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Abstract

We study a structured bi-level optimization problem where the upper-level objective
is a generic smooth function, and the lower-level problem corresponds to policy
optimization in a Markov Decision Process (MDP). The decision variable at the
upper level parameterizes the reward function of the lower-level MDP, and the
upper-level objective is evaluated based on the optimal policy induced by this
reward. Such formulations naturally arise in contexts such as reward shaping and
reinforcement learning (RL) from human feedback.
Solving this bi-level problem is challenging due to the non-convexity of the lower-
level objective and the difficulty of estimating the upper-level hyper-gradient. Exist-
ing methods often rely on second-order information, impose strong regularization
on the lower-level RL problem, and/or inefficiently use samples through nested-
loop procedures. In this work, we propose a single-loop, first-order actor-critic
algorithm that optimizes the upper-level objective via a penalty-based reformulation.
The algorithm introduces into the lower-level RL objective an entropy regulariza-
tion with decaying weight, which enables asymptotically unbiased upper-level
hyper-gradient estimation without requiring the solution of the exact unregularized
lower-level RL problem. Our main contribution is to establish the finite-time and
finite-sample convergence of the proposed algorithm to the original, unregularized
bi-level optimization problem. We support the theoretical results and numerically
validate our method’s convergence through simulations in synthetic environments.

1 Introduction

We study bi-level reinforcement learning (RL), a structured bi-level optimization program in which
the upper-level decision variable determines the reward function of a lower-level RL problem, and
the upper-level objective is evaluated under the lower-level optimal policy. This framework abstracts
a wide range of applications where the reward must be tuned to achieve high-level goals while
the underlying policy adapts to the reward. Examples include reward shaping [Hu et al., 2020],
inverse RL [Zeng et al., 2022b], multi-agent incentive design [Ma et al., 2025], contract design [Zhu
et al., 2023], and, notably, reinforcement learning from human feedback (RLHF), one of the central
paradigms for fine-tuning large language models (LLMs) [Chakraborty et al., 2024, Ye et al., 2025].

Despite a recent surge of interest in bi-level optimization, bi-level RL remains challenging to solve
both in theory and practice. Existing gradient-based approaches to bi-level optimization largely
fall into two categories. The first leverages the implicit function theorem to derive the upper-level
hyper-gradient [Ghadimi and Wang, 2018] and then applies iterative gradient descent in this direction.
However, since the hyper-gradient depends on the Jacobian and Hessian of the lower-level objective,
these methods are difficult to apply in bi-level RL, where second-order information either requires
oracle access to the transition model or is prohibitively expensive to estimate from trajectory samples.
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The second type of methods replaces the lower-level optimality condition with an explicit penalty
term [Kwon et al., 2023, Shen and Chen, 2023], enabling an alternative expression of the hyper-
gradient that depends only on first-order information. While this approach bypasses Hessian and
Jacobian estimation, existing convergence analyses require strong structural assumptions on the
lower-level problem, most commonly strong convexity or the Polyak–Łojasiewicz (PL) condition. In
RL, however, these assumptions generally fail: the policy optimization objective may satisfy a weaker
“gradient domination” property [Agarwal et al., 2021, Mei et al., 2020], but strong convexity and
PL condition do not hold under common policy parameterizations. As a result, existing guarantees
in bi-level optimization apply only to regularized or restricted settings of RL, leaving open the
question of whether we can provably solve the original, unregularized bi-level RL problem. Moreover,
existing penalty-based methods are often implemented in a nested-loop fashion, repeatedly solving
the lower-level problem to high precision before each upper-level update to ensure stability. The price
of this stability is inefficient use of samples in practice and limited scalability.

Our work addresses this research gap. We advance the second, penalty-based approach in the
context of RL and propose a single-loop actor-critic algorithm that provably converges to a stationary
point of the bi-level RL objective. The core idea is to enforce the PL condition at the lower level
through entropy regularization, and then gradually adjust its weight so that the regularized problem
asymptotically recovers the original one. Two important technical innovations enable finite-time and
finite-sample analysis for the algorithm. First, we introduce a new technique to tightly characterize the
iteration-wise decay of the lower-level optimality error for the regularized RL objective. Combined
with the penalty reformulation, this bound allows us to establish convergence of a fully single-loop
penalty-based algorithm in the lower-level PL/regularized RL setting, achieving a convergence rate
that surpasses the best known rate derived in Kwon et al. [2023] under lower-level strong convexity.

Our goal is to optimize the original, unregularized bi-level RL objective. While a large regularization
accelerates the solution of the regularized problem, it also enlarges the discrepancy between the
regularized and unregularized optima. Our second innovation addresses this trade-off by dynamically
decaying the regularization weight, allowing the algorithm to track the regularized optima as the
regularized problem gradually approaches the original one. A key challenge arises here from the
time-varying lower-level landscape, which we overcome via a novel multi-time-scale stochastic
approximation analysis. Below we detail our innovation and main technical contributions.

Main Contributions
• We establish several fundamental structural properties of bi-level RL, linking the original problem
to its entropy-regularized counterpart. In particular, we show that as the regularization weight decays,
the optimizer of the entropy-regularized RL objective converges to the unique entropy-maximizing
policy within the set of optimizers of the unregularized objective, and we provide a bound on this
rate of convergence. Absent in the prior work, this type of structural analysis plays a critical role in
justifying the use of the regularized objective as a faithful surrogate for the original formulation, and
offers insights of potential independent interest to the broader fields of reinforcement learning and
bi-level optimization.

• We present a sample-based, single-loop bi-level RL algorithm and characterize its finite-sample
complexity. The algorithm optimizes a regularized bi-level RL objective, while the regularization
weight dynamically decays over time. We prove that this algorithm converges to a stationary point of
the original bi-level objective with a sample complexity of O(ϵ−10) through a novel five-time-scale
analysis, carefully balancing the regularization weight with the update speed of the dual variable,
upper-level decision variable, policy iterates, and value function estimates. To our knowledge, this
is the first algorithm that provably solves the unregularized bi-level RL problem, and the first that
enjoys finite-time and finite-sample guarantees.

• We show that our proposed algorithm can be instantiated with a constant regularization weight to
solve the corresponding regularized bi-level RL problem. In this setting, the algorithm reduces to a
single-loop actor-critic algorithm for regularized bi-level RL that relies solely on direct samples from
the lower-level MDP. Our finite-sample analysis reveals that the algorithm achieves a complexity of
O(ϵ−3). This rate matches the state-of-the-art complexity of a comparable nested-loop method under
lower-level PL condition [Chen et al., 2024], and improves over the O(ϵ−3.5) complexity derived in
Kwon et al. [2023] under strong convexity, which is an even stronger condition.
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Lower-Level
Structure

Single
Loop

Only Using First-
Order Information Sample Complexity Anytime

Valid

Kwon et al. [2023] Strong convexity ✓ ✓ Õ(ϵ−3.5)† ✓

Shen and Chen [2023] PL condition ✗ ✓ N/A (Iteration complexity derived) -
Xiao and Chen [2024] PL condition ✓ ✓ N/A (Deterministic setting studied) -

Shen et al. [2024] Regularized RL ✗ ✓ N/A (Iteration complexity derived) -
Chakraborty et al. [2024] Regularized RL ✗ ✗ N/A (Iteration complexity derived) -

Thoma et al. [2024] Regularized RL ✗ ✗ N/A (Iteration complexity derived) -
Xiao et al. [2025] Strong convexity ✗ ✓ N/A ✗

Chen et al. [2024] PL condition ✗ ✓ Õ(ϵ−3) ✗

Yang et al. [2025] Regularized RL ✗ ✓ Õ(ϵ−3.5) ✗

Gaur et al. [2025] Regularized RL ✗ ✓ Õ(ϵ−3) ✗

This work Regularized RL ✓ ✓ Õ(ϵ−3) ✓

This work Original RL ✓ ✓ Õ(ϵ−10) ✓

Table 1: Assumption, structure, and sample complexity (measured by squared gradient norm)
of existing algorithms for bi-level optimization and RL. †This is the complexity of the standard
F2SA (Fully First-order Stochastic Approximation) algorithm. Kwon et al. [2023] also proposes a
momentum-based algorithm (F3SA) that achieves a better rate. For a fair comparison with other non-
momentum algorithms in the table, we report the complexity of F2SA. Notably, Yang et al. [2023]
further improve the design and analysis of momentum-based algorithms, achieving a complexity of
O(ϵ−1.5), where the key innovation is estimating the lower-level Hessian via finite differences.

1.1 Related Work

Our work relates to the increasing volume of literature on bi-level optimization. Here we discuss
the most relevant papers on first-order methods to give context to our contributions, and provide a
complete literature comparison with other first- and second-order methods in Table 1.

The penalty reformulations were first introduced in Kwon et al. [2023], Shen and Chen [2023]. The
former proposes a fully first-order algorithm and shows that, under lower-level strong convexity, the
algorithm converges to a stationary point of the bi-level objective with sample complexity Õ(ϵ−3.5).
The latter relaxes the lower-level structure by considering the PL condition. The authors propose a
nested-loop algorithm and establish the complexity with respect to the number of outer-loop iteration.
However, the complexity with respect to the total number of samples or iterations is unknown.

The penalty reformulation has inspired several works in bi-level RL [Shen et al., 2024, Yang et al.,
2025, Gaur et al., 2025], which derive first-order expressions for the hyper-gradient and estimate
them directly from environment samples. For technical tractability, these works focus on regularized
bi-level RL, where regularization induces the PL condition for the policy optimization objective.
Their analyses largely mirror those of generic bi-level optimization under a lower-level PL condition
and do not solve the original unregularized problem. In addition, due to the nest-loop structure, these
algorithms require a target accuracy to be specified in advance to determine the number of inner-loop
iterations, making the convergence guarantees not anytime valid: there is no guarantee that the optimal-
ity gap decreases monotonically after every iteration, and running the algorithm beyond the prescribed
number of iterations does not further reduce the gap. Our paper exactly addresses these limitations.

2 Formulation
Consider an infinite-horizon discounted-reward MDP defined as Mx = (S,A,P, rx, γ), where
x ∈ Rd is an exogenous control parameter. Under a fixed x, Mx is a standard MDP. The state space
S and action space A are assumed to be finite. The transition kernel is denoted by P : S×A → ∆(S),
and we use P(s′ | s, a) to represent the probability that the next state is s′ when an agent takes action
a in state s. The reward function rx : S × A → [0, 1] is a function of x. The discount factor is
denoted by γ ∈ (0, 1). Our paper considers the setting where the transition kernel is independent
of x, motivated by applications such as RLHF and reward shaping, where the exogenous variable
modulates the reward function but not the system dynamics.

An agent learning in this MDP may not directly observe x, and takes actions according to a policy
π : S → ∆A, which we can represent as a table ∆S

A ∈ R|S|×|A|. Given a control-policy pair (x, π),
we measure its performance in state s by the value function

V x,π(s) ≜ Eak∼π(·|sk),sk+1∼P(·|sk,ak)

[∑∞
k=0 γ

krx(sk, ak) | s0 = s
]
= Es′∼dπ

s , a
′∼π(·|s′)[rx(s

′, a′)],
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where dπs ∈ ∆S is the discounted visitation distribution under initial state s

dπs (s
′) ≜ (1− γ)Eak∼π(·|sk),sk+1∼P(·|sk,ak)[

∑∞
k=0 γ

k1(sk = s′) | s0 = s].

Under an initial state distribution ρ ∈ ∆S , we define the the expected cumulative reward under (x, π)

J(x, π) ≜ Es∼ρ[V
x,π(s)] = Es∼dπ

ρ ,a∼π(·|s)[rx(s, a)], where dπρ ≜ Es∼ρ[d
π
s ].

If x were fixed, our goal would be to find a policy that maximizes J(x, π). In the mean time, the
exogenous controller has its own objective to optimize, anticipating the best response from the policy
optimization agent. We denote the controller’s objective by f : R×∆S

A → R. Let Π⋆(x) be the set
of optimal policies under control x, which we note may not be singleton, and g be a function that
maps Π⋆(x) to a unique optimal policy within the set (we will shortly introduce g). The controller’s
optimization problem can then be formulated as the following bi-level program

minx∈Rd f(x, g(Π⋆(x))), Upper-Level

s.t. Π⋆(x) ≜ argmaxπ J(x, π). Lower-Level RL Objective
(1)

Our goal in this paper is to solve (1). This is a challenging problem, as the lower-level objective
lacks strong structural properties and may not admit a unique solution. To introduce additional
structure and enhance the solvability, we add entropy regularization into the lower-level objective,
which leads to solution uniqueness and a strong form of “gradient domination”. We stress that the
entropy-regularized formulation serves only as an intermediate tool – our ultimate aim remains to
solve the original, unregularized problem in (1).

2.1 Entropy Regularization

We discuss the regularized objective and its structural properties. Given (x, π) and regularization
weight τ , we define the regularized value function V x,π

τ ∈ R|S| and expected cumulative reward Jτ

V x,π
τ (s) ≜ Eak∼π(·|sk),sk+1∼P(·|sk,ak)

[∑∞
k=0 γ

k
(
rx(sk, ak)− τ log π(ak | sk)

)
| s0 = s

]
=

1

1− γ
Es′∼dπ

s , a
′∼π(·|s′)[rx(s

′, a′) + τE(π, s′)], (2)

Jτ (x, π) ≜ Eak∼π(·|sk),sk+1∼P(·|sk,ak)

[∑∞
k=0 γ

k
(
rx(sk, ak)− τ log π(ak | sk)

)
| s0 ∼ ρ

]
=

1

1− γ
Es∼dπ

ρ , a∼π(·|s)[rx(s, a) + τE(π, s)] = Es∼ρ[V
x,π
τ (s)], (3)

where E(π, s) = −
∑

a π(a | s) log π(a | s) is the entropy function. Under regularization weight
τ ≤ 1, we have |V x,π

τ (s)| ≤ BV for all x, π, s, where BV = 1+log |A|
1−γ .

If the initial state distribution has a full support, an assumption we will shortly introduce and impose
throughout the paper, then the optimizer of Jτ (x, ·) is unique for any τ > 0. We define the operator
π⋆
τ : Rd → ∆S

A, which maps a control variable to the optimal policy induced by it

π⋆
τ (x) ≜ argmaxπ Jτ (x, π), ∀x ∈ Rd. (4)

As we use the regularized RL problem to approximate the original one, it is important to understand
how π⋆

τ (x) relates to Π⋆(x). We make the connection in Lemma 1, under the following assumption
on initial state distribution and ergodic Markov chain. The assumption is commonly made in the RL
literature to guarantee that the Markov chain of states under any policy has a unique, well-defined
stationary distribution [Mei et al., 2020, Wu et al., 2020, Khodadadian et al., 2022].

Assumption 1 (Sufficient Exploration) The initial state distribution ρ is bounded away from zero,
i.e. there exists a constant ρmin > 0 such that ρ(s) ≥ ρmin for all s ∈ S . Additionally, for any π, the
Markov chain {st} generated by Pπ following st+1 ∼ Pπ(· | st) is ergodic.

Lemma 1 We define π⋆(x) to be the optimal policy for the original, unregularized MDP with the
largest (visitation-weighted) entropy

π⋆(x) ≜ argmaxπ∈Π⋆(x) Es∼dπ
ρ
[E(π, s)]. (5)

Then, under Assumption 1, it holds that π⋆(x) is unique for all x and is the limit point of {π⋆
τ (x)}τ

π⋆(x) = limτ→0 π
⋆
τ (x).
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The uniqueness of π⋆(x) is not obvious and does not directly follow from any known results in
convex optimization, since Π⋆ is not a convex set and the weighted entropy objective in (5) is not
concave (see Lemma 3.1 of Hazan et al. [2019] for a proof of non-concavity). Our proof of Lemma 1,
presented in detail in Appendix 1, exploits the strict concavity of the unweighted entropy function
E(·, s) in the interior of the the simplex, as well as the structure that Π⋆(x), though non-convex, is a
connected set with special structure [Zeng et al., 2023].

Our objective in this work is to solve the optimization problem below, which corresponds to (1) with
g mapping a set to the (unique) element of the set maximizing the weighted entropy

minx Φ(x) ≜ f(x, π⋆(x)). (6)

We also define the regularized version of the objective, serving as a key intermediary in our anal-
ysis. Conceptually, the algorithm to be introduced optimizes the regularized objective Φτ as the
regularization attenuation drives Φτ toward Φ.

minx Φτ (x) ≜ f(x, π⋆
τ (x)). (7)

3 Algorithm Development
In this section we develop a single-loop first-order algorithm that optimizes Φτ while gradually decay-
ing τ to zero, thereby recovering the solution to (6). The algorithm operates under stochastic gradient
samples of the upper-level objective, as well as state transition and reward samples from the lower-
level MDP. We design the algorithm based on a penalty reformulation, a technique recently developed
for solving bi-level problems with lower-level strong convexity and PL condition [Shen and Chen,
2023, Kwon et al., 2023]. We begin by presenting an overview of the reformulation in our context.

3.1 Preliminaries – Penalty Reformulation
Our goal is to solve (7) via (stochastic) gradient descent. By the implicit function theorem [Ghadimi
and Wang, 2018], ∇xΦτ (x) admits a closed-form expression when ∇2

π,πJτ (x, π
⋆(x)) is invertible

∇xΦτ (x) = ∇xf(x, π
⋆
τ (x)) +∇πf(x, π

⋆
τ (x))

∂π⋆
τ (x)

∂x
(8)

= ∇xf(x, π
⋆
τ (x))−∇2

x,πJτ (x, π
⋆
τ (x))∇2

π,πJτ (x, π
⋆
τ (x))

−1∇πf(x, π
⋆
τ (x)). (9)

Obtaining unbiased samples of ∇xΦτ (x) based on (9), however, poses significant challenges, as the
expression depends on second-order Jacobian and Hessian terms that cannot be efficiently estimated
from state–reward samples. The penalty reformulation is designed to provide an alternative approach
of obtaining (asymptotically) unbiased gradient estimates, only requiring first-order information.

Recall the definition of π⋆
τ (x) in (4). We can re-write (7) as follows by introducing a constraint

minx,π f(x, π) s.t. Jτ (x, π⋆
τ (x))− Jτ (x, π) ≤ 0. (10)

Given a positive constant w, we define

Lw,τ (x, π) ≜ f(x, π) +
1

w

(
Jτ (x, π

⋆
τ (x))− Jτ (x, π)

)
, (11)

Φw,τ (x) ≜ minπ Lw,τ (x, π) = minπ f(x, π) +
1

w

(
Jτ (x, π

⋆
τ (x))− Jτ (x, π)

)
. (12)

We can regard Lw,τ as the Lagrangian associated with (10), in which 1/w plays the role of the dual
variable. To solve (10), it may be tempting to find a minimax saddle point of the Lagrangian using
gradient descent ascent. However, as pointed out in Kwon et al. [2023], the solution of (10) is only
attained in the limit as the dual variable becomes infinitely large (i.e. w = 0). This motivates us
to treat w as a parameter governed by a prescribed decay schedule towards zero, rather than as a
dual variable updated via gradient ascent. It is known from Kwon et al. [2023][Lemma 3.1] that
∇xΦw,τ (x) admits the following expression involving only first-order terms1

∇xΦw,τ (x) = ∇xLw,τ (x, π
⋆
w,τ (x))

1We follow the convention and use ∇xLw,τ (x, π
⋆
w,τ (x)) to denote the partial gradient with respect to x

evaluated at (x, π⋆
w,τ (x)), i.e. ∇xLw,τ (x, π

⋆
w,τ (x)) = ∇xLw,τ (x, π) |π=π⋆

w,τ (x). The same principle will be
used for other functions, such as f and Jτ .
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= ∇xf(x, π
⋆
τ (x)) +

1

w

(
∇xJτ (x, π

⋆
τ (x))−∇xJτ (x, π

⋆
w,τ (x))

)
, (13)

where we define π⋆
w,τ (x) ≜ argminπ Lw,τ (x, π) for all w, τ > 0. Importantly, ∇xΦw,τ (x) closely

tracks ∇xΦτ (x) – the distance between ∇xΦw,τ (x) and ∇xΦτ (x) scales linearly in w, a result
which we establish later in Lemma 11.

3.2 Single-Loop Algorithm with Decaying Penalty and Regularization

We introduce xk as an estimate of the solution to the bi-level objective (k is the iteration index) and
design an algorithm that iteratively carries out stochastic gradient descent on xk in an approximate
direction of ∇xΦwk,τk(xk), estimated using online samples from the MDP. Here wk and τk are
time-varying penalty and regularization weights. As wk, τk decay according to carefully designed
schedules, the surrogate objective Φwk,τk(xk) increasingly approximates Φ(xk), allowing us to solve
the original bi-level problem.

To estimate ∇xΦwk,τk based on (13), we need estimates of ∇xJτk(xk, π
⋆
τk
(xk)) and

∇xJτk(xk, π
⋆
wk,τk

(xk)). Note that ∇xJτ (x, π) can be expressed in the simple form below

∇xJτ (x, π) = Es∼dπ
ρ , a∼π(·|s)[∇xrx(s, a)]. (14)

Given (14), if we had access to an oracle that generates π = π⋆
τk
(x) for any x, we would obtain

asymptotically unbiased samples of ∇xJτk(xk, π
⋆
τk
(xk)) by simply generating a Markovian chain

{sk, ak} under π = π⋆
τk
(xk) and evaluating ∇xrxk

(sk, ak) along the trajectory. The same can
be done to estimate ∇xJτk(xk, π

⋆
wk,τk

(xk)) if π⋆
wk,τk

(xk) were available. However, π = π⋆
τk
(xk)

and π⋆
wk,τk

(xk) are solutions to (augmented) lower-level RL problems and cannot be directly ac-
cessed. To overcome the oracle unavailability, we introduce the iterates πk, π

L
k as approximations of

π⋆
τk
(xk), π

⋆
wk,τk

(xk), and update them via another layer of stochastic gradient ascent.

Existing bi-level RL methods [Yang et al., 2025, Gaur et al., 2025] typically introduce a nested-loop
algorithmic structure when estimating these optimal policies, ensuring that πk, π

L
k from the inner

loop fully converges to π⋆
τk
(xk), π

⋆
wk,τk

(xk) up to a desired precision. However, such nested-loop
algorithms are usually inconvenient to implement in practice and require setting the precision in
advance. Our algorithm instead updates πk, π

L
k in the same loop as xk, with a larger step size (i.e.

on a faster time scale). Specifically, we maintain policy parameters θk, θLk that encode πk, π
L
k (with

notation πk = πθk , π
L
k = πθL

k
) and iteratively refine them according to

θk+1 = θk + αk∇̃θJτk(xk, πθk), θLk+1 = θLk + αk

(
− ∇̃θf(xk, πθL

k
) +

1

wk
∇̃θJτk(xk, πθL

k
)
)
.

Here αk is a step size properly balanced with the decay rates of of wk and τk, and ∇̃θf, ∇̃θJτk
denote stochastic samples of the true gradients. Note that ∇θJτk admits the following closed-form
expression, and can be estimated in an asymptotically unbiased manner via an actor-critic approach

∇θJτ (x, πθ) = Ed
πθ
ρ ,πθ

[(
rx(s, a)− τ log πθ(a | s) + γV x,πθ

τ (s′)
)∇θ log πθ(a|s)

1− γ

]
. (15)

Actor-critic methods samples stochastic gradients according to (15), replacing the unobservable value
function with an estimate which is updated on an even faster time scale via temporal difference
learning. Specifically, we introduce two variables V̂k, V̂

L
k to track V xk,πk

τk
, V

xk,π
L
k

τk and present their
update rules in (20), where ΠBV

: R|S| → R|S| denotes the element-wise projection of a vector to
the interval [0, BV ]. The projection operator guarantees the stability of the value function estimates,
and the interval contains the true (regularization) value function under regularization weight τk ≤ 1.

The algorithm can be described at an abstract level as follows. We perform stochastic gradient descent
on xk along the hyper-gradient direction. The hyper-gradient estimation relies on the solutions of
lower-level RL problem and the penalty-augmented RL objective, which we obtain via a single-
loop actor-critic method. Our actor–critic procedure follows the standard framework, with the key
distinction that we incorporate entropy regularization and gradually attenuate its weight over time.
Note that despite the resemblance of our actor–critic updates to existing algorithms, the analysis
is significantly more challenging in the bi-level setting. In particular, the learning targets for the
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lower-level policies are non-stationary, evolving both with the penalty and regularization schedules
and with the updates of the upper-level variable. We overcome this challenge with a novel error
decomposition scheme that tightly links the sub-optimality gap of the lower-level RL problem to that
of the bi-level objective, under the shifting landscape which becomes less structured over time as the
penalty and regularization weights decay.

We formally state the updates in Algorithm 1, in which we represent the policies through tabular
softmax parameterization2, i.e. the parameter θ ∈ R|S||A| encodes the policy πθ according to

πθ(a | s) = exp(θ(s, a))∑
a′ exp(θ(s, a′))

.

Algorithm 1 employs three step size parameters and two penalty/regularization weights, which are
all time-decaying sequences: step size ζk for upper-level variable update, step size αk for policy
update, step size βk for value function update, penalty weight wk, and regularization τk. The step
sizes are associated with the primal variable (xk) update, and we need to choose ζk ≪ αk ≪ βk to
approximate the nested-loop dynamics, where we run a large number of value function updates per
policy update and a large number of policy updates per upper-level variable update.

Algorithm 1 Single-Loop Actor-Critic Algorithm for Bi-Level RL

1: Initialize: control variable x0, policy parameters θ0 and θL0 , value function estimates V̂0, V̂
L
0 ∈

R|S|

2: for iteration k = 0, 1, 2, ... do
3: Trajectory 1:

With probability 1− γ, restart the trajectory by taking sk+1 ∼ ρ. With probability γ, continue
following the current trajectory. Take action ak ∼ πθk(· | sk), receive rewards rxk

(sk, ak),
and observe the next state sk+1 ∼ P(· | sk, ak).

4: Trajectory 2:
With probability 1− γ, restart the trajectory by taking s̄k+1 ∼ ρ. With probability γ, continue
following the current trajectory. Take action āk ∼ πθL

k
(· | s̄k), receive rewards rxk

(s̄k, āk),
and observe the next state s̄k+1 ∼ P(· | s̄k, āk).

5: Observe/Obtain ξk ∼ µ
6: Control variable update:

xk+1 = xk − ζk

(
∇̃xf(xk, πθL

k
, ξk) +

1

wk

(
∇xrxk

(sk, ak)−∇xrxk
(s̄k, āk)

))
. (16)

7: Policy update:

θk+1 = θk + αk

(
rxk

(sk, ak) + τkE(πθk , sk) + γV̂k(sk+1)
)
∇θ log πθk(ak | sk), (17)

θLk+1 = θLk + αk

((
rxk

(s̄k, āk) + τkE(πθL
k
, s̄k) + γV̂ L

k (s̄k+1)
)
∇θ log πθL

k
(āk | s̄k)

− wk∇̃θf(xk, πθL
k
, ξk)

)
, (18)

πk = softmax(θk), πL
k = softmax(θLk ). (19)

8: Value function update:

V̂k+1 = ΠBV

(
V̂k + βkesk

(
rxk

(sk, ak) + τkE(πθk , sk) + γV̂k(sk+1)− V̂k(sk)
))

,

V̂ L
k+1 = ΠBV

(
V̂ L
k + βkes̄k

(
rxk

(s̄k, āk) + τkE(πL
θk
, s̄k) + γV̂ L

k (s̄k+1)− V̂ L
k (s̄k)

))
.

(20)

9: end for

2We consider the softmax parameterization for the purpose of mathematical analysis. The algorithm is
compatible with any function approximation in practical implementations.
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4 Convergence Analysis

In this section, we present the finite-time and finite-sample analysis of the proposed algorithm. We
start by introducing the technical assumptions.

Assumption 2 (Hessian Invertibility) The Hessian ∇2
θ,θJτ (x, πθ) is invertible for any x, θ and

τ ≥ 0.

Recall from (9) that the Hessian inverse appears in the hyper-gradient. Though we do not explicit
work with the Hessian, the assumption importantly guarantees the differentiability of Φτ . Let σmin(·)
denote the smallest singular value of a matrix. Assumption 2 implies that there exists a constant
σ > 0 such that

σmin

(
∇2

θ,θJτ (x, πθ)
)
≥ σ, ∀x, θ, τ, (21)

Without losing generality, we let σ ≤ 1 for the convenience of combining terms in the analysis. Note
that (21) should not be confused with the strong convexity of Jτ (x, πθ) with respect to θ, which
requires ∇2

θ,θJτ (x, πθ) to be positive definite, i.e. its smallest eigenvalue is positive.

Assumption 3 (Lipschitz and Smooth Upper-Level Objective) The function f is differentiable,
and we have access to unbiased stochastic gradient operators ∇̃xf(x, π, ξ), ∇̃πf(x, π, ξ) and i.i.d.
samples ξ from a distribution µ such that

Eξ∼µ[∇̃xf(x, π, ξ)] = ∇xf(x, π), Eξ∼µ[∇̃πf(x, π, ξ)] = ∇πf(x, π).

In addition, there is a bounded constant Lf such that ∀x, x′, π, π′, ξ

∥∇̃xf(x, π, ξ)∥ ≤ Lf , ∥∇̃πf(x, π, ξ)∥ ≤ Lf ,

∥∇̃xf(x, π, ξ)− ∇̃xf(x
′, π′, ξ)∥ ≤ Lf (∥x− x′∥+ ∥π − π′∥),

∥∇̃πf(x, π, ξ)− ∇̃πf(x
′, π′, ξ)∥ ≤ Lf (∥x− x′∥+ ∥π − π′∥).

We also assume that the minimizer of f(·, π) exists for any π, i.e. f(x, π) never blows up to negative
infinity. Without loss of generality, we can shift the function such that f(x, π) ≥ 0, ∀x, π.

Assumption 4 (Lipschitz Reward, Gradient, and Hessian) There is a constant Lr < ∞ such that
∀s, a, x1, x2

|rx1
(s, a)− rx2

(s, a)| ≤ Lr∥x1 − x2∥,
∥∇xrx1

(s, a)−∇xrx2
(s, a)∥ ≤ Lr∥x1 − x2∥,

∥∇2
x,xrx1(s, a)−∇2

x,xrx2(s, a)∥ ≤ Lr∥x1 − x2∥.

Assumptions 3 and 4 are standard regularity assumptions in the bi-level RL literature [Chakraborty
et al., 2024, Gaur et al., 2025, Yang et al., 2025]. Comparable conditions on upper- and lower-level
objectives are also commonly imposed by works on generic bi-level optimization [Kwon et al., 2023,
Shen and Chen, 2023].

Assumption 5 (Regularization-Dependent PL Condition) Recall the definition of π⋆
w,τ after (13).

The minimizer π⋆
w,τ (x) is unique for all x and w, τ > 0. In addition, there exists a constant CL > 0

such that for all w, τ > 0, we have

∥∇θLw,τ (x, πθ)∥2 ≥ CLτ

w

(
Lw,τ (x, πθ)− Lw,τ (x, π

⋆
w,τ (x))

)
, ∀x, θ. (22)

This structural condition plays an important role in our analysis and states that the Lagrangian
defined in (12) satisfies the PL condition with respect to the policy parameter θ, with a PL constant
that attenuates as the regularization weight becomes smaller. While we directly impose (22) for
convenience, the condition can be derived for a proper range of w under assumptions of full coverage
initial state distribution (Assumption 1) and exploratory policy (i.e. πθ(a | s) is uniformly lower
bounded). To see this, note that as w → 0, Lw,τ (x, π) approaches a 1/w-scaled (and shifted) version
of Jτ (x, π), which is known to satisfy the PL condition with CL = O

(
ρ2min(mins,a πθ(a | s))2

)
(see

Mei et al. [2020][Lemma 15]). The scaling explains the dependence of the right-hand side of (22) on
1/w. For sufficiently small w, the contribution of the f term in Lw,τ remains negligible, so the PL
condition of Jτ continues to dominate and allows (22) to hold.
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4.1 Main Results

While our ultimate goal is to solve the objective (6), our analysis relies on jointly bounding the
convergence of all variables through a coupled Lyapunov function that combines all residuals shown
below. As Φ is non-convex, we may in general only find a first-order stationary point, and we measure
the convergence of xk by ∥∇xΦ(xk)∥2, the squared gradient norm. To measure the convergence of
θk and θLk , we consider their distance to the optimal policy in the function space. Finally, the value
function estimates V̂k, V̂

L
k are measured by their ℓ2 distance to the value functions under the latest

upper-level decision variable and policy.

εθ,Lk = wk

(
Lwk,τk(xk, πθL

k
)− Lwk,τk(xk, π

⋆
wk,τk

(xk))
)
, εθk = Jτk(xk, π

⋆
τk
(xk))− Jτk(xk, πθk),

εVk = ∥V̂k − V
xk,πθk
τk ∥2, εV,Lk = ∥V̂ L

k − V
xk,πθL

k
τk ∥2.

Theorem 1 Consider the iterates of Algorithm 2 under the step sizes and weights

ζk =
ζ0

(k + 1)cζ
, αk =

α0

(k + 1)cα
, βk =

β0

(k + 1)cβ
, wk =

w0

(k + 1)cw
, τk =

τ0
(k + 1)cτ

,

with cζ = 9
10 , cα = 1

2 , cβ = 1
2 , cw = 3

20 , cτ = 1
20 and properly selected ζ0, α0, β0, w0, τ0. Under

Assumptions 1-5, we have for all k ≥ 0,

min
t<k

E[∥∇xΦ(xt)∥2] ≤ O
(Φ(x0) + εθ0 + εθ,L0 + εV0 + εV,L0

(k + 1)1/10

)
+ Õ

(
1

(k + 1)1/10

)
.

Theorem 1 shows that the best iterate of Algorithm 1 converges to a stationary point of the bi-level
RL objective with rate Õ(k−1/10). As the algorithm draws two samples in each iteration, this time
complexity translates to a sample complexity of the same order. To our knowledge, this is the first time
an algorithm has been shown to provably solve the original, unregularized bi-level RL problem. The
key technical insight and novelty enabling our analysis is 1) that we recognize the RL objective as one
observing a regularization-dependent PL condition with the PL constant diminishing as regularization
approaches zero, 2) a multi-time-scale stochastic approximation analysis that balances the decay of
step sizes and wk with that of τk, allowing the algorithm convergence to be established under the
challenge of a time-varying optimization landscape.

We may also choose to instantiate Algorithm 1 with a constant regularization weight, targeting to
optimize the regularized bi-level objective rather than the original one. In this regime, as the lower-
level problem satisfies the PL condition with a fixed PL constant, we establish a faster convergence
rate in the following theorem.

Theorem 2 Given any fixed regularization weight τ0, i.e. τk = τ0 for all k ≥ 0, consider the iterates
of Algorithm 2 under the step sizes and penalty weight

ζk =
ζ0

(k + 1)cζ
, αk =

α0

(k + 1)cα
, βk =

β0

(k + 1)cβ
, wk =

w0

(k + 1)cw
,

with cζ = 2
3 , cα = 1

2 , cβ = 1
2 , cw = 1

6 and properly selected ζ0, α0, β0, w0. Under Assumptions 1-5,
we have for all k ≥ 0,

min
t<k

E[∥∇xΦτ0(xt)∥2] ≤ O
(Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0

(k + 1)1/3

)
+ Õ

(
1

(k + 1)1/3

)
.

Theorem 2 establishes a finite-time convergence rate of Õ(k−1/3) to a regularized stationary point,
and again implies a sample complexity of the same order. Importantly, this rate surpasses that of the
F2SA algorithm in Kwon et al. [2023], which is derived under the stronger assumption of lower-level
strong convexity. We have achieved the rate improvement under weaker lower-level structure by
designing a novel error decomposition scheme that allows us to tightly bound the residuals in the
policy iterates based on the PL condition. We also note that the complexity of Algorithm 1 matches
the best-known complexity of a nested-loop algorithm developed in Gaur et al. [2025] for solving the
regularized bi-level RL problem.

5 Numerical Simulations
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Figure 1: Upper-Level Decision Variable Conver-
gence in Function Value Space

We numerically verify the convergence of Algo-
rithm 1 on a small-scale synthetic bi-level RL
problem, where the lower-level MDP is defined
a 10x10 grid. The reward for the MDP is the
negated distance between the current state and a
goal position (which encourages the lower-level
RL agent to reach the goal in as few steps as pos-
sible), whereas the goal is placed by the upper
level decision variable. We design the upper-
level objective – as a function of upper-level
decision variable x and the optimal policy π⋆(x)
– to penalize deviations of the goal position from
the center of the grid, while encouraging π⋆(x)
to have direction biases towards moving down
and right.

A natural baseline is an alternating (partial) gradient descent–ascent scheme: we maintain iterates
(xk, θk) and approximate the full hyper-gradient ∇xΦ(xk) by its partial component ∇xf(xk, πθk),
while updating πθk in the same loop to approximate π⋆(x). We refer to this approach as “Partial
SGD” and note that it may be stuck at sub-optimal solutions when the partial gradient is misaligned
with the true hyper-gradient. This phenomenon is evident in Figure 1, where our proposed algorithm
attains a better solution and achieves a smaller objective value than Partial SGD. We also compare
against an algorithm that performs iterative gradient descent using the chain-rule expression (8), with
∂π⋆

τ (x)
∂x estimated via finite differencing. Specifically, for a scalar x, we approximate

∂π⋆
τ (x)

∂x
≈ π⋆

τ (x+ ϵ)− π⋆
τ (τk)

ϵ
,

where π⋆
τ (x+ ϵ) and π⋆

τ (x) are computed through a large number of inner-loop RL iterations. For
vector or tensor x, the approximation is carried out entry-wise and then aggregated. We refer to this
method as ‘Finite-Difference Approximation‘” in Figure 1, and note that it is highly sample-inefficient,
owing to both the computational overhead and the inaccuracy inherent in finite-difference-based
gradient estimation. Further details on the upper-level objective, MDP reward function, step-size
parameters, and initialization are provided in Appendix E.
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partners] by the Artificial Intelligence Research group of JPMorgan Chase & Co. and its affiliates
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A Frequently Used Notations, Equations, and Inequalities
• Besides the value function defined in (2), we also define the regularized Q function and

advantage function

Qx,π
τ (s, a) ≜ rx(s, a) + γ

∑
s′∈S

P(s′ | s, a)V x,π
τ (s),

Ax,π
τ (s, a) ≜ Qx,π

τ (s, a)− τ log π(a | s)− V x,π
τ (s).

(23)

• We define the filtration Fk ≜ {ξ0, · · · , ξk, s0, · · · , sk, a0, · · · , ak, s̄0, · · · , s̄k, ā0, · · · , āk}.
• The PL condition in Assumption 5 implies quadratic growth, i.e. for any x

Lw,τ (x, πθ)− Lw,τ (x, π
⋆
w,τ (x)) ≥

CLτ

4w
∥πθ − π⋆

w,τ (x)∥2. (24)

In combination with (22), the inequality implies

∥∇θLw,τ (x, πθ)∥ ≥ CLτ

2w
∥πθ − π⋆

w,τ (x)∥. (25)

• We introduce the following shorthand notations that abstract the update operators in Algo-
rithm 1. For any x, π, πL, θ, V, s, a, s′, s̄, ā, ξ, we define

Dw(x, π, π
L, s, a, s̄, ā, ξ) = ∇̃xf(x, π

L, ξ) +
1

w

(
∇xrx(s, a)−∇xrx(s̄, ā)

)
, (26)

Fw,τ (x, θ, V, s, a, s
′, ξ) =

(
rx(s, a) + τE(πθ, s) + γV (s′)− V (s)

)
∇θ log πθ(a | s)− w∇̃θf(x, πθ, ξ),

(27)

Gτ (x, θ, V, s, a, s
′) = es

(
rx(s, a) + τE(πθ, s) + γV (s′)− V (s)

)
, (28)

where es is the indicator function, i.e. the entry s has a value of one and all other entries are
zero.
With (26)-(28), we can rewrite the updates of Algorithm 1

xk+1 = xk − ζkDwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk),

θk+1 = θk + αkF0,τk(xk, θk, V̂k, sk, ak, s
′
k, ξk),

θLk+1 = θLk + αkFwk,τk(xk, θ
L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk),

V̂k+1 = V̂k + βkGτk(xk, θk, V̂k, sk, ak, s
′
k),

V̂ L
k+1 = V̂ L

k + βkGτk(xk, θ
L
k , V̂

L
k , s̄k, āk, s̄

′
k).

We also define operators D̄, F̄ , F̄ with a proper sense of expectation.

D̄w(x, π, π
L) ≜ Es∼dπ

ρ ,a∼π(·|s),s̄∼dπL
ρ ,ā∼πL(·|s̄)),ξ∼µ[Dw(x, π, π

L, s, a, s̄, ā, ξ)], (29)

F̄w,τ (x, θ, V ) ≜ Es∼d
πθ
ρ ,a∼πθ(·|s),s′∼P(·|s,a),ξ∼µ[Fw,τ (x, θ, V, s, a, s

′, ξ)], (30)

Ḡτ (x, θ, V ) ≜ Es∼d
πθ
ρ ,a∼πθ(·|s),s′∼P(·|s,a)[Gτ (x, θ, V, s, a, s

′)]. (31)
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• It can be seen from (13) that the following relationship holds for any x

∇xΦw,τ (x) = D̄w(x, π
⋆
τ (x), π

⋆
w,τ (x)). (32)

In addition, we have for any x, θ, τ

F̄0,τ (x, θ, V
x,πθ
τ ) = ∇θJτ (x, πθ), (33)

F̄w,τ (x, θ, V
x,πθ
τ ) = w∇θLw,τ (x, πθ). (34)

• We define for τ > 0

ℓτ (x) = Jτ (x, π
⋆
τ (x)). (35)

Note that ℓτ is not to be confused with Φτ defined in (7), which is the regularized upper-level
objective.

• We recall the residuals defined in Section 4.1 and also define the residual in xk as follows

εxk = ∥∇xΦwk,τk(xk)∥2, εθ,Lk = wk

(
Lwk,τk(xk, πθL

k
)− Lwk,τk(xk, π

⋆
wk,τk

(xk))
)
,

εθk = Jτk(xk, π
⋆
τk
(xk))− Jτk(xk, πθk), εVk = ∥V̂k − V

xk,πθk
τk ∥2, εV,Lk = ∥V̂ L

k − V
xk,πθL

k
τk ∥2.

(36)

We also introduce a number of technical lemmas, which will be used in the proofs of the propositions
and theorems. We defer the proofs of the lemmas to Appendix D.

Lemma 2 For any k ≥ 0, we have

τk − τk+1 ≤ 8τk
3(k + 1)

.

Lemma 2 derives a simple bound on the rate of change of the regularization weight τk.

Lemma 3 Define LV = max{ 2Lr|S||A|
1−γ ,

(12+8 log |A|)
√

|S|
(1−γ)3 }. We have for all w, τ ≤ 1 and

x, x′, θ, θ′

|Jτ (x, πθ)− Jτ (x
′, πθ′)| ≤ LV (∥x− x′∥+ ∥θ − θ′∥), (37)

∥∇θJτ (x, πθ)−∇θJτ (x
′, πθ′)∥ ≤ LV (∥x− x′∥+ ∥θ − θ′∥), (38)

∥∇xJτ (x, π)−∇xJτ (x
′, π′)∥ ≤ LV (∥x− x′∥+ ∥π − π′∥), (39)

∥V x,πθ
τ − V x′,πθ′

τ ∥ ≤ LV (∥x− x′∥+ ∥θ − θ′∥), (40)

∥∇θV
x,πθ
τ −∇θV

x′,πθ′
τ ∥ ≤ LV (∥x− x′∥+ ∥θ − θ′∥), (41)

∥∇θ,θEs∼d
πθ
ρ
[E(πθ, s)]∥ ≤ LV . (42)

In addition, there exists a bounded constant LV,2
3 such that for all τ ≤ 1 and x, x′, θ, θ′

∥∇2
x,θJτ (x, πθ)−∇2

x,θJτ (x
′, πθ′)∥ ≤ LV,2(∥x− x′∥+ ∥θ − θ′∥),

∥∇2
θ,θJτ (x, πθ)−∇2

θ,θJτ (x
′, πθ′)∥ ≤ LV,2(∥x− x′∥+ ∥θ − θ′∥).

Lemma 3 shows that the value functions/cumulative returns are Lipschitz, and have Lipschitz
continuous gradients and Hessians.

Lemma 4 For any π, π′, we have

∥dπρ − dπ
′

ρ ∥ ≤ γ

1− γ
∥π − π′∥.

Lemma 4 shows that the occupancy measure is a Lipschitz function of the policy, a well-known result
in the literature. We include the proof in Section D.4 for completeness.

3We skip showing the exact constant here, but note that it depends polynomially on the structural parameters
of the problem.
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Lemma 5 Recall that BV = 1+log |A|
1−γ is the entry-wise upper bound on the magnitude of the value

function introduced in the paragraph after (3). We define the constants

BD = 3Lr, BF = 2(1 + γ)BV + 2 log |A|+ 2 + Lr, BG = (1 + γ)BV + log |A|+ 1.
(43)

Suppose that the regularization parameters satisfy w ≤ Lr

Lf
, τ ≤ 1. For all x, θ, θL, s, a, s′, s̄, ā, ξ

and V ∈ R|S| satisfying V (s) ≤ BV , we have

∥Dw(x, πθ, πθL , s, a, s̄, ā, ξ)∥ ≤ BD

w
,

∥Fw,τ (x, θ, V, s, a, s
′, ξ)∥ ≤ BF ,

∥Gτ (x, θ, V, s, a, s
′)∥ ≤ BG.

Lemma 6 We define the constants

LD = 3Lr +
2BD

1− γ
, LF = 3Lr + 2 log |A|+ 2 +BF

1− γ
+ 4, LG = Lr +

BG

1− γ
+ log |A|+ 2.

(44)

Suppose that the regularization parameters satisfy w ≤ min{Lr

Lf
, BD

(1−γ)Lf
}, τ ≤ 1. We have for all

x1, x2, π1, π
L
1 , π2, π

L
2

∥D̄w(x1, π1, π
L
1 )− D̄w(x2, π2, π

L
2 )∥ ≤ LD

w

(
∥x1 − x2∥+ ∥π1 − π2∥+ ∥πL

1 − πL
2 ∥
)

∥F̄w,τ (x1, θ1, V1)− F̄w,τ (x2, θ2, V2)∥ ≤ LF (∥x1 − x2∥+ ∥θ1 − θ2∥+ ∥V1 − V2∥),
∥Ḡτ (x1, θ1, V1)− Ḡτ (x2, θ2, V2)∥ ≤ LG(∥x1 − x2∥+ ∥θ1 − θ2∥+ ∥V1 − V2∥).

Lemma 7 Recall the definition of π⋆
w,τ in Section 3.1. For any w1, w2, τ1, τ2, x1, x2, we have

∥π⋆
w1,τ1(x1)− π⋆

w2,τ2(x2)∥ ≤ (
2Lfw2

CLτ1
+

2LV

CLτ1
)∥x1 − x2∥+

2Lf |w1 − w2|
CLτ1

+
6|τ1 − τ2||S| log |A|

(1− γ)CLτ1
.

In addition, for any w, τ > 0, we have

∥π⋆
τ (x)− π⋆

w,τ (x)∥ ≤ 2Lfw

CLτ
.

Lemmas 6 and 7 show that the update operators introduced in (26)-(31) are (approximately) bounded
and Lipschitz.

Lemma 8 Define L⋆ = 4+8 log |A|
σ(1−γ)4 . For any τ ≥ 0, we have

∥π⋆
τ (x)− π⋆(x)∥ ≤ L⋆τ.

Lemma 8 bounds the distance between the regularized best response π⋆
τ (x) to π⋆(x) defined in (5)

by a linear function of τ .

Lemma 9 Define LL = LV + Lf + LV (CL+2LV )
CL

. We have for all w, τ ≤ 1 and x, x′, θ, θ′

∥∇θLw,τ (x, πθ)−∇θLw,τ (x
′, πθ′)∥ ≤ LL

w
∥x− x′∥+ LL

w
∥θ − θ′∥, (45)

∥∇xLw,τ (x, πθ)−∇xLw,τ (x
′, πθ′)∥ ≤ LL

wτ
∥x− x′∥+ LL

w
∥θ − θ′∥. (46)

Lemma 9 establishes the Lipschitz continuity of the gradients of Lw,τ .

Lemma 10 Recall the definition of ℓτ in (35). We have for all x1, x2

∥∇ℓτ (x1)−∇ℓτ (x2)∥ ≤
(
LV +

2L2
V

CLτ

)
∥x1 − x2∥,
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∥∇xΦw,τ (x1)−∇xΦw,τ (x2)∥ ≤
(
Lf +

4LfLV

CLτ
+

4L2
V

CLwτ

)
∥x1 − x2∥,

∥∇xΦτ (x1)−∇xΦτ (x2)∥ ≤ (1 +
2LV

CLτ
)
(2LfLV

CLτ
+

2LfLV LV,2

σCLτ
+

2LfL
2
V LV,2

σ2CLτ
+

2LfL
2
V

σCLτ

)
∥x1 − x2∥.

Particularly, if w, τ ≤ 1, we have

∥∇ℓτ (x1)−∇ℓτ (x2)∥ ≤ LΦ

τ
∥x1 − x2∥,

∥∇xΦw,τ (x1)−∇xΦw,τ (x2)∥ ≤ LΦ

wτ
∥x1 − x2∥,

where LΦ = max{LV +
2L2

V

CL
, Lf +

4LfLV

CL
+

4L2
V

CL
,
4LfLV

CLτ +
4LfLV LV,2

σCLτ +
4LfL

2
V LV,2

σ2CLτ +
4LfL

2
V

σCLτ }.

In addition, if τ ≤ 2LV

CL
, we have

∥∇xΦτ (x1)−∇xΦτ (x2)∥ ≤ LΦ

τ
∥x1 − x2∥.

Lemma 10 establishes the Lipschitz continuity of the gradients of ℓτ , Φw,τ , and Φτ .

Lemma 11 We have for any w, τ > 0

∥∇xΦτ (x)−∇xΦw,τ (x)∥ ≤ 4LfLV w

CLστ
(Lf +

2LfLV,2

CLτ
),

∥∇xΦ(x)−∇xΦw,τ (x)∥ ≤ 4LfLV w

CLστ
(Lf +

2LfLV,2

CLτ
)

+
L⋆Lf (LV + 1) + L⋆LfLV,2 + L⋆LV LV,2 + LfLV,2(4 + 8 log |A|)

(1− γ)4σ2
τ.

The lemma demonstrate how the magnitude of the difference between ∇xΦτ (x) and ∇xΦw,τ (x) and
that between ∇xΦ(x) and ∇xΦw,τ (x) scale with w and τ .

Lemma 12 For any τ > 0, we have

∥∇xΦτ (x)−∇xΦ(x)∥ ≤ L⋆LfL
2
V LV,2τ

σ2
.

This lemma shows that distance between ∇xΦτ (x) and ∇xΦ(x) is bounded by a function linear in τ .

B Proof of Theorems

We study a slightly simplified variant of Algorithm 1, which is presented as Algorithm 2. The
sole distinction between the two is that Algorithm 2 uses i.i.d. samples drawn from the stationary
distribution, instead of continuously generated Markovian samples. Stochastic approximation and
RL algorithms have been extensively analyzed under Markovian sampling [Zou et al., 2019, Wu
et al., 2020], and it is well-established that Markovian samples affect convergence rates only by a
logarithmic factor. This simplification enables us to concentrate on the novel aspects we introduce
to bi-level RL, without being distracted by standard technical considerations related to Markovian
samples.

Theorem 3 (Replicate of Theorem 1 under i.i.d. samples) Consider the iterates of Algorithm 2
under the step sizes and weights

ζk =
ζ0

(k + 1)cζ
, αk =

α0

(k + 1)cα
, βk =

β0

(k + 1)cβ
, wk =

w0

(k + 1)cw
, τk =

τ0
(k + 1)cτ

,
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Algorithm 2 Actor Critic Algorithm for Bi-Level RL

1: Initialize: control variable x0, policy parameters θ0 and θL0 , value function estimates V̂0, V̂
L
0 ∈

R|S|

2: for iteration k = 0, 1, 2, ... do
3: Trajectory 1:

Get samples sk ∼ d
πθk
ρ , ak ∼ πθk(· | sk), s′k ∼ P(· | sk, ak). Receive reward rxk

(sk, ak).
4: Trajectory 2:

Get samples s̄k ∼ d
π
θL
k

ρ , āk ∼ πθL
k
(· | sk), s̄′k ∼ P(· | s̄k, ak). Receive reward rxk

(s̄k, āk).
5: Observe/Obtain ξk ∼ µ
6: Control variable update:

xk+1 = xk − ζk

(
∇̃xf(xk, πθk , ξk) +

1

wk

(
∇xrxk

(sk, ak)−∇xrxk
(s̄k, āk)

))
. (47)

7: Policy update:

θk+1 = θk + αk

(
rxk

(sk, ak) + τkE(πθk , sk) + γV̂k(sk+1)
)
∇θ log πθk(ak | sk), (48)

θLk+1 = θLk + αk

((
rxk

(s̄k, āk) + τkE(πθL
k
, s̄k) + γV̂ L

k (s̄k+1)
)
∇θ log πθL

k
(āk | s̄k)

− wk∇̃θf(xk, πθL
k
, ξk)

)
, (49)

πk = softmax(θk), πL
k = softmax(θLk ). (50)

8: Value function update:

V̂k+1 = ΠBV

(
V̂k + βkesk

(
rxk

(sk, ak) + τkE(πθk , sk) + γV̂k(sk+1)− V̂k(sk)
))

,

V̂ L
k+1 = ΠBV

(
V̂ L
k + βkes̄k

(
rxk

(s̄k, āk) + τkE(πL
θk
, s̄k) + γV̂ L

k (s̄k+1)− V̂ L
k (s̄k)

))
.

(51)

9: end for

with cζ = 9
10 , cα = 1

2 , cβ = 1
2 , cw = 3

20 , cτ = 1
20 and ζ0, α0, β0, w0, τ0 selected such that4

ζ0 ≤ α0 ≤ β0 ≤ w0 ≤ τ0 ≤ 1,

α0 ≤ min{ 4LΦ

3L2
V

,
4LΦ

3L2
L

,
3BF

8
}, β0 ≤ min{1− γ

L2
G

,
(1− γ)L2

V

8|S| log2 |A|
},

w0 ≤ min{Lr

Lf
,

BD

(1− γ)Lf
}, τ0 ≤ min{Lf |S|

CL
,
2LV

CL
,
2LV,2

CL
},

ζ0
α0

≤ min

{
C2

Lτ
2
0

1024(L2
L + L2

V )
,
C2

Lw
2
0τ

2
0

512L2
D

,
C2

Lw0τ
2
0

128LDLL
,
(1− γ)C2

Lτ
2
0

6144L2
V L

2
D

,
BF

BD

}
,

α0

β0
≤

{
1− γ

2
√
6LV LF

,
1− γ

48L2
V

,
1− γ

8L2
F

,
8(1− γ)(L2

L + L2
V )

3L2
V C

2
L

,

√
32BG

B2
F (LL + LV )

,
1− γ

36B2
FLV τ0

}
,

α0

β2
0

≤ 4BG

11B2
FLV

,
α0

τ0
≤ 1

LV
.

(52)

4Note that the step sizes satisfying the conditions always exist and can be found in the order of
τ0, w0, β0, α0, ζ0 – we first select w0, τ0 small enough to satisfy their upper bounds; then we select β0;
then we select α0 with respect to β0, w0, τ0; and finally we select ζ0 with respect to α0, β0, w0, τ0.
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Then, under Assumptions 1-5, we have for all k ≥ 0,

min
t<k

E[∥∇xΦ(xt)∥2] ≤
40

3ζ0(k + 1)1/10

(
Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0

)
+O

(
log(k + 1)

(k + 1)1/10

)
.

Theorem 4 (Replicate of Theorem 2 under i.i.d. samples) Given any fixed regularization weight
τ0 ≤ min{1, Lf |S|

CL
, 2LV

CL
,
2LV,2

CL
}5, i.e. τk = τ0 for all k ≥ 0, consider the iterates of Algorithm 2

under the step sizes and penalty weight

ζk =
ζ0

(k + 1)cζ
, αk =

α0

(k + 1)cα
, βk =

β0

(k + 1)cβ
, wk =

w0

(k + 1)cw

with cζ = 2
3 , cα = 1

2 , cβ = 1
2 , cw = 1

6 and ζ0, α0, β0, w0 selected such that (52) holds. Then, under
Assumptions 1-5, we have for all k ≥ 0,

min
t<k

E[∥∇xΦτ0(xt)∥2] ≤
20

3ζ0(k + 1)1/3

(
Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0

)
+O

(
log(k + 1)

(k + 1)1/3

)
.

We break down the proofs of the theorems into two parts. First, in the following propositions,
we individually establish the iteration-wise convergence of the upper-level decision variable (in
Proposition 1 under decaying regularization and Proposition 2 under fixed regularization), policy
iterates (in Propositions 3-4), and value function estimates (in Proposition 5). Then, in Sections B.1-
B.2, we combine the convergence of these variables and bound their joint convergence through a
coupled Lyapunov function. The proofs of the propositions are deferred to Section C.

Proposition 1 Under Assumptions 1-5 and step sizes satisfying (52), the iterates of Algorithm 2
satisfy for all k ≥ 0

ζk
4
E[∥∇xΦ(xk)∥2] ≤ E[Φτk(xk)− Φτk+1

(xk+1)] +
2L2

Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2]

+
2L2

Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2] +

L2
⋆L

2
fL

4
V L

2
V,2ζkτ

2
k

2σ4

+
256L4

fL
2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

B2
DLΦζ

2
k

2τkw2
k

+
16Lf |S| log |A|

(1− γ)CL(k + 1)
.

Proposition 2 Under Assumptions 1-5 and step sizes satisfying (52), the iterates of Algorithm 2
satisfy for all k ≥ 0

ζk
2
E[∥∇xΦτ0(xk)∥2] ≤ E[Φτ0(xk)− Φτ0(xk+1)] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τ0(xk)∥2]

+
2L2

Dζk
w2

k

E[∥πL
k − π⋆

wk,τ0
(xk)∥2] + C2,τ0ζkw

2
k +

B2
DLΦ,τ0ζ

2
k

2w2
k

,

where C2,τ0 =
(

4LfLV

CLστ0
(Lf +

2LfLV,2

CLτ0
)
)2

and LΦ,τ0 = (1 + 2LV

CLτ0
)
(

2LfLV

CLτ0
+

2LfLV LV,2

σCLτ0
+

2LfL
2
V LV,2

σ2CLτ0
+

2LfL
2
V

σCLτ

)
.

Proposition 3 Under Assumptions 1-5 and step sizes satisfying (52), the iterates of Algorithm 2
satisfy for all k ≥ 0

E[εθk+1 − εθk] ≤ −αk

8
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk]

5Note that Propositions 3-5 use the Lipschitz continuity conditions established on operator/functions such as
Lw,τ and ℓτ under τ ≤ min{1, Lf |S|

CL
, 2LV

CL
,
2LV,2

CL
}, a condition imposed so that we can present the associated

Lipschitz constants in a more concise form. As the proof of Theorem 4 is based on Propositions 3-5, we state
that the result holds for this range of τ0. However, the same proof technique applies verbatim for any arbitrary
τ0 > 0; only the values of the Lipschitz constants would change accordingly.
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− C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2] +

64L2
DL2

V ζ
2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2
+

16 log |A|τk
3(1− γ)(k + 1)

.

Proposition 4 Under Assumptions 1-5 and step sizes satisfying (52), the iterates of Algorithm 2
satisfy for all k ≥ 0

E[εθ,Lk+1 − εθ,Lk ]

≤ −w2
kαk

8
E[∥∇θLwk,τk(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2] +
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2
+

32 log |A|τk
3(1− γ)(k + 1)

.

Proposition 5 (Value Function Convergence) Under Assumptions 1-5 and step sizes satisfying
(52), the iterates of Algorithm 2 satisfy for all k ≥ 0

E[εVk+1] ≤
(
1− (1− γ)βk

4

)
E[εVk ] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
22B2

FLV τ0α
2
k

α0
+

64L2
V τ

2
k

3(1− γ)βk(k + 1)2
+ 8BGβ

2
k,

E[εV,Lk+1] ≤
(
1− (1− γ)βk

4

)
E[εV,Lk ] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V w
2
kα

2
k

(1− γ)βk
E[∥∇θLwk,τk(xk, πθL

k
)∥2] + 6L2

V ζ
2
k

(1− γ)βk
E[εxk]

+
22B2

FLV τ0α
2
k

α0
+

64L2
V τ

2
k

3(1− γ)βk(k + 1)2
+ 8BGβ

2
k.

B.1 Proof of Theorem 3

Combining the bounds in Propositions 1-5, we have for any k ≥ 0

ζk
4
E[∥∇xΦ(xk)∥2]

≤ E[Φτk(xk)− Φτk+1
(xk+1)] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2]

+
L2
⋆L

2
fL

4
V L

2
V,2ζkτ

2
k

2σ4
+

256L4
fL

2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

B2
DLΦζ

2
k

2τkw2
k

+
16Lf |S| log |A|

(1− γ)CL(k + 1)

+ E[εθ,Lk − εθ,Lk+1]−
w2

kαk

8
E[∥∇θLwk,τk(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2] +
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2
+

32 log |A|τk
3(1− γ)(k + 1)

+ E[εθk − εθk+1]−
αk

8
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2] +

64L2
DL2

V ζ
2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]
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+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2
+

16 log |A|τk
3(1− γ)(k + 1)

− E[εVk+1] +
(
1− (1− γ)βk

4

)
E[εVk ] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
22B2

FLV τ0α
2
k

α0
+

64L2
V τ

2
k

3(1− γ)βk(k + 1)2
+ 8BGβ

2
k

− E[εV,Lk+1] +
(
1− (1− γ)βk

4

)
E[εV,Lk ] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V w
2
kα

2
k

(1− γ)βk
E[∥∇θLwk,τk(xk, πθL

k
)∥2] + 6L2

V ζ
2
k

(1− γ)βk
E[εxk]

+
22B2

FLV τ0α
2
k

α0
+

64L2
V τ

2
k

3(1− γ)βk(k + 1)2
+ 8BGβ

2
k

≤ E[Φτk(xk)− Φτk+1
(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+
(32(L2

L + L2
V )ζ

2
k

C2
Lαkτ2k

+
12L2

V ζ
2
k

(1− γ)βk

)
E[εxk] +

(
− αk

8
+

6L2
V α

2
k

(1− γ)βk

)
E[∥∥∇θLwk,τk(xk, πθL

k
)∥2]

+
(
− w2

kαk

8
+

6L2
V w

2
kα

2
k

(1− γ)βk

)
E[∥∥∇θLwk,τk(xk, πθL

k
)∥2]

+
(
− C2

Lαkτ
2
k

64
+

2L2
Dζk
w2

k

+
128L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

+
24L2

V L
2
Dζ2k

(1− γ)βk

)
E[∥πk − π⋆

τk
(xk)∥2]

+
(
− C2

Lαkτ
2
k

64
+

2L2
Dζk
w2

k

+
128L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

+
24L2

V L
2
Dζ2k

(1− γ)βk

)
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
(
− (1− γ)βk

4
+ 2L2

Fαk

)
E[εVk ] +

(
− (1− γ)βk

4
+ 2L2

Fαk

)
E[εV,Lk ]

+
256L4

fL
2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

L2
⋆L

2
fL

4
V L

2
V,2ζkτ

2
k

2σ4
+

9B2
DLΦζ

2
k

2w2
kτk

+
4BDBFLLζkαk

wk
+ 48BGβ

2
k

+
128L2

V τ
2
k

3(1− γ)βk(k + 1)2
+

16 log |A|τk
(1− γ)(k + 1)

+
16Lf |S| log |A|

(1− γ)CL(k + 1)
,

where to get the second inequality we combine the terms 22B2
FLV τ0α

2
k

α0
and 8BGβ

2
k under the

condition α0 ≤ 4BGβ2
0

11B2
FLV

, and the terms B2
FLLα2

k

2 +
B2

FLV α2
k

2 and 16BGβ
2
k under the condition

αk

βk
≤
√

32BG

B2
F (LL+LV )

.

Note that the highlighted red coefficients in the inequality above are non-positive and the blue
coefficients can be combined under the step size conditions ζ0 ≤ β0, τk ≤ Lf |S|

CL
, and

α0

β0
≤
{
1− γ

48L2
V

,
1− γ

8L2
F

,
8(1− γ)(L2

L + L2
V )

3L2
V C

2
L

}
,

ζ0
α0

≤ min

{
C2

Lw
2
0τ

2
0

512L2
D

,
C2

Lw0τ
2
0

128LDLL
,
(1− γ)C2

Lτ
2
0

6144L2
V L

2
D

}
.

This allows us to simplify the inequality and obtain

ζk
4
E[∥∇xΦ(xk)∥2]

≤ E[Φτk(xk)− Φτk+1
(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+
64(L2

L + L2
V )ζ

2
k

C2
Lαkτ2k

E[εxk] +
256L4

fL
2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

L2
⋆L

2
fL

4
V L

2
V,2ζkτ

2
k

2σ4
+

9B2
DLΦζ

2
k

2w2
kτk

+
4BDBFLLζkαk

wk
+ 48BGβ

2
k +

128L2
V τ

2
k

3(1− γ)βk(k + 1)2
+

32Lf |S| log |A|
(1− γ)CL(k + 1)

. (53)
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Recall the definition εxk = ∥∇xΦwk,τk(xk)∥2 in (36). We can relate the second term on the right
hand side of (53) to ∥∇xΦ(xk)∥2 using Lemma 11

64(L2
L + L2

V )ζ
2
k

C2
Lαkτ2k

εxk ≤ 128(L2
L + L2

V )ζ
2
k

C2
Lαkτ2k

∥∇xΦ(xk)∥2 +
128(L2

L + L2
V )ζ

2
k

C2
Lαkτ2k

∥∇xΦ(xk)−∇xΦwk,τk(xk)∥2

≤ 128(L2
L + L2

V )ζ
2
k

C2
Lαkτ2k

∥∇xΦ(xk)∥2 +
128(L2

L + L2
V )ζ

2
k

C2
Lαkτ2k

(4LfLV wk

CLστk
(Lf +

2LfLV,2

CLτk
)

+
L⋆Lf (LV + 1) + L⋆LfLV,2 + L⋆LV LV,2 + LfLV,2(4 + 8 log |A|)

(1− γ)4σ2
τk

)2
≤ ζk

8
∥∇xΦ(xk)∥2 +

128(L2
L + L2

V )ζ
2
k

C2
Lαkτ2k

(4LfLV wk

CLστk
(Lf +

2LfLV,2

CLτk
)

+
L⋆Lf (LV + 1) + L⋆LfLV,2 + L⋆LV LV,2 + LfLV,2(4 + 8 log |A|)

(1− γ)4σ2
τk

)2
=

ζk
8
∥∇xΦ(xk)∥2 +

128(L2
L + L2

V )ζ
2
k

C2
Lαkτ2k

(4LfLV wk

CLστk
(Lf +

2LfLV,2

CLτk
) + C1τk

)2
,

(54)

where we derive the third inequality from the step size condition ζ0
α0

≤ C2
Lτ2

0

1024(L2
L+L2

V )
, and define in

the last equation C1 =
L⋆Lf (LV +1)+L⋆LfLV,2+L⋆LV LV,2+LfLV,2(4+8 log |A|)

(1−γ)4σ2 .

Combining (53) and (54) and substituting in the step size decay rates,
ζk
8
E[∥∇xΦ(xk)∥2] ≤ E[Φτk(xk)− Φτk+1

(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+
128(L2

L + L2
V )ζ

2
k

C2
Lαkτ2k

(4LfLV wk

CLστk
(Lf +

2LfLV,2

CLτk
) + C1τk

)2
+

256L4
fL

2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

L2
⋆L

2
fL

4
V L

2
V,2ζkτ

2
k

2σ4
+

9B2
DLΦζ

2
k

2w2
kτk

+
4BDBFLLζkαk

wk
+ 48BGβ

2
k +

128L2
V τ

2
k

3(1− γ)βk(k + 1)2
+

32Lf |S| log |A|
(1− γ)CL(k + 1)

(55)

≤ E[Φτk(xk)− Φτk+1
(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+O
(

1

(k + 1)

)
.

Re-arranging the terms and summing over iterations,
k−1∑
t=0

ζ0
8(t+ 1)9/10

E[∥∇xΦ(xt)∥2] ≤ Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0 +O

(
k−1∑
t=0

1

(t+ 1)

)
.

(56)

The following inequalities on the summation of step sizes are standard results in the literature (the
ones in our paper are specifically adapted from Lemma 3 of an earlier version of Zeng et al. [2024])

k−1∑
t=0

1

t+ 1
⩽

log(k + 1)

log(2)
,

k∑
t=0

1

(t+ 1)u
≥

(1− 1
21−u )(k + 1)1−u

1− u
, ∀u ∈ (0, 1)

and with u = 9/10,
k∑

t=0

1

(t+ 1)9/10
≥ 0.06(k + 1)1/10

1/10
=

3(k + 1)1/10

5
.
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This allows us to further simplify (56)

min
t<k

E[∥∇xΦ(xt)∥2] ≤
1∑k−1

t=0
ζ0

8(t+1)9/10

k−1∑
t=0

ζ0
8(t+ 1)9/10

E[∥∇xΦ(xt)∥2]

≤ 40

3ζ0(k + 1)1/10

(
Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0 +O(log(k + 1))

)
.

■

B.2 Proof of Theorem 4

We combine Propositions 3-2. Note that τk = τ0. We can follow a line of analysis identical to what
leads to (53) in the proof of Theorem 3 and show the following inequality

ζk
2
E[∥∇xΦτ0(xk)∥2] ≤ E[Φτ0(xk)− Φτ0(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+
64(L2

L + L2
V )ζ

2
k

C2
Lαkτ20

E[εxk] + C2,τ0ζkw
2
k +

4B2
DLΦζ

2
k

w2
kτ0

+
B2

DLΦ,τ0ζ
2
k

2w2
k

+
4BDBFLLζkαk

wk
+ 48BGβ

2
k +

128L2
V τ

2
0

3(1− γ)βk(k + 1)2
+

48 log |A|τ0
3(1− γ)(k + 1)

.

(57)

The step size conditions required to show (57) are

α0

β0
≤

{
1− γ

48L2
V

,
1− γ

8L2
F

,
8(1− γ)(L2

L + L2
V )

3L2
V C

2
L

,

√
32BG

B2
F (LL + LV )

}
,

α0

β2
0

≤ 4BG

11B2
FLV

,

ζ0 ≤ β0,
ζ0
α0

≤ min

{
C2

Lw
2
0τ

2
0

512L2
D

,
C2

Lw0τ
2
0

128LDLL
,
(1− γ)C2

Lτ
2
0

6144L2
V L

2
D

}
.

Recall the definition εxk = ∥∇xΦwk,τk(xk)∥2 = ∥∇xΦwk,τ0(xk)∥2 in (36). We can relate the second
term on the right hand side of (57) to ∥∇xΦ(xk)∥2 using Lemma 11

64(L2
L + L2

V )ζ
2
k

C2
Lαkτ20

εxk ≤ 128(L2
L + L2

V )ζ
2
k

C2
Lαkτ20

∥∇xΦτ0(xk)∥2 +
128(L2

L + L2
V )ζ

2
k

C2
Lαkτ20

∥∇xΦτ0(xk)−∇xΦwk,τ0(xk)∥2

≤ 128(L2
L + L2

V )ζ
2
k

C2
Lαkτ20

∥∇xΦτ0(xk)∥2 +
128(L2

L + L2
V )ζ

2
k

C2
Lαkτ20

(4LfLV wk

CLστ0
(Lf +

2LfLV,2

CLτ0
)
)2

≤ ζk
4
∥∇xΦτ0(xk)∥2 +

128(L2
L + L2

V )ζ
2
kw

2
k

C2
Lαkτ20

(4LfLV

CLστ0
(Lf +

2LfLV,2

CLτ0
)
)2

=
ζk
4
∥∇xΦτ0(xk)∥2 +

128(L2
L + L2

V )C2,τ0ζ
2
kw

2
k

C2
Lαkτ20

, (58)

where the third inequality is due to the step size condition ζ0
α0

≤ C2
Lτ2

0

512(L2
L+L2

V )
.

Combining (57) and (58) and plugging in the step size decay rates,

ζk
4
E[∥∇xΦτ0(xk)∥2] ≤ E[Φτ0(xk)− Φτ0(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+
128(L2

L + L2
V )C2,τ0ζ

2
kw

2
k

C2
Lαkτ20

+ 2C2,τ0ζkw
2
k +

4B2
DLΦζ

2
k

w2
kτ0

+
B2

DLΦ,τ0ζ
2
k

2w2
k

+
4BDBFLLζkαk

wk
+ 48BGβ

2
k +

128L2
V τ

2
0

3(1− γ)βk(k + 1)2
+

48 log |A|τ0
3(1− γ)(k + 1)

≤ E[Φτ0(xk)− Φτ0(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+O
(
ζ2kw

2
k

αk
+ ζkw

2
k +

ζ2k
w2

k

+
ζkαk

wk
+ β2

k +
1

βk(k + 1)2
+

1
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)
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≤ E[Φτ0(xk)− Φτ0(xk+1) + εθ,Lk − εθ,Lk+1 + εθk − εθk+1 + εVk − εVk+1 + εV,Lk − εV,Lk+1]

+O
(

1

k + 1

)
.

Re-arranging the terms and summing over iterations,

k−1∑
t=0

ζ0
4(t+ 1)2/3

E[∥∇xΦτ0(xt)∥2] ≤ Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0 +O

(
k−1∑
t=0

1

(t+ 1)

)
.

(59)

The following inequalities on the summation of step sizes are standard results in the literature (the
ones in our paper are specifically adapted from Lemma 3 of an earlier version of Zeng et al. [2024])

k−1∑
t=0

1

t+ 1
⩽

log(k + 1)

log(2)
,

k∑
t=0

1

(t+ 1)u
≥

(1− 1
21−u )(k + 1)1−u

1− u
, ∀u ∈ (0, 1)

and with u = 2/3,
k∑

t=0

1

(t+ 1)2/3
≥ 0.2(k + 1)1/3

1/3
=

3(k + 1)1/3

5
.

This allows us to further simplify (59)

min
t<k

E[∥∇xΦτ0(xt)∥2] ≤
1∑k−1

t=0
ζ0

4(t+1)2/3

k−1∑
t=0

ζ0
4(t+ 1)2/3

E[∥∇xΦτ0(xt)∥2]

≤ 20

3ζ0(k + 1)1/3

(
Φτ0(x0) + εθ0 + εθ,L0 + εV0 + εV,L0 +O(log(k + 1))

)
.

■

C Proof of Propositions

C.1 Proof of Proposition 1

We know from Lemma 10 that under the step size condition τk ≤ 2LV

CL
, the objective Φτk has

LΦ

τk
-Lipschitz gradients. This implies

Φτk(xk+1)− Φτk(xk)

≤ ⟨∇xΦτk(xk), xk+1 − xk⟩+
LΦ

2τk
∥xk+1 − xk∥2

= −ζk⟨∇xΦτk(xk), Dwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk)⟩+

LΦζ
2
k

2τk
∥Dwk

(xk, πk, π
L
k , sk, ak, s̄k, āk, ξk)∥2

= −ζk∥∇xΦτk(xk)∥2 + ζk⟨∇xΦτk(xk),∇xΦτk(xk)−Dwk
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L
k , sk, ak, s̄k, āk, ξk)⟩

+
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2
k
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L
k , sk, ak, s̄k, āk, ξk)∥2.

By the law of total expectation,

E[Φτk(xk+1)− Φτk(xk)]

≤ −ζkE[∥∇xΦτk(xk)∥2] +
LΦζ

2
k

2τk
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L
k , sk, ak, s̄k, āk, ξk)∥2]
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+ ζkE[⟨∇xΦτk(xk),∇xΦτk(xk)− E[Dwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk) | Fk−1]⟩]
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2
k
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B2
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k
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k

+
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2
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= −ζk
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DLΦζ

2
k
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k

+
ζk
2
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[∥∥∥(∇xΦτk(xk)−∇xΦwk,τk(xk)

)
+
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⋆
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⋆
wk,τk
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L
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≤ −ζk
2
E[∥∇xΦτk(xk)∥2] + ζkE[∥D̄wk

(xk, π
⋆
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⋆
wk,τk
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+ ζkE[∥∇xΦτk(xk)−∇xΦwk,τk(xk)∥2] +
B2

DLΦζ
2
k

2τkw2
k

, (60)

where the second inequality applies Lemma 5 and the last equation follows from (32).

To bound the second term on the right hand side of (60), we apply Lemma 6

∥D̄wk
(xk, π

⋆
τk
(xk), π

⋆
wk,τk

(xk))− D̄wk
(xk, πk, π

L
k )∥2

≤ L2
D

w2
k

(
∥πk − π⋆

τk
(xk)∥+ ∥πL

k − π⋆
wk,τk

(xk)∥
)2

≤ 2L2
D

w2
k

∥πk − π⋆
τk
(xk)∥2 +

2L2
D

w2
k

∥πL
k − π⋆

wk,τk
(xk)∥2. (61)

For the third term of (60), we have from Lemma 11

∥∇xΦτk(xk)−∇xΦwk,τk(xk)∥2 ≤
(4LfLV wk

CLστk
(Lf +

2LfLV,2

CLτk
)
)2

. (62)

Substituting (61) and (62) into (60),

E[Φτk(xk+1)− Φτk(xk)]

≤ −ζk
2
E[∥∇xΦτk(xk)∥2] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2]

+ ζk(
4LfLV wk

CLστk
(Lf +

2LfLV,2

CLτk
)
)2

+
B2

DLΦζ
2
k

2τkw2
k

. (63)

Under the choice of step size τk ≤ 2LV,2

CL
, we can further simplify (63)

E[Φτk(xk+1)− Φτk(xk)]

≤ −ζk
2
E[∥∇xΦτk(xk)∥2] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2]

+ ζk(
4LfLV wk

CLστk
· 4LfLV,2

CLτk

)2
+

B2
DLΦζ

2
k

2τkw2
k

= −ζk
2
E[∥∇xΦτk(xk)∥2] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2]

+
256L4

fL
2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

B2
DLΦζ

2
k

2τkw2
k

. (64)

The next step is to bridge the gap between Φτk(xk+1) and Φτk+1
(xk+1). By the definition of Φτ in

(7)

Φτk+1
(xk+1)− Φτk(xk+1) = f(xk+1, π

⋆
τk+1

(xk+1))− f(xk+1, π
⋆
τk
(xk+1))
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≤ Lf∥π⋆
τk+1

(xk+1)− π⋆
τk
(xk+1)∥

≤ Lf · 6(τk − τk+1)|S| log |A|
(1− γ)CLτk

≤ 16Lf |S| log |A|
(1− γ)CL(k + 1)

, (65)

where the first inequality is due to Assumption 3, and the second inequality is due to Lemma 7, and
the last inequality applies Lemma 2.

Finally, we bridge the gap between ∥∇xΦτk(xk)∥2 and ∥∇xΦ(xk)∥2 by invoking Lemma 12

∥∇xΦτk(x)−∇xΦ(x)∥ ≤ L⋆LfL
2
V LV,2τk
σ2

. (66)

Combining (64)-(66),

E[Φτk+1
(xk+1)− Φτk(xk)]

= E[Φτk(xk+1)− Φτk(xk)] + E[Φτk+1
(xk+1)− Φτk(xk+1)]

≤ −ζk
2
E[∥∇xΦτk(xk)∥2] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2]

+
256L4

fL
2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

B2
DLΦζ

2
k

2τkw2
k

+
16Lf |S| log |A|

(1− γ)CL(k + 1)

≤ −ζk
4
E[∥∇xΦ(xk)∥2] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τk
(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τk
(xk)∥2]

+
L2
⋆L

2
fL

4
V L

2
V,2ζkτ

2
k

2σ4
+

256L4
fL

2
V L

2
V,2ζkw

2
k

C4
Lσ

2τ4k
+

B2
DLΦζ

2
k

2τkw2
k

+
16Lf |S| log |A|

(1− γ)CL(k + 1)
,

where the last inequality follows from the simple fact that −a2

2 ≤ − b2

4 + (a−b)2

2 for any scalar a, b.

■

C.2 Proof of Proposition 3

The proof depends on an intermediate result that bounds an important cross term. We state it in the
lemma below and defer its proof to Section D.13.

Lemma 13 Under the assumptions and step sizes of Proposition 3, we have for all k ≥ 0

E[−⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩⟩]

≤ C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2]

+
64L2

DL2
V ζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk].

We now proceed to the proof of Proposition 3. We consider the following decomposition and bound
each term on the right hand side individually.

− Jτk+1
(xk+1, πθk+1

) + Jτk(xk, πθk)

=
(
− Jτk(xk+1, πθk+1

) + Jτk(xk+1, πθk)
)
+
(
− Jτk(xk+1, πθk) + Jτk(xk, πθk)

)
+
(
− Jτk+1

(xk+1, πθk+1
) + Jτk(xk+1, πθk+1

)
)
. (67)

Bound the First Term of (67). As Jτ has LV -Lipschitz gradients,

− Jτk(xk+1, πθk+1
) + Jτk(xk+1, πθk)
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≤ ⟨−∇θJτk(xk+1, πθk), θk+1 − θk⟩+
LV

2
∥θk+1 − θk∥2

= −αk⟨∇θJτk(xk+1, πθk), F0,τk(xk, θk, V̂k, sk, ak, s
′
k)⟩+

LV α
2
k

2
∥F0,τk(xk, θk, V̂k, sk, ak, s

′
k)∥2

= −αk⟨∇θJτk(xk+1, πθk), F0,τk(xk, θk, V̂k, sk, ak, s
′
k)− F̄0,τk(xk, θk, V̂k)⟩

− αk⟨∇θJτk(xk+1, πθk), F̄0,τk(xk, θk, V̂k)− F̄0,τk(xk, θk, V
xk,πθk
τk )⟩

− αk⟨∇θJτk(xk+1, πθk),∇θJτk(xk, πθk)⟩+
LV α

2
k

2
∥F0,τk(xk, θk, V̂k, sk, ak, s

′
k)∥2, (68)

where the final equation follows from ∇θJτk(xk, πθk) = F̄0,τk(xk, θk, V
xk,πθk
τk ).

To bound the first term of (68),

− αkE[⟨∇θJτk(xk+1, πθk), F0,τk(xk, θk, V̂k, sk, ak, s
′
k)− F̄0,τk(xk, θk, V̂k)⟩]

= −αkE[⟨∇θJτk(xk, πθk),E[F0,τk(xk, θk, V̂k, sk, ak, s
′
k) | Fk−1]− F̄0,τk(xk, θk, V̂k)⟩]

+ αkE[⟨∇θJτk(xk, πθk)−∇θJτk(xk+1, πθk), F0,τk(xk, θk, V̂k, sk, ak, s
′
k)− F̄0,τk(xk, θk, V̂k)⟩]

= αkE[⟨∇θJτk(xk, πθk)−∇θJτk(xk+1, πθk), F0,τk(xk, θk, V̂k, sk, ak, s
′
k)− F̄0,τk(xk, θk, V̂k)⟩]

≤ αk · LV E[∥xk+1 − xk∥] · 2BF

≤ 2BFLV αk · BDζk
wk

=
2BDBFLV ζkαk

wk
, (69)

where the second inequality follows from Lemma 5.

For the second term of (68),

− αk⟨∇θJτk(xk+1, πθk), F̄0,τk(xk, θk, V̂k)− F̄0,τk(xk, θk, V
xk,πθk
τk )⟩

≤ αk

8
∥∇θJτk(xk+1, πθk)∥2 + 2αk∥F̄0,τk(xk, θk, V̂k)− F̄0,τk(xk, θk, V

xk,πθk
τk )∥2

≤ αk

4
∥∇θJτk(xk, πθk)∥2 +

αk

4
∥∇θJτk(xk+1, πθk)−∇θJτk(xk, πθk)∥2

+ 2αk∥F̄0,τk(xk, θk, V̂k)− F̄0,τk(xk, θk, V
xk,πθk
τk )∥2

≤ αk

4
∥∇θJτk(xk, πθk)∥2 +

L2
V αk

4

(
∥xk+1 − xk∥2

)
+ 2L2

Fαk∥V
xk,πθk
τk − V̂k∥2

≤ αk

4
∥∇θJτk(xk, πθk)∥2 +

L2
V αk

4
·
(BDζk

wk

)2
+ 2L2

Fαkε
V
k

≤ αk

4
∥∇θJτk(xk, πθk)∥2 +

B2
DL2

V ζ
2
kαk

4w2
k

+ 2L2
Fαkε

V
k , (70)

where the third inequality is a result of the Lipschitz continuity of Jτk and F̄0,τk .

For the third term of (68),

− αk⟨∇θJτk(xk+1, πθk),∇θJτk(xk, πθk)⟩
= −αk∥∇θJτk(xk, πθk)∥2 + αk⟨∇θJτk(xk, πθk)−∇θJτk(xk+1, πθk),∇θJτk(xk, πθk)⟩

≤ −αk

2
∥∇θJτk(xk, πθk)∥2 +

αk

2
∥∇θJτk(xk+1, πθk)−∇θJτk(xk, πθk)∥2

≤ −αk

2
∥∇θJτk(xk, πθk)∥2 +

L2
V αk

2

(
∥xk+1 − xk∥2

)
≤ −αk

2
∥∇θJτk(xk, πθk)∥2 +

L2
V αk

2
·
(BDζk

wk

)2
≤ −αk

2
∥∇θJτk(xk, πθk)∥2 +

B2
DL2

V ζ
2
kαk

2w2
k

, (71)
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where the second inequality follows from the LV -smoothness continuity of Jτ from (38) of Lemma 3.

Substituting (69)-(71) into (68),

E[−Jτk+1
(xk+1, πθk+1

) + Jτk(xk, πθk)]

≤ 2BDBFLV ζkαk

wk
+

αk

4
E[∥∇θJτk(xk, πθk)∥2] +

B2
DL2

V ζ
2
kαk

4w2
k

+ 2L2
FαkE[εVk ]

− αk

2
E[∥∇θJτk(xk, πθk)∥2] +

B2
DL2

V ζ
2
kαk

2w2
k

+
LV α

2
k

2
E[∥F0,τk(xk, θk, V̂k, sk, ak, s

′
k)∥2]

≤ −αk

4
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
3B2

DL2
V ζ

2
kαk

4w2
k

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2

≤ −αk

8
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
3B2

DL2
V ζ

2
kαk

4w2
k

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2

− C2
Lαkτ

2
k

32
E[∥πθk − π⋆

τk
(xk)∥2], (72)

where the last inequality plugs in the relationship

∥∇θJτk(xk, πθk)∥ ≥ CLτk
2

∥πθk − π⋆
τk
(xk)∥. (73)

Note that Jτ (x, π) = limw→0 wLw,τ (x, π), which implies that (73) follows from (25).

Bound the Second Term of (67). We use θ⋆τ (x) to denote a softmax parameter that encodes the
policy π⋆

τ (x). Again, as Jτ has LV -Lipschitz gradients,

− Jτk(xk+1, πθk) + Jτk(xk, πθk)

≤ −⟨∇xJτk(xk, πθk), xk+1 − xk⟩+
LV

2
∥xk+1 − xk∥2

= −⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩+
LV

2
∥xk+1 − xk∥2

− ⟨∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩

= −⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩+
LV

2
∥xk+1 − xk∥2

− ⟨∇xℓτk(xk), xk+1 − xk⟩

≤ −⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩+
LV

2
∥xk+1 − xk∥2

+
(
− ℓτk(xk+1) + ℓτk(xk)

)
+

LΦ

2τk
∥xk+1 − xk∥2

≤ −⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩

+
(
− Jτk(xk+1, π

⋆
τk
(xk+1)) + Jτk(xk, π

⋆
τk
(xk))

)
+

LΦ

τk
∥xk+1 − xk∥2,

where the last inequality is due to LV ≤ LΦ and the step size condition τk ≤ 1, and
the second equation uses the relationship ∇xJτk(xk, πθ⋆

τk
(xk)) = ∇xℓτk(xk), which is due to

∇θJτk(xk, πθ⋆
τk

(xk)) = 0 by the first-order optimality condition. The second inequality is due to the

fact that ℓτ is LΦ

τ -smooth when τ ≤ 1 (established in Lemma 10) and that for an L-smooth function
f , we have

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2.

Taking the expectation and plugging in the result from Lemma 13,

E[−Jτk(xk+1, πθk) + Jτk(xk, πθk)]

≤ C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2]
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+
64L2

DL2
V ζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk]

+ E[−Jτk(xk+1, π
⋆
τk
(xk+1)) + Jτk(xk, π

⋆
τk
(xk))] +

LΦ

τk
E[∥xk+1 − xk∥2]

≤ C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2] +

64L2
DL2

V ζ
2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+ E[−Jτk(xk+1, π
⋆
τk
(xk+1)) + Jτk(xk, π

⋆
τk
(xk))] +

32L2
V ζ

2
k

C2
Lαkτ2k

E[εxk] +
B2

DLΦζ
2
k

w2
kτk

, (74)

where the last inequality follows from ∥xk+1 − xk∥ ≤ BDζk
wk

.

Bound the Third Term of (67).

−Jτk+1
(xk+1, πθk+1

) + Jτk(xk+1, πθk+1
) =

τk − τk+1

1− γ
E
s∼d

πL
k+1

ρ

[E(πL
k+1, s)]

≤ log |A|(τk − τk+1)

(1− γ)

≤ 8 log |A|τk
3(1− γ)(k + 1)

, (75)

where the second inequality follows from Lemma 2.

Collecting the bounds in (72)-(75) and plugging them into (67), we get

E[−Jτk+1
(xk+1, πθk+1

) + Jτk(xk, πθk)]

≤ −αk

8
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
3B2

DL2
V ζ

2
kαk

4w2
k

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2

− C2
Lαkτ

2
k

32
E[∥πθk − π⋆

τk
(xk)∥2]

+
C2

Lαkτ
2
k

64
E[∥πk − π⋆

τk
(xk)∥2] +

64L2
DL2

V ζ
2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+ E[−Jτk(xk+1, π
⋆
τk
(xk+1)) + Jτk(xk, π

⋆
τk
(xk))] +

32L2
V ζ

2
k

C2
Lαkτ2k

E[εxk] +
B2

DLΦζ
2
k

w2
kτk

+
8 log |A|τk

3(1− γ)(k + 1)

≤ −αk

8
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2] +

64L2
DL2

V ζ
2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2
+

8 log |A|τk
3(1− γ)(k + 1)

+ E[−Jτk(xk+1, π
⋆
τk
(xk+1)) + Jτk(xk, π

⋆
τk
(xk))],

where in the last inequality we have combined the terms 3B2
DL2

V ζ2
kαk

4w2
k

and B2
DLΦζ2

k

w2
kτk

under the step size

conditions τk ≤ 1 and αk ≤ 4LΦ

3L2
V

.

Recall the definition of εθk in (36). We can re-arrange the terms in the inequality above and obtain

E[εθ,Lk+1 − εθ,Lk ]

= E[−Jτk+1
(xk+1, πθk+1

) + Jτk(xk, πθk)]

+ E[Jτk(xk+1, π
⋆
τk
(xk+1))− Jτk(xk, π

⋆
τk
(xk))]

+ E[Jτk+1
(xk+1, π

⋆
τk
(xk+1))− Jτk(xk+1, π

⋆
τk
(xk+1))]
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≤ −αk

8
E[∥∇θJτk(xk, πθk)∥2] + 2L2

FαkE[εVk ] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2] +

64L2
DL2

V ζ
2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLV ζkαk

wk
+

B2
FLV α

2
k

2
+

16 log |A|τk
3(1− γ)(k + 1)

,

where the bound on Jτk+1
(xk+1, π

⋆
τk
(xk+1))−Jτk(xk+1, π

⋆
τk
(xk+1)) ≤ 8 log |A|τk

3(1−γ)(k+1) can be obtained
in a manner similar to (75).

■

C.3 Proof of Proposition 4

The proof depends on an intermediate result that bounds an important cross term. We state it in the
lemma below and defer its proof to Section D.14.

Lemma 14 Under the assumptions and step sizes of Proposition 4, we have for all k ≥ 0

E[⟨∇xLwk,τk(xk, πθL
k
)−∇xLwk,τk(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩]

≤ C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk].

We now proceed to the proof of the proposition. We define the re-weighted functions

Lreweight
w,τ (x, π) ≜ wLw,τ (x, π) = wf(x, π)+(Jτ (x, π

⋆
τ (x))−Jτ (x, π)), Φreweight

w,τ (x) ≜ wΦw,τ (x).

We consider the following decomposition and bound each term on the right hand side individually.

Lreweight
wk+1,τk+1

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk, πθL
k
)

=
(
Lreweight
wk,τk

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk+1, πθL
k
)
)
+
(
Lreweight
wk,τk

(xk+1, πθL
k
)− Lreweight

wk,τk
(xk, πθL

k
)
)

+
(
Lreweight
wk+1,τk+1

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk+1, πθL
k+1

)
)
. (76)

Bound the First Term of (76). As Lreweight
w,τ has LL-Lipschitz gradients with respect to θ (shown in

Lemma 9) under the condition w, τ ≤ 1,

Lreweight
wk,τk

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk+1, πθL
k
)

≤ ⟨∇θLreweight
wk,τk

(xk+1, πθL
k
), θLk+1 − θLk ⟩+

LL

2
∥θLk+1 − θLk ∥2

= αk⟨∇θLreweight
wk,τk

(xk+1, πθL
k
), Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk)⟩

+
LLα

2
k

2
∥Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk)∥2

= αk⟨∇θLreweight
wk,τk

(xk+1, πθL
k
), Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk)− F̄wk,τk(xk, θ

L
k , V̂

L
k )⟩

+ αk⟨∇θLreweight
wk,τk

(xk+1, πθL
k
), F̄wk,τk(xk, θ

L
k , V̂

L
k )− F̄wk,τk(xk, θ

L
k , V

xk,πθL
k

τk )⟩

− αk⟨∇θLreweight
wk,τk

(xk+1, πθL
k
),∇θLreweight

wk,τk
(xk, πθL

k
)⟩

+
LLα

2
k

2
∥Fwk,τk(θk, ωk, µ̂k, V̂f,k, sk, ak, bk, s

′
k, ξk)∥2, (77)

where the final equation follows from

∇θLreweight
wk,τk

(xk, πθL
k
) = wk∇θLwk,τk(xk, πθL

k
) = −F̄wk,τk(xk, θ

L
k , V

xk,πθL
k

τk ).
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To bound the first term of (77),

αkE[⟨∇θLreweight
wk,τk

(xk+1, πθL
k
), Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk)− F̄wk,τk(xk, θ

L
k , V̂

L
k )⟩]

= αkE[⟨∇θLreweight
wk,τk

(xk, πθL
k
),E[Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk) | Fk−1]− F̄wk,τk(xk, θ

L
k , V̂

L
k )⟩]

− αkE[⟨∇θLreweight
wk,τk

(xk, πθL
k
)−∇θLreweight

wk,τk
(xk+1, πθL

k
), Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk)− F̄wk,τk(xk, θ

L
k , V̂

L
k )⟩]

= −αkE[⟨∇θLreweight
wk,τk

(xk, πθL
k
)−∇θLreweight

wk,τk
(xk+1, πθL

k
), Fwk,τk(xk, θ

L
k , V̂

L
k , s̄k, āk, s̄

′
k, ξk)− F̄wk,τk(xk, θ

L
k , V̂

L
k )⟩]

≤ αk · LLE[∥xk+1 − xk∥] · 2BF

≤ 2BFLLαk · BDζk
wk

=
2BDBFLLζkαk

wk
, (78)

where the first inequality is due to (45) of Lemma 9, and the second inequality follows from Lemma 5.

For the second term of (77),

αk⟨∇θLreweight
wk,τk

(xk+1, πθL
k
), F̄wk,τk(xk, θ

L
k , V̂

L
k )− F̄wk,τk(xk, θ

L
k , V

xk,πθL
k

τk )⟩

≤ αk

8
∥∇θLreweight

wk,τk
(xk+1, πθL

k
)∥2 + 2αk∥F̄wk,τk(xk, θ

L
k , V̂

L
k )− F̄wk,τk(xk, θ

L
k , V

xk,πθL
k

τk )∥2

≤ αk

4
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + αk

4
∥∇θLreweight

wk,τk
(xk, πθL

k
)−∇θLreweight

wk,τk
(xk+1, πθL

k
)∥2

+ 2αk∥F̄wk,τk(xk, θ
L
k , V̂

L
k )− F̄wk,τk(xk, θ

L
k , V

xk,πθL
k

τk )∥2

≤ αk

4
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + L2

Lαk

4

(
∥xk+1 − xk∥2

)
+ 2L2

Fαk∥V
xk,πθL

k
τk − V̂ L

k ∥2

≤ αk

4
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + L2

Lαk

4
·
(BDζk

wk

)2
+ 2L2

Fαkε
V,L
k

≤ αk

4
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + B2

DL2
Lζ

2
kαk

4w2
k

+ 2L2
Fαkε

V,L
k , (79)

where the third inequality is again a result of the Lipschitz continuity of ∇θLreweight
wk,τk

from Lemma 3
and the Lipschitz continuity of F̄wk,τk .

For the third term of (77),
− αk⟨∇θLreweight

wk,τk
(xk+1, πθL

k
),∇θLreweight

wk,τk
(xk, πθL

k
)⟩

= −αk∥∇θLreweight
wk,τk

(xk, πθL
k
)∥2 + αk⟨∇θLreweight

wk,τk
(xk, πθL

k
)−∇θLreweight

wk,τk
(xk+1, πθL

k
),∇θLreweight

wk,τk
(xk, πθL

k
)⟩

≤ −αk

2
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + αk

2
∥∇θLreweight

wk,τk
(xk+1, πθL

k
)−∇θLreweight

wk,τk
(xk, πθL

k
)∥2

≤ −αk

2
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + L2

Lαk

2

(
∥xk+1 − xk∥2

)
≤ −αk

2
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + L2

Lαk

2
·
(BDζk

wk

)2
≤ −αk

2
∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2 + B2

DL2
Lζ

2
kαk

2w2
k

, (80)

where the second inequality again follows from the LL-smoothness of Lreweight
wk,τk

shown in (45) of
Lemma 9.

Substituting (78)-(80) into (77),

E[Lreweight
wk,τk

(xk+1, πθL
k
)− Lreweight

wk,τk
(xk+1, πθL

k+1
)]

≤ 2BDBFLLζkαk

wk
+

αk

4
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + B2

DL2
Lζ

2
kαk

4w2
k

+ 2L2
FαkE[εV,Lk ]

− αk

2
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + B2

DL2
Lζ

2
kαk

2w2
k

+
LLα

2
k

2
E[∥Fwk,τk(θk, ωk, µ̂k, V̂f,k, sk, ak, bk, s

′
k, ξk)∥2]
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≤ −αk

4
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
3B2

DL2
Lζ

2
kαk

4w2
k

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2

≤ −αk

8
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
3B2

DL2
Lζ

2
kαk

4w2
k

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2

− C2
Lαkτ

2
k

32
E[∥πθL

k
− π⋆

wk,τk
(xk)∥2], (81)

where the last inequality follows from (25), which states that

∥∇θLreweight
wk,τk

(xk, πθL
k
)∥ ≥ CLτk

2
∥πθL

k
− π⋆

wk,τk
(xk)∥.

Bound the Second Term of (76). We use θ⋆w,τ (x) to denote a softmax parameter that encodes
the policy π⋆

w,τ (x). We know from Lemma 9 that Lreweight
w,τ is LL

τ -smooth with respect to x under
w, τ ≤ 1,

Lreweight
wk,τk

(xk+1, πθL
k
)− Lreweight

wk,τk
(xk, πθL

k
)

≤ ⟨∇xLreweight
wk,τk

(xk, πθL
k
), xk+1 − xk⟩+

LL

2τk
∥xk+1 − xk∥2

= ⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩+

LL

2τk
∥xk+1 − xk∥2

+ ⟨∇xLreweight
wk,τk

(xk, πθ⋆
wk,τk

(xk)), xk+1 − xk⟩

= ⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩+

LL

2τk
∥xk+1 − xk∥2

+ ⟨∇xΦ
reweight
wk,τk

(xk), xk+1 − xk⟩

≤ ⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩+

LL

2τk
∥xk+1 − xk∥2

+
(
Φreweight

wk,τk
(xk+1, )− Φreweight

wk,τk
(xk)

)
+

LΦ

2τk
∥xk+1 − xk∥2

≤ ⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩

+
(
Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk, π
⋆
wk,τk

(xk))
)
+

LΦ

τk
∥xk+1 − xk∥2,

where the last inequality is due to LL ≤ LΦ, and the second equation uses the relationship
∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)) = ∇xΦ

reweight
wk,τk

(xk), which is due to ∇θLwk,τk(xk, πθ⋆
wk,τk

(xk)) = 0

by the first-order optimality condition. The second inequality is due to the fact that Φw,τ is LΦ

wτ -smooth
when w, τ ≤ 1 (established in Lemma 10) and that for an L-smooth function f , we have

−f(y) + f(x) ≤ ⟨−∇f(x), y − x⟩+ L

2
∥x− y∥2.

Taking the expectation and plugging in the result from Lemma 14,

E[Lreweight
wk,τk

(xk+1, πθL
k
)− Lreweight

wk,τk
(xk, πθL

k
)]

≤ C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

+ E[Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk, π
⋆
wk,τk

(xk))] +
LΦ

τk
E[∥xk+1 − xk∥2]

≤ C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2] +
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+ E[Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk, π
⋆
wk,τk

(xk))] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk] +
B2

DLΦζ
2
k

w2
kτk

,

(82)
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where the last inequality follows from ∥xk+1 − xk∥ ≤ BDζk
wk

.

Bound the Third Term of (76). By the definition of Lw,τ in (11),

Lreweight
wk+1,τk+1

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk+1, πθL
k+1

)

= (wk+1 − wk)f(xk+1, πθL
k+1

)

+
(
Jτk+1

(xk+1, π
⋆
τk+1

(xk+1))− Jτk(xk+1, π
⋆
τk
(xk+1))

)
−
(
Jτk+1

(xk+1, πθL
k+1

)− Jτk(xk+1, πθL
k+1

)
)

≤ (wk+1 − wk)f(xk+1, πθL
k+1

) +
log |A|(τk − τk+1)

1− γ
+

τk − τk+1

1− γ
E
s∼d

πL
k+1

ρ

[E(πL
k+1, s)]

≤ 0 +
log |A|(τk − τk+1)

1− γ
+

τk − τk+1

1− γ
E
s∼d

πL
k+1

ρ

[E(πL
k+1, s)]

≤ 16 log |A|τk
3(1− γ)(k + 1)

, (83)

where the first inequality follows from Zeng et al. [2022a][Lemma 3], the second inequality is due to
the fact that f is non-negative from Assumption 3, and the third inequality follows from Lemma 2
and the relationship E(π, s) ≤ log |A| for any policy π.

Collecting the bounds in (81)-(83) and plugging them into (76), we get

E[Lreweight
wk+1,τk+1

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk, πθL
k
)]

≤ −αk

8
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
3B2

DL2
Lζ

2
kαk

4w2
k

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2

− C2
Lαkτ

2
k

32
E[∥πθL

k
− π⋆

wk,τk
(xk)∥2]

+
C2

Lαkτ
2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2] +
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+ E[Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk, π
⋆
wk,τk

(xk))] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk] +
B2

DLΦζ
2
k

w2
kτk

+
16 log |A|τk

3(1− γ)(k + 1)

≤ −αk

8
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2] +
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2
+

16 log |A|τk
3(1− γ)(k + 1)

+ E[Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk, π
⋆
wk,τk

(xk))],

where in the last inequality we have combined the terms 3B2
DL2

Lζ2
kαk

4w2
k

and B2
DLΦζ2

k

w2
kτk

under the step size

conditions τk ≤ 1 and αk ≤ 4LΦ

3L2
L

.

Recall the definition of εθ,Lk in (36). We can re-arrange the terms in the inequality above and obtain

E[εθ,Lk+1 − εθ,Lk ]

= E[Lreweight
wk+1,τk+1

(xk+1, πθL
k+1

)− Lreweight
wk,τk

(xk, πθL
k
)]

− E[Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk, π
⋆
wk,τk

(xk))]

− E[Lreweight
wk+1,τk+1

(xk+1, π
⋆
wk,τk

(xk+1))− Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1))]
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≤ −αk

8
E[∥∇θLreweight

wk,τk
(xk, πθL

k
)∥2] + 2L2

FαkE[εV,Lk ] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

− C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2] +
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

+
2B2

DLΦζ
2
k

w2
kτk

+
2BDBFLLζkαk

wk
+

B2
FLLα

2
k

2
+

32 log |A|τk
3(1− γ)(k + 1)

,

where the bound on Lreweight
wk+1,τk+1

(xk+1, π
⋆
wk,τk

(xk+1)) − Lreweight
wk,τk

(xk+1, π
⋆
wk,τk

(xk+1)) ≤
16 log |A|τk
3(1−γ)(k+1) can be obtained in a manner similar to (83).

■

C.4 Proof of Proposition 5

We first establish the convergence of εVk . To this end, we introduce the following technical lemma,
which bounds an important cross term.

Lemma 15 Under the assumptions and step sizes of Proposition 5, we have for all k ≥ 0

E[⟨V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k), V

xk,πθk
τk − V

xk+1,πθk+1
τk+1 ⟩]

≤ (1− γ)βk

2
E[∥V̂k − V

xk,πθk
τk + βkḠτk(xk, θk, V̂k)∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
12L2

V L
2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V L

2
Fα

2
k

(1− γ)βk
E[εVk ] +

6B2
FLV τ0α

2
k

α0
+

32L2
V τ

2
k

3(1− γ)βk(k + 1)2
.

We defer the proof of the lemma to Appendix D.15.

By the update rule in (51), we have

εVk+1 = ∥V̂k+1 − V
xk+1,πθk+1
τk+1 ∥2

= ∥ΠBV

(
V̂k + βkGτk(xk, θk, V̂k, sk, ak, s

′
k)
)
− V

xk+1,πθk+1
τk+1 ∥2

≤
∥∥∥V̂k + βkGτk(xk, θk, V̂k, sk, ak, s

′
k)− V

xk+1,πθk+1
τk+1

∥∥∥2
=
∥∥∥V̂k − V

xk,πθk
τk + βkḠτk(xk, θk, V̂k) + βk

(
Gf (xk, θk, V̂k, sk, ak, s

′
k)− Ḡτk(xk, θk, V̂k)

)
+ V

xk,πθk
τk − V

xk+1,πθk+1
τk+1

∥∥∥2
≤
∥∥∥V̂k − V

xk,πθk
τk + βkḠτk(xk, θk, V̂k)

∥∥∥2
+ 2β2

k∥Gτk(xk, θk, V̂k, sk, ak, s
′
k)− Ḡτk(xk, θk, V̂k)∥2

+ 2
∥∥∥V xk,πθk

τk − V
xk+1,πθk+1
τk+1

∥∥∥2
+ βk⟨V̂k − V

xk,πθk
τk + βkḠτk(xk, θk, V̂k), Gτk(xk, θk, V̂k, sk, ak, s

′
k)− Ḡτk(xk, θk, V̂k)⟩

+ ⟨V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k), V

xk,πθk
τk − V

xk+1,πθk+1
τk+1 ⟩, (84)

where the first inequality follows from the fact that the projection to a convex set is non-expansive.

To bound the first term of (84),∥∥∥V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k)

∥∥∥2
= ∥V̂k − V

xk,πθk
τk ∥2 + β2

k∥Ḡτk(xk, θk, V̂k)∥2 + 2βk⟨V̂k − V
xk,πθk
τk , Ḡτk(xk, θk, V̂k)⟩

= ∥V̂k − V
xk,πθk
τk ∥2 + β2

k∥Ḡτk(xk, θk, V̂k)− Ḡτk(xk, θk, V
xk,πθk
τk )∥2
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+ 2βk⟨V̂k − V
xk,πθk
τk , Ḡτk(xk, θk, V̂k)− Ḡτk(xk, θk, V

xk,πθk
τk )⟩

= ∥V̂k − V
xk,πθk
τk ∥2 + β2

k∥Ḡτk(xk, θk, V̂k)− Ḡτk(xk, θk, V
xk,πθk
τk )∥2

+ 2βk

(
V̂k − V

xk,πθk
τk

)⊤
(γPπθk − I)

(
V̂k − V

xk,πθk
τk

)
≤ ∥V̂k − V

xk,πθk
τk ∥2 + L2

Gβ
2
k∥V̂k − V

xk,πθk
τk ∥2 + 2(γ − 1)βk∥V̂k − V

xk,πθk
τk ∥2

≤ (1− (1− γ)βk)ε
V
k , (85)

where the second equation uses the relationship Ḡτ (x, θ, V
x,πθ
τ ) = 0 for any τ, x, θ, and the last

inequality follows from the step size condition βk ≤ 1−γ
L2

G
.

For the third term of (84),

2∥V xk,πθk
τk − V

xk+1,πθk+1
τk+1 ∥2

≤ 4∥V
xk+1,πθk+1
τk − V

xk+1,πθk+1
τk+1 ∥2 + 4∥V xk,πθk

τk − V
xk+1,πθk+1
τk ∥2

≤ 4|S|∥V
xk+1,πθk+1
τk − V

xk+1,πθk+1
τk+1 ∥2∞ + 8L2

V

(
∥xk − xk+1∥2 + ∥πθk+1

− πθk∥2
)

≤ 4|S| ·
(τk − τk+1

1− γ
log |A|

)2
+ 8L2

V

(B2
Dζ2k
w2

k

+B2
Fα

2
k

)
,

where the second inequality follows from the Lipschitz continuity of the value function established in
Lemma 3, and the third inequality applies Zeng et al. [2022a][Lemma 3]. Plugging in the bound on
τk − τk+1 from Lemma 2, we get

2∥V xk,πθk
τk − V

xk+1,πθk+1
τk+1 ∥2 ≤ 4|S| ·

( 8τk
3(1− γ)(k + 1)

log |A|
)2

+ 8L2
V

(B2
Dζ2k
w2

k

+B2
Fα

2
k

)
≤ 256|S| log2 |A|τ2k

3(1− γ)2(k + 1)2
+ 16B2

FL
2
V α

2
k, (86)

where we use the step size condition ζk ≤ BFαkwk

BD
.

For the fourth term of (84), we have in expectation

E[⟨V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k), Gτk(xk, θk, V̂k, sk, ak, s

′
k)− Ḡτk(xk, θk, V̂k)⟩]

= E[⟨V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k),E[Gτk(xk, θk, V̂k, sk, ak, s

′
k)− Ḡτk(xk, θk, V̂k) | Fk−1]⟩]

= 0. (87)

Collecting the bounds from (85)-(87) and Lemma 15,

E[εVk+1]

= (1− (1− γ)βk)E[εVk ] + 2β2
kE[∥Gτk(xk, θk, V̂k, sk, ak, s

′
k)− Ḡτk(xk, θk, V̂k)∥2]

+
256|S| log2 |A|τ2k
3(1− γ)2(k + 1)2

+ 16B2
FL

2
V α

2
k

+
(1− γ)βk

2
E[∥V̂k − V

xk,πθk
τk + βkḠτk(xk, θk, V̂k)∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
12L2

V L
2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V L

2
Fα

2
k

(1− γ)βk
E[εVk ] +

6B2
FLV τ0α

2
k

α0
+

32L2
V τ

2
k

3(1− γ)βk(k + 1)2

≤
(
1− (1− γ)βk

)
E[εVk ] +

(
1− (1− γ)βk

) (1− γ)βk

2
E[εVk ] +

6L2
V L

2
Fα

2
k

(1− γ)βk
E[εVk ] + 8BGβ

2
k

+
256|S| log2 |A|τ2k
3(1− γ)2(k + 1)2

+ 16B2
FL

2
V α

2
k +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
12L2

V L
2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

35



+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6B2
FLV τ0α

2
k

α0
+

32L2
V τ

2
k

3(1− γ)βk(k + 1)2

≤
(
1− (1− γ)βk

4

)
E[εVk ] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
22B2

FLV τ0α
2
k

α0
+

64L2
V τ

2
k

3(1− γ)βk(k + 1)2
+ 8BGβ

2
k,

where the second inequality simplifies and combines terms based on the step size conditions αk

βk
≤

1−γ

2
√
6LV LF

, βk ≤ (1−γ)L2
V

8|S| log2 |A| , and α0

τ0
≤ 1

LV
.

The bound on E[εV,Lk+1] can be derived using an identical argument.

■

C.5 Proof of Proposition 2

The proof is almost identical to that of Proposition 1. We include the proof here for completeness.

From Lemma 10, we know that under a fixed regularization weight τ0, the objective Φτ0 has LΦ,τ0
Lipschitz gradients, where we define

LΦ,τ0 ≜ (1 +
2LV

CLτ0
)
(2LfLV

CLτ0
+

2LfLV LV,2

σCLτ0
+

2LfL
2
V LV,2

σ2CLτ0
+

2LfL
2
V

σCLτ

)
.

This implies

Φτ0(xk+1)− Φτ0(xk)

≤ ⟨∇xΦτ0(xk), xk+1 − xk⟩+
LΦ,τ0

2
∥xk+1 − xk∥2

= −ζk⟨∇xΦτ0(xk), Dwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk)⟩+

LΦ,τ0ζ
2
k

2
∥Dwk

(xk, πk, π
L
k , sk, ak, s̄k, āk, ξk)∥2

= −ζk∥∇xΦτ0(xk)∥2 + ζk⟨∇xΦτ0(xk),∇xΦτ0(xk)−Dwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk)⟩

+
LΦ,τ0ζ

2
k

2
∥Dwk

(xk, πk, π
L
k , sk, ak, s̄k, āk, ξk)∥2. (88)

By the law of total expectation,

E[Φτ0(xk+1)− Φτ0(xk)]

≤ −ζkE[∥∇xΦτ0(xk)∥2] +
LΦ,τ0ζ

2
k

2
E[∥Dwk

(xk, πk, π
L
k , sk, ak, s̄k, āk, ξk)∥2]

+ ζkE[⟨∇xΦτ0(xk),∇xΦτ0(xk)− E[Dwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk) | Fk−1]⟩]

= −ζkE[∥∇xΦτ0(xk)∥2] +
LΦ,τ0ζ

2
k

2
E[∥Dwk

(xk, πk, π
L
k , sk, ak, s̄k, āk, ξk)∥2]

+ ζkE[⟨∇xΦτ0(xk),∇xΦτ0(xk)− D̄wk
(xk, πk, π

L
k )⟩]

≤ −ζkE[∥∇xΦτ0(xk)∥2] +
B2

DLΦ,τ0ζ
2
k

2w2
k

+
ζk
2
E[∥∇xΦτ0(xk)∥2] +

ζk
2
E[∥∇xΦτ0(xk)− D̄wk

(xk, πk, π
L
k )∥2]

= −ζk
2
E[∥∇xΦτ0(xk)∥2] +

B2
DLΦ,τ0ζ

2
k

2w2
k

+
ζk
2
E
[∥∥∥(∇xΦτ0(xk)−∇xΦwk,τ0(xk)

)
+
(
D̄wk

(xk, π
⋆
τ0(xk), π

⋆
wk,τ0

(xk))− D̄wk
(xk, πk, π

L
k )
)∥∥∥2]

≤ −ζk
2
E[∥∇xΦτ0(xk)∥2] + ζkE[∥D̄wk

(xk, π
⋆
τ0(xk), π

⋆
wk,τ0

(xk))− D̄wk
(xk, πk, π

L
k )∥2]
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+ ζkE[∥∇xΦτ0(xk)−∇xΦwk,τ0(xk)∥2] +
B2

DLΦ,τ0ζ
2
k

2w2
k

, (89)

where the second inequality applies Lemma 5 and the last equation follows from (32).

To bound the second term on the right hand side of (89), we apply Lemma 6

∥D̄wk
(xk, π

⋆
τ0(xk), π

⋆
wk,τ0

(xk))− D̄wk
(xk, πk, π

L
k )∥2

≤ L2
D

w2
k

(
∥πk − π⋆

τ0(xk)∥+ ∥πL
k − π⋆

wk,τ0
(xk)∥

)2
≤ 2L2

D

w2
k

∥πk − π⋆
τ0(xk)∥2 +

2L2
D

w2
k

∥πL
k − π⋆

wk,τ0
(xk)∥2. (90)

For the third term of (89), we have from Lemma 11

∥∇xΦτ0(xk)−∇xΦwk,τ0(xk)∥2 ≤
(4LfLV wk

CLστ0
(Lf +

2LfLV,2

CLτ0
)
)2

= C2,τ0w
2
k, (91)

where we define C2,τ0 =
(

4LfLV

CLστ0
(Lf +

2LfLV,2

CLτ0
)
)2

.

Substituting (90) and (91) into (89),

E[Φτ0(xk+1)− Φτ0(xk)]

≤ −ζk
2
E[∥∇xΦτ0(xk)∥2] +

2L2
Dζk
w2

k

E[∥πk − π⋆
τ0(xk)∥2] +

2L2
Dζk
w2

k

E[∥πL
k − π⋆

wk,τ0
(xk)∥2]

+ C2,τ0ζkw
2
k +

B2
DLΦ,τ0ζ

2
k

2w2
k

.

■

D Proof of Supporting Results

D.1 Proof of Lemma 1

Uniqueness of π⋆(x). We first take the approach of proof by contradiction to show that π⋆(x) is
unique for any x.

Given x, suppose that there exist two distinct optimal solutions of (5), which we denote by π1, π2.
From the definition of Π⋆(x), we know that π1, π2 satisfy

J(x, π1) ≥ J(x, π), J(x, π2) ≥ J(x, π), ∀π. (92)

We construct another policy π′ as follows, inspired by the proof of Theorem 1 in Zeng et al. [2023].
For all state s and action a, π′(a | s) is expressed as

π′(a | s) =
dπ1
ρ (s)π1(a | s) + dπ2

ρ (s)π2(a | s)
dπ1
ρ (s) + dπ2

ρ (s)
. (93)

Note that Assumption 1 guarantees dπρ (s) ≥ (1− γ)ρmin > 0 for all s, ensuring π′ is well-defined.

Our first step is to show that π′ is also an optimal policy, i.e. π′ ∈ Π⋆(x). To see this, we define a
modified transition kernel Pγ such that Pγ(s

′ | s, a) = (1− γ)ρ(s′) + γP(s′ | s, a) for any π, and
Pπ
γ such that Pπ

γ (s
′ | s) = (1− γ)ρ(s′) + γPπ(s′ | s) for any π.

We also define a vector B ∈ R|S|

B = Pπ′

γ ·
(
1

2
dπ1
ρ +

1

2
dπ2
ρ

)
.

We can express each entry of B in the following way

B(s′) =
∑
s,a

Pγ(s
′ | s, a)π′(a | s)

(
1

2
dπ1
ρ (s) +

1

2
dπ2
ρ (s)

)
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=
∑
s,a

Pγ(s
′ | s, a)

dπ1
ρ (s)π1(a | s) + dπ2

ρ (s)π2(a | s)
dπ1
ρ (s) + dπ2

ρ (s)

(
1

2
dπ1
ρ (s) +

1

2
dπ2
ρ (s)

)
=

1

2

∑
s,a

Pγ(s
′ | s, a)dπ1

ρ (s)π1(a | s) + 1

2

∑
s,a

P(s′ | s, a)dπ2
ρ (s)π2(a | s)

=
1

2

∑
s,a

Pπ1
γ (s′ | s)dπ1

ρ (s) +
1

2

∑
s,a

Pπ2
γ (s′ | s)dπ2

ρ (s)

=
1

2
dπ1
ρ (s′) +

1

2
dπ2
ρ (s′),

which leads to

Pπ′

γ ·
(
1

2
dπ1
ρ +

1

2
dπ2
ρ

)
=

1

2
dπ1
ρ +

1

2
dπ2
ρ . (94)

The Markov chain induced by Pπ
γ is always ergodic, assumed in Assumption 1. Under ergodicity, it

is known that dπρ (properly normalized) is the unique eigenvector of Pπ
γ associated with eigenvalue 1.

Therefore, (94) implies that 1
2d

π1
ρ + 1

2d
π2
ρ is the discounted visitation distribution induced by policy

π′, i.e.

dπ
′

ρ =
1

2
dπ1
ρ +

1

2
dπ2
ρ . (95)

We use d̂πρ to denote the extend discounted visitation distribution over state and action such that

d̂πρ (s, a) = dπρ (s)π(a | s).
We have from (95)

d̂π
′

ρ (s, a) = dπ
′

ρ (s)π′(a | s)

=

(
1

2
dπ1
ρ (s) +

1

2
dπ2
ρ (s)

)
dπ1
ρ (s)π1(a | s) + dπ2

ρ (s)π2(a | s)
dπ1
ρ (s) + dπ2

ρ µπ2
(s)

=
1

2
dπ1
ρ (s)π1(a | s) + 1

2
dπ1
ρ (s)π2(a | s)

=
1

2
d̂π1
ρ (s, a) +

1

2
d̂π2
ρ (s, a).

Note that the cumulative return J is linear in the space of extended discounted visitation distribution.
We have

J(x, π′) = ⟨rx, d̂π
′

ρ ⟩ = 1

2
⟨rx,

1

2
d̂π1
ρ (s, a) +

1

2
d̂π2
ρ (s, a)⟩ = 1

2
J(x, π1) +

1

2
J(x, π2).

In view of (92), this implies that π′ is an optimal policy, i.e. π′ ∈ Π⋆(x).

Since π′ is in the constraint set for the optimization problem in (5), we can create a contradiction
that π1, π2 are the two distinct maximizers of (5) if π′ has a larger weighted entropy. The entropy
function E(,̇s) is strictly concave for all state s for policies in the interior of the simplex (note that
π1, π2 must in the interior of the simplex, as they cannot be the optimal solution of (5) otherwise).
Recall from (93) that π′(· | s) is a convex combination of π1(· | s), π2(· | s), and by the property of
strictly concave functions,

E(π′, s) >
dπ1
ρ (s)E(π1, s) + dπ2

ρ (s)E(π2, s)

dπ1
ρ (s) + dπ2

ρ (s)
.

We denote Eπ = Es∼dπ
ρ
[E(π, s)].

Eπ′ = ⟨dπ
′

ρ , E(π′, ·)⟩

=
∑
s

(1
2
dπ1
ρ (s) +

1

2
dπ2
ρ (s)

)
E(π′, s)
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>
∑
s

(1
2
dπ1
ρ (s) +

1

2
dπ2
ρ (s)

)dπ1
ρ (s)E(π1, s) + dπ2

ρ (s)E(π2, s)

dπ1
ρ (s) + dπ2

ρ (s)

=
1

2
⟨dπ1

ρ , E(π1, s)⟩+
1

2
⟨dπ2

ρ , E(π2, s)⟩

=
1

2
Eπ1

+
1

2
Eπ2

.

This contradicts the condition that π1, π2 maximize the weighted entropy within the constraint set
Π⋆(x) and concludes our proof on the uniqueness of π⋆(x).

Limit Point of {π⋆
τ (x)}τ . We then show the limit point of {π⋆

τ (x)}τ is π⋆(x) as τ → 0. As x is
fixed here, we simply denote πτ = π⋆

τ (x). We define for simplicity Ē(π) ≜ 1
1−γEs∼dπ

ρ
[E(π, s)]. By

the Bolzano–Weierstrass theorem, as the sequence {πτ} is bounded, it has a convergent subsequence.
Let τn → 0 and πτn → π̄. We first need to show π̄ ∈ Π⋆(x). By the definition of π⋆

τ (x),

J(x, πτ ) + τĒ(πτ ) ≥ J(x, π⋆(x)) + τĒ(π⋆(x)), (96)

leading to

J(x, πτ ) ≥ J(x, π⋆(x)) + τ
(
Ē(π⋆(x))− Ē(πτ )

)
.

As J is continuous, we take n → ∞

lim supJ(x, πτ ) ≥ J(x, π⋆(x)),

implying J(x, π̄). This means π̄ ∈ Π⋆.

Then, to show π̄ is the maximum entropy solution, we re-arrange the terms in (96)

Ē(πτ )− Ē(π⋆(x)) ≥ J(x, π⋆(x))− J(x, πτ )

τ
≥ 0,

where the second inequality is due to the definition of π⋆(x).

Taking the limit,
lim sup Ē(πτ ) ≥ Ē(π⋆(x)).

As the limit point π̄ is in Π⋆ and we have π⋆(x) = argmaxπ∈Π⋆ Ē(π), then it holds that
lim sup Ē(πτ ) = Ē(π⋆(x)) = Ē(π̄). This allows us to conclude that π⋆

τ (x) → π⋆(x) as τ → 0.

■

D.2 Proof of Lemma 2

We apply Zeng et al. [2022a][Lemma 7]

τk − τk+1 =
τ0

(k + 1)cτ
− τ0

(k + 2)cτ
≤ 8τ0

3(k + 1)cτ+1
=

8τk
3(k + 1)

.

■

D.3 Proof of Lemma 3

We derive the inequalities on the value function V x,πθ
τ and note that the ones on the cumulative return

Jτ (x, πθ) immediately follows as the cumulative return is simply an weighted average of the value
function

Jτ (x, πθ) = Es∼ρ[V
x,πθ
τ (s)].

Fixing x, we know that V x,π
τ is the standard policy optimization objective (in a standard MDP) as a

function of policy π. It is well-known that the following inequalities hold (for example, see Lemma
B.5 of Zeng et al. [2021] and Lemma 5 of Zeng et al. [2022a])

∥V x,πθ − V x,πθ′ ∥ ≤ 2

(1− γ)2
∥θ − θ′∥, (97)
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∥∇θV
x,πθ −∇θV

x,πθ′∥ ≤ 8

(1− γ)3
∥θ − θ′∥. (98)

We define the shorthand notation

H(θ, s) ≜ Eak∼π(·|sk),sk+1∼P(·|sk,ak)

[ ∞∑
k=0

−γk log πθ(ak | sk) | s0 = s

]
.

This implies V x,πθ
τ (s) = V x,πθ (s) + τH(θ, s). We also define the aggregate notation

H(θ) = [H(θ, s1),H(θ, s2), · · · ] ∈ R|S|.

Adapting Lemma 6 of Zeng et al. [2022a], we have for all s ∈ S

∥H(θ, s)−H(θ′, s)∥ ≤ 4 + 8 log |A|
(1− γ)3

∥θ − θ′∥, (99)

∥∇θH(θ, s)−∇θH(θ′, s)∥ ≤ 4 + 8 log |A|
(1− γ)3

∥θ − θ′∥. (100)

We obviously have the following inequalities from (99) and (100)

∥H(θ)−H(θ′)∥ ≤
(4 + 8 log |A|)

√
|S|

(1− γ)3
∥θ − θ′∥, (101)

∥∇θH(θ)−∇θH(θ′)∥ ≤
(4 + 8 log |A|)

√
|S|

(1− γ)3
∥θ − θ′∥. (102)

Note that (100) also implies

∥∇θ,θEs∼d
πθ
ρ
[E(πθ, s)]∥ ≤ 4 + 8 log |A|

(1− γ)3

hence leading to (42).

In addition, we have from (2)

|V x,πθ
τ − V x′,πθ

τ | = |Es′∼dπ
s , a

′∼π(·|s′)[rx(s, a)− rx′(s, a)]|
≤ Es′∼dπ

s , a
′∼π(·|s′)[|rx(s, a)− rx′(s, a)|]

≤ Es′∼dπ
s , a

′∼π(·|s′)[Lr∥x− x′∥]
≤ Lr∥x− x′∥, (103)

where the first inequality is a result of Jensen’s inequality and the second inequality is due to
Assumption 4.

We can express ∇θV
x,πθ as follows [Agarwal et al., 2021]

∇θs′,a′V
x,πθ (s) =

1

1− γ
dπθ
s (s′)πθ(a

′ | s′)Ax,πθ (s′, a′).

This implies

|∇θs′,a′V
x,πθ (s)−∇θs′,a′V

x′,πθ (s)| = 1

1− γ
dπθ
s (s′)πθ(a

′ | s′)|Ax,πθ (s′, a′)−Ax′,πθ (s′, a′)|

≤ 1

1− γ
|dπθ

s (s′)||πθ(a
′ | s′)| · 2Lr∥x− x′∥

≤ 2

1− γ
∥x− x′∥,

where the first inequality is due to the fact that the advantage function is 2Lr-Lipschitz with respect to
x, since it is the difference of the value function and Q function, which are themselves Lr-Lipschitz
with respect to x as can be seen from (103). Then, as the entropy regularizer is not a function of x,
we have

∥∇θV
x,πθ
τ −∇θV

x,πθ′
τ ∥ = ∥∇θV

x,πθ −∇θV
x,πθ′∥
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≤ 2Lr|S||A|
1− γ

∥x− x′∥. (104)

Combining (97), (101), and (103), we have for all τ ≤ 1

∥V x,πθ
τ − V x′,πθ′

τ ∥ ≤ ∥V x,πθ
τ − V x′,πθ

τ ∥+ ∥V x′,πθ
τ − V x′,πθ′

τ ∥

≤ ∥V x,πθ
τ − V x′,πθ

τ ∥+ τ∥H(θ)−H(θ′)∥+ ∥V x′,πθ − V x′,πθ′∥

≤ Lr∥x− x′∥+
(4 + 8 log |A|)

√
|S|

(1− γ)3
∥θ − θ′∥+ 2

(1− γ)2
∥θ − θ′∥

≤ Lr∥x− x′∥+
(6 + 8 log |A|)

√
|S|

(1− γ)3
∥θ − θ′∥.

This shows the Lipschitz continuity of the value function.

To show smoothness with respect to θ, we combine (98), (102), and (104)

∥∇θV
x,πθ
τ −∇θV

x′,πθ′
τ ∥ ≤ ∥∇θV

x,πθ
τ −∇θV

x′,πθ
τ ∥+ ∥∇θV

x′,πθ
τ −∇θV

x′,πθ′
τ ∥

≤ ∥∇θV
x,πθ
τ −∇θV

x′,πθ
τ ∥+ τ∥∇θH(θ)−∇θH(θ′)∥+ ∥∇θV

x′,πθ −∇θV
x′,πθ′∥

≤ 2Lr|S||A|
1− γ

∥x− x′∥+
(4 + 8 log |A|)

√
|S|

(1− γ)3
∥θ − θ′∥+ 8

(1− γ)3
∥θ − θ′∥

≤ 2Lr|S||A|
1− γ

∥x− x′∥+
(12 + 8 log |A|)

√
|S|

(1− γ)3
∥θ − θ′∥.

To show (39),

∥∇xJτ (x, π)−∇xJτ (x
′, π′)∥

≤ ∥∇xJτ (x, π)−∇xJτ (x, π
′)∥+ ∥∇xJτ (x, π

′)−∇xJτ (x
′, π′)∥

≤ ∥
∑
s,a

(dπρ (s, a)− dπ
′

ρ (s, a))∇xrx(s, a)∥+ Es∼dπ′
ρ , a∼π′(·|s)[∥∇xrx(s, a)−∇xrx′(s, a)∥]

≤ Lr∥dπρ − dπ
′

ρ ∥+ Es∼dπ′
ρ , a∼π′(·|s)[Lr∥x− x′∥]

=
∥∥∥(1− γ)

(
(I − γPπ)−1 − (I − γPπ′

)−1
)
ρ
∥∥∥+ Lr∥x− x′∥

≤ (1− γ) · γ

(1− γ)2
∥π − π′∥∥ρ∥+ Lr∥x− x′∥

≤ LV (∥π − π′∥+ ∥x− x′∥),
where the fourth inequality is due to the fact that (I − γPπ) is γ/(1− γ)2 Lipschitz in π.

Finally, we show ∇2
x,θJτ (x, πθ) and ∇2

θ,θJτ (x, πθ) are Lipschitz. Since ∇θ,θEs∼d
πθ
ρ
[E(πθ, s)] does

not depend on x and can be shown to have Lipschitz Hessians by extending the argument in Mei et al.
[2020][Lemma 14] (we skip showing the exact constant here), the problem reduces to showing that
∇2

x,θJ(x, πθ) and ∇2
θ,θJ(x, πθ) are Lipschitz.

From (15), we have

∇2
x,θJ(x, πθ) =

1

1− γ
Es∼d

πθ
ρ ,a∼πθ(·|s),s′∼P(·|s,a)

[(
∇xrx(s, a) + γ∇xV

x,πθ
τ (s′)

)
∇θ log πθ(a | s)

]
.

(105)

We define traj = {s0, a0, s1, a1, · · · } and use p(π, traj) to denote the probability that the trajectory
traj is generated under the policy π, i.e.

p(π, traj) = ρ(s0)

∞∏
k=0

π(ak | sk)P(sk+1 | sk, ak).

Adapting the result from Shen et al. [2019], we have

∇2
θ,θJ(x, πθ) = Etraj∼p(πθ,·)

[
∇θϕ(x, π, traj)∇θp(πθ, traj)

⊤ +∇2
θ,θϕ(x, π, traj)

]
, (106)
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where we define ϕ(x, π, traj) =
∑∞

t=0(
∑∞

k=t γ
k(rx(sk, ak))

k) log π(at | st).
As the right hand side expressions in (105) and (106) are the composition of Lipschitz functions, we
know that ∇2

x,θJ(x, πθ) and ∇2
x,θJ(θ, πθ) are Lipschitz.

■

D.4 Proof of Lemma 4

We can write the discounted visitation distribution as follows
dπρ = (1− γ)(I − γPπ)−1ρ,

which implies

∥dπρ − dπ
′

ρ ∥ ≤ (1− γ)∥(I − γPπ)−1ρ− (I − γPπ′
)−1∥∥ρ∥

= (1− γ)∥ρ∥
∥∥∥(I − γPπ′

)−1
(
(I − γPπ′

)− (I − γPπ)
)
(I − γPπ)−1

∥∥∥
≤ (1− γ) · 1 · ∥(I − γPπ)−1∥∥(I − γPπ′

)−1∥ · γ∥Pπ − Pπ′
∥

≤ γ

1− γ
∥π − π′∥,

where the third inequality follows from the standard result ∥Pπ − Pπ′∥ ≤
√

|A|∥π − π′∥.

■

D.5 Proof of Lemma 5

By the definition of Dw in (26),

∥Dw(x, π, π
L, s, a, s̄, ā, ξ)∥ =

∥∥∥∥∇̃xf(x, π
L, ξ) +

1

w

(
∇xrx(s, a) +∇xrx(s̄, ā)

)∥∥∥∥
≤ ∥∇̃xf(x, π

L, ξ)∥+ 1

w
∥∇xrx(s, a) +∇xrx(s̄, ā)∥

≤ Lf +
1

w
(Lr + Lr)

≤ 3Lr

w
,

where the second inequality follows from Assumption 3 and the condition ∥∇xrx(s, a)∥ ≤
Lr, ∀x, s, a, which follows from Assumption 4, and the last inequality is due to w ≤ Lr

Lf
.

To bound F , note that ∇θ log πθ(a | s) has the following closed-form expression entry-wise
∂ log πθ(a | s)

∂θs′,a′
= 1 [s = s′] (1 [a = a′]− πθ (a

′ | s)) . (107)

This implies
∥∇θ log πθ(a | s)∥2 ≤ ∥∇θ log πθ(a | s)∥1 ≤ 1 + 1 = 2. (108)

By the definition of Fw,τ in (27),

∥Fw,τ (x, θ, V, s, a, s
′, ξ)∥ ≤ ∥∇θ log πθ(a | s)∥

∣∣∣rx(s, a) + τE(πθ, s) + γV (s′)− V (s)
∣∣∣+ w∥∇̃θf(x, πθ, ξ)∥

≤ 2(1 + τ log |A|+ γBV +BV ) + wLf

≤ 2(1 + γ)BV + 2 log |A|+ 2 + Lr,

where the second inequality applies (108), and the last inequality follows from w ≤ Lr

Lf
, τ ≤ 1.

Finally, by the definition of G in (28),

∥Gτ (x, θ, V, s, a, s
′)∥ ≤ ∥es∥

∣∣∣rx(s, a) + τE(πθ, s) + γV (s′)− V (s)
∣∣∣

≤ 1 · (1 + τ log |A|+ γBV +BV )

≤ (1 + γ)BV + log |A|+ 1.

■
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D.6 Proof of Lemma 6

By the definition of D̄w in (29),

∥D̄w(x1, π1, π
L
1 )− D̄w(x2, π2, π

L
2 )∥

=
∥∥∥E

s∼d
π1
ρ ,a∼π1(·|s),s̄∼d

πL
1

ρ ,ā∼πL
1 (·|s̄)),ξ∼µ

[Dw(x1, π1, π
L
1 , s, a, s̄, ā, ξ)]

− E
s∼d

π2
ρ ,a∼π2(·|s),s̄∼d

πL
2

ρ ,ā∼πL
2 (·|s̄)),ξ∼µ

[Dw(x2, π2, π
L
2 , s, a, s̄, ā, ξ)]

∥∥∥
=
∥∥∥ ∑
s,a,s̄,ā,ξ

(
dπ1
ρ (s)π1(a | s)dπ

L
1

ρ (s̄)πL
1 (ā | s̄)− dπ2

ρ (s)π2(a | s)dπ
L
2

ρ (s̄)πL
2 (ā | s̄)

)
µ(ξ)Dw(x2, π2, π

L
2 , s, a, s̄, ā, ξ)

+ E
s∼d

π1
ρ ,a∼π1(·|s),s̄∼d

πL
1

ρ ,ā∼πL
1 (·|s̄)),ξ∼µ

[Dw(x1, π1, π
L
1 , s, a, s̄, ā, ξ)−Dw(x2, π2, π

L
2 , s, a, s̄, ā, ξ)]

∥∥∥
≤
∥∥∥E

s∼d
π1
ρ ,a∼π1(·|s),s̄∼d

πL
1

ρ ,ā∼πL
1 (·|s̄)),ξ∼µ

[Dw(x1, π1, π
L
1 , s, a, s̄, ā, ξ)−Dw(x2, π2, π

L
2 , s, a, s̄, ā, ξ)]

∥∥∥
+

BD

w

∣∣∣ ∑
s,a,s̄,ā

(
dπ1
ρ (s)π1(a | s)dπ

L
1

ρ (s̄)πL
1 (ā | s̄)− dπ2

ρ (s)π2(a | s)dπ
L
2

ρ (s̄)πL
2 (ā | s̄)

)∣∣∣
≤
∥∥∥E

s∼d
π1
ρ ,a∼π1(·|s),s̄∼d

πL
1

ρ ,ā∼πL
1 (·|s̄)),ξ∼µ

[Dw(x1, π1, π
L
1 , s, a, s̄, ā, ξ)−Dw(x2, π2, π

L
2 , s, a, s̄, ā, ξ)]

∥∥∥
+

BD

w

∣∣∣ ∑
s,a,s̄,ā

(
dπ1
ρ (s)π1(a | s)− dπ2

ρ (s)π2(a | s)
)
d
πL
1

ρ (s̄)πL
1 (ā | s̄)

∣∣∣
+

BD

w

∣∣∣ ∑
s,a,s̄,ā

(
d
πL
1

ρ (s̄)πL
1 (ā | s̄)− d

πL
2

ρ (s̄)πL
2 (ā | s̄)

)
dπ2
ρ (s)π2(a | s)

∣∣∣
=
∥∥∥E

s∼d
π1
ρ ,a∼π1(·|s),s̄∼d

πL
1

ρ ,ā∼πL
1 (·|s̄)),ξ∼µ

[Dw(x1, π1, π
L
1 , s, a, s̄, ā, ξ)−Dw(x2, π2, π

L
2 , s, a, s̄, ā, ξ)]

∥∥∥
+

BD

w

(∣∣∑
s,a

(dπ1
ρ (s)π1(a | s)− dπ2

ρ (s)π2(a | s))
∣∣+ ∣∣∑

s̄,ā

(d
πL
1

ρ (s̄)πL
1 (ā | s̄)− d

πL
2

ρ (s̄)πL
2 (ā | s̄))

∣∣).
(109)

To bound the first term of (109), note that by Jensen’s inequality it suffices to bound the norm of the
term within the expectation

∥Dw(x1, π1, π
L
1 , s, a, s̄, ā, ξ)−Dw(x2, π2, π

L
2 , s, a, s̄, ā, ξ)∥

=

∥∥∥∥∇̃xf(x1, π
L
1 , ξ) +

1

w

(
∇xrx1

(s, a)−∇xrx1
(s̄, ā)

)
− ∇̃xf(x2, π

L
2 , ξ)−

1

w

(
∇xrx2

(s, a)−∇xrx2
(s̄, ā)

)∥∥∥∥
≤ ∥∇̃xf(x1, π

L
1 , ξ)− ∇̃xf(x2, π

L
2 , ξ)∥+

1

w
∥∇xrx1

(s, a)−∇xrx2
(s, a)∥+ 1

w
∥∇xrx1

(s̄, ā)−∇xrx2
(s̄, ā)∥

≤ Lf

(
∥x1 − x2∥+ ∥πL

1 − πL
2 ∥
)
+

2Lr

w
∥x1 − x2∥. (110)

To bound the second term of (109),∣∣∑
s,a

(dπ1
ρ (s)π1(a | s)− dπ2

ρ (s)π2(a | s))
∣∣+ ∣∣∑

s̄,ā

(d
πL
1

ρ (s̄)πL
1 (ā | s̄)− d

πL
2

ρ (s̄)πL
2 (ā | s̄))

∣∣
≤
∣∣∑
s,a

(dπ1
ρ (s)− dπ2

ρ (s))π1(a | s)
∣∣+ ∣∣∑

s,a

(π1(a | s)− π2(a | s))dπ2
ρ (s)

∣∣
+
∣∣∑
s̄,ā

(d
πL
1

ρ (s̄)− d
πL
2

ρ (s̄))πL
1 (ā | s̄)

∣∣+ ∣∣∑
s̄,ā

(πL
1 (ā | s̄)− πL

2 (ā | s̄))dπ
L
2

ρ (s̄)
∣∣

≤ ∥dπ1
ρ − dπ2

ρ ∥+ ∥π1 − π2∥+ ∥dπ
L
1

ρ − d
πL
2

ρ ∥+ ∥πL
1 − πL

2 ∥

≤ 1

1− γ
∥π1 − π2∥+

1

1− γ
∥πL

1 − πL
2 ∥, (111)
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where the final inequality follows from Lemma 4.

Substituting (110) and (111) into (109), we have

∥D̄w(x1, π1, π
L
1 )− D̄w(x2, π2, π

L
2 )∥

≤ Lf

(
∥x1 − x2∥+ ∥πL

1 − πL
2 ∥
)
+

2Lr

w
∥x1 − x2∥+

BD

(1− γ)w
∥π1 − π2∥+

BD

(1− γ)w
∥πL

1 − πL
2 ∥

= (Lf +
2Lr

w
)∥x1 − x2∥+ (Lf +

BD

(1− γ)w
)∥πL

1 − πL
2 ∥+

BD

(1− γ)w
∥π1 − π2∥

≤ 3Lr

w
∥x1 − x2∥+

2BD

(1− γ)w
∥πL

1 − πL
2 ∥+

BD

(1− γ)w
∥π1 − π2∥, (112)

where the second inequality simplifies terms under the condition w ≤ min{Lr

Lf
, BD

(1−γ)Lf
}.

Similarly, by the definition of F̄w,τ in (30),

∥F̄w,τ (x1, θ1, V1)− F̄w,τ (x2, θ2, V2)∥

=
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x1, θ1, V1, s, a, s

′, ξ)]

− E
s∼d

πθ2
ρ ,a∼πθ2

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x2, θ2, V2, s, a, s

′, ξ)]
∥∥∥

=
∥∥∥∑
s,a,s′,ξ

(
d
πθ1
ρ (s)πθ1(a | s)P(s′ | s, a)− d

πθ2
ρ (s)πθ2(a | s)P(s′ | s, a)

)
µ(ξ)Fw,τ (x2, θ2, V2, s, a, s

′, ξ)

+ E
s∼d

πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x1, θ1, V1, s, a, s

′, ξ)− Fw,τ (x2, θ2, V2, s, a, s
′, ξ)]

∥∥∥
≤
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x1, θ1, V1, s, a, s

′, ξ)− Fw,τ (x2, θ2, V2, s, a, s
′, ξ)]

∥∥∥
+BF

∣∣∣ ∑
s,a,s′

(
d
πθ1
ρ (s)πθ1(a | s)P(s′ | s, a)− d

πθ2
ρ (s)πθ2(a | s)P(s′ | s, a)

)∣∣∣
=
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x1, θ1, V1, s, a, s

′, ξ)− Fw,τ (x2, θ2, V2, s, a, s
′, ξ)]

∥∥∥
+BF

∣∣∣∑
s,a

(
d
πθ1
ρ (s)πθ1(a | s)− d

πθ2
ρ (s)πθ2(a | s)

)∣∣∣. (113)

To bound the first term of (109), note that by Jensen’s inequality it suffices to bound the norm of the
term within the expectation

∥Fw,τ (x1, θ1, V1, s, a, s
′, ξ)− Fw,τ (x2, θ2, V2, s, a, s

′, ξ)∥

=
∥∥∥(rx1(s, a) + τE(πθ1 , s) + γV1(s

′)− V1(s)
)
∇θ log πθ1(a | s)− w∇̃θf(x1, πθ1 , ξ)

−
(
rx2(s, a) + τE(πθ2 , s) + γV2(s

′)− V2(s)
)
∇θ log πθ2(a | s) + w∇̃θf(x2, πθ2 , ξ)

∥∥∥
≤ w∥∇̃θf(x1, πθ1 , ξ)− ∇̃θf(x2, πθ2 , ξ)∥

+ ∥∇θ log πθ1(a | s)−∇θ log πθ2(a | s)∥ |rx1
(s, a) + τE(πθ1 , s) + γV1(s

′)− V1(s)|
+ ∥∇θ log πθ2(a | s)∥ |rx1(s, a)− rx2(s, a) + τE(πθ1 , s)− τE(πθ2 , s) + γV1(s

′)− γV2(s
′)− V1(s) + V2(s)|

≤ Lfw(∥x1 − x2∥+ ∥πθ1 − πθ2∥)
+ |rx1

(s, a) + τE(πθ1 , s) + γV1(s
′)− V1(s)|∥θ1 − θ2∥

+ ∥∇θ log πθ2(a | s)∥
(
Lr∥x1 − x2∥+ log |A|τ∥θ1 − θ2∥+ (1 + γ)∥V1 − V2∥

)
≤ Lr(∥x1 − x2∥+ ∥θ1 − θ2∥) + (1 + log |A|+ γ

1− γ
+

1

1− γ
)∥θ1 − θ2∥

+ 2
(
Lr∥x1 − x2∥+ log |A|∥θ1 − θ2∥+ (1 + γ)∥V1 − V2∥

)
≤ 3Lr∥x1 − x2∥+ (Lr + 2 log |A|+ 2

1− γ
+ 1)∥θ1 − θ2∥+ 4∥V1 − V2∥, (114)
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where the second inequality is due to the 1-Lipschitz continuity of ∇θ log πθ and the log |A|-Lipschitz
continuity of the entropy function with respect to the softmax parameter, and the third inequality is
due to w ≤ Lr

Lf
, τ ≤ 1 and the fact that ∥∇θ log πθ(a | s)∥2 ≤ 2 for all θ.

To bound the second term of (113),∣∣∑
s,a

(d
πθ1
ρ (s)πθ1(a | s)− d

πθ2
ρ (s)πθ2(a | s))

∣∣ ≤ ∣∣∑
s,a

(d
πθ1
ρ (s)− d

πθ2
ρ (s))πθ1(a | s)

∣∣
+
∣∣∑
s,a

(πθ1(a | s)− πθ2(a | s))dπθ2
ρ (s)

∣∣
≤ ∥dπθ1

ρ − d
πθ2
ρ ∥+ ∥πθ1 − πθ2∥

≤ 1

1− γ
∥πθ1 − πθ2∥

≤ 1

1− γ
∥θ1 − θ2∥, (115)

where the third inequality follows from Lemma 4.

Substituting (114) and (115) into (111), we have

∥F̄w,τ (x1, θ1, V1)− F̄w,τ (x2, θ2, V2)∥

≤ 3Lr∥x1 − x2∥+ (Lr + 2 log |A|+ 2

1− γ
+ 1)∥θ1 − θ2∥+ 4∥V1 − V2∥+

BF

1− γ
∥θ1 − θ2∥

= 3Lr∥x1 − x2∥+ (Lr + 2 log |A|+ 2 +BF

1− γ
+ 1)∥θ1 − θ2∥+ 4∥V1 − V2∥.

By the definition of Ḡτ in (31),

∥Ḡτ (x1, θ1, V1)− Ḡτ (x2, θ2, V2)∥

=
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a)[Gτ (x1, θ1, V1, s, a, s
′)]

− E
s∼d

πθ2
ρ ,a∼πθ2

(·|s),s′∼P(·|s,a)[Gτ (x2, θ2, V2, s, a, s
′)]
∥∥∥

=
∥∥∥∑
s,a,s′

(
d
πθ1
ρ (s)πθ1(a | s)P(s′ | s, a)− d

πθ2
ρ (s)πθ2(a | s)P(s′ | s, a)

)
Gτ (x2, θ2, V2, s, a, s

′, ξ)

+ E
s∼d

πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a)[Gτ (x1, θ1, V1, s, a, s
′)−Gτ (x2, θ2, V2, s, a, s

′)]
∥∥∥

≤
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a)[Gτ (x1, θ1, V1, s, a, s
′)−Gτ (x2, θ2, V2, s, a, s

′)]
∥∥∥

+BG

∣∣∣ ∑
s,a,s′

(
d
πθ1
ρ (s)πθ1(a | s)P(s′ | s, a)− d

πθ2
ρ (s)πθ2(a | s)P(s′ | s, a)

)∣∣∣
=
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x1, θ1, V1, s, a, s

′, ξ)− Fw,τ (x2, θ2, V2, s, a, s
′, ξ)]

∥∥∥
+BG

∣∣∣∑
s,a

(
d
πθ1
ρ (s)πθ1(a | s)− d

πθ2
ρ (s)πθ2(a | s)

)∣∣∣
≤
∥∥∥E

s∼d
πθ1
ρ ,a∼πθ1

(·|s),s′∼P(·|s,a),ξ∼µ
[Fw,τ (x1, θ1, V1, s, a, s

′, ξ)− Fw,τ (x2, θ2, V2, s, a, s
′, ξ)]

∥∥∥
+

BG

1− γ
∥θ1 − θ2∥, (116)

where the last inequality follows from (115).

The first of (116) can be bounded as follows. Again, by Jensen’s inequality it suffices to bound the
norm of the term within the expectation

∥Gτ (x1, θ1, V1, s, a, s
′)−Gτ (x2, θ2, V2, s, a, s

′)∥
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=
∥∥∥(rx1

(s, a) + τE(πθ1 , s) + γV1(s
′)− V1(s)

)
es −

(
rx2

(s, a) + τE(πθ2 , s) + γV2(s
′)− V2(s)

)
es

∥∥∥
≤ Lr∥x1 − x2∥+ log |A|τ∥θ1 − θ2∥+ (1 + γ)∥V1 − V2∥, (117)

where in the last inequality we again use the log |A|-Lipschitz continuity of the entropy function with
respect to the softmax parameter.

Combining (116) and (117), we have under τ

∥Ḡτ (x1, θ1, V1)− Ḡτ (x2, θ2, V2)∥ ≤ Lr∥x1 − x2∥+ log |A|τ∥θ1 − θ2∥+ (1 + γ)∥V1 − V2∥

+
BG

1− γ
∥θ1 − θ2∥

≤ Lr∥x1 − x2∥+ (
BG

1− γ
+ log |A|)∥θ1 − θ2∥+ 2∥V1 − V2∥.

■

D.7 Proof of Lemma 7

The proof proceeds in a manner similar to Kwon et al. [2023][Lemma 3.2], with strong convexity
replaced by the PL condition.

First, we consider a fixed τ . Recall the definition of π⋆
w,τ in Section 3.1. Let θ⋆w1,τ (x1) denote a

softmax parameter that encodes π⋆
w1,τ (x1). The optimality condition of θ⋆w1,τ (x1) indicates

∇θLw1,τ (x1, πθ⋆
w1,τ (x1)) = ∇θf(x1, πθ⋆

w1,τ (x1))−
1

w1
∇πJτ (x1, πθ⋆

w1,τ (x1)) = 0, (118)

which obviously implies

∥∇θJτ (x1, πθ⋆
w1,τ (x1))∥ = w1∥∇θf(x1, πθ⋆

w1,τ (x1))∥ ≤ Lfw1. (119)

Applying the relationship in (118), we have

∇θLw2,τ (x2, πθ⋆
w1,τ (x1))

= ∇θf(x2, πθ⋆
w1,τ (x1))−

1

w2
∇πJτ (x2, πθ⋆

w1,τ (x1))

=
(
∇θf(x2, πθ⋆

w1,τ (x1))−∇θf(x1, πθ⋆
w1,τ (x1))

)
− 1

w2

(
∇θJτ (x2, πθ⋆

w1,τ (x1))−∇θJτ (x1, πθ⋆
w1,τ (x1))

)
+∇θf(x1, πθ⋆

w1,τ (x1))−
1

w2
∇πJτ (x1, πθ⋆

w1,τ (x1))

=
(
∇θf(x2, πθ⋆

w1,τ (x1))−∇θf(x1, πθ⋆
w1,τ (x1))

)
− 1

w2

(
∇θJτ (x2, πθ⋆

w1,τ (x1))−∇θJτ (x1, πθ⋆
w1,τ (x1))

)
− (

1

w2
− 1

w1
)∇θJτ (x1, πθ⋆

w1,τ (x1)).

Taking the norm,

∥∇θLw2,τ (x2, πθ⋆
w1,τ (x1))∥

≤ ∥∇θf(x2, π
⋆
w1,τ (x1))−∇πf(x1, π

⋆
w1,τ (x1))∥+

1

w2
∥∇πJτ (x2, π

⋆
w1,τ (x1))−∇θJτ (x1, πθ⋆

w1,τ (x1))∥

+ | 1
w2

− 1

w1
|∥∇θJτ (x1, πθ⋆

w1,τ (x1))∥

≤ Lf∥x1 − x2∥+
LV

w2
∥x1 − x2∥+ | 1

w2
− 1

w1
|∥∇θJτ (x1, πθ⋆

w1,τ (x1))∥

≤ (Lf +
LV

w2
)∥x1 − x2∥+

Lf |w1 − w2|
w2

, (120)

where the second inequality follows from the Lipschitz continuous gradients of f and Jτ , and the
third inequality plugs in (119).
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Due to (25), we have

∥∇θLw2,τ (x, πθ⋆
w1,τ (x1))∥ ≥ CLτ

2w2
∥π⋆

w1,τ (x1)− π⋆
w2,τ (x2)∥. (121)

Combining (120) and (121),

CLτ

2w2
∥π⋆

w1,τ (x1)− π⋆
w2,τ (x2)∥ ≤ (Lf +

LV

w2
)∥x1 − x2∥+

Lf |w1 − w2|
w2

.

For any w2 > 0, this simplifies to

∥π⋆
w1,τ (x1)− π⋆

w2,τ (x2)∥ ≤ (
2Lfw2

CLτ
+

2LV

CLτ
)∥x1 − x2∥+

2Lf |w1 − w2|
CLτ

. (122)

Recognizing π⋆
τ (x) = limw→0+ π⋆

w,τ (x), we have from (122)

∥π⋆
τ (x)− π⋆

w,τ (x)∥ ≤ 2Lfw

CLτ
.

Now, we fix w, x and show the bound on ∥π⋆
w,τ1(x) − π⋆

w,τ2(x)∥. We use θw,τ1(x)
⋆ to denote a

softmax parameter for πw,τ1(x)
⋆. The optimality condition of θw,τ1(x)

⋆ indicates

∇θLw,τ1(x, πθ⋆
w,τ1

(x)) = ∇θf(x, πθ⋆
w,τ1

(x))−
1

w
∇θJτ1(x, πθ⋆

w,τ1
(x)) = 0.

Applying the equation, we get

∇θLw,τ2(x, πθ⋆
w,τ1

(x)) = ∇θf(x, πθ⋆
w,τ1

(x))−
1

w
∇θJτ2(x, πθ⋆

w,τ1
(x))

=
1

w

(
∇θJτ1(x, πθ⋆

w,τ1
(x))−∇θJτ2(x, πθ⋆

w,τ1
(x))
)
. (123)

The regularized RL objective has a closed-form expression (see Mei et al. [2020][Lemma 10])

∂Jτ (x, πθ)

∂θ(s, a)
=

dπθ
ρ (s)

1− γ
· πθ(a | s) ·Ax,πθ

τ (s, a),

which in combination with (123) implies

∥∇θLw,τ2(x, πθ⋆
w,τ1

(x))∥ ≤ ∥∇θLw,τ2(x, πθ⋆
w,τ1

(x))∥1

≤ 1

(1− γ)w

∑
s,a

πθ⋆
w,τ1

(x)(a | s)
(
A

x,πθ⋆w,τ1
(x)

τ1 (s, a)−A
x,πθ⋆w,τ1

(x)

τ2 (s, a)
)
.

(124)

Due to Zeng et al. [2022a][Lemma 3], we have for any s

|V x,π
τ1 (s)− V x,π

τ2 (s)| ≤ |τ1 − τ2| log |A|.
The definitions of the Q function and advantage function in (23) imply

|Qx,π
τ1 (s, a)−Qx,π

τ2 (s, a)| ≤ γ|V x,π
τ1 (s)− V x,π

τ2 (s)| ≤ γ|τ1 − τ2| log |A|,
and

|
∑
a

π(a | s)Ax,π
τ1 (s, a)−Ax,π

τ2 (s, a)|

≤
∑
a

π(a | s)|Qx,π
τ1 (s, a)−Qx,π

τ2 (s, a)|+ |V x,π
τ1 (s)− V x,π

τ2 (s)|+ |τ1 − τ2|E(π, s)

≤ 3|τ1 − τ2| log |A|. (125)

Plugging (125) into (124),

∥∇θLw,τ2(x, πθ⋆
w,τ1

(x))∥ ≤ 3|τ1 − τ2||S| log |A|
(1− γ)w

.
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Again, due to (25),

CLτ2
2w

∥π⋆
w,τ1(x)− π⋆

w,τ2(x)∥ ≤ ∥∇πLw,τ2(x, π
⋆
w,τ1(x))∥ ≤ 3|τ1 − τ2||S| log |A|

(1− γ)w
.

This leads to

∥π⋆
w,τ1(x)− π⋆

w,τ2(x)∥ ≤ 6|τ1 − τ2||S| log |A|
(1− γ)CLτ2

. (126)

Putting (122) and (126) together,

∥π⋆
w1,τ1(x1)− π⋆

w2,τ2(x2)∥ ≤ ∥π⋆
w1,τ1(x1)− π⋆

w2,τ1(x2)∥+ ∥π⋆
w2,τ2(x2)− π⋆

w2,τ1(x2)∥

≤ (
2Lfw2

CLτ1
+

2LV

CLτ1
)∥x1 − x2∥+

2Lf |w1 − w2|
CLτ1

+
6|τ1 − τ2||S| log |A|

(1− γ)CLτ1
.

■

D.8 Proof of Lemma 8

We know from Lemma 1 that π⋆(x), defined in (5), is the limit point of π⋆
τ (x) as τ → 0 Let θ⋆τ (x)

denote a softmax parameter for π⋆
τ (x). By the first-order optimality condition, we have

∇θJτ (x, πθ⋆
τ (x)

) = 0.

We further differentiate with respect to τ . Due to the differentiation chain rule,

d

dτ
∇θJτ (x, πθ⋆

τ (x)
) = ∇2

τ,θJτ (x, πθ⋆
τ (x)

) +∇2
θ,θJτ (x, πθ⋆

τ (x)
) · dθ

⋆
τ (x)

dτ
= 0.

As ∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)∥ is lower bounded by σ due to Assumption 2, we have for any τ ≥ 0∥∥∥∥dθ⋆τ (x)dτ

∥∥∥∥ =

∥∥∥∥−(∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)
)−1

∇2
τ,θJτ (x, πθ⋆

τ (x)
)

∥∥∥∥
≤
∥∥∥∥(∥∇2

θ,θJτ (x, πθ⋆
τ (x)

)
)−1

∥∥∥∥ ∥∇2
τ,θJτ (x, πθ⋆

τ (x)
)∥

≤ 1

σ
∥∇2

τ,θJτ (x, πθ⋆
τ (x)

)∥. (127)

It is clear from (3)

∇τJτ (x, πθ) =
1

1− γ
Es∼d

πθ
ρ , a∼πθ(·|s)[E(πθ, s)].

Therefore,

∇2
τ,θJτ (x, πθ) =

1

1− γ
∇θEs∼d

πθ
ρ , a∼πθ(·|s)[E(πθ, s)]. (128)

Zeng et al. [2022a][Lemma 6] shows that Es∼d
πθ
ρ , a∼πθ(·|s)[E(πθ, s)] is Lipschitz with constant

4+8 log |A|
(1−γ)3 , which is equivalent to

∥∇θEs∼d
πθ
ρ , a∼πθ(·|s)[E(πθ, s)]∥ ≤ 4 + 8 log |A|

(1− γ)3
, ∀θ. (129)

Combining (127)-(129), we have∥∥∥∥dθ⋆τ (x)dτ

∥∥∥∥ =
1

σ
· 1

1− γ
· 4 + 8 log |A|

(1− γ)3
=

4 + 8 log |A|
σ(1− γ)4

= L⋆.

This implies θ⋆τ (x) is L⋆-Lipschitz with respect to τ for τ ≥ 0.

■
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D.9 Proof of Lemma 9

It can be seen from (12) that the gradients of the Lagrangian function have the following closed-form
expressions

∇xLw,τ (x, π) = ∇xf(x, π) +
1

w

(
∇xJτ (x, π

⋆
τ (x)) +∇xπ

⋆
τ (x)∇πJτ (x, π

⋆
τ (x))−∇xJτ (x, π)

)
= ∇xf(x, π) +

1

w

(
∇xJτ (x, π

⋆
τ (x))−∇xJτ (x, π)

)
, (130)

∇πLw,τ (x, π) = ∇πf(x, π)−
1

w
∇πJτ (x, π), (131)

where the equation (130) is due to the optimality condition of Jτ at π⋆
τ (x).

According to (130), we have

∥∇xLw,τ (x, π)−∇xLw,τ (x
′, π′)∥

= ∥∇xf(x, π) +
1

w

(
∇xJτ (x, π

⋆
τ (x))−∇xJτ (x, π)

)
−∇xf(x

′, π′)− 1

w

(
∇xJτ (x

′, π⋆
τ (x

′))−∇xJτ (x
′, π′)

)
∥

≤ ∥∇xf(x, π)−∇xf(x
′, π′)∥+ 1

w
∥∇xJτ (x, π

⋆
τ (x))−∇xJτ (x

′, π⋆
τ (x

′))∥

+
1

w
∥∇xJτ (x, π)−∇xJτ (x

′, π′)∥

≤ Lf (∥x− x′∥+ ∥π − π′∥) + LV

w
(∥x− x′∥+ ∥π⋆

τ (x)− π⋆
τ (x

′)∥) + LV

w
(∥x− x′∥+ ∥π − π′∥).

Recognizing π⋆
τ (x) = limw→0+ π⋆

w,τ (x), we have from Lemma 7

∥π⋆
τ (x)− π⋆

τ (x
′)∥ ≤ 2LV

CLτ
∥x− x′∥.

Combining the two inequalities above and imposing the condition w, τ ≤ 1, we get

∥∇xLw,τ (x, π)−∇xLw,τ (x
′, π′)∥ ≤ (LV + Lf +

LV (CL + 2LV )

CL
)
1

wτ
∥x− x′∥+ Lf + LV

w
∥π − π′∥

≤ LL

wτ
∥x− x′∥+ LL

w
∥θ − θ′∥.

According to (131), we have

∥∇θLw,τ (x, πθ)−∇θLw,τ (x
′, πθ′)∥

= ∥∇θf(x, πθ)−
1

w
∇θJτ (x, πθ)−∇θf(x

′, πθ′)− 1

w
∇θJτ (x

′, πθ′)∥

≤ ∥∇θf(x, πθ)−∇θf(x
′, πθ′)∥+ 1

w
∥∇θJτ (x, πθ)−∇θJτ (x

′, πθ′)∥

≤ Lf (∥x− x′∥+ ∥πθ − πθ′∥) + LV

w
(∥x− x′∥+ ∥πθ − πθ′∥)

≤ LL

w
∥x− x′∥+ LL

w
∥θ − θ′∥.

■

D.10 Proof of Lemma 10

Let θ⋆τ (x) denote a softmax parameter of π⋆
τ (x). By the definition of ℓτ , we have

∇ℓτ (x) = ∇xJτ (x, πθ⋆
τ (x)

),

due to ∇θJτ (x, πθ⋆
τ (x)

) = 0.
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As Jτ is LV -smooth (from Lemma 3) this implies

∥∇ℓτ (x1)−∇ℓτ (x2)∥ = ∥∇xJτ (x1, πθ⋆
τ (x1))−∇xJτ (x2, πθ⋆

τ (x2))∥
≤ LV ∥x1 − x2∥+ LV ∥π⋆

τ (x1)− π⋆
τ (x2)∥

≤ LV ∥x1 − x2∥+ LV · 2LV

CLτ
∥x1 − x2∥

≤
(
LV +

2L2
V

CLτ

)
∥x1 − x2∥,

where the second inequality follows from Lemma 7 by recognizing that π⋆
τ (x) = limw→0 π

⋆
w,τ (x).

We next show the smoothness of Φw,τ . From (13) it can be seen

∥∇xΦw,τ (x1)−∇xΦw,τ (x2)∥

≤
∥∥∥∇xf(x1, π

⋆
τ (x1))−∇xf(x2, π

⋆
τ (x2))

∥∥∥+ 1

w

∥∥∥∇xJτ (x1, π
⋆
τ (x1))−∇xJτ (x2, π

⋆
τ (x2))

∥∥∥
+

1

w

∥∥∥∇xJτ (x1, π
⋆
w,τ (x1))−∇xJτ (x2, π

⋆
w,τ (x2))

∥∥∥
≤ Lf∥x1 − x2∥+

(
Lf +

LV

w

)
∥π⋆

τ (x1)− π⋆
τ (x2)∥+

LV

w
∥π⋆

w,τ (x1)− π⋆
w,τ (x2)∥

≤ Lf∥x1 − x2∥+
(
Lf +

LV

w

)
· 2LV

CLτ
∥x1 − x2∥+

LV

w
·
(2Lfw2

CLτ
+

2LV

CLτ

)
∥x1 − x2∥

≤
(
Lf +

4LfLV

CLτ
+

4L2
V

CLwτ

)
∥x1 − x2∥.

Finally, we show the smoothness of Φτ . Let θ⋆τ (x) denote one of the softmax parameters that encodes
π⋆
τ (x). We can express the hyper-gradient of Φτ as follows

∇xΦτ (x) = ∇xf(x, πθ⋆
τ (x)

)−∇2
x,θJτ (x, πθ⋆

τ (x)
)∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

).

This implies

∥∇xΦτ (x1)−∇xΦτ (x2)∥
≤ ∥∇xf(x1, πθ⋆

τ (x1))−∇xf(x2, πθ⋆
τ (x2))∥︸ ︷︷ ︸

T1

+ ∥∇2
x,θJτ (x1, πθ⋆

τ (x1))∇
2
θ,θJτ (x1, πθ⋆

τ (x1))
−1∇θf(x1, πθ⋆

τ (x1))−∇2
x,θJτ (x2, πθ⋆

τ (x2))∇
2
θ,θJτ (x1, πθ⋆

τ (x1))
−1∇θf(x1, πθ⋆

τ (x1))∥︸ ︷︷ ︸
T2

+ ∥∇2
x,θJτ (x2, πθ⋆

τ (x2))∇
2
θ,θJτ (x1, πθ⋆

τ (x1))
−1∇θf(x1, πθ⋆

τ (x1))−∇2
x,θJτ (x2, πθ⋆

τ (x2))∇
2
θ,θJτ (x2, πθ⋆

τ (x2))
−1∇θf(x1, πθ⋆

τ (x1))∥︸ ︷︷ ︸
T3

+ ∥∇2
x,θJτ (x2, πθ⋆

τ (x2))∇
2
θ,θJτ (x2, πθ⋆

τ (x2))
−1∇θf(x1, πθ⋆

τ (x1))−∇2
x,θJτ (x2, πθ⋆

τ (x2))∇
2
θ,θJτ (x2, πθ⋆

τ (x2))
−1∇θf(x2, πθ⋆

τ (x2))∥︸ ︷︷ ︸
T4

.

(132)

We treat each term of (132) individually. First, we bound T1 using the smoothness property of f

T1 ≤ Lf

(
∥x1 − x2∥+ ∥π⋆

τ (x1)− π⋆
τ (x2)∥

)
≤ (Lf +

2LfLV

CLτ
)∥x1 − x2∥, (133)

where to derive the second inequality, we plug in the result from Lemma 7 to get ∥π⋆
τ (x1)−π⋆

τ (x2)∥ ≤
2LV

CLτ ∥x1 − x2∥ (note that π⋆
τ (x) = limw→0 π

⋆
w,τ (x)).

As we have ∇θf(x, πθ) ≤ Lf from Assumption 3 and ∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∥ ≤ 1

σ due to Assump-
tion 2,

T2 ≤ ∥∇2
x,θJτ (x1, πθ⋆

τ (x1))−∇2
x,θJτ (x2, πθ⋆

τ (x2))∥∥∇
2
θ,θJτ (x1, πθ⋆

τ (x1))
−1∇θf(x1, πθ⋆

τ (x1))∥
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≤ Lf

σ
· LV,2

(
∥x1 − x2∥+ ∥π⋆

τ (x1)− π⋆
τ (x2)∥

)
≤ (

LfLV,2

σ
+

2LfLV LV,2

σCLτ
)∥x1 − x2∥, (134)

where second inequality is due to Lemma 3, and the last inequality follows from an argument similar
to the one in (133).

Similarly, for T3

T3 ≤ ∥∇2
x,θJτ (x2, πθ⋆

τ (x2))∥∥∇
2
θ,θJτ (x1, πθ⋆

τ (x1))
−1 −∇2

θ,θJτ (x2, πθ⋆
τ (x2))

−1∥∥∇θf(x1, πθ⋆
τ (x1))∥

≤ LfLV ∥∇2
θ,θJτ (x1, πθ⋆

τ (x1))
−1∥∥∇2

θ,θJτ (x2, πθ⋆
τ (x2))−∇2

θ,θJτ (x1, πθ⋆
τ (x1))

−1∥∥∇2
θ,θJτ (x2, πθ⋆

τ (x2))
−1∥

≤ LfLV

σ2
· LV,2

(
∥x1 − x2∥+ ∥π⋆

τ (x1)− π⋆
τ (x2)∥

)
≤ (

LfLV LV,2

σ2
+

2LfL
2
V LV,2

σ2CLτ
)∥x1 − x2∥. (135)

For the final term, we have

T4 ≤ ∥∇2
x,θJτ (x2, πθ⋆

τ (x2))∇
2
θ,θJτ (x2, πθ⋆

τ (x2))
−1∥∥∇θf(x1, πθ⋆

τ (x1))−∇θf(x2, πθ⋆
τ (x2))∥

≤ LV

σ
∥∇θf(x1, πθ⋆

τ (x1))−∇θf(x2, πθ⋆
τ (x2))∥

≤ LV

σ
· Lf

(
∥x1 − x2∥+ ∥π⋆

τ (x1)− π⋆
τ (x2)∥

)
≤ (

LfLV

σ
+

2LfL
2
V

σCLτ
)∥x1 − x2∥. (136)

We combine (133)-(136)

∥∇xΦτ (x1)−∇xΦτ (x2)∥ ≤ (Lf +
2LfLV

CLτ
)∥x1 − x2∥+ (

LfLV,2

σ
+

2LfLV LV,2

σCLτ
)∥x1 − x2∥

+ (
LfLV LV,2

σ2
+

2LfL
2
V LV,2

σ2CLτ
)∥x1 − x2∥+ (

LfLV

σ
+

2LfL
2
V

σCLτ
)∥x1 − x2∥

≤ (1 +
2LV

CLτ
)
(2LfLV

CLτ
+

2LfLV LV,2

σCLτ
+

2LfL
2
V LV,2

σ2CLτ
+

2LfL
2
V

σCLτ

)
∥x1 − x2∥.

Imposing the step size condition τ ≤ 2LV

CL
, we get

∥∇xΦτ (x1)−∇xΦτ (x2)∥ ≤
(4LfLV

CLτ
+

4LfLV LV,2

σCLτ
+

4LfL
2
V LV,2

σ2CLτ
+

4LfL
2
V

σCLτ

)
∥x1 − x2∥

≤ LΦ

τ
∥x1 − x2∥.

■

D.11 Proof of Lemma 11

Let θ⋆τ (x) denote a parameter representing π⋆
τ (x) through the softmax function. Define for τ > 0

∇Φτ (x) = ∇xf(x, π
⋆
τ (x))−∇2

x,θJτ (x, πθ⋆
τ (x)

)∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∇θf(x, πθ⋆

τ (x)
).

We consider the following decomposition

∥∇xΦ(x)−∇xΦw,τ (x)∥ ≤ ∥∇xΦτ (x)−∇xΦw,τ (x)∥+ ∥∇xΦ(x)−∇xΦτ (x)∥. (137)

We first bound the first term of (137).

To derive the bound on ∥∇xΦτ (x) − ∇xΦw,τ (x)∥, we take an argument similar to Kwon et al.
[2023][Lemma A.2], which we adapt to the case of a non-convex lower level objective. Note that λ
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in Kwon et al. [2023] plays the same role as our 1/w. Kwon et al. [2023][Lemma A.2] is still valid
without lower level convexity, with the lower bound on ∥∇2

θ,θJτ (x, πθ⋆
τ (x)

)∥ changed from the strong
convexity coefficient to σ. This allows us to write∥∥∇xΦτ (x)−∇xLw,τ (x, πθ) +∇2

x,θJτ (x, πθ⋆
τ (x)

)∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∇θLw,τ (x, πθ)

∥∥
≤ 2LV

σ
∥πθ − π⋆

τ (x)∥
(
Lf +

LV,2

w
∥πθ − π⋆

τ (x)∥
)
.

Recognizing ∇θLw,τ (x, πθ⋆
w,τ (x)

) = 0, we have

∥∇xΦτ (x)−∇xΦw,τ (x)∥ = ∥∇xΦτ (x)−∇xLw,τ (x, π
⋆
w,τ (x))∥

≤ 2LV

σ
∥π⋆

w,τ (x)− π⋆
τ (x)∥

(
Lf +

LV,2

w
∥π⋆

w,τ (x)− π⋆
τ (x)∥

)
≤ 2LV

σ
· 2Lfw

CLτ

(
Lf +

LV,2

w
· 2Lfw

CLτ

)
=

4LfLV w

CLστ
(Lf +

2LfLV,2

CLτ
), (138)

where the second inequality follows from Lemma 7.

Next, we bound ∥∇xΦτ (x)−∇xΦ(x)∥.

∇xΦτ (x)−∇xΦ(x) = ∇xf(x, πθ⋆
τ (x)

)−∇xf(x, πθ⋆(x))︸ ︷︷ ︸
T1

+∇2
x,θJ(x, πθ⋆(x))∇2

θ,θJ(x, πθ⋆(x))
−1∇θf(x, πθ⋆(x))−∇2

x,θJ(x, πθ⋆
τ (x)

)∇2
θ,θJ(x, πθ⋆

τ (x)
)−1∇θf(x, πθ⋆

τ (x)
)︸ ︷︷ ︸

T2

+∇2
x,θJ(x, πθ⋆

τ (x)
)∇2

θ,θJ(x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

)−∇2
x,θJτ (x, πθ⋆

τ (x)
)∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

)︸ ︷︷ ︸
T3

.

(139)

To treat T1, we have from the Lipschitz continuity of f

∥T1∥ ≤ Lf∥π⋆
τ (x)− π⋆(x)∥.

For T2,

∥T2∥ ≤ ∥∇2
x,θJ(x, πθ⋆(x))−∇2

x,θJ(x, πθ⋆
τ (x)

)∥∥∇2
θ,θJ(x, πθ⋆(x))

−1∥∥∇θf(x, πθ⋆(x))∥
+ ∥∇2

x,θJ(x, πθ⋆
τ (x)

)∥∥∇2
θ,θJ(x, πθ⋆(x))

−1 −∇2
θ,θJ(x, πθ⋆

τ (x)
)−1∥∥∇θf(x, πθ⋆(x))∥

+ ∥∇2
x,θJ(x, πθ⋆

τ (x)
)∥∥∇2

θ,θJ(x, πθ⋆
τ (x)

)−1∥∥∇θf(x, πθ⋆(x))−∇θf(x, πθ⋆
τ (x)

)∥

≤ LV,2∥π⋆
τ (x)− π⋆(x)∥ · 1

σ
· Lf

+ LV · ∥∇2
θ,θJ(x, πθ⋆

τ (x)
)−1∥∥∇2

θ,θJ(x, πθ⋆
τ (x)

)−∇2
θ,θJ(x, πθ⋆(x))∥∥∇2

θ,θJ(x, πθ⋆(x))
−1∥

+ LV · 1
σ
· Lf∥π⋆

τ (x)− π⋆(x)∥

≤ Lf (LV + LV,2)

σ
∥π⋆

τ (x)− π⋆(x)∥+ LV · 1
σ
· LV,2∥π⋆

τ (x)− π⋆(x)∥ · 1
σ

≤ LfLV + LfLV,2 + LV LV,2

σ2
∥π⋆

τ (x)− π⋆(x)∥.

We then bound T3. Note that

Jτ (x, π)− J(x, π) =
τ

1− γ
Es∼dπ

ρ
[E(π, s)],
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which is independent of x. This implies ∇2
x,θJ(x, πθ) = ∇2

x,θJτ (x, πθ). Using this relationship, we
have

∥T3∥ =
∥∥∥∇2

x,θJ(x, πθ)
(
∇2

θ,θJ(x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

)−∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∇θf(x, πθ⋆

τ (x)
)
)∥∥∥

≤ LV,2Lf∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∥∥∇2

θ,θJτ (x, πθ⋆
τ (x)

)−∇2
θ,θJ(x, πθ⋆

τ (x)
)∥∥∇2

θ,θJ(x, πθ⋆
τ (x)

)−1∥

≤ LfLV,2 ·
1

σ
· τ

1− γ
∥∇2

θ,θEs∼d
π⋆
τ (x)

ρ
[E(π⋆

τ (x), s)]∥ ·
1

σ

≤ LfLV,2(4 + 8 log |A|)τ
(1− γ)4σ2

,

where the third inequality follows from the fact that Es∼dπ
ρ
[E(π, s)] is 4+8 log |A|

(1−γ)3 -Lipschitz (see, for
example, Lemma 6 of Zeng et al. [2022a]).

Collecting the bounds on T1-T3 and substituting them into (139),

∥∇xΦτ (x)−∇xΦw,τ (x)∥ ≤ ∥T1∥+ ∥T2∥+ ∥T3∥

≤ Lf (LV + 1) + LfLV,2 + LV LV,2

σ2
∥π⋆

τ (x)− π⋆(x)∥+ LfLV,2(4 + 8 log |A|)τ
(1− γ)4σ2

≤ L⋆Lf (LV + 1) + L⋆LfLV,2 + L⋆LV LV,2

σ2
τ +

LfLV,2(4 + 8 log |A|)τ
(1− γ)4σ2

≤ L⋆Lf (LV + 1) + L⋆LfLV,2 + L⋆LV LV,2 + LfLV,2(4 + 8 log |A|)
(1− γ)4σ2

τ,

(140)

where the third inequality follows from Lemma 8.

Substituting (138) and (140) into (137),

∥∇xΦ(x)−∇xΦw,τ (x)∥ ≤ ∥∇xΦτ (x)−∇xΦw,τ (x)∥+ ∥∇xΦ(x)−∇xΦτ (x)∥

≤ 4LfLV w

CLστ
(Lf +

2LfLV,2

CLτ
)

+
L⋆Lf (LV + 1) + L⋆LfLV,2 + L⋆LV LV,2 + LfLV,2(4 + 8 log |A|)

(1− γ)4σ2
τ.

■

D.12 Proof of Lemma 12

Let θ⋆(x) and θ⋆τ (x) denote one of the softmax parameters that encodes π⋆(x) and π⋆
τ (x). Recall the

gradient expression ∇xΦτ (x) from (9). We can similarly write

∇xΦ(x) = ∇xf(x, π
⋆(x))−∇2

x,πJ(x, π
⋆(x))∇2

π,πJ(x, π
⋆(x))−1∇πf(x, π

⋆(x)). (141)

Combining (9) and (141),

∥∇xΦτ (x)−∇xΦ(x)∥
≤ ∥∇xf(x, πθ⋆

τ (x)
)−∇xf(x, πθ⋆(x))∥︸ ︷︷ ︸
T1

+ ∥∇2
x,θJτ (x, πθ⋆

τ (x)
)∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

)−∇2
x,θJ(x, πθ⋆(x))∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

)∥︸ ︷︷ ︸
T2

+ ∥∇2
x,θJ(x, πθ⋆(x))∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1∇θf(x, πθ⋆
τ (x)

)−∇2
x,θJ(x, πθ⋆(x))∇2

θ,θJ(x, πθ⋆(x))
−1∇θf(x, πθ⋆

τ (x)
)∥︸ ︷︷ ︸

T3

+ ∥∇2
x,θJ(x, πθ⋆(x))∇2

θ,θJ(x, πθ⋆(x))
−1∇θf(x, πθ⋆

τ (x)
)−∇2

x,θJ(x, πθ⋆(x))∇2
θ,θJ(x, πθ⋆(x))

−1∇θf(x, πθ⋆(x))∥︸ ︷︷ ︸
T4

.

(142)

53



We treat each term of (142) individually. First, we bound T1 using the smoothness property of f

T1 ≤ Lf∥π⋆
τ (x)− π⋆(x)∥ ≤ L⋆Lfτ, (143)

where the second inequality follows from Lemma 8.

We have ∥∇θf(x, πθ)∥ ≤ Lf from Assumption 3 and ∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∥ ≤ 1

σ due to Assump-
tion 2. This allows us to bound T2 as follows

T2 ≤ ∥∇2
x,θJτ (x, πθ⋆

τ (x)
)−∇2

x,θJ(x, πθ⋆(x))∥∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)−1∇θf(x, πθ⋆

τ (x)
)∥

≤ Lf

σ

(
∥∇2

x,θJτ (x, πθ⋆
τ (x)

)−∇2
x,θJ(x, πθ⋆

τ (x)
)∥+ ∥∇2

x,θJ(x, πθ⋆
τ (x)

)−∇2
x,θJ(x, πθ⋆(x))∥

)
=

Lf

σ
∥∇2

x,θJ(x, πθ⋆
τ (x)

)−∇2
x,θJ(x, πθ⋆(x))∥

≤ Lf

σ
· LV,2∥πθ⋆

τ (x)
− πθ⋆(x)∥

=
Lf

σ
· LV,2∥π⋆

τ (x)− π⋆(x)∥

≤ L⋆LfLV,2τ

σ
, (144)

where the first equation is due to the fact that Jτ (x, π)−J(x, π) is independent of x, so the derivative
with respect to x is zero. The last inequality plugs in (143).

Similarly, for T3

T3 ≤ ∥∇2
x,θJ(x, πθ⋆(x))∥∥∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1 −∇2
θ,θJ(x, πθ⋆(x))

−1∥∥∇θf(x, πθ⋆
τ (x)

)∥
≤ LfLV ∥∇2

θ,θJτ (x, πθ⋆
τ (x)

)−1∥∥∇2
θ,θJτ (x, πθ⋆

τ (x)
)−∇2

θ,θJ(x, πθ⋆(x))∥∥∇2
θ,θJ(x, πθ⋆

τ (x)
)−1∥

≤ LfLV

σ2

(
∥∇2

θ,θJτ (x, πθ⋆
τ (x)

)−∇2
θ,θJτ (x, πθ⋆(x))∥+ ∥∇2

θ,θJτ (x, πθ⋆(x))−∇2
θ,θJ(x, πθ⋆(x))∥

)
≤ LfLV

σ2

(
LV,2∥π⋆

τ (x)− π⋆(x)∥+ LV τ
)

≤ L⋆LfLV LV,2τ

σ2
+

LfL
2
V τ

σ2
, (145)

where the third inequality again follows from Assumption 2, and the fourth inequality is due to (42)
of Lemma 3 (note that Jτ (x, π)− J(x, π) = τEs∼dπ

ρ
[E(π, s)]). The last inequality again plugs in

(143).

For the final term, we have

T4 ≤ ∥∇2
x,θJ(x, πθ⋆(x))∇2

θ,θJ(x, πθ⋆(x))
−1∥∥∇θf(x, πθ⋆

τ (x)
)−∇θf(x, πθ⋆(x))∥

≤ LV

σ
∥∇θf(x, πθ⋆

τ (x)
)−∇θf(x, πθ⋆(x))∥

≤ LV

σ
∥∇πf(x, π

⋆
τ (x))−∇πf(x, π

⋆(x))∥

≤ LV

σ
∥π⋆

τ (x)− π⋆(x)∥

≤ L⋆LV τ

σ
, (146)

where the third inequality is due to the 1-Lipschitz continuity of softmax function, and the fourth
inequality is due to Assumption 3.

Combining (143)-(146) leads to

∥∇xΦτ (x)−∇xΦ(x)∥ ≤ L⋆Lfτ +
L⋆LfLV,2τ

σ
+

L⋆LfLV LV,2τ

σ2
+

L⋆L
2
V τ

σ
+

L⋆LV τ

σ
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≤ L⋆LfL
2
V LV,2τ

σ2
.

■

D.13 Proof of Lemma 13

As ∇xJτk(xk, πθk) − ∇xJτk(xk, πθ⋆
τk

(xk)) does not depend on the randomness at iteration k, we
have

E[−⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩⟩]

= ζkE[⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)),E[Dwk
(xk, πk, π

L
k , sk, ak, s̄k, āk, ξk) | Fk−1]⟩]

= ζkE[⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), D̄wk
(xk, πk, π

L
k )⟩]

= ζkE[⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)),∇xΦwk,τk(xk)⟩]

− ζkE[⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), D̄wk
(xk, π

⋆
τk
(xk), π

⋆
wk,τk

(xk))− D̄wk
(xk, πk, π

L
k )⟩],

where the third equation is from (32).

By Young’s inequality,

E[−⟨∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk)), xk+1 − xk⟩⟩]

≤ C2
Lαkτ

2
k

128L2
V

E[∥∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk))∥
2] +

32L2
V ζ

2
k

C2
Lαkτ2k

E[εxk]

+
C2

Lαkτ
2
k

128L2
V

E[∥∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk))∥
2]

+
32L2

V ζ
2
k

C2
Lαkτ2k

E[∥D̄wk
(xk, π

⋆
τk
(xk), π

⋆
wk,τk

(xk))− D̄wk
(xk, πk, π

L
k )∥2]

≤ C2
Lαkτ

2
k

64L2
V

E[∥∇xJτk(xk, πθk)−∇xJτk(xk, πθ⋆
τk

(xk))∥
2] +

32L2
V ζ

2
k

C2
Lαkτ2k

E[εxk]

+
64L2

DL2
V ζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

≤ C2
Lαkτ

2
k

64
E[∥πk − π⋆

τk
(xk)∥2]

+
64L2

DL2
V ζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2] +
32L2

V ζ
2
k

C2
Lαkτ2k

E[εxk],

where the second inequality employs the Lipschitz continuity of D̄wk
established in Lemma 6.

■

D.14 Proof of Lemma 14

As ∇xLreweight
wk,τk

(xk, πθL
k
) − ∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)) does not depend on the randomness at

iteration k, we have

E[⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩]

= −ζkE[⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)),E[Dwk

(xk, πk, π
L
k , sk, ak, s̄k, āk, ξk) | Fk−1]⟩]

= −ζkE[⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), D̄wk

(xk, πk, π
L
k )⟩]

= −ζkE[⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)),∇xΦwk,τk(xk)⟩]

+ ζkE[⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)),

D̄wk
(xk, π

⋆
τk
(xk), π

⋆
wk,τk

(xk))− D̄wk
(xk, πk, π

L
k )⟩],
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where the third equation is from (32).

By Young’s inequality,

E[⟨∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk)), xk+1 − xk⟩]

≤ C2
Lαkτ

2
k

128L2
L

E[∥∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk))∥

2] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

+
C2

Lαkτ
2
k

128L2
L

E[∥∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk))∥

2]

+
32L2

Lζ
2
k

C2
Lαkτ2k

E[∥D̄wk
(xk, π

⋆
τk
(xk), π

⋆
wk,τk

(xk))− D̄wk
(xk, πk, π

L
k )∥2]

≤ C2
Lαkτ

2
k

64L2
L

E[∥∇xLreweight
wk,τk

(xk, πθL
k
)−∇xLreweight

wk,τk
(xk, πθ⋆

wk,τk
(xk))∥

2] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk]

+
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2]

≤ C2
Lαkτ

2
k

64
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
64L2

DL2
Lζ

2
k

C2
Lαkw2

kτ
2
k

E[∥πk − π⋆
τk
(xk)∥2 + ∥πL

k − π⋆
wk,τk

(xk)∥2] +
32L2

Lζ
2
k

C2
Lαkτ2k

E[εxk],

where the second inequality employs the Lipschitz continuity of D̄wk
established in Lemma 6.

■

D.15 Proof of Lemma 15

Within the proof of this lemma, we employ the shorthand notation zk = [xk, θk, τk], ℓ(zk) = V
xk,πθk
τk ,

and
yk = V̂k − V

xk,πθk
τk + βkḠτk(xk, θk, V̂k).

As V x,πθ
τ is smooth in x, θ, τ , we have from the mean-value theorem that there exists zmk+1 =

mzk + (1−m)zk+1 for some scalar m ∈ [0, 1] such that

ℓ(zk)− ℓ(zk+1)

= ∇zℓ(z
m
k+1)

⊤
(
zk − zk+1

)
=
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
xk − xk+1

)
+
(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
θk − θk+1

)
+
(
∇τV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
τk − τk+1

)
= ζk

(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤
D̄wk

(xk, πθk , πθL
k
)

+ ζk

(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
Dwk

(xk, πθk , πθL
k
, sk, ak, s̄k, āk, ξk)− D̄wk

(xk, πθk , πθL
k
)
)

+ αk

(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤
F̄0,τk(xk, θk, V̂k)

+ αk

(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
+
(
∇τV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
τk − τk+1

)
, (147)

where we denote xm
k+1 = mxk + (1−m)xk+1, θ

m
k+1 = mθk + (1−m)θk+1, τ

m
k+1 = mτk + (1−

m)τk+1.

Plugging (147) into the cross term of interest, we have

⟨V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k), V

xk,πθk
τk − V

xk+1,πθk+1
τk+1 ⟩
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= ⟨yk, ℓ(zk)− ℓ(xk+1)⟩

= αk⟨yk,
(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤
F̄0,τk(xk, θk, V̂k)⟩

+ αk⟨yk,
(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
⟩

+ ζk⟨yk,
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤
D̄wk

(xk, πθk , πθL
k
)⟩

+ ζk⟨yk,
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
Dwk

(xk, πθk , πθL
k
, sk, ak, s̄k, ā, ξk)− D̄wk

(xk, πθk , πθL
k
)
)
⟩

+ ⟨yk,
(
∇τV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
τk − τk+1

)
⟩. (148)

We bound each term of (148) individually. First, by Young’s inequality

αk⟨yk,
(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤
F̄0,τk(xk, θk, V̂k)⟩

≤ LV αk∥yk∥∥F̄0,τk(xk, θk, V̂k)∥

≤ (1− γ)βk

12
∥yk∥2 +

3L2
V α

2
k

(1− γ)βk
∥F̄0,τk(xk, θk, V̂k)∥2

≤ (1− γ)βk

12
∥yk∥2 +

6L2
V α

2
k

(1− γ)βk
∥F̄0,τk(xk, θk, V

xk,πθk
τk )∥2

+
6L2

V α
2
k

(1− γ)βk
∥F̄0,τk(xk, θk, V̂k)− F̄0,τk(xk, θk, V

xk,πθk
τk )∥2

=
(1− γ)βk

12
∥yk∥2 +

6L2
V α

2
k

(1− γ)βk
∥∇θJτk(xk, πθk)∥2

+
6L2

V α
2
k

(1− γ)βk
∥F̄0,τk(xk, θk, V̂k)− F̄0,τk(xk, θk, V

xk,πθk
τk )∥2

≤ (1− γ)βk

12
∥yk∥2 +

6L2
V α

2
k

(1− γ)βk
∥∇θJτk(xk, πθk)∥2 +

6L2
V L

2
Fα

2
k

(1− γ)βk
εVk , (149)

where the equation follows from the fact that F̄0,τ (x, θ, V
x,πθ
τ ) = ∇θJτ (x, πθ) for any x, θ, τ (see

(33)), and the final inequality is due to the Lipschitz continuity of F̄0,τk .

For the second term of (148), we take the expectation

αkE
[
⟨yk,

(
∇θV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
⟩
]

= αkE[⟨yk,
(
∇θV

xm
k+1,πθm

k+1

τm
k+1

−∇θV
xk,πθk
τk

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
]

+ αkE[⟨yk,
(
∇θV

xk,πθk
τk

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
]

= αkE[⟨yk,
(
∇θV

xm
k+1,πθm

k+1

τm
k+1

−∇θV
xk,πθk
τk

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
]

≤ 2BFαkE[∥yk∥∥∇θV
xm
k+1,πθm

k+1

τm
k+1

−∇θV
xk,πθk
τk ∥]

≤ 2BFLV αkE[∥yk∥
(
∥πθm

k+1
− πθk∥+ ∥xm

k+1 − xk∥+ |τmk+1 − τk|
)
]

≤ 2BFLV αkE[∥yk∥
(
∥πθk+1

− πθk∥+ ∥xk+1 − xk∥+ |τk+1 − τk|
)
]

≤ 2BFLV αkE[∥yk∥]
(
αkBF +

ζkBD

wk
+

8τk
3(k + 1)

)
≤ 2BFLV αkE[∥yk∥] ·

3τ0BFαk

α0

≤ 3B2
FLV τ0α

2
k

α0
E[∥yk∥2] +

3B2
FLV τ0α

2
k

α0
, (150)
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where the fifth inequality follows from the step size conditions ζk ≤ BFαkwk

BD
and α0 ≤

min{τ0, 3BF

8 }, and the second equation follows from

E[⟨yk,
(
∇θV

xk,πθk
τk

)⊤(
F0,τk(xk, θk, V̂k, sk, ak, s

′
k)− F̄0,τk(xk, θk, V̂k)

)
]

= E[⟨yk,
(
V

xk,πθk
τk

)⊤
E
[
F (θk, ωk, µ̂k, V̂f,k, sk, ak, bk, s

′
k)− F̄ (θk, ωk, µ̂k, V̂f,k) | Fk−1

]
]

= 0.

The third term of (148) can be bounded similar to the first term,

ζk⟨yk,
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤
D̄wk

(xk, πθk , πθL
k
)⟩

≤ LV ζk∥yk∥∥D̄wk
(xk, πθk , πθL

k
)∥

≤ (1− γ)βk

12
∥yk∥2 +

3L2
V ζ

2
k

(1− γ)βk
∥D̄wk

(xk, πθk , πθL
k
)∥2

≤ (1− γ)βk

12
∥yk∥2 +

6L2
V ζ

2
k

(1− γ)βk
∥D̄wk

(xk, π
⋆
τk
(xk), π

⋆
wk,τk

(xk))∥2

+
6L2

V ζ
2
k

(1− γ)βk
∥D̄wk

(xk, πθk , πθL
k
)− D̄wk

(xk, π
⋆
τk
(xk), π

⋆
wk,τk

(xk))∥2

=
(1− γ)βk

12
∥yk∥2 +

6L2
V ζ

2
k

(1− γ)βk
εxk +

6L2
V ζ

2
k

(1− γ)βk
∥D̄wk

(xk, πθk , πθL
k
)− D̄wk

(xk, π
⋆
τk
(xk), π

⋆
wk,τk

(xk))∥2

≤ (1− γ)βk

12
∥yk∥2 +

6L2
V ζ

2
k

(1− γ)βk
εxk

+
12L2

V L
2
Dζ2k

(1− γ)βk
∥πk − π⋆

τk
(xk)∥2 +

12L2
V L

2
Dζ2k

(1− γ)βk
∥πL

k − π⋆
wk,τk

(xk)∥2, (151)

where the equation is due to the condition in (32).

For the fourth term of (148), we again take the expectation and use the technique in (150)

ζkE[⟨yk,
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
Dwk

(xk, πθk , πθL
k
, sk, ak, s̄k, ā, ξk)− D̄wk

(xk, πθk , πθL
k
)
)
⟩]

= ζkE[⟨yk,
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

−∇xV
xk,πθk
τk

)⊤(
Dwk

(xk, πθk , πθL
k
, sk, ak, s̄k, ā, ξk)− D̄wk

(xk, πθk , πθL
k
)
)
]

+ ζkE[⟨yk,
(
∇xV

xk,πθk
τk

)⊤(
Dwk

(xk, πθk , πθL
k
, sk, ak, s̄k, ā, ξk)− D̄wk

(xk, πθk , πθL
k
)
)
]

= ζkE[⟨yk,
(
∇xV

xm
k+1,πθm

k+1

τm
k+1

−∇xV
xk,πθk
τk

)⊤(
Dwk

(xk, πθk , πθL
k
, sk, ak, s̄k, ā, ξk)− D̄wk

(xk, πθk , πθL
k
)
)
]

≤ 2BDζkE[∥yk∥∥∇xV
xm
k+1,πθm

k+1

τm
k+1

−∇xV
xk,πθk
τk ∥]

≤ 2BDLV ζkE[∥yk∥
(
∥πθm

k+1
− πθk∥+ ∥xm

k+1 − xk∥+ |τmk+1 − τk|
)
]

≤ 2BDLV ζkE[∥yk∥
(
∥πθk+1

− πθk∥+ ∥xk+1 − xk∥+ |τk+1 − τk|
)
]

≤ 2BDLV ζkE[∥yk∥]
(
αkBF +

ζkBD

wk
+

8τk
3(k + 1)

)
≤ 2BDLV ζkE[∥yk∥] ·

3τ0BFαk

α0

≤ 3B2
FLV τ0α

2
k

α0
E[∥yk∥2] +

3B2
FLV τ0α

2
k

α0
, (152)

where the last inequality follows from the step size condition ζk
αk

≤ BF

BD
.
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For the fifth term of (148), we apply Lemma 2

⟨yk,
(
∇τV

xm
k+1,πθm

k+1

τm
k+1

)⊤(
τk − τk+1

)
⟩ ≤ LV ∥yk∥|τk − τk+1|

≤ LV ∥yk∥ ·
8τk

3(k + 1)

≤ (1− γ)βk

6
∥yk∥2 +

32L2
V τ

2
k

3(1− γ)βk(k + 1)2
. (153)

Collecting the results in (149)-(153) and substituting into (148),

E[⟨V̂k − V
xk,πθk
τk + βkḠτk(xk, θk, V̂k), V

xk,πθk
τk − V

xk+1,πθk+1
τk+1 ⟩]

≤ (1− γ)βk

12
E[∥yk∥2] +

6L2
V α

2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V L

2
Fα

2
k

(1− γ)βk
E[εVk ]

+
3B2

FLV τ0α
2
k

α0
E[∥yk∥2] +

3B2
FLV τ0α

2
k

α0

+
(1− γ)βk

12
E[∥yk∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
12L2

V L
2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
3B2

FLV τ0α
2
k

α0
E[∥yk∥2] +

3B2
FLV τ0α

2
k

α0

+
(1− γ)βk

6
E[∥yk∥2] +

32L2
V τ

2
k

3(1− γ)βk(k + 1)2

≤ (1− γ)βk

3
E[∥yk∥2] +

6B2
FLV τ0α

2
k

α0
E[∥yk∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk]

+
6L2

V α
2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V L

2
Fα

2
k

(1− γ)βk
E[εVk ]

+
12L2

V L
2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6B2

FLV τ0α
2
k

α0
+

32L2
V τ

2
k

3(1− γ)βk(k + 1)2

≤ (1− γ)βk

2
E[∥yk∥2] +

6L2
V ζ

2
k

(1− γ)βk
E[εxk] +

6L2
V α

2
k

(1− γ)βk
E[∥∇θJτk(xk, πθk)∥2] +

6L2
V L

2
Fα

2
k

(1− γ)βk
E[εVk ]

+
12L2

V L
2
Dζ2k

(1− γ)βk
E[∥πk − π⋆

τk
(xk)∥2] +

12L2
V L

2
Dζ2k

(1− γ)βk
E[∥πL

k − π⋆
wk,τk

(xk)∥2]

+
6B2

FLV τ0α
2
k

α0
+

32L2
V τ

2
k

3(1− γ)βk(k + 1)2
,

where the terms are combined in the last inequality under the step size condition αk ≤ βk and
αk

βk
≤ 1−γ

36B2
FLV τ0

.

■

E Simulation Details

Figure 2: GridWorld Illustration. The
red flag is the goal in the lower-level
MDP set by the upper-level decision
variable. A state further away from the
goal incurs a negative reward with higher
magnitude. The green circle indicates
the center of the grid, which defines a
component of the upper-level objective.

The lower-level MDP is defined on a 10×10 grid, where
each state corresponds to a position on the grid. At every
state, the agent can choose from four possible actions:
A = {UP,DOWN,LEFT,RIGHT}. Each action moves
the agent to the adjacent cell in the corresponding direction.
If the current position lies on the boundary and the action
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would move the agent outside the grid, the state remains
unchanged. The upper-level decision variable x sets a
goal state for the lower-level problem, shown by the flag
in Figure 2. Let x = (coor1(goal), coor2(goal)). The
reward of state s = (coor1(s), coor2(s)) is

r(s) = −
(
coor1(s)− coor1(goal)

)2
−
(
coor2(s)− coor2(goal)

)2
.

We choose the upper-level objective f such that f(x, π)
when x is close to the center of the grid, indicated by green
circle in Figure 2 and that π has bias towards DOWN and
RIGHT actions. Specifically, with the coordinate of the
center cell denoted by (coor1(center), coor2(center)), we
consider

f(x, π) =
(
coor1(goal)− coor1(center)

)2
+
(
coor2(goal)− coor2(center)

)2
− λ

∑
s

(
π(DOWN | s) + π(RIGHT | s)

)
,

where λ is a weight parameter.

By setting λ sufficiently large, the optimal solution to the bi-level problem is to set the goal on the
bottom right corner. This is indeed the learned solution from Algorithm 1.
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