€ + Bres, (ray (51, 1) + T B(mh 51) + 1 ViE (San) = ViE () )

9: end for

2We consider the softmax parameterization for the purpose of mathematical analysis. The algorithm is
compatible with any function approximation in practical implementations.



4 Convergence Analysis

In this section, we present the finite-time and finite-sample analysis of the proposed algorithm. We
start by introducing the technical assumptions.

Assumption 2 (Hessian Invertibility) The Hessian Vj ,J,(x,7g) is invertible for any x,6 and
T>0.

Recall from (9) that the Hessian inverse appears in the hyper-gradient. Though we do not explicit
work with the Hessian, the assumption importantly guarantees the differentiability of ®... Let opin ()
denote the smallest singular value of a matrix. Assumption [2]implies that there exists a constant
o > 0 such that

Omin (V3 I (@,70)) 2 0, V2, 0,7, @

Without losing generality, we let ¢ < 1 for the convenience of combining terms in the analysis. Note
that (Z1I) should not be confused with the strong convexity of J(z, mg) with respect to 6, which
requires V3 ,.J(z, Ty) to be positive definite, i.e. its smallest eigenvalue is positive.

Assumption 3 (Lipschitz and Smooth Upper-Level Objective) The function f is differentiable,

and we have access to unbiased stochastic gradient operators ¥, f (z, 7, €), Vo f(z, 7, &) and i.i.d.
samples & from a distribution p such that

EENN[ﬁwf(x’ﬂ->£)] = me(a:, 77)’ E5~M[§Wf(x7 7776)] = vﬂ'f(‘r’ 77)'

In addition, there is a bounded constant Ly such that Vx, ', m €
IVof(z,m &) < Ly, | Vaf(a,m &)l < Ly,
Vo f(@,m,&) = Vaf (@, 7', )|l < Ly(lle = 2'|| + || — ='|]),
IVaf(@,m, &) = Vaf@', 7', Ol < Ly(llz — /|| + |7 — ='|]).

We also assume that the minimizer of f(-, ) exists for any 7, i.e. f(x, ) never blows up to negative
infinity. Without loss of generality, we can shift the function such that f(z,7) > 0, Va, 7.

Assumption 4 (Lipschitz Reward, Gradient, and Hessian) There is a constant L, < oo such that
Vs, a,x1,xo
|TI1(3aa) — Txs (S,a)| < Lyllzy — 332”’
IVara, (s,a) = Vare, (s, a)|| < Ly||z1 — z2]],

IV3 27a1 (5,0) = V3 aray (5, 0)|| < Ly lon — a2

Assumptions [3|and ] are standard regularity assumptions in the bi-level RL literature [[Chakraborty
et al.| 2024} |Gaur et al.}[2025| |Yang et al., 2025]]. Comparable conditions on upper- and lower-level
objectives are also commonly imposed by works on generic bi-level optimization [Kwon et al., 2023]
Shen and Chen, 2023]].

Assumption 5 (Regularization-Dependent PL Condition) Recall the definition of 7y, . after (13).
The minimizer 7, . () is unique for all x and w, T > 0. In addition, there exists a constant C1, > 0
such that for all w, ™ > 0, we have

VLo (.2 = ST (

Lo (@,70) = Lurr (275, (), Va0, (22)
This structural condition plays an important role in our analysis and states that the Lagrangian
defined in (T2) satisfies the PL condition with respect to the policy parameter 6, with a PL constant
that attenuates as the regularization weight becomes smaller. While we directly impose (22)) for
convenience, the condition can be derived for a proper range of w under assumptions of full coverage
initial state distribution (Assumption and exploratory policy (i.e. mg(a | s) is uniformly lower
bounded). To see this, note that as w — 0, L, - (z, 7) approaches a 1 /w-scaled (and shifted) version
of J,(x, ), which is known to satisfy the PL condition with C, = O(p2;,, (min, , 7o (a | s))%see
Mei et al.| [2020]][Lemma 15]). The scaling explains the dependence of the right-hand side of (22)) on
1/w. For sufficiently small w, the contribution of the f term in L,, , remains negligible, so the PL
condition of J continues to dominate and allows to hold.



4.1 Main Results

While our ultimate goal is to solve the objective (6), our analysis relies on jointly bounding the
convergence of all variables through a coupled Lyapunov function that combines all residuals shown
below. As @ is non-convex, we may in general only find a first-order stationary point, and we measure
the convergence of x, by ||V, ®(x)||?, the squared gradient norm. To measure the convergence of
0 and 9%, we consider their distance to the optimal policy in the function space. Finally, the value
function estimates Vk, Vk‘: are measured by their ¢, distance to the value functions under the latest
upper-level decision variable and policy.

0.c
€ T Wg (‘kaﬂ'k (mkvﬂ-ef) - kaﬂ'k (xkaﬂ-z)k,m (xk)))a EZ = JTk (l‘k,ﬂ':k (xk)) - ']Tk (xkaﬂ-%)a
N N . ThyToL
e = Vi = Vel TR et = IVE Ve

Theorem 1 Consider the iterates of Algorithm 2| under the step sizes and weights

Ck = S __ T LU o L
(k+ 1)’ (k+1)e (k+1)e’ (k4 1)ew’ (k+ 1)’
with cc = 137% = %,05 = %,cw = %,CT = % and properly selected (y, oy, By, wo, 0. Under
Assumptions we have for all k > 0,

, Do) + b + bt ey + et ~ 1
2 0 0 0 0
min B[V, 0 (x) 2] < O( R )+0 o)

Theorem [ shows that the best iterate of Algorithm|I|converges to a stationary point of the bi-level
RL objective with rate O(k~1/10). As the algorithm draws two samples in each iteration, this time
complexity translates to a sample complexity of the same order. To our knowledge, this is the first time
an algorithm has been shown to provably solve the original, unregularized bi-level RL problem. The
key technical insight and novelty enabling our analysis is 1) that we recognize the RL objective as one
observing a regularization-dependent PL condition with the PL constant diminishing as regularization
approaches zero, 2) a multi-time-scale stochastic approximation analysis that balances the decay of
step sizes and wy, with that of 7, allowing the algorithm convergence to be established under the
challenge of a time-varying optimization landscape.

We may also choose to instantiate Algorithm [I| with a constant regularization weight, targeting to
optimize the regularized bi-level objective rather than the original one. In this regime, as the lower-
level problem satisfies the PL condition with a fixed PL constant, we establish a faster convergence
rate in the following theorem.

Theorem 2 Given any fixed regularization weight Ty, i.e. T, = 1¢ for all k > 0, consider the iterates
of Algorithm2lunder the step sizes and penalty weight
=0 =00 B W
(h+ D G+ T e (v Do

with ¢ = %, Co = %, cg = %,cw = % and properly selected (o, g, Bo, wo. UnderAssumptions
we have for all k > 0,

. D (20) + e +ebF el +eytN A 1
2 70 0 0 0 0
511<1£1EH|VI<I>TO(SU75)|| ] SO( e ) +0 Rk

Theorem establishes a finite-time convergence rate of O(k~'/3) to a regularized stationary point,
and again implies a sample complexity of the same order. Importantly, this rate surpasses that of the
F2SA algorithm in Kwon et al.[[2023]], which is derived under the stronger assumption of lower-level
strong convexity. We have achieved the rate improvement under weaker lower-level structure by
designing a novel error decomposition scheme that allows us to tightly bound the residuals in the
policy iterates based on the PL condition. We also note that the complexity of Algorithm [I|matches
the best-known complexity of a nested-loop algorithm developed in|Gaur et al.|[2025]] for solving the
regularized bi-level RL problem.

5 Numerical Simulations



We numerically verify the convergence of Algo-
rithm [T] on a small-scale synthetic bi-level RL
problem, where the lower-level MDP is defined
a 10x10 grid. The reward for the MDP is the
negated distance between the current state and a
goal position (which encourages the lower-level
RL agent to reach the goal in as few steps as pos-
sible), whereas the goal is placed by the upper
level decision variable. We design the upper-
level objective — as a function of upper-level ° 0 e of Soies
decision variable x and the optimal policy 7* ()

— to penalize deviations of the goal position from Figure 1: Upper-Level Decision Variable Conver-
the center of the grid, while encouraging 7*(x) gence in Function Value Space

to have direction biases towards moving down

and right.

-200 —— Proposed Algorithm
Partial SGD

400 —— Finite-Difference Approximation

-600

-800
-1000
-1200

~1400

Upper-Level Objective Function Value

A natural baseline is an alternating (partial) gradient descent—ascent scheme: we maintain iterates
(g, %) and approximate the full hyper-gradient V,®(zy,) by its partial component V,, f (2, g, ).
while updating 7g, in the same loop to approximate 7*(x). We refer to this approach as “Partial
SGD” and note that it may be stuck at sub-optimal solutions when the partial gradient is misaligned
with the true hyper-gradient. This phenomenon is evident in Figure[I] where our proposed algorithm
attains a better solution and achieves a smaller objective value than Partial SGD. We also compare

against an algorithm that performs iterative gradient descent using the chain-rule expression (g), with
o (z)

4 — estimated via finite differencing. Specifically, for a scalar x, we approximate

omi(e) _ wi(e+0) —mi(m)
or € ’

where 7% (x + €) and 7} (x) are computed through a large number of inner-loop RL iterations. For
vector or tensor z, the approximation is carried out entry-wise and then aggregated. We refer to this
method as ‘Finite-Difference Approximation*” in Figure[I] and note that it is highly sample-inefficient,
owing to both the computational overhead and the inaccuracy inherent in finite-difference-based
gradient estimation. Further details on the upper-level objective, MDP reward function, step-size
parameters, and initialization are provided in Appendix [E]

Disclaimer

This paper was prepared for informational purposes [“in part” if the work is collaborative with external
partners] by the Artificial Intelligence Research group of JPMorgan Chase & Co. and its affiliates
(“JP Morgan”) and is not a product of the Research Department of JP Morgan. JP Morgan makes no
representation and warranty whatsoever and disclaims all liability, for the completeness, accuracy or
reliability of the information contained herein. This document is not intended as investment research
or investment advice, or a recommendation, offer or solicitation for the purchase or sale of any
security, financial instrument, financial product or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such jurisdiction or to such person would be unlawful.
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A Frequently Used Notations, Equations, and Inequalities

¢ Besides the value function defined in @[), we also define the regularized Q function and
advantage function

Q27 (s,a) 2 ra(s,a) +7 3PS | 5,)VE(s),
s'€S (23)
A" (s,a) £ QU7 (s,a) — Tlogm(a | s) — VI (s).

* We define the filtration Fj, £ {0, -+ , &k, 805" 5 Sks @0y~ 5k, 505" 5By G0y~ 5 Gk -
* The PL condition in Assumption [5|implies quadratic growth, i.e. for any =
Crt

Ly (x,79) = Lo 7 (2,77, () > ™ ——||mg — ﬂzw(x)HQ. (24)
In combination with (22)), the inequality implies
Crt N
VoL r (@, mo) | 2 5=l =l ()] (25)

* We introduce the following shorthand notations that abstract the update operators in Algo-
rithm[1] For any =, 7, 74,0, V, s,a,5, 5,a, £, we define

Dw(x,ﬂ,wﬁ,s,a,E,d,f) v oflx,m 75) (V re(s,a) — erz(g,d)>7 (26)

Fw77'(x797‘/757aa8l7§) = (T‘I(S,CL) + TE(?T@,S) + ,YV(S/) - V(S))Vg logﬂ-@(a | S) - U}%gf(x,ﬂ'g,§>,

27
G-(%,0,V,s,a,8") = es(ro(s,a) + TE(mg,s) + 7V (s') — V(s)), (28)
where e is the indicator function, i.e. the entry s has a value of one and all other entries are

ZEero.
With (26)-(28), we can rewrite the updates of Algorithm ]
Thi1 = Tk — CeDu (T, Ty T 5 Sy Qs Sk B, k),
Ok = Ok + awFo r (Tk, Ok, Ve, Sk, Qs Sk k),
0F 1 = OF + apFup r (21, 08, VIE, 51, g, 51, 1),
Vierr = Vi + BeGry (2, Ok, Vi, sk, @i, 53),
ViE L = ViE + BiGory (o, 05, VIE, 5k, a, 5,).
We also define operators D, I, F' with a proper sense of expectation.

Dy(z,m,7°) 2 E [Dy(z, 7,75, 5,a,5,a,€)], (29)

sredT arm(-]s),5mdr " G~ L (:]5)),Evp
Fwﬂ-(x, 0, V) é Es~d:9,a~7re(~|s),s’~'P(~|s,a),£~,u[Fw .,-(x 0 V S a S )] (30)
GT (.T, 97 V) £ Eswdge ,a~vmg(+|s),s' ~P(+|s,a) [GT (l‘, 07 ‘/7 $,a, 8 )] (31)
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* It can be seen from (T3) that the following relationship holds for any z

Vao®u,r(2) = Dy(@, 7 (x), 7, (2))- (32)
In addition, we have for any x, 0, 7
For(2,0,V™) = Vo, (x,m), (33)
Fop (2,0, V") = wV gLy - (2, 7). 34
* We define for 7 > 0
tr(z) = Jo (2, 7 (). (35)
Note that £, is not to be confused with @, defined in (7)), which is the regularized upper-level

objective.
 We recall the residuals defined in Section .| and also define the residual in x, as follows

ot = IVa@unr @I 0 = 0k (Lugr @0 Tog) = Lunry (20T, 7, (@),

kT gLl
el

&) = Jo(wp 75 (24) — I (@sm0,)s € = Vi = Vil ™R3, et = |VE — Vi,
(36)

We also introduce a number of technical lemmas, which will be used in the proofs of the propositions
and theorems. We defer the proofs of the lemmas to Appendix

Lemma 2 For any k > 0, we have

< BTk
A T

Lemma 2] derives a simple bound on the rate of change of the regularization weight 7.

2L, \S|\A| (12+810g|A\)\/|S

Lemma 3 Define Ly = max{ , T }. We have for all w,7 < 1 and
z,x,0,0

| T (2, 7w9) = J7 (2", mor)| < Ly (o — 2| + |6 — &[], 37)

IVoJr(x,76) = Vo7 (a', mo)l| < Ly (|l — 2'[| + (160 — 6"])), (38)

IVadr(2,m) = Vo dr (@, 7)| < Ly (|2 = 2'|| + |7 = ), (39)

Ve — VT || < Ly (le — /|| + 116 — ¢')), (40)

IVeVEme = VoV ™ || < Ly (|lz — 2'[| + 116 - ¢'l]), (41)

IVo.0Eqqmo [E(mo, s)]| < Ly (42)

In addition, there exists a bounded constant Lv,ﬂ such that forall T < 1 and z, ', 0,6
V2,07 (2,m0) = Vi gJr (', mo)| < Lya(lle — 2’| + 10 — 0],
IV 6T (2, 79) — V5 gJ- (2 7o) | < Lva(l|lz — 2’| + |6 — ¢']])-

Lemma [3] shows that the value functions/cumulative returns are Lipschitz, and have Lipschitz
continuous gradients and Hessians.

Lemma 4 For any 7,7/, we have

T ' v
”dp _dp ” < 1_

le = =]l

Lemma 4] shows that the occupancy measure is a Lipschitz function of the policy, a well-known result
in the literature. We include the proof in Section [D.4]for completeness.

3We skip showing the exact constant here, but note that it depends polynomially on the structural parameters
of the problem.
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Lemma S Recall that By = %%JA‘ is the entry-wise upper bound on the magnitude of the value

function introduced in the paragraph after (3). We define the constants

Bp =3L,, Bp=2(1+~v)By+2log|A|+2+L,, Bg=(1+~v)By+log|A|+1.
(43)

Suppose that the regularization parameters satisfy w < f—;, T <1 Forall z,0,0", s,a,s',5,a,¢
and V € RIS| satisfying V (s) < By, we have
Bp

||Dw($,7T9,7T9L,S,CL, §,C_l,£)|| < ?7

HFw,T(xa97 ‘/78’0/78/?5)“ S BF7
|G+(2,0,V,5,a,5')| < Be.

Lemma 6 We define the constants

2B 2+ B B
Lp=3L,+ -2 Lp=3L,+2log|A|+ tOF L4 Lg=L,+—¢

+ log | A + 2.
(44)
Suppose that the regularization parameters satisfy w < min{f—;, (17]3#[5”}7 7 < 1. We have for all
.’11'173}2,71'1,77{:,71'277'('2‘6
_ _ L
1D (@1, 71, 7) = D (2,2, 75| < =2 (|for = ol + 1y = | + || = 7))
| Fo e (21,01, V1) — Fur (22,02, V2)|| < Lp([|ay — 2| + (|61 — 02| + [|[V2 — Val)),
|G (21,01, V1) = Gr(@2, 02, Va) || < La(l|lzn — @l + (|61 — 02| + [[V2 — Val]).
Lemma 7 Recall the definition ofﬂ'fuj in Sectzbn@ For any w1, wa, T1, T2, T1, T2, We have

2Lf\w1 —’LUQ‘ 6‘7'1 _7-2||S|10g“’4|
Crm (1-=7)CrLm

2wa2 2LV
Cry Crm

17 7 (@1) = Ty oy (22) | < ( Mzr =l +

In addition, for any w, T > 0, we have

. % 2Lfw
oz (2) = mo - (@) < 57

Lemmas [6] and 7 show that the update operators introduced in (26)-(3T) are (approximately) bounded
and Lipschitz.

Lemma 8 Define L, = %Oigf‘. For any T > 0, we have

|77 (2) = 7 (2)[| < Ly,

Lemmabounds the distance between the regularized best response 7% () to 7*(z) defined in (§)
by a linear function of 7.

Lemma 9 Define L;, = Ly + Ly + %j%v) We have for all w,7 < 1 and x,z’,0, 6’

L L

VoL 7 (,70) = Vo Luw o (! m)|| < — =l — || + =10 = '], (45)
L L

VoL r(2,70) = VoL (2, 7o) || < ==l = /|| + =210 = 0] (46)
wT w

Lemma@establishes the Lipschitz continuity of the gradients of L, .

Lemma 10 Recall the definition of £, in (33). We have for all x1, x2

212
V(1) = V()] < (Lv + G2 ) s — ]
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4L;Ly  AL?
Ve (1) = Vabu o (e2)]| < (Ly + =2+ G2 ) lon — )

2L 2L+L 2L Ly L 2L;L3%L 2L,L?
v ( foV o 2REVEVE f2v L V)H:m—xz”.
Lt Crt oCrt a2Crt oCrLt

Hvxq)T(Tl) - vxq)‘r(xQ)H < (1 +
Particularly, if w, T < 1, we have
Ly
Ve (1) = Ves (@) < 21 — 2],
Lo
wéw T - a:q)w T S - - 5
Va@ur (1) = Vi 2)]| < 221~

4LfLV AL} 4LyjLy | 4LsLvLya | 4LsL} Ly 4LfLV

whereLé—maX{Lv—i— Ly + + e O T el T T o%ens (,CLT}

In addition, if T < ZCL—LV we have
Lg
90, (1) = Vabr (w2 € 2oy — 2]

Lemma establishes the Lipschitz continuity of the gradients of £, ®,, -, and ®.

Lemma 11 We have for any w, 7 > 0

ALsL oL L
(IVo@r(x) = Vi@ - (2)] < fivw(Lf Tt bl A
Cror Crr
4LyLyw 2L Ly
VT(I) *VT(I)U,T SiL “HIEV2
IV:2®(@) = Va®ur (2)| < =4 Ly + =525
+Ll&@v+1%+LLﬂW2+LLVLn+j¢hWM+8bmA

(1 =)t

The lemma demonstrate how the magnitude of the difference between V@, (z) and V,®,, () and
that between V,®(x) and V,®,, - (z) scale with w and 7.

Lemma 12 For any 7 > 0, we have

L.L¢L%LyoT
V@ (2) = Val(o)]| < == 5205
This lemma shows that distance between V,®., (z) and V,®(x) is bounded by a function linear in 7.

B Proof of Theorems

We study a slightly simplified variant of Algorithm [I] which is presented as Algorithm [2] The
sole distinction between the two is that Algorithm 2] uses i.i.d. samples drawn from the stationary
distribution, instead of continuously generated Markovian samples. Stochastic approximation and
RL algorithms have been extensively analyzed under Markovian sampling [Zou et al., 2019} [Wu
et al., 2020], and it is well-established that Markovian samples affect convergence rates only by a
logarithmic factor. This simplification enables us to concentrate on the novel aspects we introduce
to bi-level RL, without being distracted by standard technical considerations related to Markovian
samples.

Theorem 3 (Replicate of Theorem [Tjunder i.i.d. samples) Consider the iterates of Algorithm
under the step sizes and weights

Co Qg Bo wo 70

Ck:i(k;_i_l)cg’ %= e 51@:(]“_1)%, Y= G T e
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Algorithm 2 Actor Critic Algorithm for Bi-Level RL

1: Initialize: control variable x, policy parameters 6 and 65, value function estimates Vo, VO'C €
RIS
2: for iteration k = 0,1, 2, ... do
3:  Trajectory 1:
Get samples sj, ~ d:,rg’“,ak ~ 7o, (- | sk), 8}, ~ P(- | sk,ax). Receive reward 7, (sg, ax).
4:  Trajectory 2:

oL

Get samples 55, ~ d,’* , @y, ~ oz (- | sk), 8, ~ P(- | Sk, ar). Receive reward rg, (Sk, ar).
5:  Observe/Obtain &, ~
6:  Control variable update:

~ 1
Tht1 = Tk — Ck (fo(ffk,ﬁak,ﬁk) + — (ermk(skaak) - Vz%k(gk,dk))> . @47
wy,

7:  Policy update:
Or1 = O + (Txk(sk; ai) + T E(mg,, Sk) + 'Yvk(sk+1)> Vologmg, (ax | sk), (48)
OF,, =0F + Oék((rxk.(?k, ax) + TE(moe, 81) + YWViE(51r41)) Vo log moz (ar | Sk)

— Vol (zn g, &), (49)

7, = softmax (), mF = softmax(6F). (50)

8:  Value function update:

Vi, = g, (Vk + Bres, (ka (s, ar) + T E(mo, , 1) + 7V (sh11) — Vk(sk))) ,

Vi =Ty (VE + Bees, (o (5 ar) + mB(mh, 51 + WV (ki) = VE(51)) )
(51)

9: end for

3

with ¢ = %,ca = 35,3 = %,cw = 35,Cr = % and (y, oy, Bo, wo, T selected such tha

Co<ag<Bo<wy <1<,

ALy ALy 3Br, -7 (=9I}
3033027 8 L, 7 8|S|log? | Al
. Ly Bp . LglS| 2Ly 2Lys
< I e — < ’
wy < rmn{Lf, = ’Y)Lf}7 7o < min{ L Oy b
< : { Cird Ciwgrg Ciworg (1-7)Ci7d Br }

1024 ’

1
Bo < min{

2

ap < min{

(L2 +12) 51212 '128LpL;’ 614412 L% Bp

a0 _ 1—y 1—v 1—v 8(1—9)(L2+L}) 32B¢ 1—7
Bo = | 2V6Ly Ly 48L% 7 8L%.’ 3L2,C% "\ B2(Lp + Lv)’ 36B%Lym [’

@ 4Be a1
0 1lBFLV T0 LV

(52)

“Note that the step sizes satisfying the conditions always exist and can be found in the order of
To, Wo, Po, o, (o — we first select wo, 7o small enough to satisfy their upper bounds; then we select fo;
then we select oy with respect to 8o, wo, 70; and finally we select (o with respect to av, Bo, wo, To.
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Then, under Assumptions[I[3] we have for all k > 0,

40
mm]E[HV D () H ]

log(k + 1)
ol _W( 7—0<330)+58+Eg’£+8(‘)/+€g’5)+O( ( )

(k+1)1/10

Theorem 4 (Replicate of Theorem 2] under i.i.d. samples) Given any fixed regularization weight

. LS| 2Ly 2Lviaq| _ . . .
7o < min{l, =5=, F¥, # i.e. T = 7o forall k > 0, consider the iterates ofAlgorlthm

under the step sizes and penalty weight

@) ag

S an = ——9 3 Bo wo
(k+1)c§7 k (k+1)ca’ k

T hrye Tkt Dew
1

withc = 5,¢q = 05 ,Cw = and Co, o, Bo, wq selected such that (]3_7[) holds. Then, under
Assumptwnsm@ we have for all k>0,

20
= 3Co(k +1)1/3

Gk =

Itmn E[[| V4@, (24)]1%] <

log(k +1
(CI)TO(IO) +ed+ebt ey +€X”C> +0 (Og( )) .

(k+ 1173

We break down the proofs of the theorems into two parts. First, in the following propositions,
we individually establish the iteration-wise convergence of the upper-level decision variable (in
Proposition [T under decaying regularization and Proposition 2] under fixed regularization), policy
iterates (in Propositions [3}4), and value function estimates (in Proposition[3). Then, in Sections
[B-2] we combine the convergence of these variables and bound their joint convergence through a
coupled Lyapunov function. The proofs of the propositions are deferred to Section|[C]

Proposition 1 Under Assumptions[I}3] and step sizes satisfying (52)), the iterates of Algorithm 2]
satisfy for all k > 0

2
RV, @ ()] < Bl (24) — By (w050)] + 2D R
k

2LHCk iy L _ o, LALFLY LY G
| POLILE LGl | BhLaGE | 16141 log|A|
C%a s 2T W} (1-=Cr(k+1)

Ef|mi — w7, ()]

+

Proposition 2 Under Assumptions [I\3] and step sizes satisfying (B2), the iterates of Algorithm 2]
satisfy forall k > 0

Ck 2L%Ck
ZE[|Va®r, (21)[) < E[®r, (21) — Py (2r11)] + —F—E[||mi — 77, (2)]%]
k
2L2 Ck * B2 L<I> T 4-2
+ DRt~  (@0)IP]+ Oy G + D22k
k k

2
_ 4LfLV 2LfLVZ _ 2Ly 2LfLV 2LfLVLV‘2
where Ca ,, = <7CLQTO (Lf + =4>2)) and Lor, = (1 + §75)( b + e+

2LsL3 Ly +2LfL3,
a2Cpmo oCrr J°

Proposition 3 Under Assumptions and step sizes satisfying (52), the iterates of Algorithm 2]
satisfy forall k > 0

32L2
Vck E

«
Blef 1 — ) < ~ G ElIVon (on,700)°] + 203 onEle] ] + 5L

5Note that Propositions use the Lipschitz continuity conditions established on operator/functions such as

. L¢|S 2L s .
Ly~ and £, under 7 < min{1, é‘L : , 25 T CV 2}, a condition imposed so that we can present the associated
Lipschitz constants in a more concise form. As the proof of Theorem 4 is based on Prop0s1t10nsEH§|7 we state
that the result holds for this range of 79. However, the same proof technique applies verbatim for any arbitrary

7o > 0; only the values of the Lipschitz constants would change accordingly.
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CloyT} 2 64L2DL%/CI@ 2 2
_ ]E o x . DTV Sk _ o
i Bl — 75, ) IP] + g kBl — 5, ()P e~ ()|
n ZB%L@Ci n 2BDBFL\/<]€C¥]€ n B%‘Lvak 16 log |.A|Tk,

w2 wy, 2 31—k+1)

Proposition 4 Under Assumptions[I3] and step sizes satisfying (52)), the iterates of Algorithm 2]
satisfy for all k > 0
]E[ 6,L 9, E]

€kl ~ Ek
wia 3212
< <RIV oo 7]+ 2T kL] + Lk Bl
C%Oélef 6412 L%Ck N 9 r
— CLETBrf = i (0)I] + G kb Bl — 3, (0P + I = (0
n QBQDL@Clg n QBDBFLLCkak: + B%‘LLO(k 32 10g|.A|Tk;
Wity W 2 31— (k+1)

Proposition 5 (Value Function Convergence) Under Assumptions [I[D] and step sizes satisfying
(B2), the iterates of Algorithm 2] satisfy for all k > 0

1- 1202 L2 (2
Blelinl < (1~ B D

L
[l = (i)ll? + g = 7, o, () 1)

+ mE[”VOJW(xkﬂT%)” ]+ mE[EI]
22B%L 2 64L2 77
+ Fa;/TOOék i 7)5:(7]5+ e + 8Bg 7,
Bl < (1 - CE 20 mielie) + DB, (00) P + ok — i, o))
+ S 170 oo ) + Bl
L 223%5;/7(30&2 3 63);%}:(75+ g +8Bgp2.

B.1 Proof of Theorem[3

Combining the bounds in Propositions we have for any £ > 0
G

2E[|Va® ()]

2L% ¢k . 2L% (ke
S E[@r (o) = Oryy (@n00)] + =2 Ellme = 77 ()P + =5 Elllm — 7 (20)117]
k
N LILGLY LY oG N 256L3 L3 LY 5Crwi, | BhLoC? | 16Ly|S|log | Al
204 Clo?r} 27 w? (1—)CrL(k+1)
2
0.0 6.7 Wik o, 32L% C
+Eley — i) = Bl VoL r (ko)1) + 2L Tk Ele ] + a : S
- Cila} 64L2,L2 (2
e RE(|mk — w217 + 0%7“; e =75, (@)l + lmi — 7, () [17]
n QBzDLQCI% T QBDBFLLCkak " B%LLOzz 32 10g|./4|7'k
wiTy Wk 2 3(1—7)(k+1)
« 3212
S]]~ Rl Vo (om0 7] + 2L erEIEY] + S ke
LOKkTj

4L2 L?
6 VCk E

C2ak72
- L Bl = @) P+ o 2
k'k

1 7 — 77, (@) I* + Ik =, -, (20)]1%]
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n QBZDLQCZ T QBDBFLVCkak T B%Lvai 16 log |.A|7'k

W wy, 2 3(1—7)(k+1)
~Efel )+ (1 - SR Ypiey) + L g — i, (o) + I — i 0
+ P90 (o )+ ﬁm 2
-t + (1 - SR g LD g, — ()7 + i 0
O 190 oo P+ (B
+ QQBF;’TOO"“ +30 _GZL)Z‘;(T];“JF g + 8B}

< ]E[(I)Tk (xk) - @7k+1 (‘rkJrl) + 52 £ - EZfl + Ez - €z+1 + Ek Ek+1 + €X£ Vﬁ]

~ Sk
32(L% + L%) ¢} 12L3.¢? )E[ o 4 ( Qg 6L% a3
k

— SR VIR ORIV L, (ks 2
( ClawTy (1=7)B% s (1—7/)8;@) V6 L, (v, Tag )
2 2,22
wior | 6Ly wioag 2
(= IV oL (oo P
C?ayr?  2L%(¢,  128LAL2(¢2 24132 1% (? .
(- 2Dk Dl SV DR Vi — () )
64 wy CF owit? (1—=7)Bk
Ciapty  2L%5(,  128L%LL3(F  24L3 LA(F
(- T SR Gl S Bl — i )
k KWL TE ( V) Br
1—+ 1—7)B%
- (— % + 2LF(Y;‘>]E[E]€V] + (— % + QL%ak>IE[s,‘C/L]
_‘_2561/1%[/2 L3 5Ckwi LEL?L%/L%/,QQCTI? 9B% Lo}  ABpBrpLirox +4SBGS?
Ctori 204 2wiy, Wy o

128132 77 161og | A| 7y 16L¢|S|log | A|
3L=y)Bek+1)?  (L=7)(k+1) (L=7)Cr(k+1)’

2 2
where to get the second inequality we combine the terms mﬂiw and 8B 37 under the

o 4B 3
condition o < B2 Ly

(TP 32B¢
Br — BZ(Lp+Lv)"

Note that the highlighted red coefficients in the inequality above are non-positive and the blue
coefficients can be combined under the step size conditions (y < So, 7 < f |S‘ , and

oo _ {1—7 1-9 8(1—7)(L%+L%/)} Co<min{02ono C%ono2 (1—7)0%73}

2
LLak

B? B%ZLyai 2 -
and the terms —F5==% + =F==k and 16 Bg/3; under the condition

Bo — 48L%,’ 8L% "’ 3L%/C’% Qg 512L% " 128LpLy.’ 6144L%,L%
This allows us to simplify the inequality and obtain
Ck
E[[|V.®(x)]|’]
0, 0, V.C V,L
S E[®,, (z) — q)7k+1(37k+1) T —E Tt Ez - 52+1 + El‘c/ - El‘c/Jrl +e — Ek+1]
C? oy, “k C%(T Tk 204 2wiTy
4BDBFLL§kak 2 128LV7_I€ 32Lf|8|10g|A\
+ 22 4 A8Be B} + : (53)
we Ot BBk + 17 T A= )Culk+ 1)

21



Recall the definition ef = ||V, @y, 7, (k) ||? i
hand side of (33) to ||V, ®(z)||* using Lemma

1. We can relate the second term on the right

64(L3 + L) 128(L2 +L2 2)¢? 2 128(L2 +L2 2)¢? )
€ < V,® /L VIR v, VP,
Cra kS g V@l + 0 IV (@r) = Vau, i (2)|
128(13 + L3)¢? 2 128<L%+L2v><,3 AL;Lywy.,  2L;Lya
< 2L TRV g P L+ —=1=%2
- C%O[ ||V (xk)H + CQa TE ( CLO'Tk ( f+ CLTk )

L Lf(LV +1)+L wLyLyo+ L,LyLys+ LfLV2(4+ 8log|.Al)

(1—=7)*e?
128(L2% + L3,)(? AL Ly wy 2L+Ly o
< ®(z1)|? + L v )Sk ( ! I fLv,
- HV Ol C’2a 7"3 Crom (Ly + Crmi )
n L Lf(LV + 1) + L LfLVQ + L LVLV2 + LfLV2(4+ 810g ‘AD
(1=7)ic?
Ck 9 128(L% + L%/)C]? 4LfLVwk 2LfLV2 2
_ k7,0 ( L 2)+aime)
8 || (xk)ll + C’%Ox;ﬂ'g CLng ( f + OLTk: )+ 1Tk
(54
where we derive the third inequality from the step size condition C—” < Clri

=< Toza(Lz +17)> and define in
. Lol (Ly+14+ Lo Ly Lya+LoLy LyatLy Lys(Les]
the last equation Cy = Zelsr vt Dt Lulybvatl. Ly Lyt Ly Ly.a( + og |A])

(1-7)*g?
Combining (33) and (54) and substituting in the step size decay rates,
<k 0L o0.c v,C
E[||Vo®(zr)|?] < E[®r, (xk) — Pryy (Tr41) + 6,77 — €pp1 T e —eh i ter —elp ey
128(.[/% + L%/)C]% 4Lva’LUk 2LfLV2 2
L Ciri )
C? oy} ( CroTy (Ls+ Crti )+ G
. 956L4L3 LY, ,Chw?  L2LALY LY ,Gem? 9B Lo
Cio?r 204 2wiTy
i 4BDBFLLCk04k i 48BGB2 i 128L%/7']3 32Lf|$| IOg |.A|
wi P31 = Bk +1)2 T (1 =7)Cu(k+1)
(55)
0L  _6.C V,C
< E[®,, (zr) — (I)Tk+1(xk+1) +ey T —Eh EZ - €§+1 + 51@ 51~c+1 +ey
1
+0|—+ .
(o)
Re-arranging the terms and summing over iterations,
k— k—1
Z 5 9/10 E[|Va®(x:)]|?] < ®ry (w0) + 5+ €05 + ) +ey* + 0 (
t=0 t=0
(56)

The following inequalities on the summation of step sizes are standard results in the literature (the
ones in our paper are specifically adapted from Lemma 3 of an earlier version of |Zeng et al.[[2024])

kz:l logk+1)
t+1 '

— log(2)
k
1 1— ) (k+ 1)1
Z - . Yue (0,1)
t:O
and with v = 9/10,

z’“: o 0.06(k+ 1M1 3(k+1)1/10

 ( 9/10 = 1/10 5

22

)
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V,C
— &

v.C
— 1
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This allows us to further simplify (56)

k—
1
min E[|V,® () |*] < Z 5710 Bl Va® ()]
t<k Sk OW — t+1 /
40

= 3¢o(k + 1)1/10

(<I>TO (z0) + €f +eb“ + e + ey + Olog(k + 1))) .
|

B.2 Proof of Theoremd

We combine PropositionsEHZl Note that 7, = 79. We can follow a line of analysis identical to what
leads to (33)) in the proof of Theorem [3|and show the following inequality

Ck

0.L _ 0. VL VL
E[|V®-, (xk)H | SE[®r, (zk) — Pry (Th41) + €7 — €1 T 52 - 5Z+1 + Ek 5k+1 +te T — 5k+1]
64(L% + L2 2)¢E 5 A4B%Ls(;  B% Lo (P
E Cy. DGk D@, 706k
+ C R [ek] + Co,ro Crwy, + w%TQ 2w%
4BpBrL 12813 481og | A
4 4BpBr LGk +ASBaf + V7o i og|Alro
Wi 3(1=7)Bk(k+1)2  3(1=7)(k+1)
N
The step size conditions required to show are
a _ Jl-v 1-7 8(1—~)(L2 +L3%) 32B¢ a0 _  4Bg
Bo ~ | 48LY 7 8L% 3L%.C3 "\ B&(L, +Ly) |’ B2~ 11BiLy’

s © < {ChE Chuok (_0)CirE)
— 9 aO —

51202, " 128LpLy’ 614412 L%

Recall the definition e¥ = ||V, P, 7 (k) [|? = [|[VaPuwy 7 (zx) % in (B6). We can relate the second
term on the right hand side of (57) to ||V, ® ()| using Lemmal[T1|

64(L3 + LY)GE , _ 128(L3 +L2) 128(L2 +L2)

7, ()12 + 1,01 (1) = Voo o ()2

Ciaytd k= Ciaytg Cia
128(L2 + L3¢} 1920 ()] + 128(L2 + L‘Q/)C,f (4Lvawk (L + 2LfLV,2)>z
- Ciaytg o Ciaytd Crotg f Crmo
Gk 2, 128(L7 + LY )GRwg (4LsLy 2L¢Ly; )2
< kg, @, ( L+ 222v2 )
— 4 || 0(-'15143)” + C%Oszg CLQTO ( + CLT()
Cr o 128(L% + L})Co P
= ||V, : , 58
4 | o (@i)|I” + C’%ozm'g (58)
where the third inequality is due to the step size condition i—% < %
Combining (57) and (58] and plugging in the step size decay rates,
Ck 0.L  o0.c Vi VL
E[[|Va®r, (21)|°] < E[@ry () = Bry (zh41) + €7 =€y + el —elpr ek — e+, —ef]

AB2 T, B2 Lo,
+ 202,7'0(/6“)[3 + D2 ‘I)Ck D-P, OCk

| 18(5 + 13)Com Gu?

Ciaytd wiTo 2w}
4BDBFLL<kak 2 128LV’7'0 48 log |A‘T()
+ ———————— +48Bgf; +
w e SRk 12 T 30— )+ )
0,c 0,L V.C V,C
< E[@, (zx) — (I)To (Trr1) + €, T €1 Tt 52 - EZH + 5k 5k+1 +te — 5k+1]

Grwi 2 Ckak 1 1
+0( + G k+—+ +ﬂ’“+ﬁk(k+l)2+k+1>
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0.L 6.0 V.. V.C
S E[®r, (7x) — @ry (Tr41) + € — €1 Tt 52 - 5z+1 + 51c 5k+1 +em — 5k+1]

1
+O(k+1)

Re-arranging the terms and summing over iterations,

Go
4(t +1)2/3

k

|
—

k—1
1
E[||Va®r, (@0)|’] < @r,(w0) + ) +20° + 2 +e0° + O (Z i+ 1)) |
=0

t

Il
o

The following inequalities on the summation of step sizes are standard results in the literature (the
ones in our paper are specifically adapted from Lemma 3 of an earlier version of |Zeng et al.[[2024])

kz:l logk—|—1)
t+1 log(2) ~’

t=0
k
1 1— ) (k+1
> ) )" . Yue (0,1)
(t+ 1)~ 1—u
t:O
and with u = 2/3,
i 0.2(k+1)Y/3  3(k+1)1/3
— ( t+12/3 - /3 50

This allows us to further simplify (59)

k—
1
min B[V, @, ()% < Z 573 EllVa®ry (20)[17)
t<k Zt ) 74(1&_&)2/ — t+1 /
20

P —
= 3Gk + 1)1P

(<I>TO (zo) + 58 + 58’£ + EX + q‘f’ﬁ + O(log(k + 1))) .
|

C Proof of Propositions

C.1 Proof of Proposition|T]

We know from Lemma that under the step size condition 75, < 2CL—LV, the objective ®,, has
La [ ipschitz gradients. This implies
Tk

sy (Tht1) — oy (1)

L3
<AV @y (71), Tha1 — 2k) + H”xlﬂrl - $k||2

L<I’CI% L _ 2
) . ||Dwk(‘rk7ﬂ-k‘?ﬂ—k75kaak75kaaka§k)||

= —Cu(Vu®,, (2k), Dy, (Thy Tk, TF , Sk Qs Sy Aty Ex)) +

—Ck HVJE(I)Tk (xk) ||2 + Ck <Vx¢)7k (xk)’ Vi ®r, (xk) = Dy, (J?k, Tk 77157 Sk Ok Sk; Ok, 5k)>

)’ 2
+ 2(I>ik ||Dwk(,’L‘k7ﬂ'k’ﬂ]§75k,ak,§k)dk?§k)”2'

By the law of total expectation,
E[®r, (zh41) — Py ()]

L 2
< _Ck]E[”vxq)Tk (xk)HQ] + %E[”Dwk ($ka 7Tk’77TI§7 Sk, Ak, Sk, &k’vgk’)HQ]
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+ GE[(V2 @, (21), Va®r, (21) — E[Duy (Thy Thy T, Sky Qs 5k Ak, &) | Fra])]

L 2
= B[V, () ) + Tk
Tk

+ Ck]EKvT(I)Tk (xk)v VT(I)TA (xk) - D“/k (Z'k, Tk ﬂlf»]

BhLaG | Gk

> 2 T o
2Tk’wk

B}, La(
27—“”/%

El| D, (%, Th, T Sk Qs ks s ) ||7]

Ck

< —GE[[Va®r, (zx)]°] + E[|Vo®r, (z)I”) + S E[Va®r, (1) = D (i, 1) 1%]

= SRV, ()] +

iE [H (Var, (24) = Vau ry (2)) + (Du (w75, (2), Ty 1, (28)) = Doy (2, 7, 7)) Hz]

< —ka E[|Va®r, ()I*] + Bl D, (21, 7%, (21), T, 7, (1)) = Duwy (2, 7, 7)) |1

B} Lo (}

60
277#”]% ( )

+ CkE[”VLECDTk (mk) - V$¢wk7‘rk (xk)HQ] +

?

where the second inequality applies Lemma|[5]and the last equation follows from (32)).

To bound the second term on the right hand side of (60), we apply Lemmalg]
”Dwk (*T’lﬂ ﬂ-:k ($k>, ﬂ-;k,rk ($k)) Dwk (Sﬂk, Tk, Ty )”2
LQD * L * 2
< Dl = 73, @) | + ek = i (@)l
Wy

L 203
< (@) ? + DH = Moy i (@)% (61)

For the third term of (60), we have from LemmaTT]

4L ¢ Lyw
V2, (@8) = Vo, (1) |2 < (St

2LfLV,2 )) 2
Cratk '

L
(Ly+ Cri

(62)
Substituting (61) and (62)) into (60),

E[®r, (2h+1) = Pr, (23]

Ck

< =S E[IVa®r, (21)]*] + Elllme — 7, ()% + (7 — 7z (@) 1)

213G 2L} G
wj wy
4Lf vak

Croty 63)

2LfLV72 )>2 n B%L@Ci

L .
( f+ CLTk QTkw%

+ Cr(

E[‘% (Tht1) = O ()]

2L%C . 2L2(
<"*HW@WWMH =R, - 7, (@) 7] + —E

k k
4Lvawk 4Lva)2)2 B%L@Ci
2Tkw]%

(7 = 7,y () [17]

+ Cr(

= SRV, ()] +

256 L3 L3, LY o Crwyy B2 LoC?
Cio?r! 2rwi

CroT Cri
213k 2L, G
w? w? E

k

Elllmi — w7, (o) [%] + (7 = 7ty () [17]

(64)
The next step is to bridge the gap between ®,, (1) and @, (2x1). By the definition of &, in
oy (W) — Py (1) = f(@rgr, 77 (@r41)) — f(@hg1, 77, (Th41))
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< LfHTr:k-H ($k+1) - W:k (xk+1)||

— It
1, 8= )il 4
(1 —=)Crk
16Ls|S|log|A|

65
ST Okt 1) (6)

where the first inequality is due to Assumption[3] and the second inequality is due to Lemma(7] and
the last inequality applies Lemma 2]

Finally, we bridge the gap between ||V, ., (z) || and ||V, ®(zy)||? by invoking Lemmal[12]

L,L:L%3Lyor
[Vo®,, () — Vod(z)| < ==V Vi2Tk .= .27k (66)
Combining (64)-(66),
]E[(I)Tk+1 ('rk-i-l) - (I)Tk ($k>]
= E[®r, (Th11) — Pry (1)) + E[(I)'rk+1 (1) — Pr (g1
Ck 203,k 2Lk
< —EE[HVJ@@W(M)IIQ] + Uf; Elllmx — 7, () ]|*] + ,wD2 E[llmg = i (2)[1%]
k k
.\ 256L4 LY LY ,Cow) B2 LoCl | 16Ly|S[log| Al
Clo?r} 27w} (1—9)Cr(k+1)
C 2L%,¢, 2L%,¢,
< —ZE[IIVI@(M)IF] + =B E|lme — 73, ()1 + =5Elllmf — 7, 1 (2)]17]
Wi, Wi
. LILGLY LY Gy N 256L3 L3 LY »Crwiy  BhLaC} | 16Ly|S|log | A|
204 CéQQTé 27kwi (1 — ’)/)CL(k‘ + 1) ’

where the last inequality follows from the simple fact that — % < —% + @ for any scalar a, b.
|
C.2  Proof of Proposition 3]

The proof depends on an intermediate result that bounds an important cross term. We state it in the
lemma below and defer its proof to Section[D.13]

Lemma 13 Under the assumptions and step sizes of Proposition[3} we have for all k > 0

E[_<vz=]'rk (xkﬂfak) - v:rJn ((Ekﬂrg;k (zk))a Tk41 — xk:>>]

C? ay, 12 N
< —or Ellme =7 (@o)l”]
64L2DL\2/C13 9 r 32L2 <2
——=—CFK — 7 ) —* 2 VAR R,
b Bllm = on) P I = o (w)IP) + e

We now proceed to the proof of Proposition[3] We consider the following decomposition and bound
each term on the right hand side individually.

- JTk+1 ($k+17 779k+1) + JTk (‘rkv 7T0k)

= (_ JTk(xk+177T9k+1) + JTk ($k+17wek)) + (_ JTk (wk‘i‘l?ﬂ—ak) + JTk (ﬁkvﬂ—ek))

+ ( - J"'k+1 (‘rk+177r9k+1) + ‘]Tk (Ik’-‘rlvﬂ'f/’kﬂ))' (67)

Bound the First Term of (67). As J, has Ly -Lipschitz gradients,

- JTk (xk"rl? 7T9k+1) + JTk (.’L’k_;’_l, 7T9k)
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IN

(Voo (s, 70,), O = 00) + 2 [0nsr — Ou?

2
= — (Vo s (Ths1,70, ), Fory (Th, O Viey Sk @iy 85) — For (2hy Ok, Vi)
— ap (Vo T, (Tri1,T6,)s Forg (Ths Ok, Vie) — Fory (T, O, ))

Ly a3 .
= N Fom (. Ok, Vi st an, )2,
)-

—ap(Vodr, (Try1, 76, )y Fo,mp, (Tk, Ok, Viey Sk Qs 5)) + | Fo, 7, (€, Ok, Vies Sk Qs 53 |2

Th,Top,
Ve

— ap(Vodr, (Tt1, 70, ), Vo, (Th, 70, ) + (68)

Vivkﬂrek

where the final equation follows from Vy.J., (2, e, ) = Fo.r, (T, Ok, Vr,

To bound the first term of (68),

— aEB[(VoTr, (i1, 76, ), For, (Ths Ok, Vies Sk Oy 5) — Fo 1 (T O, Vi)
— ok E[(Vo Ty, (x1, 0, ) E[Fo r (€, Oy Vs Sk, @k 83) | Fro1] — Fory (€1, Oks Vi)
+ akB[(VoJr, (21,70, ) — VoTr (Ths 1,70, )5 For (T, Oy Ve, ke, i, 85,) — Fory (T, Oy V)]

RB[(Vo T, (x1,70,) — VoTr, (Thi1, 70y )s For (T, Oy Vies 1y i, 5) — For (T, Oks Vi)
< ay - LyE[[|zg41 — xi||] - 2BF

B
<2BfrLyay - DGk
Wk
_ 2BpBrLy(rax 69)
W ’
where the second inequality follows from Lemma 3]
For the second term of (68)),
- Oék<v0:]7—k (xk:-‘rla ﬂ-@k)) FO,Tk (-le eka Vk) - FO,Tk (xk:a ak) VTikVﬂek )>
af = ~ = T 70
< 3 IVedn (@1, o )12 + 20k || Fo (1, O Vi) = Fo,ry (e, Ok, Va7 |12
(a3 L
< Ve Jn (2, o, )12 + - WoJn (@41, m0,) = Vor, (z, 7, ||
+ 204 || Fo 7, (Thy Ok, Vi) — Fory (T, O, Vet ™08 ||
« L2 6 T, T I
< SE IV (e o) + 252 (i — o) + 2L an [V ™ = Vi 12
« L B 2
< % |V on, o )P + 5 (PEY 4 o el
4 4 Wi
g B2 12,2y
< IVoTn (s, 7o, )| + %j" +2L% ey, (70)
Wi,
where the third inequality is a result of the Lipschitz continuity of J,, and Fo,m-
For the third term of (68),
- ak’<v9‘]7k (karl?ﬂ—@k)vaJTk (mkvﬂ—@k»
= _akHVQJ‘Fk (xkvﬂek)nz + ak<V9JTk (xkvﬁek) - VQJ‘% (karle@k)a VQJ‘% (SCk,’ngk»
oL (6]
< 7?||v9‘]7'k(zk’7ﬂ-9k)”2 + Ek”v@‘]ﬂc (xk+1’7rek) - v9‘]‘l’k (:Ckaﬂek)HZ
« Lo
< =S IV0 (s mo )12 + 252 (s — 2l
a L} ap (BpCp\2
< *?HV(;Jm(xk,ﬂek)Hz + VT . ( or )
AL 32 L2 C2Oék
< = Vo Tr (ws mo, ) |IP + PS5, (71)
2 2wy,
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where the second inequality follows from the Ly -smoothness continuity of .J; from (38) of Lemmal[3]
Substituting (69)-(71) into (68)),

E[_J7k+1 (xk-‘rl’ 7T9k+1) + JTk (xka ﬂ-ek)]

2BpBr Ly (o o) B2 L3
< 2BDBrbv Gt | Chpyg, 1, (a0, )2+ DLV {912 agBfY)
WE 4 4wk
« BY L2 Lya? N
~ BR[|V, g, o) 7] 4 DRIV EVORRIIR, (o, O, Vi s, 0t 1) )
k
o 3B LG 2BpBrLy (o B2 Lva3
<~ ElVoTn (@, m0)I)] + 2L3 arEle}] + Ddf’“ s =2 ZkVCk £ ok
k
3B L3,(2 2BpBrL B2Lya?
< —“EE[||Vo T, (wr, 70, )] + 2L3 i Ele} ] + T2 kaak+ pBrliverak  Brlvay
8 4wy Wy, 2
02 2
— ZLRTR g, — ik, ()|, (72)
32 k
where the last inequality plugs in the relationship
C Tk
Vo dr, (xk, o, ) || > —=||mg, — 7%, (z5)]|- (73)

-2
Note that J; (z, 7) = lim,, o WLy - (x, 7), which implies that (73] follows from 23).

Bound the Second Term of (67). We use 0%(x) to denote a softmax parameter that encodes the
policy m*(x). Again, as J has Ly -Lipschitz gradients,

- ‘]Tk (Ik+1’7rgk) + JTk(Ik’Trgk)
L
< —(Vadr (@1, o, ), Th1 — 1) + TVH:CM — a2

L
= —(Vadr, (2, m0,) = Voo (Th, Tox. (21))s Thr1 — k) + 7V||37k+1 — ap|?

= (Vadr, Tk, To; (2))> Tht1 — Tk)

L
_<VJJJTk ('rk77r9k) = Vadr, (xkaﬂ-e;k(mk)))xk—&-l - xk> + %ka-i-l - 'TkHZ
= (Valr, (Th), The1 — Tk)

Ly
< (Vo dr @k, m0,) = Vad o (Th, Tox. (@1))s Thrr — k) + 7||$k+1 -z ?

L
+ ( — Ll (Tp1) + Lry (Ik)) + 2£||xk+1 —ap)?
Tk

< —(Vadr (2k, m0,) = Vadr (Th, To: (@1)) Tht1 — Tk)
L
(= i, w ) + T i m (@0)) + e —

where the last inequality is due to Ly < Lg and the step size condition 7, < 1, and

the second equation uses the relationship Vi Jr, (Tk, Tgs (2,)) = Valr, (71), which is due to
Tk

Vodr, (zk, Tos, (z)) = 0 by the first-order optimality condition. The second inequality is due to the

fact that ¢, is %—smooth when 7 < 1 (established in Lemma and that for an L-smooth function
f, we have

Fl) ~ (&) < (VF()y — ) + 2l — ol

Taking the expectation and plugging in the result from Lemma T3]

E[_Jﬂc (-Tk-',-h 7r9k) + JTk ('rkv Wak)]
< C’I%osz,fE

< LT, -, (20)|]
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3212 ck

6412 L2 (2 .
+ a5 Blllme = (@) [P + 1 = mh o (@)l7) + 7 25 ]
L k

2
C akwkrk

L
4 Bl @41, (@11)) + o (75, (@0))] + T2 — xan]

ClonTy * 2y, B4LLLYGE 2 * 2
< TE[”M — 77 (@) 1] + W]E[Hﬂk =77 (@) I” + ||7Tk = Mg, (@x)|7]
3213 B2 Ly C?
+ BT (@har, 7, (2541)) + T (0,75, (20))] + Zo PV gy 4 Zo0G
Loy Wk Tk
where the last inequality follows from ||zg1 — 2] < B%}f’“.
Bound the Third Term of (67).
Tk — Tk+1
~Jrir (@Tkr1, Mo, y) + o (Tht1, T, ) = 1oy s [E(mi419)]
log | A[(7k — Th+1)
(1=7)
1
8log | Al (75)

“31—-y)(k+1)
where the second inequality follows from Lemma 2]

Collecting the bounds in (72)-(73) and plugging them into (67), we get

E[7J7k+1 (wk+1a 779k+1) + J‘l'k (xkv ﬂ-ek)]
3B]23L%/C£Oék + 2BDBFLVC]C@]C + B%Lvai

[0
< S ElIVo s, (wr, m0,)II] + 2LFxEle) ] +

4w} wy, 2
CQCkk’Tz *
— LTk Ry, — 7, (1) ]
Cs ag, N 64L% L3.(? N N
+ LT R — 2, (@)Y + g 2 By — 7, ()2 + 17 — L ()]
32L2 B% Ls(?
B[ 11, (02)) + T (o (0] + Sl + g ot
Wy Tk
8log | A| g
31— (k+1)
a 32L%
< LB (o 7)) + 2B + T Bl
Crawty * o G4LBHLYCR 2 L * 2
- TE[HM - T, (1) []7] + WE[”M -7 (xk)” + || — Twp,mh (zx)]7]
QBQDL@C]3 n 2BDBFLVCkakz + BFLVak 810g |.A|7'k
w,%Tk W 2 3(1 *’7)([94’1)
+ E[=Jr (@hy1, 77, (Te1)) + In (2, 77, (20))];
. . . . 3BL L% (Eay chk
where in the last inequality we have combined the terms o and - under the step size
k Wi

4L g
3L2"

conditions 7, < 1 and o, <

Recall the definition of 52 in (36). We can re-arrange the terms in the inequality above and obtain

0. 0,C
]E[Ekﬂ &

_E[ Tk+1<xk3+1’ﬂ-0k+l) +J7'k(xk77r9k)]
B (@1, 7, (3141)) — T (20,7, (1))
+ E[Jr o (g1, 77 (@h41)) — Tr (@1, 77, (Tk41))]
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32L% ¢}

Qe T
< *@E[HVé)Jm (zk,m0,)[1*] + 2L3an Ele}] + mﬂgk]

Gty BLH LY G
64 C}awit}

T 2B2DL<I>C]% T QBDBFLkaak T B%Lva% 16 log ‘.A|Tk
wiTy wy 2 3(1—7y)(k+1)’

[l — 77, (@) 7] + [l = w7, (@) * + g =, - (20)]1%]

8log | A|T) .
where the bound on J7, ,, (%541, 77, (Tr41)) —I7, (Trs1, 75, (Thg1)) < W can be obtained

in a manner similar to (73).
]
C.3 Proof of Proposition[d]

The proof depends on an intermediate result that bounds an important cross term. We state it in the
lemma below and defer its proof to Section[D.T4]

Lemma 14 Under the assumptions and step sizes of Proposition[d} we have for all k > 0

EKvxﬁwk,m (zkv W&f) - vxﬁwk,ﬂc ($k, W@;kﬂ,k ($k))7 Tp+1 — xk>]

CQOZICT2 «
< LBl = ()]
64L% L7 Gk 3212 (2
D*EDYLSk R o 2 L _x 2 SELLSk proay
O aguw’t? I — 77, (@) lI” + 17 — T, () 11F] + ans? €]

We now proceed to the proof of the proposition. We define the re-weighted functions

Cfﬂeﬁeight(x,w) L wly . (z,7) = wf(z,n)+(J, (z, 75 (x))— I (2, 7)), @iff:eight(gc) £ wd, (7).

We consider the following decomposition and bound each term on the right hand side individually.

reweight reweight
‘ka+1,Tk+1 ('rk+177r9£+1) - ‘kaﬂ'k (‘rkﬁﬂ-af)
_ reweight __ preweight reweight __ preweight
- (‘ka,‘r;C (1’k+1,7f9}§+1) ‘ka,‘rk (mk-‘rl””@f)) + (‘ka,rk (xk-i-l?,]r@,f) ﬁwk,rk (ICk,ﬂ'glf)
reweight __ preweight
+ (ka+17rk+1 (xk-‘rh 770,6+1) ka,'rk (xk+17770§+1)>' (76)

Bound the First Term of (76). As L3¢ has L -Lipschitz gradients with respect to 6 (shown in
LemmaEI) under the condition w, 7 < 1,
ight ight
LI (g ) — L (@1, )

rewei LL
<(VoLli eght($k+1aﬁe,§),91§+1 —05) + 7“9@1 -0

Wk, Tk

= ak<V9‘C{5::iikght(xk+la W@g), ka,‘rk (xlw 91?7 Vk[:v gka dka g;m 5k)>

Lrof L YL = = = 2
2 Hkaﬁk(x/wek’Vk askaakaskafk)ll

= ak<v9£{§::$—i§ht(xk+1; 795)» -Fw;c,T;C (mk» 9}?7 VkLv §k7 ak, g;m gk) - ka,ﬂc (wk? 0157 Vkﬁ»
)

ﬁreweight F gﬁ Vﬁ I 95 ThoTo L
+ak<V9 (xk+177r‘9§)7 wkﬂ‘k(xk7 ) k)_ wkﬂ'k(mk? k?v"’k

Wk, Tk

— ap (VoL e (i1, moe ), VoL o (ax, mor )

L L Oéi
2
where the final equation follows from

+ | P e Oks @iy fie, Vi ks @k, b, 5, €8 |2, )

LkTyL
oL

ight n L
VoL s (T, mge) = WiV oLy r (Th, Toe) = —Fupmy (Th, 0, Ve, ).
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To bound the first term of (77),
akE[<V9‘creweight(xk+1v Waf)v Fuy . (l‘k, 95’ Vlfﬁ Sk Ok 5;@’ &) — kaﬂ'k (J}k, 95, Vk£)>]

Wk, Tk

= akEKv@‘CfEX?riEht(xk’ ﬂ-ef)a E[ka,‘rk (xka 9167 Vk£7 Sk Ok, g;w gk) | ]:k—l] - ka;Tk (xka 91?) Vkﬁ»]

- O‘kEKvQ‘afE:i?—ikght(xk; 7705) - vaﬁreweight(xk+1, 7705)7 FUJk,Tk (xlﬂ 91?7 Vk£7 gka C_Lkn g;q:a é-k) - kaﬂ'k (xky 0]?7 Vk;a)ﬂ

Wk, Tk

- *akEKV&ErEWEight (Ik; W@é) - veﬁreweight (xk—&-la Welf)? Euk,m (xk; 9157 ‘A/k,ﬁa gkv (_lk, g;ca fk) - F‘wk,"'k (xkv 9157 Vkﬁ»]

Wk, Tk

< ay - LiE[|zr41 — 21| - 2BF

Wk, Tk

B
< 9BpLyay - D2
o
2BpBrL
_ 2BpBr LCkOék7 (78)
wy,

where the first inequality is due to (43)) of Lemma[J] and the second inequality follows from Lemmal|5]
For the second term of (77)),

v ﬁreweight Ja 05 Vﬁ F Qﬁ Vzkm";f
O‘k< 0~wy, T (xk+1a779,f)a wk’Tk(xk’ k> k)_ wkv'rk(xkﬂ ko VT

)
O . _ A — Tk, T L
= §||V9£$Xifht(xk+h 795)”2 + 2ak||ka,Tk ("Tka 01?? VkL) - kaﬂ'k (SUk, 957 VTk %

)ik

A igh A igh igh
ZHVoﬁZfoif t(xk,ﬂe,g-)H? + ZHV(%ﬁZfZV,if t(xkaﬂe,f) - Voﬁf,?fif t(5U1<+177T9{5)||2
)II?

_ 2 12 Thom
|Zrt1 — 2k ™) + 2L%ak ||V,

IA

Tk T oL
Mok

+ QO‘kHkaﬁk (xkv 95’ Vkﬂ) - ka,Tk (.’L‘k, 9}?7 Vo
L%Ozk
4

a : L?a B 2
Zk"veﬁrewelght(l‘k’7.(-95)”2 + L% ( 11;):1@) +2L%ak€,‘€/’£

Wk Tk 4
27122
BDLLCkO‘k

2
dw;;

2

IN

. L ~
IV oL o )| + Gl

Wk Tk

A

IN

+ 202 ape) ", (79)

Wk Tk

% ||v0£reweight($k7 7T9]§)||2 +

where the third inequality is agaifl a result of the Lipschitz continuity of Vg ﬁ{ﬁxiifht from Lemma
and the Lipschitz continuity of F,, -, .
For the third term of (77),

— ag <v9£reweight (xk+1; 770,‘5 )7 veﬁreweight (xl€7 Weg )>

et ol
= —akllveﬁkifgf‘ilght (ks moe )| + az: <Vkoﬁf§,ffifht(:ck, moe) — VoL B (wxy1, mge ), Vo Lio B (a, moe )
< IV LIS (i mag P+ G I VoL (wnen. mog) — VoLl (e mog) |

<~ T L g I+ L (e — )

< - BV o) + LA (B2

= —%Hveﬁffﬁlght(xmWe,g)||2 + 13%532,30%7 (80)

where the second inequality again follows from the L -smoothness of £f§:v)$ikght shown in @3)) of
Lemmal[9]

Substituting (78)-(80) into (77)),

igh igh
ElLue st (w1, moe) — Ly o8 (h41, moe )]

2BpBrLiGrak | ak reweight 2, BpLiGRaw 2 v.C
< o + o ElIVe Lm0 (e, mae ) IIF] + T aw + 2LpaiE[e, ]
o : B2 122 Lpa? o~
— S Bl VoL s (wr, mog ) I°] + DQILUE’f © ot BB P, (O, wes i, Vs 8 b, 85 €)|[7]
k
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3B%L%<g0&k + 2BDBFLL<kak + B%LLai

ay reweight 2 2 v.L
<~ BV L5 e mog)IF) + 2L enle, ™ + —=1 5 w 2
g reweight 2 2 viey , 3BpLiGiow | 2BpBrLiGeox | BpLioj
<~ S BV (o mog )| + 2LEen B + RIS o wr T
CQ Ckk’Tz N
— LTy — 72 (o0 P), e

where the last inequality follows from (23], which states that

Wk, Tk

IV Li o™ (wk, moe )| > 1702 — T (@) I

Bound the Second Term of (76). We use 6},  (z) to denote a softmax parameter that encodes

the policy 7y, (). We know from Lemma|§|that L’{ﬁfﬁeight is LT—L-smooth with respect to x under
w, T <1,

reweight __ preweight
ﬁwk,rk (karl?Tr@f) ‘C’wk,‘rk (l’k, W@,f)

. L
<AV Lo (g, mae ), i1 — k) + ﬁ“fkﬂrl — p||?

— <Vw£reweight (xk7 ﬂ-Gf) _ Vwﬁreweight (xk7 Tox

Ly
we.Th whTh o @) Bt = Tk} + o = i)

2T

reweight
+ <v$£wk,‘rkg (Ika W@,ﬁ,k,,rk (wk))a Tk+1 — xk>

) i Ly
= (Vo Lr S (an, moe ) — VL8 (2, Ty, (04))s Thet — T) + ﬁ”xk-&-l — a|)?

+ <vm¢reweight<mk)’wk+l o xk>

Wk, Tk

< <vm£rewe1ght (xk7 WGf) o Vmﬁrewelght (xkv ,”9;)
] wi

Ly
W, Tk Wk, Tk Th 3

(2))> Th1 — Th) + ?Hmlﬁl — z?

. . L
(U (ran,) — B ) + 5 s —

reweight reweight
< <vx[’wk,7-kg (ij-, We,f) - vx[’wk,Tkg (ij-, WG:UkYTk ($k))7 LTe+1 — l‘k>

. : L
ht ht o 2
(L e, Wl (@40)) = L T, (20))) + T s —
where the last inequality is due to Ly < Lg, and the second equation uses the relationship

vwﬂreweight (g, mox (mk)) = vxq)reweight (xk), which is due to V@kaﬂ—k (.’L‘k, Tx (:L’k)) =0

W, Tk W Tk W, Tk Wi,
by the first-order optimality condition. The second inequality is due to the fact that @, - is %—smooth
when w, 7 < 1 (established in Lemma([I0) and that for an L-smooth function f, we have

() + (@) < (- () y — ) + 2l — gl

Taking the expectation and plugging in the result from Lemma|T4]

E[ﬁreweight (xk+1, ﬂ-(ff) _ Lreweight (-Tlm 7T6£ )]

Wk, Tk Wk, Tk
C? 12
< GO gl s, (@)
6415, L7 Ch Y o, 32L7CH
W]E[HW =y (@) |7+ 7y — 7o, 2 ()17 + C%TM,EE[E%]

. . L
+E[LEYSE (1, T, (@0r1)) = LETSE (2, 0, o ()] + flE[kaH — %]

Cioni L * 5y, B4LL LI G * 2 c 2
< TE[”M = T (@) [°] + WE[HM =5 @e)” + lIme = 7w, 7, (@)l]]
; . 32L2 CQ B2 L@CQ
E Ercwmght , * _ chwmght , * LSk Ele® 4 D k
+ [ W, Tk (x’f‘*‘l kaﬂ'k(x’f'i‘l)) W, Tk (xk WkaTk(xk))] + C%ale? [ k] wiTk
(82)
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; ; Bp(k
where the last inequality follows from ||zg1 — 2] < T

Bound the Third Term of (76). By the definition of £, - in (TT),

reweight _ preweight
‘ka+1,rk+1 (kaerﬂ-@erl) ka,Tk (‘rk+177T9]f+1)

= (Wry1 — wi) f(Trs1, 779,§+1)
+ <J7k+1($k+1a Ty (@h41)) — o (Thog1, 77, ($k+1))) - (‘]Tk+1(x’€+1’7795+1) —Jn (l‘k+177T91§+1))

log |A|(T, — T T — T
< (s —wi) fapgr moe, )+ EANTE =Tt | Tk = Th

[B(m4a,9)]

k+1 1— y 1— ~ SNdZ)§+1
log |A|(Tk — Thy1) | Th — Tht1 C
<0 FE
=T 1—y Ty g B 9)
16 1
o 6log|Alme (83)
3(1—9)(k+1)

where the first inequality follows from Zeng et al.|[2022a]][Lemma 3], the second inequality is due to

the fact that f is non-negative from Assumption 3] and the third inequality follows from Lemma|2]
and the relationship E (7, s) < log |.4] for any policy .

Collecting the bounds in 1)-(83) and plugging them into (76), we get

E[LIEY (nermag, ) — L0 (o )

A rewei 332 L2 2Oék 2BDBFLL kOL 82 LLa2
<~ CER[| VL (oh, mag )] + 2L po Bl €] 4 SPRILROE | skow , Brluog

4w? wy 2
02ak72
- %E[Hﬂeg - W;k,fk (xk)”Z]
C%akﬁ? L 2 64L%L%C13 2 c 2
+ TE[HM — Mo () |I7] + W]E[Hﬂk =y (@) |7+ 7y — 7o, 2 (8) [17]
; . 32L2 CQ B2 Lq><2
reweight * reweight * LSk T D k
T ]E[E“’kvﬁcg (zk+1’ﬂwk7‘rk (Tr41)) — LUJk'aTkg (xk77rwk77'k (zk))] + C%OélegE[Ek] + ’wiTk
16 log | A| 7%
31— )(k+1)
g reweight 2 2 V,L 32L2L<}% T
< — 3 BllIVeLuwln" (an, moe)II7] + 2LparEle), ] + WE[%]
C%akﬁ? L 2 64L%L%C/§ 2 L * 2
- o1 Bl = ()P + WE[HM — 75 (@) |I° + g — 75, 7 (@h) (7]
n 2B2DL¢><}? n QBDBFLLCkOtk " B%LLO[i 16 IOg |A|Tk
wiTk Wi 2 3(1 —’7)(k+1)
+E[L S (w1, T, 1 (T41)) = Low S8 (g, 7, 1 (20))])

. . . . 3BL L2 oy, B} La(} .
where in the last inequality we have combined the terms o and =25 under the step size
k
4L

Wi Tk
conditions 7, < 1 and o, < 37%.
L

Recall the definition of sz’ﬁ in (36). We can re-arrange the terms in the inequality above and obtain

0,C 0,C
Eleyin — €7

= BILS (opn,mog, ) — Lo (2, e )]

— E[LY S8 (w1, T (€h11)) = Lom B (e, 0 1 (20))]

— E[Ce @ty Moy (@rr1)) = LEVSE (@1, 7 7, (@041))]
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3212 2 LG

«
< G ENVoLEE ok, me) 7] + 25 e Eley ] + €3]

Wk, Tk 02 ka
C? oy, 64L2,L2 (2 )
— 1 Elllmy =7, 1 ( )P + TM]E[H k= @)+ k= 7 o () |17]
QBzDImpC,% T QBDBFLLCkak " BFLLOlk 32 10g|A|7‘k
wiTy Wk 2 3(1—7y)(k+1)’
where the bound on Lfﬁ:‘fig}}:+l(xk+1,7T,Z)k77_k(l'k+1)) — ﬁfj}‘:’i‘kght(ka,w;km(azkﬂ)) <

16 log | A| %

30—5)(k+1) can be obtained in a manner similar to (B3).

C.4 Proof of Proposition 5]

We first establish the convergence of sg. To this end, we introduce the following technical lemma,
which bounds an important cross term.

Lemma 15 Under the assumptions and step sizes of Proposition[3} we have for all k > 0

E[(Vi — Vi ™™ + BuGlry (s O, Vi), Vi ™% = V7))

(1 =78k 210 - 2y LV GE
< k _ T VSk T
S E(|[Vi = Vo™ + BeGlr, (wk, Ok, Vi) |1%] + = 7)ﬁkﬂf[%]
1213 L3, e ey 2L IRG
WE[H T — 77, (@) || ]erE[”ﬂ' wk,m( )|| ]
GL%,ozk GL%/L%a% v 6B%Lv70ai 32L%/T]?
+ ——El[|VoJr, (zk, T, + ———=FEle; | + + .
T T (ARSI

We defer the proof of the lemma to Appendix [D.15]
By the update rule in (31)), we have

A Th41,7T6
1 = Vipr = Voo P

. . ——
ML, (Vk‘ + BkGr (xk, Ok, Vi, Sk, ak, 5;9)) — VTI:T Okt1 I2

<\\Vi + BrGory (k, O, Viey Sk O, 5)) — VTiitl,W8k+1 i

= |[Vi — Vi 4 BuGr (e, Oy Vi) + B (Gf(xk,ek,Vk,sk,ak,sk) G (1, O, Vk))
R I A

< Vi = Vi 4 5ka(Ika9k,Vk)H2

+ 25k”G‘rk (Ika 0k7 Vk7 Sk, Ak, S;c) - G'rk (Ilweka Vk)HQ

2
lk,ﬂ'ek _ Vzk+17778k+1
Tk+1

Tk,

+ B (Vi = Vo ™+ BrGor (xk, Ok, Vi), Gy (i, Ok, Vi, Sk i, $%) — Gy (0, O, Vi)
+ (Vi = Vel ™% 4 3G (i, O, Vi), Vi ™0 — VT, (84)
where the first inequality follows from the fact that the projection to a convex set is non-expansive.
To bound the first term of (84),

T s

. _ 2

4 BeGary (wk, Ok, Vi) H
= Vi = Vil 12 4 B2 Cir (s Ok, Vi) |12 4 285 (Vie — Vi ™% Gy (o, Ok, Vi)
= Vi = V" |1 + BRI G, (s Oy Vi) — Gy (@, O, Vi ™) |12

Vi
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+ 285 (Vie = Vil ™% G (1, Oy Vi) — Gy (i, O, Vi ™% )
= ||V — Vi " |12 + Bi||G, (zk, O, Vi) — G, (g, Ok, Vim0 ||12
~ T ,To T 3 )
+25k(Vk e OIS T (R Ay
Vi = Ve " 12 + LEBEIVE — Vo " 12+ 2(y — 1)Ball Vi — Vo, ™% |12
(1= (1=")Br)ey s (85)

where the second equation uses the relationship G, (x, 0, V=™ ) = 0 for any 7, x,, and the last

<
<

inequality follows from the step size condition 35 < 1;5.
For the third term of (84),
QY[Vr ™0 — VT2
< 4||vf’““’”k+l = Vi TP A VT - v 2
<SS T — VT 4 8L (e — wi | + limors, — 7o, |?)

< 4/8]- (%1 g|A|) +8L2 (B’%C’“ + Bja?),

where the second inequality follows from the Lipschitz continuity of the value function established in

Lemma 3] and the third inequality applies Zeng et al|[2022a]|[Lemma 3]. Plugging in the bound on

Tk — Th+1 from Lemma[2] we get

8
3(1=)(k+1)

< 256|S| log? | A|72

T 3(1 =) (k+1)2

Brajwyg
BD :

T )T B2 2
2V — VT P < 48] (5 log|Al) +815 (225E + o)

k

where we use the step size condition (, <
For the fourth term of (84), we have in expectation
E[(Vi. — Vi ™ 4 BuGry Tk, O Vi)y Gy (T, Oy Vi, Sky iy ) — Gy (2, O, Vi)

- E[<Vk - mG o + Bké’m (‘rkveka Vk)aE[GTk (l'k, Ok, Vk, Sk Ak S;c) - GTk (xkvekv Vk) | fk—l]”
=0. 87
Collecting the bounds from (83)-(87) and Lemma [I5]
Eleks1]
= (1 - (1 - 7)6k)E[61‘c/] + QBle[”GTk (mka Ok Vi, Sk, ak, S;C) - GTk (xka Or, Vk)”2]
256|S| log? | A|72
3(1=7)2(k+1)

+ (1 —2’7)51@ [||V Ve
12L2 L2 2 N 12L3, L2 (2 C N
(1_7)%’%[”% -, (zR) 1P + ﬁﬂllm — T (1) [17]

+ 16B%L a3

Tk s

T 4 GG, (ks O, Vi) 2] + ﬁm 9

= (1 - (1= )Bk> [ ] + (1 - —7)5k) %E[e,‘j] + (ZL2 L%g:]E[ | + 8B 32
32(56|8|1)02g(z|f|17)’“ +16B2L%a k+ﬁ1@[ #)
+ VLD g - () ) + S LB rf — o (o0) )
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6chv,~C GB%LVTOai 32LVT,C
+ ———E|[|| Vo, (z,
= 1Yo maIF) + =20 =8 s G e
(1 —7)Bk v 12L\2/L2D<l§ 2 IZL%/L%)Q? L 2
3(1—7)E + —2 R E[|m — 7E (x + ———=22E[||ry — 7, (2
T VR ) + < BBl — s, (@)l PR ()
61202 6L2C
+ 7IE Vodr, (T, T, + —=F_Fley.
QQBFLVToak 64LVTI~: 9
+ + 8B¢ 0k,
TR T A Ve
where the second inequality simpliﬁes and combines terms based on the step size conditions g—; <
(=)L}, L 1

and

szVLF Br < 8|swlog AT S iy

The bound on E[e k’ﬂ} can be derived using an identical argument.

C.5 Proof of Proposition 2]

The proof is almost identical to that of Proposition [T} We include the proof here for completeness.

From Lemma@ we know that under a fixed regularization weight 7y, the objective ® has Ly -,
Lipschitz gradients, where we define

LCI’J’O £ (1 +

2LV (QLfLV n 2LvaLV,2 + 2LfL‘2/LV72 n 2LfL%/)
Crmo’\ Crmo aCrmo a2Crmo oCrr /°
This implies

Cry(Ths1) — Pry (1)

L
<A(Va®r (Tk), Thyr — i) +

®,70 _ 2
5 IZhe1 — 2k

L‘I?,T()C]g L - = 2
T"Dwk(mkaﬂ-kaﬂ-k s Sk Ok, Sk7ak7§k)||

= —Ci(Va®ro (21), Duy (Th, T, T s Sky Qs S, Qs k1)) +
_CkHvI(bTO (fL'k)”Q + Ck<vl’®‘l’0($k)7 V:L’(b‘rg(mk:) - Dwk (xk77rka ﬂ—]é:a Sk; ak7 gkvdkaé-k)>

L<I> ToCI?
— YOk D
oG

+ wk(xk77rka7r£a8k7akagkvdkvé-k)||2‘ (88)

By the law of total expectation,

E[®r, (wg41) — Pry (w1)]

Lo 1, (2 o
< —GE[|Va®r (z) 1] + q>’2 CkE[IIDwk(kak,W}fask,akask,ak,ﬁk)HQ]
+ CkEKVICI)To (xk>,vmq)‘l'o (xk) - ]E[Dwk (xkaﬂ—kvﬂ-lf,skvakvgkaakvfk) | ‘kal]ﬂ
Lo (2
= ~GE[Va®r, () %] + %C’“E[HDM (ks o, T 51 Ok, 51 @, €)1
+ CkEKvx(I)TO (ij), vx(pfo (Ik) - Dwk (Ika Tk, 71']?))]
B2 L@,T C Ck Ck
< —CkIE[IIVxCI’TU(xk)IIQHW E[|V2®r, (0)[I°] + SB[ Va®r, (2%) — Du, (21, 7o, 75 ) |17]
k
Ck B%)L‘? TOCk
— il 4 D To5k
BV r, (1)) + =505
_ _ 2
S8 (T 1) = V1)) (Du o, (00): 7y 1) = Do) ||
<- Ck E[[|Va®, () I°] + CE[l| Duwy, (k> 75 (), T o (28)) = Dy (e, 7, 1) [1?]
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B%)Lq%‘rocl%

+ GE[|Va®r, (21) = VaPuy , (2x)[*] + 50?
Wi,

) (89)

where the second inequality applies Lemma|[5]and the last equation follows from (32)).

To bound the second term on the right hand side of (89), we apply Lemmal6]
||Dwk (l‘k, 77:0 (l‘k), W;k,m (Jik)) - Dwk (J?k, Tk 77]5) ”2
2

L 2
< B (llme = 2, (@) | + ek =, )l

2
k
212 2L .
< P llme = (@l* + 2 Nl = i ()2 (90)
k k

For the third term of (89), we have from Lemma[TT]

4L Lywy, 2L;Lya \2
||Vm(b7‘g (xk) - vI@’wkﬂ'O (mk)||2 S <ﬁ(‘[’f + ﬁ)) - C2,7-Owl%7 (91)
2
where we define Cs , = (%(Lf + %)) .
Substituting and (@T) into (89),
]E[(I)To (l'k+1) - (I)To(xk)]
Gk 202 (;, L2 () .
< GBIV @I+ =Bl 7, (2] + =Pl = o0) ]
k k
BhLa (i

+ Co o Gewd +
0 Qw,%

D Proof of Supporting Results

D.1 Proof of Lemmal(l]
Uniqueness of 7* (). We first take the approach of proof by contradiction to show that 7*(x) is

unique for any x.

Given z, suppose that there exist two distinct optimal solutions of (5), which we denote by 7y, 7.
From the definition of IT*(z), we know that 7y, mo satisfy

J(x,m) > J(x,7), J(x,72) > J(x,7), V. (92)
We construct another policy 7’ as follows, inspired by the proof of Theorem 1 in|Zeng et al.|[2023].
For all state s and action a, 7’ (a | s) is expressed as
T T2
g~ EEm] ) F (e
dp*(s) + dp*(s)
Note that Assumption guarantees d7 (s) > (1 — ) pmin > 0 for all s, ensuring 7’ is well-defined.

93)

Our first step is to show that 7’ is also an optimal policy, i.e. 7’ € IT*(z). To see this, we define a

modified transition kernel P,, such that P (s’ | s,a) = (1 —v)p(s’) + vP(s’ | s,a) for any 7, and
s T (! _ / T (!

P7 such that PT(s" | s) = (1 —v)p(s’) +yP7(s" | s) for any 7.

We also define a vector B € RIS

i 1 us 1 s
B = P,y . <2dp1 + 2dp2) .

We can express each entry of B in the following way

B(s') = S Py (s' | s,a)n'(a ] 5) (;dgl () + ;d;?(s))
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pr(s)mi(a | s) +dp(s)malals) (1 1.,
ZP s’ | s,a) 7 6) (o) <2dp (s) + 2dp (s))

52737(8/ | s,a)dy (s)mi(a | s) ZP "I 's,a)d}?(s)ma(a | s)

% > PI(s | s)dr(s) + % > P (s | s)di(s)

s,a s,a

1 us 1 T2
= idpl(sl) + de (S/),

which leads to

Y

7’ 1 T 1 us 1 T 1 s
P ~<2dp +2dp2) zadp —|—§dp2. (94)

The Markov chain induced by P7 is always ergodic, assumed in Assumption E} Under ergodicity, it
is known that d; (properly normalized) is the unique eigenvector of P associated with eigenvalue 1.

Therefore, (94) implies that %d;l + %d? is the discounted visitation distribution induced by policy
;o
', ie.

;1 1
dy = Sdi + 5d. (95)

We use zfg to denote the extend discounted visitation distribution over state and action such that
dy(s,a) =dj(s)m(a | s).
We have from (95)
dy (s,a) = dj (s)n'(a | s)

(1 g dpt(s)mi(a | s) + dj2(s)ma(a | s)
— <2dp (s) + §dp (s)> T (5) + @ pim (5)
1

T 1 1
§d” (s)mi(a]s)+ §dp (s)ma(a] s)

1 T 1 I
§dp1(s,a) + 5dp? (s,a).

Note that the cumulative return .J is linear in the space of extended discounted visitation distribution.
We have

as 1 1 1. 1 1
J(x’ﬂl) = <rxvd7pr > = 5(7“95, §d§1 (Sva) + §d§2(s,a)> = QJ(x/’Tl) + iJ(:CaWQ)'

In view of (92)), this implies that 7’ is an optimal policy, i.e. " € II*(x).

Since 7’ is in the constraint set for the optimization problem in (3)), we can create a contradiction
that 71, 7o are the two distinct maximizers of (3) if 7’ has a larger weighted entropy. The entropy
function E(;s) is strictly concave for all state s for policies in the interior of the simplex (note that
71, T2 must in the interior of the simplex, as they cannot be the optimal solution of (3)) otherwise).
Recall from (O3)) that 7/ (- | s) is a convex combination of 71 (- | s), ma(- | s), and by the property of
strictly concave functions,

dy' (s)E(m, 5) + dg? (s) E(ma, 5)

B> T G v )

We denote &, = Es~ar [E(7, s)].
Enr = (dT, E( ")
=2 L5 (s) + 272 (s) ) B, )
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i ( Lo dp (s)E(m,s) + sz(S)E(ﬂ'Q, s)
>3 (R + 5 0)
1

us 1 T2
= §<dp17E(7T17s)> + §<dp 7E(7T27s)>

1 1

56’#1 + 56}2.
This contradicts the condition that 71, T3 maximize the weighted entropy within the constraint set
IT*(z) and concludes our proof on the uniqueness of 7*(x).
Limit Point of {7*(x)},. We then show the limit point of {7%(z)} is 7*(x) as 7 — 0. As x is

fixed here, we simply denote 7, = 7*(z). We define for simplicity E(7) £ 1i,yEs~d;§ [E(m, s)]. By

the Bolzano—Weierstrass theorem, as the sequence {7, } is bounded, it has a convergent subsequence.
Let 7, — 0 and 7., — 7. We first need to show 7 € IT*(z). By the definition of 7% (z),
J(z, 7)) +TE(r;) > J(z,7*(x)) + TE(r* (), (96)

leading to
J(x,mr) > J(x, 7" (x)) + T(E(ﬂ'*(x)) - E(WT)>.

As J is continuous, we take n — oo

limsup J(z,7,) > J(z, 7" (x)),
implying J(x, 7). This means 7 € IT*.
Then, to show 7 is the maximum entropy solution, we re-arrange the terms in (96)
J(x, 7 (z)) — J(x,7r)

E(r,) - E(x*(x)) > >0,
T
where the second inequality is due to the definition of 7*(x).
Taking the limit, ~ _
limsup E(r,) > E(7*(x)).
As the limit point 7 is in IT* and we have 7*(z) = argmax, .. E(7), then it holds that
limsup E(r,) = E(n*(x)) = E(7). This allows us to conclude that 7% (z) — 7*(x) as 7 — 0.
|
D.2 Proof of Lemmal[2]
We apply Zeng et al.| [2022a]][Lemma 7]
ey . 7o B To . 870 -y
P T e+ ne T (k+2)e T 3(k+ D)ot 3(k+ 1)
]

D.3 Proof of Lemma[3]

We derive the inequalities on the value function V**™ and note that the ones on the cumulative return
Jr(x, mp) immediately follows as the cumulative return is simply an weighted average of the value
function

Jr (.’t, 71'9) = ESNP[VT:EJB (8)} .

Fixing =, we know that V.*'™ is the standard policy optimization objective (in a standard MDP) as a
function of policy . It is well-known that the following inequalities hold (for example, see Lemma
B.5 of Zeng et al.|[2021]] and Lemma 5 of |Zeng et al.|[2022a])

[veme —veme]| < 7110 — &1, ©7

2
(1=7)?
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[VoV©Te — VgV &mor|| < ﬁlle o). (98)
We define the shorthand notation
H(0,s) £ Eak"’”("Sk)vskJrlN’P('lSkvak) Z _719 logmo(ak | sk) | so=s
k=0

This implies V> (s) = V=7 (s) + 7H(0, s). We also define the aggregate notation
H(0) = [H(0,51),H(0,52), -] € RISI.
Adapting Lemma 6 of Zeng et al.|[2022a], we have forall s € S

4+ 8log|A
#(0,5) - (@' 5)) < 2B g g ©9)
(1—=n)?
, 4+ 8log|A ,
[VH(6.5) ~ Vor(d . s) < T8 ALy gy (100)

I Gl
We obviously have the following inequalities from (99) and (T00)

(4 + 8log |A])\/[S]

17(6) = (6] < i 19— o1, (101)
I9a(0) - o)) < CEREANIS g gy, 10
Note that (TO0) also implies
V0B, g (B, )] < 25
hence leading to #2).

In addition, we have from (2)
‘VTJCJFS - Vv‘rac ,‘n’e| = |Es’~d;‘, a’Nﬂ'(-\s’)[rw(Sa a) — Ty (Sa Q)H
< Es’wd§,a’~ﬂ(~|s’) Hrfb(sa a) — Ty (87 CL)H
< Es’~d;",a’~7r(~|s’)[LT||m - $/||]
< Lz — '], (103)

where the first inequality is a result of Jensen’s inequality and the second inequality is due to
Assumption [}

We can express VoV ™ as follows [Agarwal et al.| [2021]

Vo, V& (s) = Ld(’;" (s")mo(a’ | ") A" (s, ).
’ Y

1—
This implies

Vo, V5™ (s) = Vo, V"™ (5)] = ﬁd?(S’)ﬂe(a' | $)[ATT (s a') — AT (' )

< s——d3* (lime(a’ | )] - 2L |z — 2|
-7

I
—

IN

where the first inequality is due to the fact that the advantage function is 2L,.-Lipschitz with respect to
x, since it is the difference of the value function and Q function, which are themselves L,.-Lipschitz
with respect to x as can be seen from (T03). Then, as the entropy regularizer is not a function of z,
we have

[VoVE™e = VgV || = [ VoV ™o — VoV |
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2L,
_2LSIAL

o — | (104)

Combining (97), (I0I)), and (I03), we have forall 7 < 1
HVTx,ﬂ'g _ VT;L'/,TI'BI || S HVTw,ﬂ'g _ VTJJI’TW” + HVTJ;I’TFS . VTI/’”G/ H
< VT — VIO 4 7 H(0) — H(O)| + [V — v
4+ 8log|A|)+/|S 2

(1—9)3 (1-79)?
oy (6+8logADVIS] ,
< Lille =/l + =—7 = 16 =¥/l

This shows the Lipschitz continuity of the value function.
To show smoothness with respect to 6, we combine (98), (I02)), and (T04)
IVaVE™ = VgV mor || < [[VoViEm™e — VoV ™| + [ VoV ™ — VgVt o |
< ||VoVE™ — VgV || 4 7||VH(0) — VoH ()| + [[VeVZ ™ — VeV o |

2L,|S||A| o, (44 8log|AJ)V/[S] / 8 /
< ———— |z —2'|| + 0—-0'| + 0—-96
ASUAL g S OBV g4 B o)
2L S||A 12 + 8log|A S
S TR GRS I )

To show (39),
IVodr(z,m) — Vid (2, 7")]|
< |IVade(a, m) = Vo dr(z, 7) | + ([Vedr (2,7") = Vo dr (', )|

< I (d5(s,a) = dy (5,0)Vara(s, )| + By a1 [IVara(s,0) = Vare (s, a)]

< Lylldg —dp ||+ E o[ Lllz — 2]

s~d" ar~m’

= |a=» (=P (I—va-)

Y / /

<(1l-7) ——|r—= + L. ||lz—=x

( ) (1_7)2H ol | |
< Ly (|m =o'l + [l = 2"),

where the fourth inequality is due to the fact that (I — yP™) is v/(1 — ) Lipschitz in 7.

Finally, we show V2 ,.J.(z,7g) and V§ ,J; (x, 7g) are Lipschitz. Since Vo0, e [E(mg, s)] does
not depend on x and can be shown to have Lipschitz Hessians by extending the argument in Mei et al.
[2020][Lemma 14] (we skip showing the exact constant here), the problem reduces to showing that
V3 o) (x,m9) and V7§ ,J (2, mp) are Lipschitz.

From (T3)), we have

1 3T
jEswd:;g,afvﬂ'e(‘|s),s’N73(‘|s,a) Kv ra(s,a) + YV VI (s ))Ve log mg(a | )}

ViﬁJ(CE, 7T0) = 1
(105)

We define traj = {sg, ag, $1,a1, - } and use p(, traj) to denote the probability that the trajectory
traj is generated under the policy T, i.e.

p(m, traj) = p(so) [ [ w(an | sk)P(skin | sk an).
k=0

Adapting the result from |Shen et al.|[2019]], we have
Vg,gj(% 7T9) = Etrajwp(ﬂ9,~) |:VQ¢($, T, traj)Vep(m;, traj)—r + V§79¢(x, T, traj):| ) (106)
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where we define ¢(z, T, traj) = > ro (S pe, V¥ (ra (s, ar))®) log w(ay | s¢).

As the right hand side expressions in (T03)) and (T06) are the composition of Lipschitz functions, we
know that V2 ,J (z,mp) and V2 ,J (6, 7g) are Lipschitz.

]
D.4 Proof of Lemmal[dl
We can write the discounted visitation distribution as follows
dy = (1 =) —vP")"p,
which implies
Iy —dj || < (L= =~+P™) " p— (I —~P™ )"l
= (1=l (1 =3Py (1 =AP™) = (1= 4P7)) (1 = 2P7) |
< (=) 1 (I =APT) I = AP™) 7 Al PT = P
< | =],
-
where the third inequality follows from the standard result | P™ — P™ || < /[ A[||x — 7|
|

D.5 Proof of Lemmal[3
By the definition of D,, in 26),
~ 1
| Do (2, 70,75, 5, a,5,a,6)|| = Hvzf(sc, e, €) + " (erm(s,a) + Vara (8, d)) H

~ 1
<[ Vaf (@, 7,8 + —AIVara(s, a) + Vors (s, a)ll

1
<Li+—(L,+L,
< f+w( + L)
_ 3L,

— w )
where the second inequality follows from Assumption [3| and the condition ||V 7, (s,a)|| <

L., Vz, s, a, which follows from Assumption and the last inequality is due to w < f—;

To bound F', note that Vi log mg(a | s) has the following closed-form expression entry-wise
dlogmg(a| )

Oy o Is=s](1la=a]—m(d"|5)). (107)

This implies
[Vologmg(a| s)|l2 < ||Velogma(a|s)|1 <1+1=2. (108)
By the definition of F, , in 27),
1P (@, 0,V, 5,0, 5", )|| < |Vologma(a | 5)|||ra(s,a) + TE(mg, 5) + AV (s') = V(s)| + wl|Vof(x, 70,6

<2(1+rlog|A|+~vBy + By)+wLy
<2(1+~)By +2log|A|+2+ L,,

where the second inequality applies (T08)), and the last inequality follows from w < f—;, T<1.

Finally, by the definition of G in (28)),
1G+(2,0,V, 5,0, 8")[| < [les||re(s, a) + TE(mg, 5) + 4V (s') = V(s)

<1-(1+4r7log|A|+~Bv + By)
< (14~)By +log|A| + 1.
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D.6 Proof of Lemma 6]
By the definition of D,, in (29),

1D (:vwnﬂrf)—Dw(xzmzmrf)l\

Dy (z1,m1,75,8,a,5,a
p awwl(\s)swdfawﬂ'l(\s))ﬁw/i[ w( 1,711, 7M1 59, Wy 9, vg)]

L _
oL D (xo, 7m0, 75,5,a,5,a H
swdzz,a~ﬂ2(~|s),§~d 3 o £(.19)), ﬁNM[ w( ’ s 1299y Ws 9y ag)]

> (d’p”(S)m(a | )5 (5)mE (@ | 5) — d (s)mala | )5 (5)f (@ | 5)) (€) Dz, 72, 7F 5,0,5,,€)
$,a,8,a,€

+ E c

™

s~vdptanmi(-]s),5vd, ! s (+]8)),Evp

[Dw(xl,mﬂrf,s,aﬁ,d,f) - Dw((EQ,’]TQ,’ng,S,a,id,g)]H

< e

Dy(x1, 11,75, 8,0,5,a,8) — Dy (2, T2, 75, 5,0, 5,a H
S’\/dpl,a"\’ﬂ'l(‘S),SNdpla,aNﬂl(‘S))SNM[ ’w( 1,701,701 30,0, 5, 75) ’w( 2, M2, Mg y5,U, S, 75)]

BD T ﬂf _ _ | = T 7r§ _ _ | =
ol X (@ eme | 947 Gt @] 5) - dp(imta | )47 (Grf@ | 9)|
<‘E Dy(z1,m1,75,8,a,5,a,€) — Dy(xo, 72, 75, 8,0, 5, G, H
smdt amrmy (1) 5l £ a~mE (1), gwﬂ[ (1,71, 7] £) (wo, o, Ty £)]

Bp i - <L o
+— Z (dpl(s)ﬂl(a | 5) — d%2(s)ma(a | 5)>dp1 (3)rf(a | )
Bp e N
+ 20| S (af oymt(a | 9) - dF (@] )3 (s)mala | )
s,a,8,a
= |® Dy(z1,m1, 71, 8,0,8,a,€) — Dy (22,72, 7%, 5,0, 3,4, H
‘ 8~dp1»a~7r1(\s),s~dpf,a~7r1(\s))gNH[ (@1, 71, m £) (w2, T2, 75 3]

(|de Imal ) = 45 eima | )|+ a5t ()nf(al 5) - dif (s)mE(a | )] ).
(109)

To bound the first term of (T09), note that by Jensen’s inequality it suffices to bound the norm of the
term within the expectation

(|1 Dy (ml,m,ﬂ'f,s a,s,a,t) —Dw(xg,ﬂg,ﬂf,s,a,i&,g)ﬂ

Vo (o1, 7E,6) o (Vara, (5,0) = Var, (5,0)) — Vo 2, 76,6) = - (Varaa (5,0) = Varaa 5 a))H
< ¥ (01,7, €) = T f (02,78, o 90700 (5:0) = Va5, )| + [V, (5.0) = Vara (5,0) |

< Ly (ller — el + lnf — 751) + 2

— 23] (110)

To bound the second term of (T09),

L

]de )mi(a | s) — 2(3)%2(@|s))’+‘Z(dzf(§)7T1£(@|§)—d§2(§)772£(@|5))‘
<|Z (5 (s) = dz2(s))mi(a | s)| + | D (mi(a] s) — ma(a]| s))d>(s)]

S,a

IS 0 - G 191+ Sinf a1 ) - n5(a 9045 0)

IN

15t = dg? || + llm = ma| + ld5" — 5 | + |nf — a5

1
|71 — w2 +
-

IN

1
1_7||7T1 — 75, (111)

43



where the final inequality follows from Lemma ]
Substituting (T10) and (TT1) into (T09), we have

||Dw($1,7T1,7T1£) - Dw($2,7'r2771'2£)”

BD BD
<L< - - ) 2D iy — _PD_ ik
< £y (lor — aal + lrf = w81) + 25 or ol + 722 = mall + 2 — A
2L, BD L Ve Bp
r1 — x| + (Lf + ——)ln7 — 77| + ——— |71 — ™2

= (L4 2 s — al (g + 22—l + 2 —

3L, 2Bp r C Bp

<27 _EOD e D yin 112
=W ||‘T1 $2||+(1 ,y)w”ﬂ'l T ||+(1_7)w||7rl 772”7 ( )

where the second inequality simplifies terms under the condition w < min{f—; (17]3%}
Similarly, by the definition of F,, - in (30),

”Fw T(xlvglavl) wr(x2702,v2)”

— /
- Eswd:)rel N (~|S),s’~77(~|s,a),§~y,[Fw‘r‘r(xh 91, Vlv $,a,8 75)]

/
- ]EsdeGZ ,H.N7T92("S),S/NP('ls,Q),EN#[Fw7T(x2’ 927 ‘/23 S,0a,8 75)] H

> (47 (Imlal P | 5,0) = di ()70, (| $YP(' | 5,0) )iu(€) Fuyr (w3, 02, Vas 5, 0,8, €)

s,a,8",§

+]Eswd;rel,aN‘n'gl(~\s),s’~73(~|s,a),§~u[Fw T(xlaglv‘/las a, 5 5) wT(iEQ,GQ,‘/Q,S a, S 5)]”
E

IN

sNd:’91 aNﬂ'Sl( |S)SN'P( |S a)aENM[Fw T(xlaoly‘/l7s a, S g) U)T(x27923‘/278 a, S f)}H

+ BF‘ Z ( 8)ma, (a | s)P(s' | s,a) — dp™ (s)mg, (a | 8)P(s" | s,a))’

s,a,s’

E

a2 g, (19),5 P () el E 0 (01,01, V18,08, €) = oo 7 (22, 02, Vs 5,0, S/’g)}H

+BF]Z( )7, (a | 5) = dj* (s)7a,(a | 9))|. (113)

To bound the first term of (I09), note that by Jensen’s inequality it suffices to bound the norm of the
term within the expectation

| Fu,r (21,01, V1,8,a,8",€) — Fu 7 (22,02, V2, 5,a,8, )|
= [ (ras (510) + 7B (0, ) + V() = Vi) Vo log ma, (a | 5) = w6 f (21,0, €)

— (raa(s,0) + TE(m,, 5) + 7Va(s') — Va(s)) Vo log ma, (a | 5) + w%f(xz,%,g)u
< w||Vof(x1,m0,,8) — Vo (22,705, &)

+1[Vologm, (a | s) = Velogme,(a | s)| |ra, (s,a) + TE(ms,,5) + 7Vi(s") = Vi(s)|

+ |Vologmg, (a | s)|| |7z, (s,a) = 72, (s,a) + TE(mg,, ) — TE(7a,,5) + YVi(s") = yVa(s') — Vi(s) + Va(s)|
< Lyw(||lzy — w2 + [|7e, — o, 1|)

+ |rey (s,a) + TE(mg,, 8) +YVi(s") — Vi(s)|[|61 — 02|
+ Vo 10g may (a | )l (Leller — w2 +1og A6 = 21| + (1 +9)[Vi - Val))

1—

1
L(ller = 22l + 10 = 621) + (1 -+ log Al + 12—+ =) = 6o
+2(Lyllar — 2 + log |AlI0 — 02 + (1+7) Vi — Val])

2
< 3Ly|[z1 — w2l + (Lr + 2log | Al + T—~ + D[|6h — Oa|| + 4[|Vi — V2, (114)
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where the second inequality is due to the 1-Lipschitz continuity of V log 7y and the log |.4|-Lipschitz
continuity of the entropy function with respect to the softmax parameter, and the third inequality is
due tow < f—;,T < 1 and the fact that || Vg log mp(a | $)||2 < 2 for all 6.

To bound the second term of (T13)),
’Z dP 7T91 a | S) dg%( )71—92 a | s < |Z ﬂ-el dp92( ))791 (a | S)|

_wzmmuwmmwwﬁw

< |dp™ — dp" || + o, — 7o, |l

< 1— ||7T91 - 7T92||
1

< 17”91 — 02, (115)
-7

where the third inequality follows from Lemma4]

Substituting (T14) and (I13) into (III)), we have
||EUT(I17917V1) 11)T(x27927v2)||

2
< 3Ly|lwy — 22|l + (L, + 2log | A| + — + D61 — 0o + 4][V1 — Va|

— 0o
+BF

= 3Ly[lz1 — @]l + (Lr + 21og |A] + + D01 = 2] + 42 — Val|.

By the definition of G, in (31),
|G (x1,61,V1) — Gr (22,02, V2)||
(G (21,01,V1,5,a,5")]

T
sevd, 'L anm, (s),s' ~P(-|s,a)

—E T [GT(‘T27027V27S7G’35/)]H

s~d, 2 ,a~g, (+|s),8'~P(-|s,a)

Z (d;el (s)mg, (a| s)P(s' | s,a) — d;ez (s)mg,(a| s)P(s" | s,a))GT(xg,Gg, Vo, 8,a,8 &)

s,a,s’

! !/
+]Esrwd:el,a~7r91(~|s),s’~’P(~|s,a)[GT(x1’gl’vl’s’a’s ) - GT(:E27027 ‘/Qa $,a,S )]H

!/ /
= HE ot anma (|s),s'~P(:|s, a)[G"'(xl’gl’ Vi,s,a,8") = Gr (22,0, V2, 5,0, )}H
+ BG’ Z ( s)mg, (a | 8)P(s' | s,a) — dp" (s)ma,(a | s)P(s" | s,a))’
=[...

o1 armo, (+[s),8'~P(:[s,0) E~p

[Fu.r(x1,01,V1,8,a,8 &) — Fy (22,02, Va,5,a,s f)]H
+BG]Z( 2 (s)mo,(a | ) = dy (s)mou(al )|

$,a

< HESNd"Gl [Fw T(-Tlaelvvlas a, s 75) w'r(x27927‘/278 a, S f)]H
P

sa~mo, (+]s),s'~P(-]s,a),E~u

— 62, (116)

where the last inequality follows from (TT3).

The first of (TT6) can be bounded as follows. Again, by Jensen’s inequality it suffices to bound the
norm of the term within the expectation

HGT(zlv 017 V17 s, a, sl) - GT(I2702a ‘/27 S, a, SI)H
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= [ (ras 5.0) + 7B, ) + VA(S) = Vi) s = (12 (5,0) + TE(mag, 8) + 1Vals') = Va(s))es
< Lyllzy — ]| + log [A|78: — 62 + (1 +7)[|Vi — Vall, (117)

where in the last inequality we again use the log |.4|-Lipschitz continuity of the entropy function with
respect to the softmax parameter.

Combining (TT6) and (IT7), we have under 7

G~ (21,01, V1) = Gr (22,02, V2)[| < L[|y — 2| +log [Al7[[61 — 62| + (1 +7)[[V2 — Val|
Bg
01— b

Bg
1=

+

< Ly|lzy — x| + (

+ log |A])||61 — 02| + 2||Vi — V2.

D.7 Proof of Lemmal7l

The proof proceeds in a manner similar to [Kwon et al.|[2023][Lemma 3.2], with strong convexity
replaced by the PL condition.

First, we consider a fixed 7. Recall the definition of 77, . in Section Let 0%, _(x1) denote a

w1,T
softmax parameter that encodes 7y, _(x1). The optimality condition of ¢}, (1) indicates

1
Vaﬁwl,f(ﬁhﬂ'e;l (931)) = v@f('rlvﬂ-eﬁjl’,r(wl)) - EVWJT(x17W9;1 (wl)) =0, (118)

which obviously implies

||V9JT($1,7T9;,1YT(II))|| =wi||Vof(z1,mor ()|l < Lyw:. (119)

wy,T

Applying the relationship in (TT8), we have

V@‘C’wg,‘r(x27 ﬂ-a;bT(IL‘]))

wy,T

1
= Vof(z2, s (a1)) — w*?VnJr(ﬂfz,We* (z1))

1

(z1)) — Vo f(x1,mos (1’1))) - @(VeJr(l”zﬂTe;}l (21)) — VeJT(!mﬂTe;,lyr(zl)))

wq,T T

= (Vef(mzﬂo*

wi,T

T

1
+Vof (@1, moy (@) = —Vade(21, 705, (a1))
B w2 1

1
B (Vef(x%ﬂ%lj(m)) B Vef(xlvﬂ%l,f(wl))) i (VaJr(m,We,;l,T(xl)) — VoJ (1, 7r9fu1,7(x1)))
1 1
_ (172 — w—l)VgJT(m,We@l,(wl))'

Taking the norm,

HVG‘CU&,T(I‘% 770;1 (911)) ||

, 1
< V0 (21, (00) = Ve f @1, )]+ = Ve 2, (00) = Voo, on)|
1 = L ive @ )|
_— T » o x
vy o IVedr (@ me;, @)

Ly 1 1
< Lylz1 — Y|z — — — || VoJr (21,05 (x
< Lyplls = 2l + =Nl — w2l + 1 = Ve T (21,705, o)
L Lelwy —w
< (Ly+ 2 |y — g 4+ 2L 2] (120)
wa wa

where the second inequality follows from the Lipschitz continuous gradients of f and J, and the
third inequality plugs in (T19).
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Due to (23)), we have
V0L 0y, )] > SE S, o (o1) = 7, o) (121)

Combining (T20) and (121),

CLT LV
TWHWL,T(M) — Mo (@) || < (Lf + E)H“ — x| + s

Lf|w1 — W2

For any wy > 0, this simplifies to

170y 7 (1) = 7o 7 (2) | < (

2L rw 2L
fw2 2y

122
CLT CLT ( )

Recognizing 7% (x) = lim,,_,o+ 7}, . (), we have from (122)

77 () = 7 - (@) ]| <

Now, we fix w, z and show the bound on |[77, _ (z) — 77, _ (x)||. We use 0, -, (z)* to denote a
softmax parameter for ,, -, (z)*. The optimality condition of 6,, -, (x)* indicates

VoLwr (2,70, () = Vof(x, Ty (@) — %V@Jﬁ (@, 75, (@) =0,
Applying the equation, we get
VoLurs (5,705, (1) = Vol (5,70, ) = =Vors (5,705, ()
- %(V"Jﬁ (@, 703, (2)) = VoI, (@, 79s, (m))). (123)

The regularized RL objective has a closed-form expression (see Mei et al.| [2020][Lemma 10])
0J,(x,m9) dye(s) .
00(s,a) 11—+
which in combination with (123 implies
VoL 7, (2,705, (@)l < IIVeﬁw (@, o, (@)l

mo(a|s) - AT (s, a),

x rrgw (@) T,Tox 1 (z)
Z Tos, m) (a | s)(AT1 1 (s,a) — Ay, (&a)).
(124)
Due to|Zeng et al.|[2022a][Lemma 3], we have for any s
V2T () = VE™(5)| < |71 — 72| log | Al.
The definitions of the Q function and advantage function in (23)) imply
Q2 (5,0) — Q%7 (s, )| < AVET(s) — V2™ (5)| < ylry — | log Al
and
|Z m(a | s)A7"(s,a) — A7 (s, a)
< ZW(G | 9)|Q7 (s,0) = QT (s, @) + [V (s) = V" (s)| + |11 — 2| E(7, 8)
a
< 3|7y — 7o log | Al. (125)

Plugging (I23) into (124).

3|7 — 12||S]| log | A]
HVG‘C’LU,TZ (xaﬂe,;hq (1))” < .

(1—=yw
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Again, due to (23),

Crm
2w

This leads to

3| — 12||S]| log | A]
(1 =yw

17,7 () = Ty (@) < NV Loaw oy (2,75, 7, (2))]] <

* 6|;1 2||‘S|10g|“4|
7 X
H w,ﬁ( ) w‘rg( )” = (1— )0[72

Putting (122)) and (126)) together,
*

H’]r’lt)lﬂ'l (x1> - T‘—ZJQ,TQ (‘TQ)H < ||7TU)1 T1 ("I"l) - 7-(-;)2,7‘1 (372)” + ||7T’Z)2,T2 ("’EQ) - 7T71)2,’T1 ($2)||

(126)

2L rw 2L 2L ¢|lwy —w 6|71 — m2||S]|log | A
< Rlywe | 2v slwr —wo| | 6|71 — mo[|S[log|A]
CLTl CL CLT1 (1_’7)CL71

|

D.8 Proof of Lemmal§]

We know from Lemmall|that 7* (z), defined in (3)), is the limit point of 7%(z) as 7 — 0 Let 6% (x)
denote a softmax parameter for 2 (z). By the first-order optimality condition, we have

VQJT (x, 770:(1)) = O.
We further differentiate with respect to 7. Due to the differentiation chain rule,

d A% (a
02T 0) = T2 (0 03 0) + Vil (@703 - T =

As || V5 g J7(x, Tos () || is lower bounded by & due to Assumption we have for any 7 > 0

HdG;T H 1V5.67-(z, We*(w)))i Vi,aJr(%We;(a;))‘
qumew> |
< L1920 ) 127
It is clear from (3)
Vi dr(x,mp) = ﬁESNd;re,awﬂg(-\s) [E(mo, 5)].
Therefore,
V2, T, (2, mp) = %vgﬁs%e7GNM(,‘S)[E(@,s>]. (128)

Zeng et al.| [2022a][Lemma 6] shows that ESNdZB

4”2?1705)';4‘, which is equivalent to

Larmo(|s) [E (o, 8)] is Lipschitz with constant

4+ 8log | A|

T V0. (129)

IVOE - aro ammo () [E (o, 8)]]| <

Combining @-@) we have
d@* 1 4+8log|A[  4+8log|A|
= = =L,.
g 1-7 (1-9P a(l—)*

This implies 0% (x) is L,-Lipschitz with respect to 7 for 7 > 0.
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D.9 Proof of Lemmal9]

It can be seen from (12) that the gradients of the Lagrangian function have the following closed-form
expressions

VolLwr(2,7) = Vo f(z,m) + %(VIJT@, 15 (@) + Vart (2) Ve, (2, 75(2)) — Vo, (z, 7r)>
= V. f(z,m) + %(VEJT@,W:(:E)) - vaT(x,w)), (130)

VLl (x,m) = Vaf(z,m) — ivﬂJT(xm% (131)

where the equation (I30) is due to the optimality condition of .J, at 7% (x).
According to (T30), we have

Hvxﬁwﬁ(za ) — vxﬁwﬂ'(l’/a 77/)”

= Vet (o) + - (Vad o, w2 @) = Voo, 7)) = Ve @' 7) = (Vo (a! wE(@')) = Ve (ol 7)) |
< Ve f @ m) = Vaf ()| + [V ) = Vo (@ )]

1
+ o Vadr(@,m) = Vad: (2, 7|
/ / Ly ’ * * (0 Ly / ’
< Ly(lle = 2/l + = 2'l) + =2 (lle = 2/l + 1w (2) = w2 + =L (e = 21 + 1w = '],

Recognizing 77 (2) = lim,, o+ 7, . (), we have from Lemma

N 2Ly
I (@) = w2@) | < Z Lo = o]

Combining the two inequalities above and imposing the condition w, 7 < 1, we get

Ly(CrL+2Ly), 1 Li+ Ly
_ A < HVAML T EHV N R o
Vs Lu (2,7) = Vol @', 7)] < (Ly + Ly + ZUEEEZVD) g ) 4 ZLEDY
L L
< Lo -+ =20 — 6|
wT w
According to (I3T), we have
||V9£w,‘r($77r9) - veﬁw,‘r(xlﬂTO’)”
1 1
= Vo f(z,m) — EVeJr(l“ﬂTe) — Vo f(a! mor) — EvoJT(x/ﬂTe/)H
1
<\ Vof(z,m) — Vo f(z',mo )| + —IVodr(z,m) — VoJ- (', 7o) ||
/ LV /
< Ly(llz = 2"l + llmo — mo[l) + == (llz = 2"l + [|me — mor[)
L L
< =z — 2|+ =216 — ||
w w
|

D.10 Proof of Lemma 10l

Let 6% (z) denote a softmax parameter of % (z). By the definition of ., we have

Vi (x) = Voo (2, Tox(2)),
due to VQJT(LE, 779;(1)) =0.
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As J. is Ly -smooth (from LemmaE]) this implies
Ve (21) = Vi (22)|| = [|[ Va7 (21, 770;(301)) - VEJT(JJ%WG;(M))H

< Ly ey — 22| + Ly [|lw7 (21) — 77 (22)]|

2L
< Lyllay =@l + Ly - 5l — w2
LT
2L3
<(r 7‘/) _
_( V+CLT |21 — 22|,

where the second inequality follows from Lemmaby recognizing that 7% (x) = limy, 0 75, , (2).
We next show the smoothness of ®,, . From (T3) it can be seen

||vzq)w,‘r($1) - qu)w,r(l'g) ||

<

Ve (or,w(en)) — Vaf(a wia)|| + | Vadon,w e0)) — Ve, w0
+ $HV$JT(351,71';’T(351)) - VmJT(‘rQ?ﬂ;,T(xQ))"

LV * * LV * *
< Lyller = aall + (L + =5 ) Iwi(@1) = (el + L, - (@1) = 7 1 (22) |

LV 2LV LV 2Lf’lUQ 2LV
<L - (L 7)-7 - 7‘( 7) N
< Lyllzy — a2l + (Ly + CLT||331 2ol + — Cor T Cur |21 — 22|
AL;Ly  4AL%,
<(r ) -
< (B + =+ G e 2l

Finally, we show the smoothness of ®... Let 6% (x) denote one of the softmax parameters that encodes
72 (x). We can express the hyper-gradient of @, as follows

V@, (z) = vrf(xa']TQ;(w)) - Vi,ejr(xa79;(w))V3,9Jr(39a779;(x))71V9f($a 7r6>¢(ac))-
This implies
[Va®r(z1) = Va®r(22)]
SIVaf (21, Tgs (1) — Vaf (T2, Tos (@)l
T
+ IV2 o Tr (21, To2 (21)) Vi 0d7 (%1, T2 (01)) T Vo f (21, Tox (21)) — Vi 0 e (T2, Tox (25)) V.0 T7 (X1, Tox (1)~ Vo f (1, Tox (o))
T,
+ IV 07 (22, Tox (22)) Vi 07 (@1, Tox (21)) " Vo f (21, Tox (21) — Vi 0dr (22, Tox (22)) V.07 (%2, Tox (25)) " Vo f (21, Tox (21)) |
T
+ [IV2 g Jr (22, Tox (22)) Vi 0d7 (825 Tox (50)) T Vo f (21, Tox (21)) — Vi 0T (T2, Tox (25)) V.0 T7 (T2, Tox (22)) " Vo f (2, Tox (o))

Ty

(132)
We treat each term of (I32)) individually. First, we bound T} using the smoothness property of f

Ty < Ly (o = @a + () = wi (@)l

2L, Ly
< (L : — 2|, 133
< (L + 2L o — ) (133)
where to derive the second inequality, we plug in the result from Lemmal[7)to get || 7% (21) =72 (z2) | <

éLL‘; [z1 — 2| (note that 77 (z) = limy, o 7, ().

As we have Vg f(x,m9) < Ly from Assumptionand ||V§79JT (2, s (o)) M| < 1 due to Assump-
tion 2] -
Ty < ||V 07 (21, T (1)) — Vior (T2, Tox ()1 V5 0T (21, Tox (21)) VoS (21, Tos (a1)
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IN

L
L Lva(llan = ol + () — i (e2)]))

LiLys 2LfLyLys
+
a oCrt

<(

where second inequality is due to Lemma([3] and the last inequality follows from an argument similar

to the one in (133).

Similarly, for T3

Ts < ||V2 gJr (2, T () I1VF 0 T7 (21, Tox (21)) ™" — V.07 (T2, Tox () " Ve f (21, 702 (21)
< LyLy ||V 6 J- (21, Tos () IV 6T (22, Tox () — Vi 097 (€1, Tox (21)) " IV 07 (€2, Tox (20)) ']

L:L N

L2 Lya(llor = @all + i (@) — wi(a2)]))

LyLyLys . 2L¢L% Ly

a? a?Crr

Mz1 — 22, (134)

IN

<( Mz1 — 22| (135)

For the final term, we have

Ty < |\|V3 T (B2, s (00)) Vi 0T (T2, Tox (22)) " NIV S (21, T (1)) — Vo (T2, Tox (20)) |

Ly

7||V9f(x15770;(z1)) — Vo f (w2, Tox(2))l

Ly « «

< 2 Ly (Jlay = @ + (o) = w2 (e2)]))

LyLv | 2L;L}
a aCrt

We combine (T33)-(136)

<

< )y — o (136)

2L¢ Ly LiLyy 2LyLyLy,
vzq)‘r _vg;CDT < L — d > _
9,05 (21) (@)l < (Ly + ZF s =l (FLL2 4 L2y — )
L¢LyLys 2L;L%Lyy L¢Ly  2LsL%
+( o2 + 22Cpr Mz — o + ( - +QCLT)||$1 x|
2Ly . (2L¢Ly  2LsLyLys 2LfL%Lys 2LsL%
<4 2y 7 7 Yl — .
=< +CLT Crt + oCrLt + ao2Crr + oCLt |21 = o
Imposing the step size condition 7 < %—2’, we get
4L¢Ly  4LsLyLys 4ALgL}Lys ALyL}
Var (1) = V@, (22 < ( : : I
[ (z1) (z2)]| < Cor + oCpr + 20,7 +QCL7_ |21 — 22|
L
< 2w — .
-
|

D.11 Proof of Lemma[11]
Let 67 () denote a parameter representing 75 () through the softmax function. Define for 7 > 0
VO, (z) = Vo f(z,75(x) — V3 0T (2, Tos (2)) V.07 (@, Tox () " Vo f (2, T (2))-
We consider the following decomposition
[Va®(@) = VaPu,r(2)]| < [[VaPr(2) = VoPu - (@)] + [Va®(2) — Vo Or(2)]. (137)
We first bound the first term of (I37).

To derive the bound on |V, ®,(z) — VP, ()|, we take an argument similar to [Kwon et al.
[2023][Lemma A.2], which we adapt to the case of a non-convex lower level objective. Note that A
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in[Kwon et al.|[2023]] plays the same role as our 1/w. [Kwon et al|[2023]][Lemma A.2] is still valid
without lower level convexity, with the lower bound on ||V 4J7 (2, Tgx (2 ) || changed from the strong
convexity coefficient to ¢. This allows us to write

Hvzq)r(x) - Vzﬁw,r(iﬁ,ﬂ'e) + Vi,ec]r(x,Wa;(x))vgyoc]r(lh ﬂe;(m))_IVG‘Cw,T(mvﬂG)H

Ly N
< Zimo = mr(@) | (Ls + =22 o — mi(a)])).

Recognizing Vo Ly - (2, Tgs () = 0, we have

Vi@ (7) = Vi Py - (7)]| = [V Pr(2) — VICM,T(xv’]T:u,T(x))”

2Ly « * LV,Q * *
< 2w (@) = w @) (L + 222w, (2) - wi @)
2LV 2wa LV2 2wa
< v L 2 )
-~ o Crt ( 1t w Crt
4LfLVw 2LfLV2
=———(L — = 138
Cror (Ly + Cor ), (138)
where the second inequality follows from Lemma 7]
Next, we bound ||V, P, (z) — V. (z)|.
qu)r(x) - qu)(l') = vzf(xa '/Tej(:c)) - vxf(xa’fré*(x))
T
+ V2 0 (@, T () V5.0 (%, T (2)) " Vo f (2, Tox () — Vi 0 (2,01 (2)) Vi 0 (2, Tos (o))~ Vo f (2, Tos (2))
T>
+ V2 0J (2, T2 () V.00 (T, Tox ()~ Vo f (@, Tos(2)) — Vi 0J7 (%, Tor (2)) V5 0T (T, Tos ()~ Vo f (&, Tos () -
T3
(139)

To treat 77, we have from the Lipschitz continuity of f

1T < Ly|x7(2) — 7" (@)

For T5,
IT2|l < (IV3 6T (2, 79+ () — Va 0T (€, o2 @) 11 VG067 (2, Tox (2) " Ve f (2, Tgx )

+ Hvi,ej(xaWe;(z))”HVg,e)J(%Wa*(z))_l - Vg,aj(xaWe;(z))_lH||V0f(ff77fe*(ac))||

+[IV2 0T (2, 70 () 11VG 0 (T, Tox (o) " Vo f (2, Tox (1)) — Vo (@, Tos(a))

1
< Lyp|ni(x) — n*(x)]| - — Ly
+ Ly - V50T (2,701 () " V.67 (2, W01 (2)) — V.0 (2, Tor (2)) |1 V5 9T (€, Tgx () 7'
1 * *
+Lv-— < Lgl|mr(z) — 7% ()]

Li(Ly + L
w”ﬂ(@ —7*(a)|| + Ly -

LyLy +LsLya+ LyLyp
2
a

IN

- Lva|lnr(z) — 7" (2)]] -

Q|+
Q|+

|77 (@) — 7" ()]

We then bound 753. Note that

T

Jo(x,m) = J(z,7) = =

]ESNWE7T7S,
B [B(m, 5)]
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which is independent of z. This implies V2 ,J (x,m9) = V2 ,J;(x, 7). Using this relationship, we
have

1511 = || V2.6 (2, 70) (V3.0 Tos ()~ Vo (@, Tos2)) = Vi o5 (2. 703 )~ Vo (@7, ) ) |
< Ly aLslIV g7 (2, Tos ()~ VG 7 (@, T2 (@) — V.0 (%, Tox ()1 V5 0 (2, Tos (2)) ']

1 T
<Lilve-—- ﬁ”vz,eEmdﬁm [E(r7(x), s)]|| -

LfLV72(4 +8 IOg |.A|)T
< )
- (1 —7)ta?

Q|+

4+8log | A|

where the third inequality follows from the fact that Es47 [E(m, 5)] is =

example, Lemma 6 of Zeng et al.|[2022a]).

-Lipschitz (see, for

Collecting the bounds on 7T7-T5 and substituting them into (139)),
[Va®r(2) = ViPu,r (@) < [Th + T2l + [|T5]]

Lf (LV + 1) + LfLV,g + LVLV,Q LfLV,2(4 + 810g |.A|)7'

77 (2) — 7 (@) [ +

- o? (1 —=7)ic?
o Lily(Ly +1) + LiLy Ly + LilvLvs n LyLy(4 + 8log|A[)T
- o? (1 =7)%e?
< L.Ly(Ly +1)+ L.L¢Lys+ L,LyLys+ L¢Ly2(4+ 8log |A|)T
- (1—7)*e? ’
(140)
where the third inequality follows from Lemma 8]
Substituting (I38) and (T40) into (137)),
[Va®(z) = Vi@u 7 (2)|| < [[VaPr(2) = Valu 7 (2)]| + [[Va@(z) — Valr(2)]
4L¢Lyw 2LL
< (L + =12
Crot Crt
n L.Ly(Lv 4+ 1)+ LyLfLy+ L.LyLys+ LfLy2(4+ 8log|A|) -
(1 —7)tc? '
|

D.12 Proof of Lemmal[12]

Let 0*(x) and 8% () denote one of the softmax parameters that encodes 77* (x) and 7% (). Recall the
gradient expression V@, () from (9). We can similarly write

Va®(x) = Vo f(2,7(2)) = Vi o J (2,7 (2)) V3 o J (2,7 () Ve f (@, 7 (2).  (141)
Combining (9) and (I41),

[V ®@r(2) = V()
< ||wa($77fe;(m)) - vmf(xa 779*(:1:))”

Ty

+ ”vi,OJT(xvWG:(I))VZ,OJ‘F(:EVWG;(I))_1v9f(x77T9;(m)) - vi,ej(wv79*(x))v3,0JT(x7WG;(m))_lvef(xa’er;(r))'

T

+ IV2 0 J (2, T (2)) V.07 (@ Tox (2)) T Vo f (2,01 (1)) — Vi gd (2, T (2)) V5.0 (2, T (1)) Vo f (2, T ()

Ts

+IV2 T (2, T (2)) Vi 0 (2, Tor () " Vo f (2, Tos (2)) — Vi 0T (2, Toe () Vi 6] (2, Tox (2)) " Vo f (€, s (2))]

Ty
(142)
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We treat each term of (T42)) individually. First, we bound 77 using the smoothness property of f
Ty < Ly||r7(2) — n*(2)|| < LoLy, (143)
where the second inequality follows from Lemmalg]

We have ||V f(z, mg)|| < Ly from Assumptionand V5.6 (2, Tos (o)) ' < 2 due to Assump-
tion@ This allows us to bound 75 as follows

I < IIVIeJ (, o2 (2)) = V0 (@, o () IIV5 0T (2, 70 2)) ™' Vo (2, 2 ()

L (192 072,70 23) — T (@ o5 6|+ 192072 T ay) — 9207 (7000

I /\

L
= V2 0T (. 702 0) = Vi o (@, (o))

E
< — L * - *
= v2||7Te z) — 7o (w)“
L * *
=L Lya|ni(z) - 7 (2)]
< M7 (144)
g

where the first equation is due to the fact that J(z, 7) — J(x, 7) is independent of z, so the derivative
with respect to x is zero. The last inequality plugs in

Similarly, for T3
T < (V2 o (2, mox (2)) 11 V5,0T (@ Tos () ™1 = Vi 0 (2, W0+ ) " Ve f (702 ()|
< LfLVHVg,e)Jr(%Wo*(x))_l||HV3,0JT(»T77T9;(x)) - Vg,ej(ffaﬂe*(x))n||V0,9J(5U»7T0;(x))_1\|

LLV

< L (193 0 @, 01 09) = V3T (@, 0r ()| + V5 T T ) = V3 T (&, 7m0 ) )
LLV

< “LY (Lvaliwi(@) - w* @) + Lvr)

L*LfLVLVyQT LfL

S 2 )

(145)

o? o
where the third inequality again follows from Assumption[2] and the fourth inequality is due to @)
of Lemmal (note that J-(z, ) — J(x,m) = TEs~qz [E(m, s)]). The last inequality again plugs in

(I43).
For the final term, we have
Ty < ||V3 0 J (%, Tge (0)) Vi 0 (3,70 () " VoS (2, T () — Vo f (2, 7o ()|

L
< %”VQf(xvﬂ-G;(m)) — Vo f(x,Tox(2))ll

< ZL Va7 0) = Va7 @)
Lv, . «
< L@ - (@)
LIyt (146)
g

where the third inequality is due to the 1-Lipschitz continuity of softmax function, and the fourth
inequality is due to Assumption 3}

Combining (T43)-(T46) leads to

|Ve®r(z) — Vo ®(x)|| < Lo LyT +

L*LfLVVQT L LfL\/LVQT L*L%/’T + L*Lv’r
g

a? a a
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D.13 Proof of Lemma[13|

As Vo Jr, (wk,m0,) — Vedr, (Tk, Tox (a,)) does not depend on the randomness at iteration &, we
Tk
have

E[—(Vadr (@, m0,) = Vadr (T To; (a1)) Tht1 — Tk))]
= GE[(Vadr, (x, M0, ) — Vadr, (mkaﬁe* (@) B[Dw (mkaWkaﬂlfvskaakvgkadkafk) | Fr—1])]
= GE[(VeJr (2g, m,) — Va J—,—k(xk,ﬂ'g* (zx))> Wk($k,7Tk,7T;§)>]
= GE[(Va Ty (2r, 70,) = Vad o (2, To: (@1))s VaPuy i (T1))]
— GE[(Vadr (@4, 70,) = Vadr, (@k, Tor, (@0))s Duwy (2h, 77, (@1), 70, -, (@1)) = Duy, (@, T, 7)),

where the third equation is from (32).
By Young’s inequality,

E[—(VoJr, @k, 70,) = Vadr (T Tox (20))s Tha1 — Ti))]

< %gﬁg’“E[IIVIJm (w0 70,) = Voo, (w0, ()7 + 22;& ;%E[gk]
¥ %Ewwm (11 70,) — e a5, o)
oL B1Doy 1.7, (00) T, (0) — D ot )
= Céff;kE[IIVme(wk,mk)fszTk(xk,m:k(xk))”?] ZQQL CkE[ H
G2~ 3, (0 + Ik = b )
<« ST, — e, (o) 2
m [ — 2, (@) 12 + llmE = 7t (@) 2]+ i’ff CkE[ .

where the second inequality employs the Lipschitz continuity of D,,, established in Lemma@
]

D.14 Proof of Lemma|[I4|

reweight reweight
As Vo LT (w, moe ) — Vo L S8 (wn, moy

iteration k, we have

E[(Va Lo (wr, mpe) — Vo LyrsB (wn, Moy (@n))s oot — Tn)]

Wk, Tk Wk, Tk

(z1)) does not depend on the randomness at

W, T

= —GE[Va Ly df™ (wr, moe) = V Eff;:vcflght( Thy oy, . (@) E[Du, (T, T T Sk Qs ks Gk, Ek) | Froa])]
= —GE[Va LS8 (wr, me) — Vo Ly sE (wn, oy (@r))s D (@, T, 7))
= —GE[(Va LS8 (wr, moe) — Vo Lon s B (e, Mo, (2)s VaPum, (21))]
+ GE[V LS (wr, moe ) — Vo Lt 8B (Tr, Mo, (a):
Doy (k75 (28), oy 1, (1)) = Dy (2, T, 7)),
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where the third equation is from (32).
By Young’s inequality,

E[V Crwezvilkght(xkaﬂeg) - Crwe:’fkght(xkaﬂewk @) Tt = T
< %E[HV Lo (g, mog) — Va LS a,moy, )l + észk €3]
+ S 8119, £575 ak m) — o L o, o)

ST B Du, (11,7, (00): T (00) ~ Do)

< Céf;;k E[||Vwﬁifxi1ght(xk,waf) \Y% Eif}:vilght(xk,ﬂe1‘)k ,k(zk))H ]+ gziljiféﬂﬂ[g}g]
o 2L = 3 o)+ I = (o0

<« Gt s, (@)
kA — w3 o) P+ = s (001 + Sk b ]

where the second inequality employs the Lipschitz continuity of D, established in Lemma@

D.15 Proof of Lemma

Within the proof of this lemma, we employ the shorthand notation zj, = [z, Ok, 7k, (2k) = V:,ik 0%k
and

)

Yp = Vi — Vil "% 4 BrGry (i, Ok, Vi)

As V7 is smooth in z, 6,7, we have from the mean-value theorem that there exists 27" ; =
mzy + (1 — m)zg41 for some scalar m € [0, 1] such that

U(z) — L(zh+1)
= V.l )" (z;~c - Zk+1)
(V Vgis+1’7r67“n+l)T (xk — wk+1) (VeV 7:“7 O )T (9k — 9k+1>
(V V. ZH We”“n“)—r (Tk - Tk+1)

TRl g, Tem T _
_Ck'( 32 Tlc k+1) Dw'(zkaﬂ-Qkaﬂ-Olf)

+Ck(V Vniw e ) D, (Ths To, s o2 s Sk s Sk, s §) — Dwk(xk,ﬁekﬁog))
+ oy, (V@V flﬂme ) (K, O, Vk)
—|—0¢k(V9V ZH TR ) For, xk,Hk,Vk,sk,ak,sk) FO’Tk(xk,Hk,Vk))
(v Vﬂf;w ”9:;41) (Tk —m+1), (147)

where we denote x}", ;| = may + (1 — m)xgy1, 00, = mby + (1 —m)0ky1, 737 = m7p + (1 —
M) Tha1-

Plugging (T47) into the cross term of interest, we have
~ TE,To = ~, T ,To Tk+1,7T0
(Vi = Vo, % o+ BiGory (2, Ok, Vi), Ve, 8 = Ve )
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= <yka£(zk) - €($k+1)>

= ai (Y, (VgVﬁH’ 8"“) Fo (x5, 08, Vi)
+ g Yk, (V(%mGﬂ) = ) (Fom (ks Ok, Vie, Sk, Ok, S) — FO,'rk.(xkaak»Vk))>

k+1a7T9

+<k<yka (V V"’ e ) Dwk(xkaﬁﬁ-,ﬁ@g»

TRy

+ Gy, (VaVip

+1)T(Dwk(xk)’ﬂ-9k7ﬂ-0£? Sk @k, Sk G5 §p) — Dwk(l‘k,mk,ﬂef)»
+ e (V2 .Z*"”“Z*I)T(rk i), (148)
We bound each term of @ individually. First, by Young’s inequality
ar (Y (VBV nﬁﬂ, RS )TFO,Tk (1, Or, Vi)
< Ly ag |yl Fo.r, (s, 0k, Vi) |

A=Bry 2, BL¥a | - o
e OV By (o, O, Vi
ST llywll” + a —’V)BkH 0,7 (The, Ok, Vi) |
(1 — ’y)ﬂk 2 GL%/OZ% Tk ,To 2
g IV By (g O, VST
6L Oé — Ty, T
+ (1 —V’Y)g ”FO Tk (l’k,ek,Vk) FO,Tk(xhekaV‘rkk 9k)||2
(1 _,Y)ﬂk 2 6Lvak- 2
=0 — o IVoJr (zk,
o lwkll” + a —W)BkHW w (Tk, o, )|
6L2 Oé w ST
+ #HFO v @k, Ok, Vie) = oy, (2, O, V)|
(1 =7)Bk
(1 —7)Bk 6L3 g 6L L2032
< T||yk||2+u_ﬁ”vG‘]‘rk(l’k7ﬂ-9k)”2+ﬁ€X7 (149)

where the equation follows from the fact that FO,T(x, 0, VEmo) = Ye Jr(x,mg) for any x, 0, T (see
(33)), and the final inequality is due to the Lipschitz continuity of Fj , .
For the second term of (T48)), we take the expectation

k+ 1,7

T A _ N
OZk]E |:<yk7 (VGV k+1) (FO,Tk(xk79kaVkaskvakvs;c) _FO,Tk(xkvekvvk)>>:|

k+17 8

= a,E[(yr, (VoV VeVTik’Tre’“) (Fo;k (ks Ok, Vie, Sks Ay Sk) — Fory (21, O Vk))}

T s

+ arE[{y, (VeVrk ﬂe"') (Fo,fk (Tk, Oy Vie, Sky @y 8) — Fom, (xk,9k,‘7k))]

1 Tom

T, T T . — .
= arE[(y, (VeV m —VoVz"” 9"') (Fo,fk (wk, Ok, Vi, Sk, ag, 83,) — Fo 7, (T, Ok, Vk))}

k+1

< 2BrogE([lyell[[ VoV — VoV ]

< 2Br Ly iy (nm;@l Toull + ity = well + ity = 7el)]

< 2B Ly & Elllyell (Imou = wo, |+ lwss =@l + miss =7l )

CkBD 8Tk
< 2BpLya,E ( B )
< 2BpLvasllyl](onBr + == + 5575

310 Bra
< 2BpLy o E[||yx] - Tk

p SB%LvToai]E SB%LvToai
— a 3

Qo

lyell®] + (150)
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where the fifth inequality follows from the step size conditions (; < E’Fé“i;w’“ and o

IN

min{7o, 282}, and the second equation follows from
s T " — 2,
E[{y«, (Vevik’ 9’“) (Fo,r,c (ks Ok, Vi, Sk, aks S%) — Fo,n, (k, Ok, V/c))]

Tp T T R ~ — “ ~
= E[(yx, (V " 9’“) E{F(abwk»ﬂkaVf,k75kaak7bk75;g) — F(Or, wi, i, Vi) | Fr—1]]
=0.

The third term of (T48)) can be bounded similar to the first term,

k+17779m

T _
Ck<ykv (v Vm k+1> Dwk(ffkaWwW%»
< LkaHykllllDwk (@&, To,,, moe )|

1-— 3L3,(?
< ( ’Y)Bk”yk”2+ VCk;

| D (@, Ty, g1

- 12 (1 =7)Bk
(1 —7)Bk 6L3Ch A
< T”yk”Q + ﬁlll)wk (@ry 75, (2h)s T ()]
6L2 C2 B
g 1P @ T o) = D (s w7, ().l o ()
(L=NBry 2, 6LLG 6L3C 1 m = 2
= a8 i Dw ) 9 - Dw 3 ; ) .
o el + (T =~)5:F + =5 [ Dewy (2, 7o, Toz ) W (@, 77 (@), 7, (@) ]
A=Bey, 2. OLVGE o
< 2= 4k
1203, L% ¢? 1203, L% (P .
T I mn ) P+ T i = ), (151)

where the equation is due to the condition in (32).

For the fourth term of (T48), we again take the expectation and use the technique in (T30)

k+1’7r9m

.
GE[(Yr, (V Vi k“) <Dwk (Ths Mo, o2, Sk Qs Sky @y Sk) — Dwk(l'kaﬂ—ﬂkaﬂ—elf))”

TR, Tk,

o T =
- Ck]EKyk) (V V m V V‘I'k ek) (Dwk(xkvﬂ-ekaﬂ-efa3k7aka§k767§k) - Dwk(ﬂfk,ﬂ"gk,ﬂ'gf))]

T, T T L _
+ CkEKy/W (vxvﬂck, ek) (Dwk($k7ﬂ-9kaﬂ-9£78k>aka Sk7a7€k) - Dwk(mkaﬂ-ekaﬂbf))]

k+1’ 9

= GeEl(yns (Vi Vg,

T, T T _
v V-rkk 9k) (Dwk(xk,ng,wef,sk,ak,sk,a,fk) — Dwk(.’ﬂkﬂﬂgk,’fr@f))]
’ 0 T $7r o
< 2BpGE[[lyel|Va Vn’i“ = VoV )

< 2Bp Ly GE[lui | (||mm

vy, = ool + 2 — @l + 7 = 7el)]
< 2Bp Ly GEllyn | (110, = Toull + loarn = @l + Iries = 7l )]

B 87
< 2BDLVCkE[||ka](akBF + Ckka + 3(k j 1))

3toBra
< 2BpLviE[|lyell] - Sk

3B2 L 2 3B2L 2
< 2ZEVIORk g 2] 4 22EZVIO%E (152)
() %))

where the last inequality follows from the step size condition C’“ < BD .

58



For the fifth term of (I48), we apply Lemma[2]

Kl

x]t o, Tgm T
(Y (V v, :LH ek“) (Tk - Tk+1>> < Lvlyelllme — mh+1l
87’k
<L —
(1 —7)Bk 2 32L%/7'13
< U2 . 153
=% s 4
Collecting the results in (T49)-(T533) and substituting into (T48),
E[(Vi — Vil ™% 4 BrGoy (@, O, Vi), Vi ™08 — Vb0
(1 —7)Bk 9 GL%,ak 6L2 L%ak
< ~—Y"F — " R[|VeJ- , 4+ VP RR
< S Bl + o BV (e )]+ SRR
3B2 Lyya’ 3B2 Lymya?
+ wE[Hka?] 4+ 22p=VI0TE
« «
(1—7)Bk 2 6L%/C1%
4+ —-EK + —=F_Ele}
1212 L%Ck 12L3, L2 (2
E Lk 2 V=D k]E
7(1 — )8 [(lme — 77, (zi) I7] + =5 Nk — e () [1%]
3B Ly 3B2 Lyya’
+ w[@[”yk‘m 4+ Z2FRZVI0T
« Qg
(1 —7)Bk 5 32L% 77
4+ ——1=F +
(1—7)Bx 2 GB%LVWO‘% 2 GL%/CI%
< YTE —Lr " —FE —2F _T[e¥
< SR Ell) + =R )+ Bl
6L% a3 6L L%a2
+ ———L_E[|VoJr (zk, T + ——L FE[e
(1_7)5 [” 0 k( k 9k)|| ] (1_,\’/)5]C [ k]
1213 L3¢} 12L3, L2 (2
ﬁE[II K — 5, (2x)|1%] + ﬁﬂllﬂﬁ — T (1) %]
+ 6B%Lv7'0ak 32L%/7']§
o 3(1—7)Br(k +1)2
(1 —7)Bk 2 6L%/C13 6L%/04k 6L3 L%O‘k
< "F + —=F_[Ele% 7]143 Vodr (xp, 7133
1213 L3¢} 12L3 L2 g
+ ﬁﬂllm -y, (o) |1%] + ﬁﬂllﬂﬁ — T (1) %]
+ 6B%Lv7'0ak 32LVTk
o 3(1 —7)Br(k+ 1)

where the terms are combined in the last inequality under the step size condition oy, < [ and

Qg —
Bk S 36B2 Lv’TU

E Simulation Details abcde fgh

i

The lower-level MDP is defined on a 10x10 grid, where

each state corresponds to a position on the grid. At every

state, the agent can choose from four possible actions:

A = {UP,DOWN, LEFT, RIGHT}. Each action moves

the agent to the adjacent cell in the corresponding direction.

If the current position lies on the boundary and the action
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would move the agent outside the grid, the state remains
unchanged. The upper-level decision variable x sets a
goal state for the lower-level problem, shown by the flag
in Figure [2| Let x = (coor;(goal), coora(goal)). The
reward of state s = (coory (), coora(s)) is

r(s) =— (coorl(s) - coorl(goal)>2
— (coorg (s) — coorg(goal))Q.

We choose the upper-level objective f such that f(x, )
when z is close to the center of the grid, indicated by green
circle in Figure[2] and that 7 has bias towards DOWN and
RIGHT actions. Specifically, with the coordinate of the
center cell denoted by (coor; (center), coors(center)), we
consider

2
flz,m) = (coorl(goal) — coory (center))
+ <c00r2 (goal) — coorg(center)>2
= (w(DOWN | s) + 7(RIGHT | s)),

where ) is a weight parameter.

By setting A sufficiently large, the optimal solution to the bi-level problem is to set the goal on the
bottom right corner. This is indeed the learned solution from Algorithm [I]
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