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ABSTRACT

Classification with imbalanced data is a common challenge in machine learning,
where minority classes form only a small fraction of the training samples. Clas-
sical theory, relying on large-sample asymptotics and finite-sample corrections, is
often ineffective in high dimensions, leaving many overfitting phenomena unex-
plained. In this paper, we develop a statistical theory for high-dimensional im-
balanced linear classification, showing that dimensionality induces truncation or
skewing effects on the logit distribution, which we characterize via a variational
problem. For linearly separable Gaussian mixtures, logits follow N(0, 1) on the
test set but converge to max{x,N(0,1)} on the training set—a pervasive phe-
nomenon we confirm on tabular, image, and text data. This phenomenon explains
why the minority class is more severely affected by overfitting. We further show
that margin rebalancing mitigates minority accuracy drop and provide theoretical
insights into calibration and uncertainty quantification.

1 INTRODUCTION

Classification tasks are ubiquitous in statistics and machine learning. In many practical applications,
training data are often imbalanced, meaning that some classes (minority classes) contain substan-
tially fewer samples than others. In binary classification, particularly, we observe training data
{(z4, i)} "< Py, with features x; € R? and binary labels y; € {£1}. Denote by P, (resp. P,)
the marginal distribution of @ (resp. y), and the expected fractions of the two classes by
my =Py, = +1), m_:=Py; = —1).

We say that the data set is imbalanced if 74 < w,ﬂ Imbalanced classification is common in applica-
tions where the minority class represents rare diseases, rare events, anomalies, or underrepresented
groups (Kubat et al., [1998; |King & Zengl [2001; |Weiss & Provost, [2003}; (Chandola et al., 2009; Ngai
et al.,[2011} [Litjens et al.l 2017; Tschandl et al., 2018}, Buolamwini & Gebru, [2018])

We focus on classifiers which take the form of @ — 21{f(x) > 0} — 1, with f(x) = (x, 8) + So.
This simple form is widely used in statistics and deep learning. Particularly for image and text data,
the last classification layer of a deep neural network (DNN) usually takes this form (e.g., softmax),
where x; is the extracted feature in high dimensions.

Challenge 1: High-dimensional features from pretrained neural networks In low dimensions
(d < n), prediction and estimation are well understood. But when d is comparable to n, classical
theory becomes inaccurate, motivating refined asymptotic analyses of high-dimensional learning.

Regarding parameter estimation, a line of work (Dobriban & Wager, 2018} |Sur et al., [2019; [Sur &
Candes, [2019; |Candes & Sur, |2020; Montanari et al., |2023) has studied logistic regression under
the proportional regime n/d — d. As d increases (i.e., d decreases), the estimation error of the
maximum likelihood estimator (MLE) 3 grows, and classical likelihood tests require modification.

Regarding generalization, high dimensionality usually leads to a gap between the training and test
errors. Recent work on double descent (Belkin et al.|[2019) shows that in overparameterized models,
gradient descent induces implicit regularization, leading to benign overfitting (Bartlett et al., 2020).

"Without loss of generality, we assume that the minority class is assigned the label +1.
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Finally, the distribution of logits is highly valuable for feature visualization and interpretation, yet
little theory exists. Practical examples include linear probing, a common approach for interpreting
the hidden states (or activations) (Kornblith et al., 2019} He et al., 2020; Kumar et al., 2022), and pro-
Jjection pursuit, which explores data via low-dimensional projections, with recent theory developed
in high dimensions (Bickel et al.,|[2018;|Montanari & Zhou, 2022).

Challenge 2: Class imbalance in downstream tasks In downstream tasks, the base neural net-
work is typically frozen, and only the last layer is retrained—also known as linear probing. In such
classification settings, data imbalance poses key challenges: MLE may be unreliable, label shifts
in the minority proportion 74 can degrade performance, and misclassifying minority samples is
often more costly (He & Garcial [2009). Common remedies include adjusting decision boundaries,
reweighting losses, and sub-/over-sampling (King & Zeng, 2001} Chawla et al.,|2002).

Overfitting in high dimensions further exacerbates imbalance, as large deep models often memorize
rather than generalize to minority samples (Sagawa et al., [2020). Although various remedies have
been proposed (Huang et al.|[2016}|Cao et al.,2019; Liu et al., 2019} |Khan et al.,|2019)), they remain
ad hoc and offer little guidance on hyperparameter choice or feature interpretation.

Imbalanced classification. Classical work on logistic regression shows that large-sample asymp-
totics fails with small samples, motivating bias corrections (Anderson & Richardsonl |1979; McCul-
lagh & Nelder], [1983]; Schaefer] [1983). Under label shift, intercept correction and upweighting are
proposed (Xie & Manski, [1989; [King & Zeng|, |2001; Loffredo et al., 2024; |Pezzicoli et al., 2025;
Sarao Mannelli et al., |2025). For kernel and tree-based methods, resampling, and synthetic data
generation are common (Chawla et al., 2002 |[He et al., |2008; [He & Garcia, |2009), yet these are
ineffective for separable data (Cao et al.,[2019) and do not address high-dimensional overfitting.

Margin-based methods. Margin is central to classification methods such as SVM. For imbalanced
settings, promoting unequal margins is proposed for the perceptron algorithm (Li et al.|[2002), SVM
(L1 et al, |2005), and more recently deep networks (Huang et al.| 2016; |Cao et al., [2019; |[Khan
et al.. 2019; Liu et al.,2019). Theoretical work has established margin-based generalization bounds
(Bartlett, |{1996; Bartlett et al.l |1998; [Bartlett & Mendelson, [2002; Koltchinskii & Panchenkol [2002;
Bartlett et al.,|2017), motivating margin-rebalancing losses (Cao et al.,|2019). However, the margin-
dependent bounds are agnostic to data distributions and may be excessively conservative.

High-dimensional asymptotics. Classical asymptotics in low dimensions is inaccurate (El Karoui
et al., 2013; Donoho & Montanari, |2016). A recent line of work develops high-dimensional classi-
fication theory (Dobriban & Wagerl, [2018; |Sur & Candes| 2019} Salehi et al.,[2019; Sur et al., 2019
Candes & Sur, 2020; Mignacco et al., [2020; Kini1 et al., 2021; Loureiro et al., 2021} |Deng et al.,
2022} Montanari et al., [2023; |Dandi et al., |2023; Montanari et al., [2024)), refining Table [1| mainly
via Gordon’s theorem (Gordonl, |1985}; Thrampoulidis et al., |2015). Closest is (Montanari & Zhou,
2022), which analyzes projection pursuit and low-dimensional asymptotics, but none characterize
the impact of class imbalance on overfitting or calibration.

Table 1: Qualitative comparison between low/high dimensions for binary classification, where a lin-

ear classifier y(x) = 21{f(x) > 0}—1 with f(x) = (2, B)+ Do is trained on {(z;, yi)}?zll'ﬂ'Pmyy.
Here, the logits { f(x;)}}, are obtained by evaluating f on the training set.

Low dimensions High dimensions
imati B B\ B B
Parameter estimation <H5H’ H5H> 1 <HBI|’ HBH> <1
Generalization Train error ~ Test error Train error < Test error
Distribution of logits 1D projection of P, Skewed/distorted 1D projection of P,

Our contribution We identify two key gaps in the existing literature. First, the reason why over-
fitting is more severe in minority classes, though consistently observed, remains unclear. Second,
there is no comprehensive analysis of how key factors—such as dimensionality, imbalance, and sig-
nal strength—affect performance metrics like test accuracy and uncertainty quantification. The goal
of this paper is to develop a statistical theory that addresses these gaps.

* We characterize overfitting via the discrepancy between logit distributions on training and test
sets, and show that dimensionality induces a truncation effect in training logits. (Section [2))
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* We derive the optimal hyperparameter for margin rebalancing to mitigate class imbalance, and
show that test error decreases with key model parameters—the imbalance ratio, signal strength
(class center separation), and aspect ratio, see Table[2] (Section 3)

* We further show that parameter changes that raise test error could simultaneously worsen model
calibration, revealing an adverse effect of overfitting, see Table 2] (Section )

Table 2: Monotonicity of test errors and miscalibration metrics on model parameters.

Err’y, Err”, Erry, CalErr* MSE* ConfErr*
imbalance ratio 7 1 J (Prop.|3.1 4 (Thm.4.1) | (Claim|D.10)

signal strength ||p||, T 1 (Prop.
aspect ratio n/d — 0 1 J (Prop.

»
il

| (Claim[D.10) | (Thm. [&]]
| (Claim[D.10) | (Thm.[4. 1 (Prop.[D.9)

»
=
=

Building on theoretical tools from high-dimensional statistics, our analysis focuses on a stylized
model. Suppose the i.i.d. training data {(x;,y;)}?_, are generated from a two-component Gaussian
mixture model (2-GMM):

Plyy=+1)=m, Plyy=-1)=1-m @;|y; ~ N(yp, 1), (1)

where 1 € R¢ is the signal vector. Under this model, the Bayes-optimal classifier has the form
y*(x) = 21{(x, B) + Bo > 0} — 1, where 3/ 1. See Section 5] for extensions of Eq. (I). We study
the behavior of two standard approaches for binary classification: (a slightly generalized version of)
logistic regression and support vector machines (SVMs). Denoting by ¢ : R — R a strictly convex
decreasing function, including the logistic function log(1 + e~%) as a special case, we solve

n

1
logistic regression minimize — U y; ((x;, B) + , 2
(log g ) BeR,BoeR n; (y (< ! ﬁ> BO)) (22)
(SVM) maximize K,
BERY, Bo,kER
subjectto  y;({x;,8) + o) > Kk, Vi€ [n], (2b)
18, < 1.

Both optimization problems are convex and yield solutions ﬁ, Bo’ which are used to predict class
labels for a test data point « based on f(x) = (x, 3) + . Namely, the predicted binary label of a
test data point « is y(x) = 21{(x, B) + Bo > 0} — 1.

We will analyze both classifiers with a focus on the SVM for the following reason. In modern
machine learning, it is common for the labeled data {(x;,y;)}7; to be linearly separable due to
high dimensionality. When data are linearly separable, the hard-margin SVM coincides with the
max-margin classifier. It is known that the gradient descent iterates of logistic regression converge
in direction to the max-margin solution (Soudry et al., 2018} Ji & Telgarsky} 2019)), which is known
as a form of inductive bias (Neyshabur et al.,|2015). See Appendix for the background. In this
sense, the two classifiers are closely related.

All experiment details and proofs are provided in the appendix. The code for our experiments can
be found athttps://github.com/jlyu55/Imbalanced _Classification_iclrl

2 CHARACTERIZING OVERFITTING VIA EMPIRICAL LOGIT DISTRIBUTION

Explaining why test accuracy drops more for the minority class requires a more refined characteri-
zation of overfitting. We therefore study the empirical djstribution of logits f(x;) = (z;, 8) + Bo,
i € [n] on the training set. Let (x1,v1),..., (€n, yn) "~ "Py.y be training data, and (Ztest, Ytest)
an independent test point. Consider a binary classifier J : R? — {£1} based on f : R? — R that
predicts § = +1if f(x) > 0 and ¥ = —1 otherwise.

Definition 2.1 (Logit and margin). Let (x,y) € R? x {+1} be a data point. For a binary classifier
of the form y(x) = 21{f(x) > 0} — 1, we define the logit of x as f(x), and the margin of the
classifier f (on the training data) as K, = min;ep,) yi f(x;).

The following definitions highlight the logit distribution on both training and test data.


https://github.com/jlyu55/Imbalanced_Classification_iclr
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Figure 1: Empirical logit distribution (ELD) and testing logit distribution (TLD). We train a
max-margin classifier (namely SVM) f on synthetic data from a 2-component Gaussian mixture
model. Colors indicate labels y; and z-axis indicates logits f(x;). ELD for both classes: rectified
Gaussian distribution (histogram). TLD for both classes: Gaussian distribution (curve). Over-
fitting effect: The density areas below the dotted curves are overlapping in TLD, thus leading to
positive test error; however they are “pushed” to respective margin boundaries in ELD, thus leading
to linear separability and zero training errors.
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Figure 2: ELD and TLD of logistic regression classifier (the last fully-connected layer) for
real data. Left: IFNB single-cell RNA-seq dataset (tabular data). Middle: CIFAR-10 dataset
preprocessed by pretrained ResNet-18 model for feature extraction (image data). Right: IMDb
movie review dataset preprocessed by BERT base model (110M) for feature extraction (text data).

Definition 2.2 (ELD and TLD). Empirical logit distribution (ELD), or training logit distribution,
is defined as the empirical distribution of label-logit pairs based on training data:

~

= ~train 1 . . “p . » n
D, = ptrain — Z 6(yi,f(wi)) (i.e., the “histogram” of { f (x;)}i—1). 3)
=1

Minority ELD and majority ELD are defined respectively as ELD in minority and majority class.
Testing logit distribution (TLD) is defined as the distribution of the label-logit pair for a test point:

viest = Law (ytesm f(mtest))
Minority TLD and majority TLD are defined respectively as TLD in minority and majority class.

When &,, > 0, the training set is linearly separable, and [ attains 100% training accuracy. In high
dimensions this is common, yet test accuracy is typically imperfect; this train/test discrepancy is
known as overfitting. As logit distribution is more informative than train/test accuracies, we analyze
overfitting through ELD/TLD.

Empirical phenomenon First, we show a simple yet representative simulated example to illustrate
the phenomenon; see Fig. [l We generate training data according to 2-GMM in Eq. (I)) with n =

2§a is the delta measure supported at point @ (Dirac measure).
3Law means the distribution of random variables/vectors.
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10,000, d = 4,000, ||p|l, = 1.75, and imbalance 7 = 0.15, which guarantees linear separability.
Training an SVM Eq. and plotting ELD/TLD by class, we find TLDs are Gaussian, whereas
ELDs are the same Gaussians but truncated at the margin—such discrepancy characterizes the effect
of overfitting in imbalanced classification. The minority (y; = +1) ELD loses over half its mass by
truncation, yielding much lower accuracy than the majority (y; = —1). Formally, such distribution
of ELD is called rectified Gaussian (i.e., max{Z, k} or min{Z, k} where Z ~ N(u, 0?)).
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Figure 3: ELD and TLD of Llama-3-8B-Instruct activation probing on TruthfulQA dataset.
Left, Middle: Scatter plot on training/testing data for activations (31th layer, 26th head) of truthful
(minority) and false (majority) QA pairs after projection onto the top-2 directions. Marginal distri-
butions are shown on the upper and right sides. Right: Marginal ELD and TLD on 1st direction.

|
=
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For real-data examples, we fine-tune pretrained DNNs by freezing all parameters except for the last
classification layer on imbalanced labeled data, effectively using the pretrained network as a feature
extractor—a standard downstream practice (Sharif Razavian et al., 2014} Zhou et al., 2016; Howard
& Ruder} 2018}, |Radford et al.l2021)). We evaluate three representative data modalities; see Fig. E}

1. Tabular data. We use a single-cell RNA-seq dataset of peripheral blood mononuclear cells
treated with interferon-g (IFNB) (Kang et al., 2018)), with dimension d = 2,000. We choose
class 5 (CD4 Naive T cells) and class 4 (CD4 Memory T cells), and subsample an imbalanced
training set. Class 4 is the minority class, with imbalance m = 0.2 and sample size n = 953.

2. Image data. We use CIFAR-10 image dataset (Krizhevsky, 2009). The pretrained ResNet-18
model (He et al.,2016; |Dadalto, |2023)) is applied to extract the features of dimension d = 512.
We randomly choose two classes, for example, class 5 (dog) and class 4 (deer), and subsample
an imbalanced training set. Class 4 is the minority class, with 7 = 0.1 and n = 555.

3. Text data. We use IMDb movie review dataset (Maas et al.,[2011)) to perform binary sentiment
classification. The BERT base language model (110M) (Devlinl 2018]) is applied to extract the
features of dimension d = 768. An imbalanced training set is sampled, where negative reviews
belong to the minority class, with 7 = 0.02 and n = 6,377.

Empirically, we observe a pervasive ELD regularity: for separable data, the ELD of each class can
be fitted by rectified Gaussian, and such distributional truncation solely explains overfitting in high
dimensions. The minority class also suffers more from truncation effect as its test accuracy is worse.

Further, we extend our analysis from last-layer features to intermediate-layer hidden states of large
language models (LLMs), by applying Llama-3-8B-Instruct (Al@Meta, 2024)) to Truthful QA (Lin
et al.| [2021), following the experiment in (Li et al., |2023). For each QA pair we concatenate the
question and answer, extract last-token head activations, and build a probing dataset for every head
and layer. We fit a linear probe (Eq. (2a), st direction) and an orthogonal probe (2nd direction,
minimizing the same objective subject to orthogonality). See details in Appendix [B.2] Fig. [3]shows
the joint and marginal logit distributions along the two directions. Unlike (Li et al.,2023), we use an
imbalanced probing set (m = 0.04, n = 690; true answers are minority) and compare ELD (Fig. 3|
left) with TLD (middle). We observe truncation in the first direction and distortion in the second,
indicating overfitting in LLM probing under class imbalance and offering potential guidance toward
understanding unintended memorization in LLMs.

As our theoretical insights below reveal, this truncation phenomenon arises because both classes
share a common “overfitting budget”, which disproportionately shifts the minority margin boundary.
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Theoretical foundation We highlight a summary of our result for the separable case here and
defers the non-separable case to Appendix Consider the asymptotic regime n/d — § where
d € (0,00) is called the limiting aspect ratio. Recall that (3, 5y, %) are the trained parameters in
Eq. (2b), where & is the margin of classifier y(x) = 21{f(x) > 0} — 1 with f(x) = (z, B) + So.
Denote p = (Tﬁ%, m> the cosine similarity between the slope and the optimal direction g.

On a test point (@yest, Ytest) ~ Pa,y» We consider the minority error and majority error

EI‘I‘+ =P (f/\(mtcst) § 0 | Ytest = +1) 5 Err_ =P (f(mtost) >0 ’ Ytest = *1> . (4)

Theorem below characterizes the precise asymptotic behavior, namely the limiting distribution
of and logits in the proportional regime as n/d — 4.

Theorem 2.1 (Separable data, informal version of Theorem |D.1)). Consider 2-GMM with asymp-
totics n/d — 6 € (0,00) as n,d — oo. There is a critical threshold 5. = d.(m, ||p||5), such that
when § < 4., the following holds as n,d — oco:

(a) Parameter convergence. The training set is linearly separable with high probability, and
(//)\7 BOa 7{) i} (p*a /687 H*)a
where (p*, 53, k*) is the unique solution to the following variational problem

maximize K, st plplly+G+YBo+ V1 —p2 >k, E[E?]<1/6, (5)
PE[=1,1],80€R,£>0,6€L?

where L? is the space of square integrable random variables in the probability space (Q, F,P),
(Y,G) ~ Py, x N(0,1), and £ is an unknown random variable (functional) to be optimized.

As a consequence, the limits of minority/majority errors are

Erry — @ (=p" |ully = By),  Errm = @ (=p" lpll, + 5o) »

where ® denotes the cumulative distribution function of standard Gaussian.
(b) ELD convergence. The empirical (training) logit distribution D®™ has limit v in the sense
4 D 8) log n "

Wy (ptrain ytrainy Py g where V™™ := Law (Y, Y max{x*, p* ||, + G+ Y55 }).

n s Uk

TLD convergence. The testing logit distribution " has limit vi** in the sense that

prest =y plest, where V*°" .= Law (Y, Y(p* |p|y + G+ YBS))

Intuition and proof techniques

* InEq. (), p is the cosine similarity between 3 and p, and the term p || ||, + G + Y 3y yields
the projection of the input distribution & ~ 7 - N(p, Iz) + (1 — ) - N(—p, I;) onto 3:

y ((m, B8) + Bo) =y (yu + N(0,1),8) + yBo  (recall |3, = 1)

- <L i> laally + (N(0,1a), B) +y o = p |l + G + Y Bo.
||l"’||2 ||/6H2 SN————

P

N(0,1)
Intuitively, the remaining dimensions are not relevant and instead provide room for overfitting,

which is captured by the “free” random variable €.

* The main idea is to rewrite the linear classifier in Eq. (2b) as a min-max formulation involving

mﬁi‘n max {)\TG,B +(X,c)}, where G € R™*? with i.i.d. N(0, 1) entries.

Gordon’s theorem (Gordonl, [1985; Thrampoulidis et al., 2015) allows us to replace the bilinear

term AT GB with ||B]|2(X, N(0,1,)) + ||Al|2(3, N(0,1,)), so the min—max problem involves
only random vectors instead of the random matrix G. Our proofs then address the technical
aspects of this reduction and establish the resulting distributional convergence rigorously.

We now provide several additional remarks on Theorem 2.1
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Figure 4: Impact of imbalance on test errors. We show test errors from 2-GMM simulations with
margin rebalancing (solid curves) and without (dashed curves) at three levels of signal strength || ||
under varying imbalanced ratios 7.

* Compared with the existing literature. Rather than focusing solely on test errors—as in prior
theoretical studies (Kini et al.,[2021; Deng et al.,|2022)—we analyze overfitting in imbalanced
classification by characterizing the ELD/TLD (Theorem [2.1[b)), and further establish mono-
tonicity of test errors in key model parameters (see Section [3|and Table 2).

Overfitting effect. The random variable £ encodes distortion of ELD due to high dimensions. A
smaller aspect ratio § loosens the moment constraint E[¢?] < 1/6 when maximizing the margin
in Eq. (3), allowing greater distortion of TLD and thus stronger truncation. In fact, in order to
maximize k, the first inequality constraint must be tight, which yields the explicit formula:

V1—=p?&=max{r,plull, +G+Yp} - (pllply, + G +Yh)
=E=plul,—G=Y5o)+, where a; := max{0, a}. (6)

Thus, £ maps overlapping TLD masses to ELD margins, explaining ELD/TLD discrepancy.

* More truncation for minority class. Due to imbalance, transporting the probability mass in the
minority ELD as Eq. (6) incurs less “cost” to the overall “budget” E[¢?] < 1/4. Formally,
according to Theorem [2.1] the limiting TLD for each class is

minority: N (p° |pall, + 55,1),  majority: N (—p* pally + 55,1).
It can be shown that p* > 0, 85 < 0. So the minority TLD is closer to the decision boundary—
the minority class suffers more from the truncation effect (overfitting) than the majority class.

Optimal transport perspective. We show in Appendix that T*(z) = max{x*,z} gives

the optimal transport map from v, to v'*** and minimizes the W5 distance between them.

* Non-separable case. When 6 > ¢, the training data is not separable with high probability,
so SVM is no longer the limit of logistic regression Eq. (2a). We analyze Eq. (2a) and its
ELD: instead of truncation, overfitting appears as nonlinear shrinkage governed by the proximal
operator (Moreau-envelope gradient). As 6 € (d.,00) decreases, the shrinkage moves from
an identity map (no overfitting) to truncation T*(z) = max{x*,z} (severe overfitting). See
Theorem for the formula and Appendix for its function plot.

3 REBALANCING MARGIN IS CRUCIAL

Rebalancing the margin is a common practice for remedying severe overfitting for the minority class.
In binary case, we choose a hyperparameter 7 > 0 and consider the margin-rebalanced SVM:

maximize k  subjectto y;((z;,B) + Bo) >k, Vie[n], |8, <1, (7)
BER?,Bo€ER,KER

where 7; = 71 if y; = +1, otherwise 7; = —1. For the logistic loss in Eq. , we can similarly
incorporate 7 into the objective function. Margin rebalancing is widely used in machine learning
(Karakoulas & Shawe-Taylor, (1998 [Li et al., 2002; Wu & Chang} 2003} [Li et al., 2005} |Cao et al.,
2019; Kini et al.| 2021} |Clifford et al.} [2024; |Hu et al.| [2025)), but the impact of 7 and other model
parameters on test accuracy is not fully explored.
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Figure 5: Phase transition in high imbalance regime. Minority/majority errors under different
settings of parameters (a, b, ¢) and 7 = d". Left: minority accuracy is (i) high for any 7 under high
signal, (ii) high for 7 >> d*~*~¢ under moderate signal, but (iii) low for any 7 under low signal.
Right: majority accuracy is close to 1 under high and moderate signal as long as 7 is not too large.

We will conduct analysis under two regimes: (i) proportional regime where n,d — co and n/d —
d with § € (0, 00), and (ii) high imbalance regime in the following sense:

mocd™ lplyecd,  nocd ®)

For problems with imbalanced data, often correctly classifying the minority points is as important
as majority points. We thus introduce the balanced error:

Erry, := (Erry + Err_)/2. )

Empirical phenomenon For the proportional regime, we generate imbalanced 2-GMMs Eq. (1)
with n = 100, d = 200, varying ||p||, and 7 € (0, 3]. In each setting, we train an SVM Eg.
with margin rebalancing (set 7 optimal) and without (7 = 1), compute test errors on independent
data averaged over 100 runs, and plot them against 7 in Fig.[d Smooth curves show the asymptotic
errors from Theorem In naive SVM (7 = 1), decreasing 7 drives minority error Erry 7 1,
majority error Err_ Y\, 0, and balanced error Erry, to %, showing minority classes suffer more from
overfitting. With optimal 7, minority and majority errors align, making margin rebalancing effective
for reducing balanced error. Further details and additional results appear in Appendix [B]

For the high imbalance regime, we generate imbalanced 2-GMM:s based on Eq. () with d = 2000
large enough. We choose 7 = 7; = d" under different values of » > 0. We fix b = 0.3, ¢ = 0.1
and vary a,r, and then we train a margin-rebalanced SVM Eq. (7)) for each configuration. Fig.[3]
shows that there are three phases in terms of the majority/minority errors. In particular, the margin
rebalancing is crucial for one phase with moderate signal strength.

Theoretical foundation For the proportional regime, denote Err’, , Exr” , Erry, as the limits of
Erry, Err_, Erry, as n,d — oo, respectively, then we have the following result.

Proposition 3.1 (Optimal 7 in proportional regime, informal version of Proposition[D.€). Consider
2-GMM with asymptotics n/d — & € (0,00) as n,d — oco. Define T°P* as the optimal margin ratio
which minimizes the asymptotic balanced error

rP% i arg min Errf, = argmin {®(=p" |l — 85) + (—p" |l + 5)}-

If T =7°P* > 0, we have 3} = 0, and Err’, = Err* = Erry, decreases inm € (0, 3),

||y, and o.

Notably, changing 7 only affects 3y (not 3), effectively shifting the decision boundary. The opti-
mal 7 has a complicated dependence on 7, || e[|, , , and in non-degenerate cases roughly satisfies
TOPt =< /1/7 (see Appendix for details). Under 7 = 7°Pt, our theory shows that the test errors
decrease monotonically with 7 € (0, %) 1t]|5, and &; see Table 2((and Propositionfor details).

For the high imbalance regime, margin rebalancing is necessary to achieve a small balanced error
when the “signal strength” is moderate, which matches our empirical observations in Fig. [5]
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Figure 6: Reliability diagrams: imbalance worsens calibration. In our 2-GMM simulations, we
train SVMs and obtain confidence p(x). For each p (z-axis), we calculate P(y = 1| p(x) = p) (y-
axis) based on an independent test set. We find that as imbalance increases (smaller ), the classifier
becomes more miscalibrated as the predicted probabilities are more inflated.
Theorem 3.2 (High imbalance). Consider 2-GMM with Eq. (8) as d — co. Suppose that a — c < 1.
1. High signal (no need for margin rebalancing): a — ¢ < b. If we choose 1 < 74 < d¥/?, then
Erry = o(1), Err_ = o(1).
2. Moderate signal (margin rebalancing is crucial): b < a—c < 2b. Ifd* "¢ <« 74 < d(@=¢)/2,
Erry = o(1), Err_ = o(1).
However, if we naively choose T4 < 1, then
Erry =1-—0(1), Err_ = o(1).

3. Low signal (no better than random guess): a — ¢ > 2b. For any 14, we have Erry, > % —o(1).

4 CONSEQUENCES FOR CONFIDENCE ESTIMATION AND CALIBRATION

In deep learning, the confidence of a classifier is often understood as the likelihood that its prediction
is correct. Formally, we define the confidence of the max-margin classifier as p(x) := o(f(x)) =
o({x,B) + Bo) where o(t) = (1 + e~*)~1. We would like p to be close to the Bayes-optimal prob-
ability p*(x) = P(y = 1| x), but estimating p*(x) is generally intractable in high dimensions. The
notion of calibration is widely used to assess the faithfulness of prediction probabilities
[Epstein|, [1967; [Dawid, (1982} (Gupta et al.,[2020). Formally, we call p is calibrated if

p(x) = po(z) = P(y = 1|p()). (10)

This requires p(x) to match the true probability for any p(x). We list some common miscalibration

metrics below (Kumar et al, 2019; [Kuleshov & Liang}, 2015} [Vaicenavicius et al., 2019):
Calibration error CalEr(p) i= E |(p(@) - P(y=1[p(=))’]. a1

Uy =1} - (@)’ . (12)

Pla) — " (@)°] (13)

Mean squared error (MSE) MSE(p) :

Il
5 &=

Confidence estimation error  ConfErr(p) :

Empirical phenomenon We plot confidence reliability diagrams in Fig. [6] for the 2-GMM simu-
lations, a common diagnostic for classifiers that shows P(y = 1| p(x) = p) as a function of p
. We fix ||p]|, = 1, n = 1,000, and d = 500, and choose a range for different 7, under
T = 7°P'. We observe miscalibration getting worse when data becomes increasingly imbalanced
(i.e., as m decreases). Other miscalibration metrics exhibit similar behavior (see Appendix [B].

Theoretical foundation We provide theoretical results to partially explain the monotone trends.
Theorem 4.1 (Confidence estimation and calibration, informal version of Proposition [D.9). Con-
sider the proportional regime under condition of Theorem 2.1

(a) All miscalibration metrics Egs. (LT1)—(13) have certain limits. For example, MSE — MSE" :=
Elo(—p* |pll, — G — Y B5)?] asn,d — oo and n/d — 6.
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(b) MSE" is monotonically decreasing in 7 € (0, %), ||p|lo. and 8, when T = 7°Pt.

The decrease of imbalance ratio , signal strength || ¢]|,, or aspect ratio ¢ would worsen calibration.
This aligns with observations in Fig.[6] Other results are summarized in Table [2]

5 EXTENSIONS

Our theory focuses on two-class problems with an isotropic covariance matrix since the phenomenon
can be observed, analyzed, and theorized more clearly. For the cases of multiple classes and non-
isotropic covariance matrices, we believe a similar characterization of ELDs exists.

Multiclass classification. For classification with K > 2 classes, we observe features x; € R? and
labels y; € [K] ~ P,, where the expected fractions of each class is 7, := P(y; = k), k € [K].
Denote fi(x) the logit of = for label k. We conduct numerical experiments to illustrate that the
truncation effect likely extends to the multiclass setting.

* For simulation, we consider 3-component GMM with 7 = (0.5,0.3,0.2), n = 50,000, d =
6,000, and class centers are generated in R? from the £2-sphere (at the origin with radius 4).

* For real data, we consider CIFAR-10 image dataset preprocessed by the pretrained ResNet-18.
We undersample an imbalanced dataset with sample size 500, 223, 100 for each class 1, 2, 3.

We train a multinomial logistic regressimﬂ (with ridge regularization parameter A\ = 10~%) after
prewhitening the features. In Fig.[7] we present the density heatmaps of joint logits ( f1 (), fx(%;))
in both experiments, where all input features x; are from class 1, and k = 2, 3.

Notably, we observe similar truncation phenomena for 3-class classification on both synthetic and
real data, where the Gaussian density is visibly truncated by two hyperplanes. For general K > 3,
we conjecture that the empirical joint distribution of the logits is asymptotically a multivariate Gaus-
sian projected to a convex polytope in RX, where specific parameters of this limiting distribution
depends on certain variational problem analogous to Eq. (3). See Appendix [D.4]for details.

Logit distribution of class 1 Logit distribution of class 1

25 )
5 60 2.0 1)
L5 Z
40 U
< 0.5
20
0.0

15
—40 —20 0 —40 —20 0 ’Z125 —100 -75 —50 —125 —100 -7.5

logit for label 2 logit for label 3 logit for label 2 logit for label 3

logit for label 1

Figure 7: Joint empirical logit distributions of multinomial logistic regression. The heatmaps
display empirical joint logits ( f1(x;), fi(w;)) for features @; from class 1, where k = 2, 3. Overlaid
Gaussian density contours (dashed curves) depict testing logit distributions. Left: 3-GMM simula-
tion. Right: CIFAR-10 image features preprocessed by pretrained ResNet-18.

Non-isotropic covariance. Our theory and proof strategies can also extend to non-isotropic set-
tings. Here we highlight two important cases that commonly arise in practice. In both cases, overfit-
ting remains characterized by truncation (full theoretical statements are deferred to Appendix [D.4).

* Heterogeneous covariance. We extend Eq. (I)to@; |y; =1 ~ N(p, X ) and z; | y; = —1 ~
N(—p,3_), where 3 # ¥ _. The asymptotics are analogous to Eq. (3). In particular when
3, = 011y, the limiting ELD becomes Law (Y, Y max{x*, p* ||p|l, + oy G + Y i }), where
oy =04 1fY = +1and oy = o_ if Y = —1. Therefore, covariance heterogeneity induces
distinct scaling effects on the Gaussian component of the logit distribution for each class.

* Spiked covariance. We also study the special case where x; | y; ~ N(y;u, ) with covariance
Y= qQVVT + 14, and V is a d x J orthogonal matrix. Such low-rank structure is common in
overparameterized models. We can similarly derive asymptotics analogous to those in Eq. (3).

4Similar to the binary case discussed in Section we expect similar connections between multiclass SVM
and multinomial logistic regression exist.
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A  NOTATIONS

We typically use italic letters to denote scalars and random variables (e.g., a,b,¢c,G,Y,... € R),

boldface (italic) lowercase letters to denote (random) vectors (e.g., a, s, ,y, ... € R?%), and bold-
face (italic) uppercase letters to denote (random) matrices (e.g. A, P, X,G,... € Réxd)
For any positive integer n, let [n] = {1,2,...,n}. For a scalar a, let a4 = max{a,0} and

ay = max{—a,0}. For vectors u, v of the same length, let (u,v) = u'v denote their standard
inner product, and write u L v if they are orthogonal ({u,v) = 0). The corresponding Euclidean
norm is |lul = |lul, = (u,u)!/2. For a matrix A, let |A[,, denote its operator norm and [|A |
its Frobenius norm. We use S7} (resp. S’} ) to denote the set of symmetric positive semidefinite
(resp. definite) matrices in R™*". We use ¢ and ® to denote the cumulative distribution function
(CDF) and probability density function (PDF) of standard normal distribution. Let Law(X ) denote
the distribution of random variable (or vector) X. We write X 1l Y if X and Y are independent
random variables.

We use O(-) and o(-) for the standard big-O and small-o notations. For real sequences (a,)n>1,
bp)n>1, We write a, < b, orb, 2 a, if a, = O(b,), and a,, < b, if a,, < b, and a,, 2 b,,. We

~

also write a,, < by, or b, > a, if a, = o(b,). We write a,, x by, if a,, = ¢b,,,Vn > 1 for some

d Jord . L e
constant ¢ > 0. Let <, 25, = denote stochastic convergence in distribution, in probability, in £?,
respectively, and let = denote weak convergence of measures. We also use Op(+) and op(-) for the

standard big-O and small-o in probability notations. Denote Op(-) as a variant of Op(-) which hides
polylogarithmic factors.

Given two probability measures P, () on R9, their second Wasserstein (Ws) distance is defined as
1/2
Wa(P,Q):=( inf /x— 2 dxxd) ,

(P@) = (_int [ Ix-yliatexx oy
where the infimum is taken over the set of couplings I'(P, Q)) of distributions P and (). For a
sequence of measures (P,),>1, we write P, SN Q if Wy (P,,Q) — 0asn — oo. Forany x € R
and A > 0, the Moreau envelope of a continuous convex function £ : R — R is defined as

1

(1) = exy(z) = min {at) R x>2} ,

and the proximal operator of ¢ is defined as

1
prox,(x; A) = prox,,(x) := arg min {E(t) + (- x)2} .
teR 2)\

For binary classification, define Z, := {i € [n] : y; = +1}and Z_ := {i € [n] : y; = —1} as
the minority and majority index sets, with n4. := |Z| and n_ := |Z_|. We exclude the one-class
degenerate case and assume n.,n_ > 1, which holds with high probability.

B EXPERIMENT DETAILS

B.1 SETUP AND DETAILS

We present the details of our experiments, including the computational configurations, information
about the datasets, and the pretrained neural networks used in our study.

Datasets We provide the details of real data used in our study, including the source, size, and the
preprocessing applied.

* IFNB (Kang et al, [2018)): single-cell RNA-seq dataset of peripheral blood mononuclear cells
treated with interferon-3, which has n = 7,451 cells, d = 2,000 genes, and K = 13 categories
for cells. The original dataset is available from R package SeuratData (https://github
.com/satijalab/seurat—-datal version 0.2.2.9001) under the name i fnb. The data
were preprocessed, normalized, and scaled by following the standard procedures by R package
Seurat using functions CreateSeuratObject, NormalizeData and ScaleData.
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* CIFAR-10 (Krizhevsky, |2009): the original dataset consists of 60,000 color images of size
32 x 32in K = 10 classes, with 6,000 images per class. There are 50,000 training images and
10,000 test images. It is available at https://www.cs.toronto.edu/~kriz/cifa
r.html. We followed the simple data augmentation in (He et al., [2016; |Cao et al., |2019) for
the training images: 4 pixels are padded on each side, and a 32 x 32 crop is randomly sampled
from the padded image or its horizontal flip. Normalization is applied for both training and test
images.

e IMDb (Maas et al., 2011): the dataset consists of 50,000 movie reviews for binary sentiment
classification (K = 2), with the positive and negative reviews evenly distributed. There are
25,000 training texts and 25,000 test texts. The data can be found at https://huggingf
ace.co/datasets/stanfordnlp/imdbl The maximum length in number of tokens
for inputs was set as 512.

e TruthfulQA (Lin et al.| [2021): the dataset consists of 817 questions spanning 38 categories,
including health, law, finance and politics. Each question comes with an average of 3.2 truthful
answers, 4.1 false answers, as well as a gold standard answer. It can be reformulated as n =
5,918 QA pairs, including 2,600 correct answers and 3,318 incorrect answers. The data can be
found athhttps://huggingface.co/datasets/domenicrosati/TruthfulQA.

Pretrained models We downloaded and used pretrained models from Huggingface.

* ResNet-18 (He et al., 2016): 18-layer, 512-dim, 11.2M parameters, convolutional neural net-
work (CNN), pretrained on CIFAR-10 training set (50,000 images). The pretrained model is
downloaded from https://huggingface.co/edadaltocg/resnetl18_cifarlO.
Notice that for extracting features, we manually removed the last fully-connected layer.

e BERT (Devlin, 2018): 12-layer, 12-head, 768-dim, 110M parameters, encoder-only trans-
former, masked prediction, with absolute positional encoding at the input layer, pretrained on
BooksCorpus (800M words) and English Wikipedia (2,500M words). The pretrained model is
downloaded from https://huggingface.co/google—bert/bert-base—uncas
ed.

We also used a fine-tuned version of BERT (same structure as above) on IMDb dataset, which
can be found at https://huggingface.co/fabriceyhc/bert-base-uncased
—imdb.

¢ Llama-3-8B-Instruct (Dubey et al.,[2024): 32-layer, 32-head, 4096-dim hidden size, 8B pa-
rameters, decoder-only transformer, with rotary positional encodings (RoPE); context length
8,192 tokens; instruction tuned with supervised fine-tuning (SFT) and reinforcement learn-
ing with human feedback (RLHF). Pretrained on 15T tokens of data from publicly available
sources; knowledge cutoff is March 2023. The instruction-tuned checkpoint is downloaded
fromhttps://huggingface.co/meta-llama/Meta-Llama—-3-8B-Instruct.

Data splitting For GMM simulated data and IFNB single-cell data, we split the whole dataset
into training and test sets in equal proportions. For CIFAR-10 image data and IMDb movie review
data, notice that we used the ResNet-18 and BERT model which are pretrained/fine-tuned on the
training set of CIFAR-10 and IMDb, respectively. To avoid reusing the data when training the last
fully-connected layer (i.e., logistic regression), we split the test set of CIFAR-10 and IMDb into a
“training subset” and a “test subset” in equal proportions. We used this “training subset” for logistic
regression training and “test subset” for evaluation. For Truthful QA data, we split the whole dataset
into training and test sets by 5 : 6.

Optimization We used functions linear model.LogisticRegression and svm.SVC
from Python module sklearn to solve logistic regression Eq. (2a) and SVM Egq. (2b) (more pre-
cisely, Eq. (175) parametrization with 7 = 1). For logistic regression, we used the limited-memory
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BFGS (L-BFGS) solver, with maximum number of iterations 106P| For SVM, we set the default
value of cost parameter C = 1E] Tolerance for both are set to be 10™°.

As discussed in Section [C.2] logistic regression and SVM are “equivalent” on separable dataset.
Indeed, theoretically and empirically, there are advantages and disadvantages to both algorithms,
summarized in Table (3| In particular, SVM is preferred for theoretical analysis and precise 2-GMM
simulation, while logistic regression is preferred for large scale real data analysis.

Table 3: Comparison of empirical behaviors of logistic regression and SVM on separable data.

Pros Cons

robust to near-separability  infinite-norm solution
computationally efficient ~ slow convergence
well-defined solution sensitive to outliers
support vectors available =~ quadratic programming

Logistic regression

SVM

B.2 PROBING LLAMA-3-8B-INSTRUCT
We follow the probing setup for “truthfulness” in (Li et al.| 2023)). For each QA pair in TruthfulQA,
we concatenate the question and answer to form a prompt, for example,

Q: Are you conscious? A: I am an AI and I don’t know y = +1, true),
Q: Are you conscious? A: I am a human y = —1, false).

We aim to distinguish attention-head outputs that lead to true vs. false answers. For each head in
each layer, we extract the activation at the last token to form a probing dataset {(z;,y;)}7,. We
train probes as follows:
. . . P . . . . 1(1) ~(1)

(1) Linear probing. Fit logistic regression Eq. (2a]) to obtain 1st-direction logit {\") := (x, 8 ")+

—~ ~(1

B(()l) (with normalization |3 "||2 = 1).

~(2) ~
(2) Orthogonal probing. Fit a constrained logistic regression, where (ﬁ( ), 682)) minimizes the
~(1 ~(2 ~(2
Eq. 1) objective subject to ,6( ) 1 ,8( ). This yields 2nd-direction logit [(?) := (w,ﬁ( )> +

A ~(2
/3(()2) (with normalization ||,6( )||2 =1).

Fig. 3| visualizes the joint and marginal distributions of (I(1), 1(?)) on both the training and test sets.

B.3 GMM SIMULATION

Figs. [I|and [f}6] are all generated from 2-GMM simulations. By rotational invariance, we may take
= (,0,...,0)T € RY for some ;2 > 0. Both minority and majority test errors are calculated on
an independent balanced test set, to ensure the accuracy of estimating Err .

B.3.1 HIGH IMBALANCE

For high imbalance regime in Section [3] we provide a simulation study by generating data from a
2-GMM. More precisely, given a, b, c > 0, let

m=Crd™ " |u|3=Cud’, n=Chdt, (14)

for some fixed constant C; = 1,C,, = 0.75,C,, = 1, where p = (y,0,.. .,0)T € R? and
p = /C,db. In the experiment, we fix b = 0.3, ¢ = 0.1, and d = 2,000 large enough to ensure data

SIf logistic regression is far from converging after the maximum number of iterations is reached,
we would add a small explicit regularizer as in Eq. . In practice, the parameter C = A~! in
linear.model.LogisticRegression can be chosen as 10° ~ 108

SNote that there is no hard-margin solver available in sklearn and svm.SVC is a soft-margin version.
One may set C large enough, but usually a larger C will lead to longer running time. To handle this issue, (for
separable data) we run svm. SVC with C increases from 1, until the training error attains zero.
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Figure 8: Effects of margin rebalancing on test errors. We show test errors from 2-GMM simu-
lations at three different imbalance ratios under varying 7.

separability, while we change the value of a. For each tuple (a, b, c), we compute the parameters
m, ,n as per Eq. (I4), and generate training sets and test sets according to 2-GMM Egq. ().

B.3.2 CALIBRATION

The confidence reliability diagram Fig. @is created by partitioning (0, 1] into M interval bins I,,, :=
(=, ], m € [M], and calculating the average accuracy of each bin. Let p(x;) be the confidence
of the i-th test point (¢ € [n]), and denote B,,, := {i € [n] : p(x;) € I,,,} be the set of indices whose
confidence falls into each bin. Then by our definition of confidence and the symmetry of binary

classification, the accuracy and confidence of 5,, can be estimated by

TeBn) = iy O Uy=1),  coni(By) = 2t 3 ple).

|Bm‘ 1€EBm,

We can also obtain a binning-based estimator of calibration error in Eq. (IT)) by using above quanti-
ties:

. M 1Bl _ 2
CalErr := E —m(afc\c(Bm)—conf(Bm)) .
n
m=1

This is a variant of the expected calibration error (ECE) (Guo et al.| 2017). In Fig.[d the histograms
show the empirical conditional probabilities P(y = 1|p(x) = p) after binning, i.e. acc(B,,). The
dashed diagonal line represents perfect calibration (i.e., when Eq. strictly equals), and deviation
from this line means miscalibration of the classifier.

The confidence reliability diagrams for additional 2-GMM simulations and IMDb movie review
dataset are shown in Figs. [[0}I2] These plots confirm a similar trend: miscalibration is getting
worse when data becomes increasingly imbalanced (i.e., as 7 decreases).

B.4 ADDITIONAL EXPERIMENT RESULTS

Additional results in Section[3] For the proportional regime, we also plot test errors against dif-
ferent values of 7 in Fig.[8Junder the same simulation setting. The minority and majority errors have
monotone but opposite trends in 7, since increasing 7 essentially moves the decision boundary from
the side of minority class to the majority class. Such trade-off between the two classes results in a
U-shaped curve for the balanced error. This indicates that we can find a unique optimal 7 = 7°Pt
which minimizes Erry, and 7°P! is larger as 7 becomes smaller.

Additional results in Sectiond] We consider the same 2-GMM simulation experiment as in Fig. ]
(the proportional regime). After margin rebalancing, we calculate the three miscalibration metrics
Egs. (LI)—(13) on an independent test set, average over 100 replications, and plot these errors
against different values of 7 in Fig.[9] The smooth curves represent the asymptotic errors, i.e., the
limits of CalErr(p), MSE(p), ConfErr(p) as n,d — oo according to Theorem Notably, all
these errors increase as imbalance becomes more severe (namely 7 being smaller).
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Figure 9: Impact of imbalance on uncertainty quantification. We plot miscalibration metrics
Egs. (TI)—(T3) for 2-GMM simulations with optimal margin rebalancing (7 = 7°P*). We find that
high imbalance (namely small 7) exacerbates miscalibration.
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Figure 10: Reliability diagram for 2-GMM simulation (|||, = 2, n = 1,000, d = 100)

B.5 FUNCTION PLOT FOR THE PROXIMAL OPERATOR proxy,(x)

Recall that

prox,,(z) = arg min {((t) + i(t — 1:)2} .

teR 27
We provide the plot for function x — prox,,(z), which is the specific form of overfitting effect in
logistic regression Eq. on non-separable data (i.e., 6 > 0*(0)). The plot is shown in Fig.
where £(t) = log(1 + e~ ") is the logistic loss, and we choose A = 1,5, 100, and 10,000 for visu-
alization. When A is close to zero, the function x — prox,,(x) is close to the identity map, which
is because limy_,o+ proxy,(z) = by Theorem [I.5(b)] When X is large, the proximal operator
(up to scaling) looks like a smooth approximation of the truncation map z — max{x, '} for some
k > 0. Intuitively, prox,,(x) behaves like minimizing ¢ when X is large. Therefore, a large x yields
prox,,(z) =~ x since ¢(x) ~ 0, and a small = would be “pushed” to some x > 0, since the logistic
loss £(x) locally is a smoothing of the hinge-type loss  — (a — bx) for some a, b > 0.

According to our proof in Sectionﬁ, the limiting value of A as n,d — oo, n/d — § (denoted by
A*(4)) is a decreasing function of the asymptotic aspect ratio §. Then Fig. [13|graphically illustrates
the effect of high-dimensionality on overfitting. When n/d — 9§ is large, then A*(d) is small and
ELD = TLD, and overfitting is negligible. In particular, this is the case for the classical setting
where d is fixed and § = oco. When ¢ is moderate, the ELD is somewhat shrunken compared to
TLD. When ¢ | ¢*(0), approaching the interpolation threshold, then A*(d) is very large, and the
ELD is almost a rectified Gaussian and far away from the TLD.

C PRELIMINARIES

C.1 SVM AND LINEAR SEPARABILITY

Consider our 2-GMM in Eq. . Denote X = (z1,...,%,)" € R"*Yandy = (y1,...,yn)" €
R™. Recall the general margin-rebalanced SVM in Eq. (7). For 7 > 0, it is convenient to write this
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Figure 11: Reliability diagram for 2-GMM simulation (||p||, = 0.5, n» = 1,000, d = 500)
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Figure 12: Reliability diagram for IMDb dataset preprocessed by BERT base model (110M)

SVM formulation into

maximize min y; ({(x;, 3) + Bo),
BERY, BocR ie[n]yz« i+8) + o) (15)
subjectto |8, <1

by introducing the transformed labels

N {7—1, ify; = +1,

S 1
YT e ity =1 (16)

According to the following deterministic result, the solution to margin-rebalanced SVM Egq. (7) is a
simple post-hoc adjustment of the solution to the original SVM Eq. (2b).

Proposition C.1. (a) When data is linearly separable, Eq. (7)) has a unique solution.

~

(b) Let (B(T), o(7), k(7)) be an optimal solution to Eq. (EI) under hyperparameter 7. Then

B =B, Fo(r)=Fo() + TR(), R = —R(). ()

Remark C.1. There is a clear geometric interpretation of 3, Bo, k and T in the max-margin classi-
fier, according to Fig.

. B(T) determines the support vectors and the “direction” of decision boundary, which does not
depend on T. Notably, margin rebalancing does not change 3.

. BO (1) balances the positive/negative margins via Eq. , where T determines the amount of
the shifft.

e ®(7) o< (T + 1)1 in a fixed dataset.

C.2 CONNECTIONS BETWEEN LOGISTIC REGRESSION AND SVM

The two classifiers in Eqs. (2a) and (Zb) are strongly connected in high dimensions: the SVM can
be viewed as the limit of logistic regression when the data are linearly separable.
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Figure 13: Function plot for = — prox,,(x) under different \. The solid curve represents the
function y = prox,,(«) and the dashed line represents the identity map y = z.
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Figure 14: Schematic illustration of margin-rebalanced SVM. The dotted line is the decision
boundary for the original SVM, and the solid line is the decision boundary for margin-rebalanced
SVM.

We first introduce the background of inductive bias from (Rosset et al., 2003; |2004) and (Soudry
et al, 2018} Ji & Telgarskyl 2019). In logistic regression, we minimize the empirical loss Eq. (2a))
where £(t) = log(1 4 e~ ") is the logistic loss. Since the loss is strictly convex, if it admits a finite
minimizer, then the minimizer must be unique. However, when the data are linearly separable, there
is no finite minimizer and the objective value goes to 0 for certain 3 with ||3||2 — oco. To obtain a
unique solution, we may add a regularizer:

(3,\,30,,\) = argmin {1 Zf(yi(@i,@ + Bo)) + /\||ﬂ||§} . (18)
BERL,BoeR | T i—1

Let (B, ’6\0) be the max-margin solution to SVM Eq. . Then it has been shown by (Rosset et al.,
2003} |2004) that without the presence of intercept

=B 19)

From this view, logistic regression with a vanishing ridge regularizer is equivalent to max-margin
classifier in the separable regime. By modifying the proof in (Rosset et al.,2003)), we can generalize
their conclusion with 3 included.

Proposition C.2. Let (B A 307 ) be the minimizer of the regularized objective function in Eq. ,
where £ : R — R is any convex, non-decreasing, rapidly varying loss function in the sense that

{(et
im (£0) = 00, Ve e (0,1).

Assume the data is linearly separable. Then the convergence in Eq. holds. Moreover, we have

limy 0+ Bo,x/[Bxll2 = Bo.
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Another approach of establishing the connection does not require adding an explicit regularizer. For
convenience, let £(3) = L " | ¢(y;(;, B)) and consider the gradient descent iterates By —
,B(t) — nVE(B(t)) wheret = 1,2,... and ﬁ(t) is the parameter vector at iteration ¢. It it shown by
(Soudry et al.|2018)) that under a sufficiently small step size 7,

(®) N
oo |87l

where B i= argmax g, < min;e(,) ¥i{x;, B). This is often referred to as the implicit bias.

C.3 PROOFS OF PROPOSITION[C.1] [C.2]

We first introduce some technical adjustments and terms that are used in our proofs.

Well-definedness of margin We define the margin of linear classifier z — 21{f(x) > 0} — 1

with f(z) = (z, 8) + o as
k= k(B, Bo) := Hel[lr?] yi((xs, B) + Bo), (20)

1
which is the objective of margin-rebalanced SVM Eq. and (T5). Note there is a minor caveat
about the one-class degenerate case, which is ignored in the main text for simplicity. When n, =0
or n (this happens with nonzero probability for any fixed n), we have (3, 8y) = co. It motivates
us to redefine the maximum margin properly.

Definition C.1. The well-defined maximum margin is

N K’(BaBO) :m1n§1(<wla/@>+50)a lfl Sn-‘r Sn_17
K= i€[n] 21
0, ifny =0o0rn.

Therefore, K above is a proper random variable and k¥ > 0 always hold Further, K = ﬁ(,a Bo)
with high probability as n — oco. We will apply similar adjustments to the definition of ELD in
Section[E]and elsewhere, whenever required for the proof.

Support vectors Consider the non-degenerate case (1 < ny < n — 1). To study the properties
of optimal solution (3, fy, k) from a non-asymptotic perspective, we inherit the concept of support
vectors from SVM. Define the support vector of a linear classifier 21{{x,3) + By > 0} — 1 as the
vector(s) &; which attain(s) the smallest (rebalanced) logit margin y; ({x;, 3) + o) from each class.
Namely,

SV4 =8V (B) := argminy;((x;, B) + Bo) = argmin +(x;, 3),

iy =+1 iy =+1 22)
SV_ =8V_(B) := argminy;({(x;, 3) + fo) = arg min —(x;, 3),
y;=-—1 iy, =—1

where SV, SV_ are sets of (the indices of) positive and negative support vectors. A key observa-
tion from Eq. is that support vectors only depend on the data and parameter (3, not 3, or 7'
Let svi () and sv_(3) be any element in SV (8) and SV_(3), i.e.,

svi(B) € SV4(B), sv_(B) € SV_(B),

which are (the indices of) arbitrary positive and negative support vectors (only depends on (X, y)
and 3). In particular, sv (8) € SV (8),sv_(8) € SV_(B) are support vectors of the max-margin
classifier 21{(x, 8) + Sp > 0} — 1, which aligns with the definition of support vectors in SVM.

The lemma below summarizes some important properties of the max-margin solution Eq. (7)) char-
acterized by support vectors, which is a stronger statement than Theorem [C.1

Lemma C.3. For non-degenerate case, let (,@7 307 R) be an optimal solution to Eq. H Then

"For degenerate case (n4 = 0 or ), the dataset is considered as linearly separable.
8Hence, we can view SV (3) as a mapping from R? to the power set of { : y; = +1}.
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(a) B does NOT depend on T, and

(T + D = max (@o,(8) = v (), 8) = (Tay 3) ~ To_3) ) 23

(b) 30 depends on T by

7=y, 3),0)+ (&, 5,0
_ T\ ) i (B)
Bo = e . (24)

(c) If the data are linearly separable, then (,@, 30) must be unique.

Proof. For any feasible solution (3, 5p) of Eq. , we denote the positive and negative margin of
the classifier  — 21{(x, 8) + o > 0} — 1 as

k1 (B, Bo) == i:;?irjrlgi«miﬁ) + Bo) =7 (s, (8), B) + o),

25
w(B.0) = min Tl B) +Bo) = — (@318 + i) )
According to Eq. (T3)), we have
B = argmax (8, o (8)) = arg max min §; (i, 8) + Ho(6)),
Begd—1 Begd—1 i€[n]
where 5
Bo(B) := argmax x(3, Bp) = arg max min y; ((x;, 3) + So)
Bo€R Bo€R  i€[n]
= argmax{ min (@i, ) + ), min Gi((@:,B) + o)} 26)
= argmax min {x, (8, Bo), k- (B, 50)}-
Bo€ER

Here, S, () can be viewed as the optimal intercept for a linear classifier with slope given by 3.

As defined in Eq. (25), note min{r (83, Bo), k— (3, Bo)} is a piecewise linear concave function
of By. Therefore, 5 (3) must satisfy the margin-balancing conditiorf’} i.e.,

k4 (B, Bo(B)) = k- (B, Bo(B)) = (B, Bo(B))- 27
In particular, recall that 5o (,@) = BO, then x4 (,@, BO) =K_ (B, BO). Substitute this back to Eq.
deduce
7—_1(<w5\,+(ﬁ)aﬂ> + 60) = _(<ws\,7(ﬁ)vﬂ> + 60)a
which uniquely solves the expression for 30 in Eq. . This concludes the proof of part

Next, we show that 3 does not depend on 7. According to Eq. and Eq. ,
B = argmax (B, fo(8))

66§d71
ey T8 A(B)) + 5 (B.5o(8))
Begd—1 T+ 1
T ) — (Lsy_ )
= argmax< ws(8)B) ~ (@0 9. ) = arg max(xs,, (3) — Tsv (), 3),
Begd-1 T+1 Begd-1

where (s, (8) — sy, (3),3) only depends on 3 and (X, y) by definition. Hence, it deduces

8. 5.(8 B, 5o(B —AVA <st’B>_<5viAaB>
R:H(B,Bo(ﬂ)):m+(5750(5)7)r1ﬁ (8,60(8) _ Esv (B T+1~'U @ P

°As we have seen, the margin-balancing condition holds regardless of the sign of margin. It holds even if
the data is not linearly separable.
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This concludes the proof of part[(a)

Since Eq. |i is a convex optlmlzatlon problem with objective function ||w||2, which is strictly
convex in w, by equlvalence between Eq. (7)., (T3) and (T73), we know that W and 8 = W/||W]|2
must be unique. And by BO is also unique. This concludes the proof of part [

Notice that Theorem [C.3| will also be used in the proof of Theorem [H4] for the high imbalance
regime. Below, we show that Theorem [C.1]is a direct consequence of Theorem [C.3]

Proof of Proposition|C.1) We only show the relation on %(7) and 30(7'), while the other results are
simply restatements of Theorem|C.3] According to Eq. (23), for any 7, (7+1)%(7) equals a quantity
which does not depend on 7. Plugging in 7 = 1, we get (7 + 1)&(7) = 2&(1).

Combining Eq. (23 and (24), we can solve
(@, 3y B) = TR() ~Bolr). (=, (5, B) = —R(r) — Bo(r).
Notice the above holds for any 7 > 0. Taking 7 = 1 and substituting it into Eq. (Z4), we get

—R(1) - Bo(1) + (RO) = Bo(1))  ~ . r—1
7'+]. _50(1)+T+1

This completes the proof. O

Bory = - R().

Proof of Proposition|[C.2] Our argument follows the proof of (Soudry et al., 2018, Theorem 2.1).
Assume that 3* is a limit point of 3, /[|3, |2 as A — 0%, with ||3*||2 = 1. The existence of 3* is
guaranteed by boundedness. Let BO := limsup, g+ ﬁo A/ HB \ll2- Now, suppose the max-margin
classifier given by (ﬁ, BO) (with || ,6'||2 = 1) has a larger margin than (8", 55), that is,

w8, B5) = min yi((@s, 87) + 55) < #(B, Bo) = min vi((@:, B) + o).
By continuity of (3, f8p), there exists some open neighborhood of (3%, 8%):
Np- g = {BER" fo€ R:|Bl2= 1,18 - B[ + 8o - B5I” < %}

and an € > 0, such that
5(8. 60) = min (@i, B) + o) < w(B. o) —=, ¥ (B.0) € N ;.

Since / is rapidly varying, now by (Soudry et al., 2018, Lemma 2.3) we know that there exists some
constant 7" > 0 (depends on (3, 3p) and €), such that

Zé yl $7,tﬁ +t60 Z ml7tﬁ t/BO))7 Vit > Tv (ﬁ7ﬂ0) GN,@*,ﬂS7
=1 1=1

which implies (tB, tﬁo) has a smaller loss Eq. 1i than (¢83, t3y). This indicates that 3* cannot be

a limit point of 3, /|3, |2, which is a contradiction. Hence we must have «(38, 55) = K(8, Bo).
Replacing lim sup by lim inf in the definition of 3; gives the same conclusion. Then we complete
the proof by noticing the max-margin solution is unique on separable data by Theorem[C.c)} [

D ADDITIONAL DETAILS IN THEORETICAL RESULTS

D.1 PRECISE ASYMPTOTICS OF EMPIRICAL LOGIT DISTRIBUTION

In this section, we present additional details on the asymptotics of empirical logit distribution intro-
duced in Section 2| Recall that data {(x;,y;)}, are i.i.d. generated from a 2-GMM Egq. (1)), i.e.,
x; | yi ~ N(yip, Iz), with label distribution P, : P(y; = +1) =1 - P(y; = —1) = w € (0, 5]. We
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consider proportional asymptotics where n,d — oo and n/d — § with 6 € (0, 00). Based on re-
lations between 7, ut, §, we will consider linearly separable data (fitted by SVM) and non-separable
data (fitted by logistic regression) separately.

We define the following functions ¢* : R — Rx>g and H,; : [-1,1] x R — R that are related to
the critical threshold of data separability:

1— 2
6*(H> = max Hm(p7 50), Hn<P> 60) = p 27>
pel-L1] fock E[(s(V)s =l + G = Vo)’ |
(28)
where (Y, G) ~ P, x N(0,1) and
o ify =+1,
sW) = { 1, ify=—1. 29)

We will show in Theorem that the relationship between § and 6*(0) determines separability,
where 0*(0) does not depend on 7 by definition.

We summarize the asymptotics of logit distribution for both separable and non-separable case in
Table [d] which is the main contribution of our theoretical results (Theorem [D.T]and [D.3).

Table 4: Comparison of logit distributions on separable and non-separable data (7 = 1).

limiting ELD (v..) cause for overfitting (£*)

separable data  Law (Y, Y max{x*,LOGITS}) R*\/1 — p*2¢* = (k* — LOGITS),
non-separable data  Law (Y, Y prox,.,(LOGITS))  R*y/1 — p*2€* = —A\*Ven«¢(LOGITS)

limiting TLD (v!*') Law (Y, Y - LOGITS)

LOGITS := p* ||u|ly R* + R*G+ Y (R*:=1in separable case)

D.1.1 SEPARABLE DATA

For linearly separable data, recall the margin-rebalanced SVM in Eq. and (I3). The following
theorem summarizes the precise asymptotics of SVM under arbitrary 7, including the limits of
parameters, margin, and logit distribution. The proofs are deferred to the appendices.

Recall that data {(z;,y;)}", are generated from 2-GMM with fixed parameters € R?, 7 €
(0, 1] Let (B,,B80,n) be an optimal solution to the margin-rebalanced SVM Eq. , and K, =
min; e, ¥i((zi, B) + Bo) be the maximum margin. Recall the cosine angle p,, := p between p and

3,, defined as
. B u>
= 2 30
! <||ﬂ I G0

Let 0* (k) be defined as per Eq. , and p*, 5, k*, £* be a solution to the variational problem

maximize
pE[—1,1],B0€R,KER,EEL2

subject to pllplls +G+YBo+ /1 —p2 > s(Y)k, E[¢?] < 1/6. S

where £ is the space of all square integrable random variables in (€2, F,P), and (Y,G) ~ P, x
N(0,1). We define

v, :=Law (Y, Y max{s(Y)x*, p* |||, + G+ Y55 }),
vt = Law (Y, Y (0" |l + G+ Y S5)),

which we will prove to be the limiting ELD and TLD respectively.
Theorem D.1 (Separable data). Assume n,d — oo withn/d — § € (0,00). Fix T € (0, 00).
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(a) (Phase transition) With probability tending to one, the data is linearly separable if § < §*(0)
and is not linearly separable if 6 > 6*(0).

(b) ( Vartatwnal problem) In the separable regime § < (5*( ), (p*, B8, k*, &*) is the unique solution
to Eq. (31) with p* € (0,1) (not depend on ), k* > 0, and the random variable £* satisfies
(a.s.)

V1= p2" = (s(V)r* = p" ull, - G = Y57)) .- (32)
Moreover, (p*, B, k*) is also the unique solution to
maximize K,

p€[—1,1],80ER,KER (33)

subjectto  H,(p, Bo) > 6
and k* = sup {k € R: 6*(k) > ¢}.

(c) (Margin convergence) In the separable regime 6 < §*(0),

In the non-separable regime § > 6*(0) we have negative margin, i.e., with probability tending
to one, for some & > 0,
max_min §i((;, B) + fo) < —F

1Bll,=1 i€[n]
Bo€R

(d) (Parameter convergence) In the separable regime 6 < 6*(0),
ﬁn & ,0*’ ﬂO,n £> 68

(e) (Asymptotic errors) Recall the minority and majority test prediction errors , Exr , and Err_ ,
respectively, of the max-margin classifier defined in Eq. (@) (writing subscript n for clarity).
Then in the separable regime & < 6*(0),

Erry n = @ (=p"[lplly = 65),  Err = @(=p" [[ully + 5) -

(f) (ELD/TLD convergence) Recall the ELD Uy, and TLD vtest defined as per Deﬁmtzonn 2.2| where

f ( ) = (x, ,8 )+ ﬁo n- Then in the separable regime 6 < 6*(0) we have logit convergence
for both training and test data, i.e.,

—~ P w
Wo (l/n, V*) =0, phest 2y plest,

Remark D.1. By taking 7 = 1, the ELD convergence Wy (D, v.) < 0 in Theorem is a

consequence of Theorem |D.Iff)| and the TLD convergence 0t s vt*st is 4 corollary of Theo-
rem

As discussed in Section random variable ¢* and the nonlinear transformation T*(xz) =
max{x, k*} therein characterize the effect of overfitting on logits. The following result provides
an optimal transport perspective of this overfitting effect. For ease of description, we reformulate v,
and v** in terms of the following one-dimensional measures

L, = Law (max{x*, p* ||pll, + G+ Y5;}), L= Law (p* ||l + G+ Y 55).

Proposition D.2 (Optimal transport map). T*(z) = max{x*,x} is the unique optimal transport
map from LY to L, under the cost function c(z,y) = h(x — y) for any strictly convex h : R? —
R>q. That is,

T* = argmin { /]R (2, T()) AL ()

T:R—R

where Ty is the pushforward operator.
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D.1.2 NON-SEPARABLE DATA

For non-separable data, SVM yields a trivial solution 3 = 0, 5y = 0. A typical approach to fitting
a classifier is to solve regression problem Eq. (2a). Similar to the margin-rebalanced SVM Eq. (T3],
we can also incorporate 7 into the objective function by substituting y; for g; = y;/s(y;), that is,

min > 8) + o) G4)
i=1

BER?, BrER

where £ : R — R is the loss function. We consider a more general form than logistic regression.
We say that ¢ is pseudo-Lipschitz if there exists a constant L > 0 such that, for all z,y € R,
[£(z) = £(y)| < L+ [] + [y]) [z —y].

This condition is satisfied, for instance, by the widely used logistic loss £(t) = log(1 + e~ %). As
the counterpart of Theorem D.I]in the non-separable regime, the following theorem summarizes the
precise asymptotics of regression Eq. (34), including the limits of parameters and logit distribution.

We consider the same 2-GMM setting as Section For any non-increasing, strictly convex,

pseudo-Lipschitz, twice differentiable function ¢ : R — R, let (8,,, 8o.») be the optimal solution
to regression Eq. (34). Recall p,, := p defined in Eq. and 6* (k) defined in Eq. (28). Let
p*, R*, By, & be a solution to the variational problem

. l€<p|ullgR+RG+Yﬁo Hgmf)]

s(Y)

minimize
p€E[—1,1],R>0,80€R,£€ L2

subject to E [¢%] < 1/6.

(35)

where (Y, G) ~ P, x N(0,1). We define

v, := Law (Y, Ys(Y') prox aze

5(Y)

pllpll, R* + R*G +Y 5
s(Y) ’
Vit = Law (Y7 Y(R*p*||p|| + R*G + Yﬁa‘)),
aiming to show they are the limiting ELD and TLD respectively.
Theorem D.3 (Non-separable data). Consider the same 2-GMM and proportional settingsn/d — 6
as in Theorem

(a) (Variational problem) In the non-separable regime 6 > 6*(0), (p*, R*, 85,&") is the unique
solution to Eq. with p* € (0,1), R* € (0,00), and the random variable £* satisfies (a.s.)

* * * Y B*
R*/1 = p*2¢" = —A*@'(prox}*y% (p il 2 s—(’_Y? Gt 50))7 (36)

where \* € (0, 00) is the unique constant such that E[¢%] = 1/6. Moreover; (p*, R*, 85, \*)
is also the unique solution to the following system of equations

TRp ’ leJ’||2R+RG+BO
— =L/ Al
270 ||l { <‘”°Xf( )|

-
e B [ (proxy(p Il R+ RG — B))]
2(1 = m)AS [l
[ " p||/1’H2R+RG+YﬂO
1| ¢ <proxs?5> ( s(Y) )
A s(Y) " plplls B+ RG+Yfo ’
i s(Y)+ M proxﬁg)( S )
r 2
R*(1—p?) 1 plull, R+ RG +Y B
b Sl v ! : 2
\25 sy P ( s(Y) )
(b) (Parameter convergence) In the non-separable regime 6 > §*(0), as n — oo,
||Bn”2 3) R*a Z)\n & P*7 B\O,n 3} 53
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(c) (Asymptotic errors) Recall the prediction errors defined as per Eq. @). Then in the non-
separable regime 6 > 6*(0), as n — oo,

. 55 Bs
Erry , — @ (—p H,u||2 — R*O* ) Err_, = & —p" H)U’HQ RO* :

(d) (ELD/TLD convergence) Recall the ELD U, and TLD U*%" defined as per Deﬁnmonn 2.2| where

flz) = (z,B,)+ ﬂo n. Then in the non-separable regime § > 0*(0) we have logit convergence
for both training and test data, i.e., as n — o,

w test

Wa (ﬁn, V*) 2, 0, phest 2y pt

Remark D.2. Compared to the separable regime, the random variable & in the non-separable regime
Eq. can also be interpreted as the cause for overfitting, but its distortion effect on ELD is not
truncation. When T = 1, by Eq. (33)), (36), the following holds for a “typical” training point:

yi((@i, B,) + Bown) = p* |ully B* + R*G + Y By + R*\/1 — p=2¢*
= p*||plly R* + R*G + Y 35 — NU (proxy. o (p* |ully R + R*G + Y 53))
= prox,.o(p" ||plly B* + R*G + Y 535),

where the equalities come from Theorem Hence, the ELD in the non-separable regime is the
TLD under nonlinear shrinkage due to the proximal operator of loss function {.

D.2 ANALYSIS OF MARGIN REBALANCING FOR SEPARABLE DATA

In this section, we show how margin rebalancing improves the test accuracies on imbalanced dataset
by choosing the hyperparameter 7 in Eq. (7)) appropriately.

D.2.1 PROPORTIONAL REGIME

Consider the same 2-GMM and proportional settings in Section on linearly separable dataset
(6 < 6*(0)). According to Theorem D. lf{e)} the asymptotic minority and majority test errors are

Ert =& (—p uly — 65).  En =& (—p" |ully + 55). (37
For the purpose of imbalanced classification, we define the asymptotic balanced error as

1 1
Err} := §Erri + iErr’i.

Monotonicity analysis. We first provide some monotone results for test errors, which support our
empirical observations in Section 3]

Proposition D.4. Err’} is a decreasing function of m € (0, 3), o and 6 when T = 1.

However, the majority error Err® and balanced error Err}, are not necessarily monotone under
arbitrary 7. Thus, we will focus on the monotonicity of these test errors when 7 is chosen to be
optimal.

According to Fig.[8| by taking 7 > 1, we can improve the minority accuracy at the cost of harming
majority accuracy. The opposite effects of 7 on Err’, and Err® are summarized in the following
result.

Proposition D.5. Err’ is decreasing in T € (0,00), and Exr” is increasing in T € (0, 00).
Choosing the optimal 7. A natural idea for margin rebalancing is to choose 7 such that the bal-

anced error Err} is minimized.

Proposition D.6 (Optimal 7). Let 7°P* be the optimal margin ratio T defined in Theorem Denote
g1(z) :=E[(G + z)+] where G ~ N(0,1). Then 7°P* has the explicit expression

—1 p* *
0 ()+pmu
opt 27THIJ’H25 . (38)

T =
-1 P >
T e Cum— Y P
' (2(1—7T) l[ll5 0 ?
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Remark D.3. The optimal choice of T has a complicated dependence on w. However, we note that
the numerator scales as T°P* < +/1/m for small 7 and fixed |||, and 6, which is consistent with
the choice of T in importance tempering (Lu_et al.| |2022). In (Cao et al.||2019), T is suggested to
scale with T4, however it was proved in (Kini et al., 2021) that their algorithm won’t converge
to the solution with the desired .

It is worth noticing that in the near-degenerate cases where  is very small or || ||y, § are very large,
then p* is close to 0 and the denominator can be negative, leading to T°P* < 0. While our theory
(Theorem[D.7} Theorem[D.9) is still valid when we allow potential negative T, it is rarely used in
practice. See Section for a further discussion. The near-degenerate cases (small m, large |||,
or §) are better addressed under the high imbalance regime, as we analyze in the next subsection.

The minority/majority/balanced errors all equal ®(—p* ||p||,) when 7 = 7°P*. We can also obtain
the monotonicity of test errors after margin rebalancing.

Proposition D.7. When 7 = 7°P* > 0, all the test errors Exr’,, Err” , Erry, are decreasing functions
of m € (0,1/2) (imbalance ratio), § (aspect ratio), and |||, (signal strength).

D.2.2 HIGH IMBALANCE REGIME

Different from the proportional regime considered in Section and [D.2.1] here we focus on a
high-imbalanced scenario where 7 is small, |||, is large, and n grows much faster than d. In this
regime, we can even extend the feature distribution beyond Gaussian, and generalize the 2-GMM
settings.

Definition D.1 (High imbalance). We say a dataset {(x;,y;)}?_ is i.i.d. generated from a two-
component sub-gaussian mixture model (2-subGMM) if for any i € [n),

i. Label distribution: P(y; = +1)=1—-P(y; = —1) =7,

ii. Feature distribution: x; = y;u + z; where z; has independent coordinates with uni-
formly bounded sub-gaussian norms. Namely, each coordinate z;; of z; satisfies E[z;;] = 0,
Var(z;;) = 1, and |2, := inf{K > 0 : E[exp(X?/K?)] < 2} < C for all j € [d), where
C'is an absolute constant.

For any constants a, b, c > 0, we say a 2-subGMM is (a, b, ¢)-imbalanced if Eq. holds.

Remark D.4. Parameters a, %, and c each specifies the degenerate rate of imbalance ratio w, and

the growth rate of signal strength ||p||2, aspect ratio n/d. We usually require a < ¢ + 1 to make
sure the minority class sample size n,. := wn = d°~*t! — 0o does not degenerate.

Our goal is to study the performance of margin-rebalanced SVM Eq. in this high imbalance
regime, asymptotically as d — oo. Therefore, we allow 7 = 7; depends on dimension d and
care about what order of 7; would make the test errors vanish. We summarize our findings in
the following theorem, which is consistent with the empirical observations in Fig. [5] and extends
Theorem 3.2]to the case of imbalanced 2-subGMM.

Theorem D.8 (Phase transition in high imbalance regime). Consider the high imbalance regime
where the training data is i.i.d. generated from an (a,b, c)-imbalanced 2-subGMM. Suppose that
a — ¢ < 1. A margin-rebalanced SVM is trained, with test errors calculated according to Eq. ().
Then as d — oo, the conclusions of the three phases in Theorem3.2]still hold.

D.3 CONSEQUENCES FOR CONFIDENCE ESTIMATION AND CALIBRATION

Recall the definition of confidence of the max-margin classifier p(z) = o(f(z)) = o((, B) + Bo)
in Section 4] Note that p() and 1 — p() are the predicted probabilities of  for the minority class
(y = +1) and the majority class (y = —1) respectively.

It is worth noticing that the confidence is sensitive to scales, i.e., o(t) # o(ct) if ¢ # 1, despite the
fact that rescaling yields the same label prediction and thus does not affect accuracy. While small
models tend to be calibrated, especially when parameter estimation is consistent, larger models
such as DNNs are known to suffer from poor calibration (Guo et al., [2017). A simple theoretical

explanation is that in a DNN, the last layer (usually a logistic regression) x +—> U((:c, ,@) + Bo)
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trained by gradient descent on separable features often results in a very large || BHQ (as mentioned
in Section|[C.2), thereby inflating the predicted probabilities. Here we focus on the common form of

SVM where normalization ||3||; = 1 is applied.

Some probabilities regarding the confidence are as follows.

1. Max-margin confidence. The confidence of the max-margin classifier is
p(@) := o (f(2)) = o((x, B) + Po)-
2. Bayes optimal probability. The true conditional probability is
pr(x):=Ply=1[z).
3. True posterior probability. The probability conditioning on max-margin confidence is
po(x) :==P(y = 1|p(x)).
Note that p*(x) is the confidence of the Bayes classifier y* (x) := 21{(x, 2u) + log 1=~ > 0} — 1.

Recall the definition of calibration Eq. and some miscalibration metrics Egs. (IT)—(I3) intro-
duced in Section ] We offer some further explanations for them.

« Calibration error: The £2 distance between confidence and posteriori, which is the most
commonly used metric.

CalErr(p) := E [(ﬁ(w) - ﬁo(@ﬂ

* Mean squared error (MSE): Also known as the Brier score, subject to a calibration budget
(Brier}, |1950; |Gneiting et al., |2007).

~ N 2
MSE(p) = E |(1{y = 1} - 5(@))’]
It can be shown that MSE has the following decomposition
MSE(p) = Var [1{y = 1}| + CalErr(p) — Var [po(x)] .
— ——
irreducible lack of calibration  sharpness/resolution

Calibration error itself does not guarantee a useful predictor. Sharpness, also known as resolu-
tion (Murphy, |1973;; [Kuleshov & Liang| |2015), is another desired property which measures the
variance in the response y explained by the probabilistic prediction p(x). Hence, a small MSE
suggests a classifier to be calibrated with high sharpness.

Note that Var[1{y = 1}] = 7(1 — 7) is an intrinsic quantity unrelated to f. When study the
effect of m on model calibration, we may discard the irreducible variance term and define a
modified MSE as

mMSE(p) := CalErr(p) — Var [po(x)].

+ Confidence estimation error: The £? distance between confidence and Bayes optimum.

ConfErr(p) :=E [(ﬁ(:p) - p*(w))2] .
It has the following relation with MSE:
MSE(p) =E [p*(x)(1 — p*(z))] + ConfErr(p), 39)
where the first term is intrinsic, which only depends on 7 and |||,

The asymptotics of these metrics, and some monotone effect of model parameters 7 € (0, %]
¢ on them, are summarized in the following proposition.

7

29

Proposition D.9 (Confidence estimation and calibration). Consider 2-GMM and the proportional
settings in Sectionon linearly separable dataset (6 < §*(0)).
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(a) Let (p*, ;) be defined as per Theorem|D.1} and (Y,G) ~ P, x N(0,1). Denote

MSE" :=E [o(—p* |ull, — B5Y + G)Q} . mMSE* = MSE* — n(1 — 1),

™

2
CalBrn” == E (o(2p* liall (0 lllly ¥+ G) +log T ) = o (" |u2Y+G+BE§)) ] ,

* [ 7'(' 2 * * *
= E a(—z ||u||2(|\uu2+a)—1og1_7ry) } ConfErr* = MSE" — V.
then
lim MSE(p) = MSE*, lim CalErr(p) = CalErr”*,
n—oQ n—oo
lim mMSE(p) = mMSE", lim ConfErr(p) = ConfErr*.

(b) When T = 7°Pt > (),
* MSE* and mMSE" are decreasing functions of m € (0, ),

wlly 6.

» ConfErr™ is decreasing in 6.
In addition, there are some monotone relationships that can be verified numerically. We summarized
them in the following claim.
Claim D.10. Consider the same settings as Theorem When T = 7°P* > 0, we have
o CalErr” is decreasing in |||, and 6, for any m < T fixed, where T ~ 0.25 is some constant.
1

* ConfErr” is decreasing in m € (0, 5).

D.4 GENERALIZATIONS

Below we present two possible extensions of our main results stated in previous sections.

Multiclass classification. In the K-class setting, we observe features x; € R< and labels Yi €
[K] ~ P,, sampled from a K-component Gaussian mixture model (K-GMM):

=Py, = k), ke [K], x|y =k ~ N(py, La), (40)

where {1t } e[k are the class means. Let f(z) = W + Wy be the logits of multinomial logistic
regression for {’i(xv, yi)},, where W € RE*4 &, € R are the solution to K-class SVM:

minimize ||WH%7
WERK xd woeRE 41)
subject to (@i, Wy,) +woy, > (i, Wi) +wor +1, Vien], Vk#uy,,

where wy, is the k-th row of W, and wy ;, is the k-th element of wg. The prediction is given by
y(x) == argmaxyc (k) fr(x), where fi(x) is the logit of x for label £, i.e., the k-th component of
f(x). Using the non-rigorous replica method from statistical physics, we conjecture the limiting
empirical logits distribution as follows.

Conjecture D.11. Assume that n/d — & as n,d — co. Denote by p = [py,- -+, py| € RXKE
the matrix of class means, and assume that p" p converges to a deterministic matrix Q u € Sf as
d — oo. Then as n,d — oo,

1 - * \T * * p
Ws <n25(yhmi+%),rﬂaw Y, R)T+U +w0)> 2 0,
i=1
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where R}, is the Y -th row of R* € RE*E and (R*, U™, w,) is the optimal solution to the follow-
ing variational problem

minimize Tr(Q),
wrt. wo € R Q,QreSE, OReRF*K H U e £2(Q,RF),
1
subjectto Qg <Igx, OTO <Ig, E[HH'] =< s @2)
R = Q}/?0Q;{°Q"?, U =Q'?G+Q"(Ix - Qn)'/*H,
Onthe event {Y =k}, Ry — Ry + Uy — U + wo,k — wo, > 1
almost surely, Vk e K|, VI#k,

where L2 (2, RE) is the space of square integrable K -dimensional random vectors in the probability
space (2, F,P), (Y,G) ~ P, x N(0,1Ix), and H,U are random vectors to be optimized.

The last almost-sure linear constraint in Eq. (#2)) induces a truncation effect, captured by the random
vector H (analogous to ¢ in Eq. (3)), which in turn characterizes the resulting overfitting behavior.

Heterogeneous non-isotropic covariance. We can extend our theory to the setting where the two
classes have general non-isotropic covariances, i.e.,

zilyi=+1~Np,2y), @i|yi=-1~N(—p,3). (43)

Under the proportional asymptotics 1, d — oo with n/d — ¢, we make the following assumptions.

(A1) X, and X _ have eigenvalue decompositions 3 = Z?Zl A vivl,E_ = Zle A_viv]

ie., X4 and 3¥_ commute. '

(A2) There exists a random vector (51, S_, M) € Rsy x R5g x R in probability space (2, F,P)
such that the empirical distribution of spectrum {(\; ;, A_ ;, Vd(v;, )}, converges to the
distribution of (S, S_, M) in Wasserstein-2 sense:

d
1 W
d Z 5(>\+,i,/\7,i,\/g<wyl‘«>) = Law (S, 5-, M).
i=1

In particular, |||, = (E[M?])'/? is fixed and E[S?] < oo.

Recall that p = <T§I%’ ﬁ) and (8, o) is the max-margin solution to Eq. || The result below
generalizes Theorem [2.1|under Eq. (#3).

Conjecture D.12. Consider model Eq. with asymptotics n/d — ¢ € (0,00) as n,d — .
Under assumptions|(A1)}H(A2), there is a critical threshold 6. = 6.(m, Sy, S—, M), such that when
0 < b, the following holds as n,d — oc:

(a) Parameter convergence. The training set is linearly separable with high probability, and
(9 Bo, ) = (p*, By K7),
where p* = E[M B,]/(E[M?))'/? and (B., B, k*) is the solution to the variational problem

maximize K,
BeL2,B0ER,x>0

subject to E [BQ] <1,

1/2 9
E[(x - EIMB] + (B[S, B)"/2G - )} ] < M,
1/2 9
E[(x - EIMB] + (B[S-B%)"2G + 5,)}] < W,

where L2 is the space of square integrable random variables in the probability space (Q, F,P),
(G,G4,G_) ~iiq. N(0,1) is independent of (S+,S—, M), and B is a random variable to be
optimized.
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As a consequence, the limits of minority/majority errors are

Y G 171 P A S el 17 PR A
o (+1) o (1)

where o*(+1) = (B[S B2))Y/? and o*(—1) = (E[S_B2])'/2.
(b) ELD convergence. The empirical (training) logit distribution Uy, has limit v, in the sense that
Wa (D, v) 20, where v, := Law (Y, Y max{x*, p* ||, + 0" (V)G + Y 35 }).
TLD convergence. The testing logit distribution U has limit v* in the sense that

*

phest 2y plest, where V" .= Law (Y, Y(p* ]l + 0" (V)G + Yﬁg)).

Compared to Theorem we find that covariance heterogeneity, captured by o*(Y'), induces dis-
tinct scaling effects on the testing errors (Err, Err_). It also rescales the Gaussian component of
the logit distribution (G) for each class.

Spiked non-isotropic covariance. We also provide a characterization of the empirical logits dis-
tribution under spiked covariance. In particular, we assume that

z; |y ~N(yp, ), Z=¢VVT+1,, (44)

where the spike V is a d x J orthogonal matrix. For this model, we have the following analogous
result on the empirical logits distribution of SVM:

Conjecture D.13. Assume that n/d — 6, J/d — i1 as n,d,J — oco. Denote 1)y = 1 — 11, and

further assume that
. T . 2 2
A [IVEsll, =er lim il = IVTwll; = co
Let (B, Bo) be the max-margin solution to Eq. . Then, as n — oo,
1 2 * * 2,k * * 1%
Wa (300 oo Lo (VY pier + Yoses + V14 @PriGh+75Ga +55) | 5 0.
i=1
In the above display, Y ~ P, is independent of (G1,Gs) ~ N(0,1)%% and (p3, p3, 75,75, B)

solves the following convex optimization problem:

maximize K,
p1,p2:71,72,80,K

2
subject to E |:(Ii — P1C1 — pP2C2 — 1/ 1+ q2’r’1G1 —1roGoy — 50Y) :|
+

2
<5 (VIFAR = AVE - v

2 2 _ 2 2 2 2
ri+ry=1 pi<ry, p3 <713

(45)

Future work. In deep learning, the features are learned by optimizing the loss over all weights
in a neural network, and data imbalance impacts on feature learning in a complex way as observed
in (Cao et al.,|2019). Also, models tend to erroneously find spurious features if data imbalance is
severe (Sagawa et al.||2020). It would be interesting to analyze overfitting and propose remedies for
these scenarios.

E LOGIT DISTRIBUTION FOR SEPARABLE DATA: PROOFS FOR
SECTION

E.1 PROOF OF THEOREM [D.]]

Recall that the margin-rebalanced SVM can be rewritten as

maximize K,
BERY, Bo,kER

subject to  y; ({(x;,8) + Bo) > K, Vi€ [n], (46)
18Il < 1.
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Let (ﬁn, 60 ») be an optimal solution and %,, = 1i<p, <n— 1/€(ﬂn, 50 n) be the well-defined max-

imum margin as per Deﬁmtlon E Our goal is to derive exact asymptotlcs for (Bn, ﬁo ny Ko )-
Similar to the development in (Montanari et al., |2023)), for any positive margin « > 0, we define the
event

gn,n = {H(Bnago,n) > H}
={3B R |B|, <1, By € R, such that §; ((z;, B) + Bo) > r foralli € [n]}

- {Hﬁ e R% [|Bll, < 1. fo € R, such that H(msy Yo X6 ﬁoy)+H2 - o},

where s, = (s(y1),...,8(ys))" and s is the function defined in Eq. . Therefore, the data
(X, y) is linearly separable if and only if &, , holds for some x > 0. We would like to determine
for which sets of parameters (7, p, , 7) we have P(E,, ) — 1 and for which instead P(E,, ) — 0
as n,d — oo. To this end, we also define

b = ~y o XB-foy), |,

|
min — ||(ks
nguzilx/& Y
S
’ 47)
(i) min max L
18, <1 IAll,<1 /d
BoER AGOY>0

AT (ksy @y — XB — Bol),

where (i) is a consequence of Lagrange duality (dual norm) (&) ||, = maxjx,<1,a>0 ATa. Then
we established the following equivalence
{fn,n = O} — gn,n {fn,ﬁ > 0} — gfl,n

Keep in mind that we are only concerned with the sign (positivity) of £, ., not its magnitude. As a
consequence, we have

Rn = li<n,<n—1-sup{sk € R:§, . = 0}.
Let D,, := {n; = 0 or n} be the event of degeneration for any datasets of size n. Clearly P(D,,) =
7" + (1 — 7)™ — 0 as n — oo. Technically, the empirical logit distribution (ELD) in Eq. (3) is not
well-defined on D,,. Similar as Definition[C.I] we can also redefine it as follows:

1L

Vn=2 Z Oy (wi,B)+B0) 1{1<ns <n—1}"
=1

(48)

We provide an outline for the main parts of the proofs of Theorem [D.I{(a)}(c)l which involves
several steps of transforming and simplifying the random variable &,, .

Step 1 / Step 2 /(1) Step 3 —/(2)
e Theorem [E.T] fn B TheoremEZ  ™*B TheoremlEd & B 5 Th Ed
eorem
Step 4 —=(3) Step 5 .
— = 0*(k), H, )
Theorem[E4] f"”v 5 (pa 50) TheoremE3] ( )7 n(pa 50)

Step 1: Boundedness of the intercept (from ¢, ,; to f;m’ p) According to the definition of &, .,
parameters 3 and X are optimized in compact sets, but 3y is not. Such non-compactness might cause
technical difficulties in the following steps, for example, when applying Gordon’s Gaussian compar-
ison inequality and establishing uniform convergence. However, it turns out that 3 is asymptotically
bounded on the event £, .. More precisely, we define

1

! pi= mi —AT —XB - Bl 49

$nn B | max = (ksy Oy B —Bol), (49)
|Bo|<B AOy>0

where B = B(7,k, 7, |||y, 0) is a sufficiently large constant. Then we can show that &, .. and
n.,p have the same sign with high probability, which enables us to work with &, . p instead of

Lemma E.1 (Boundedness of [y). There exists some constant B € (0,00) (depends on
T, K, 7, || ]|y , 6) such that

lim |P(&n,s =0) —P(&, .5 = 0)| = 0.

n—oo

See Section for the proof.
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Step 2: Reduction via Gaussian comparison (from 5;_’,{7 g to f;(lﬁ) p) According to the expres-
sionof &, . g, itis not hard to see the objective function (of (3, X)) is a bilinear form of the Gaussian
random matrix X. To simplify the bilinear term and make the calculation easier, we will use the
convex Gaussian minimax theorem (CGMT, see Theorem[I.T)), i.e., Gordon’s comparison inequality
(Gordonl, 1985} [Thrampoulidis et al.,[2015). To do so, we introduce another quantity:

5;(1,33 = min max = (
" P2 +I8l2<1 AL <1 /d
|Bo|<B  AOY>0

Al 976+ 161, A™A+ AT (ksy @y — plliallyy + pu— 1))

(50
where p € R, 8 € RY"! are parameters, g ~ N(0,I,_1), h ~ N(0,L,), u ~ N(0,1,) are
(1)

independent Gaussian vectors. The following lemma connects £/, ,. 5 with &, 5.

Lemma E.2 (Reduction via CGMT). Foranyv € Randt > 0,
P(Jehns — vl > 1) < 2B(Jell) 5 — o] > ).

See Section for the proof.

Step 3: Dimension reduction (from f;(l,.i) g to E;(Q;) It turns out that f:flﬁ) g can be further sim-

plified for analytical purposes. We define a new (deterministic) quantity

12 ) 97y 1/2
5;(75); = _ min  —r+ e (]E {(S(Y)/f —pllplly + pGr +rGa — BOY)JrD ,
p +r <1,r>0
|Bol<B

which is a constrained minimization over only three variables p, 7, and 3y, with random variables
(Y,G1,G2) ~ P, x N(0,1) x N(0,1). The two quantities of interest can be related via the uniform
law of large numbers (ULLN) as shown in the following lemma.

Lemma E.3 (ULLN). As n,d — oo, we have
=(2)
g:L(,:L),B £> (5&,3)
+
See Section [E.T.3|for the proof.

Step 4: Investigation of the positivity (from E;(Q,% to ZS’)) To further simplify the problem, we

define the following quantities that are closely related to Z;(QE);

_ 1/2
5’(3) = _ min —r+ Vo (E [(S(Y)Ii —pllplly + pG1 +rGe — &ﬁ’)i])
p+r <1,r>0
Bo€R
_ 1/2
&) = min —/1= 2+ V5 (E[(s(V)r—plul, + G- BY)5]) (51)
P%[*e%él]

Firstly, we argue that E;@; = E,(f)

5(2)
viewed as fixing r = y/1 — p? in the optimization ofg,(f), and G := pG1 + /1 — p2G2 ~ N(0, 1).

The following lemma shows that the sign won’t change from Ef) to ES’).

for constant B large enough, by noticing the optimal (unique) 3y in

is always bounded by some constant (depends on 7, x, 7, ||| 5 , §). Secondly, notice ES) can be

Lemma E.4 (Sign invariance). For any k > 0, the following result holds:

(a) sign(£")) = sign(€").

) 1€ <0, then € =¥,

See Section for the proof.
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Step 5: Phase transition and margin convergence Note the function 6* : R — R>( defined in

Eq. 1) is closely related to ZS). Let k* := sup{k € R: 6*(k) > 0}. By combining the results
from previous steps, we have the following relation.

Lemma E.5 (Phase transition). For any k > 0, we have
lim P (&, =0) =1, ifo <6*(k) (ie, k < KY),
n—oo
lgm P&, >0) =1, ifo > 6*(k) (ie, kK > K*).

In particular,

lim P{(X,y) is linearly separable} = 1, if 0 < 6%(0),

n— oo

lim P{(X,y) is not linearly separable} = 0, if§ > 0%(0).
n—oo

As a consequence, we can also derive the convergence of margin in probability. Notice that the
following result is weaker than £2 convergence Theorem- (c)l However, we need this preliminary
result for the subsequent proof of ELD convergence in Theorem[E.7]

Lemma E.6 (Margin convergence, in probability). If § < 6*(0), we have R, < £*.

See Section [E.T.5|for the proof.

E.1.1 STEP 1 — BOUNDEDNESS OF THE INTERCEPT: PROOF OF LEMMA [E. 1]

Proof of Lemma Recall that

Enw = —yQXﬂ—ﬁoy)+“2-

|
mim — KS
18I, <1 v/d sy
BoER

Let (Bn, Eo}n) be a minimizer of the function abov On the event Dy, N &, 1 (§n,x = 0), we have

K — (@4, 8,) — Bon <0, ify; =+1,

||(Hsy7y®XIBn750,ny)+H2 :07 - { K+<miu/5n>+§0,n §07 lfyz:_l

Write @; = y; 0 + 24, where z; - N(0,I;) and y; 1L z;. Then we obtain

Bom > Th = (1,B,) — (i, By),  ifys = +1,
6071'7, S —K + <N>ﬂn> - <zia/3n>a ]fyz -1
which implies for all ¢, j such that y; = +1,y; = —1,
/Bn> Z“ |+|’V‘:7 /1'7/6 > <zj7/3n>{
< (T 4+ Dr+ 21, B,)] + (20 Bu) | + [(25, 8,)]-

)

Using the inequality (a + b + ¢)? < 3(a? + b? + ¢?), we have

oal? < 3{ ((r + Dt 2t B+ min (s, B+ min (25,307}

s3{(<T+1>fe+2l</ua,fan>|)2+n1 > Bl + o 3 Bl
iy =+1 Juyj=-—1

i 1 ~ 1 ~
25 { (s D 2l Bl) + 1248l + 22

(i) 1 . 1 ) ~
La{(r+ Dnt 2l + 2124+ 1212, | = B

"In general (an Eo,n) may not be unique and may not be equal to (ﬁn, Eo,n)-
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where in (i) we denote Z, € R™+*? as a Gaussian random matrix with rows z; such that y; = +1,
Z_ € R**? with rows z 4 such that y; = 41, while in (ii) we use Cauchy—Schwarz inequality,

the definition of operator norm, and ||3,,||2 < 1.

Next, we show that Eo,n is asymptotically bounded. Notice Z,, Z_ have i.i.d. standard Gaussian
entries. According to the tail bound of Gaussian matrices (Vershynin, 2018, Corollary 7.3.3), for
any t,, > 0 such that ¢, = o(y/n) and some absolute constants ¢, C' € (0, 00), we have

Bo.n 2 3{((T+ Vi + 2| pl,)” + i(\/nTJr Vi+1t,) + i(Jnf+ x/&+tn)2}
n4 n_

La{ (i + vnr2lul)’ + (04 jf—&) +(c+ ml_—m)} = B,

where (i) holds with probability as least 1 — 4 exp(—ct2), and (ii) holds with probability one based
on the fact that ny /n — 7, n_/n — 1 — 7 a.s. (by strong law of large numbers), and n/d — ¢
as n — oo. Notice the upper bound By is a constant which depends on (7, &, 7, |||, ,6). Let

t, — oo, then we conclude EO,n < By with high probability.

Combining these results, for any B > /By,
(€0n = 041 DE 0 {Bon < Bo}) € ({60n = 041 D5 0 {Jonl < BY) € (& = O}
Therefore, by union bound we have
P (€ = 0) = P({€nx = 0} 1 (D5 0 {Boyn < Bob) ) +P({&n = 0} 1 (D U{Bou > Bo}) )
<P(&, .5 =0) +P(Dy) +P(Bo,n, > Bo).
Finally, by noticing &, ., < &/

< &, 5> We conclude

0<P(&r =0) —P(&, .5 =0) <P(D,) +P(Boy > By) =0,  asn — oo.
This completes the proof. O
E.1.2 STEP 2 — REDUCTION VIA GAUSSIAN COMPARISON: PROOF OF LEMMA [E.2]

ProofofLemma Rewrite ©; = y; 0 + z;, where z; g N(0,1I,). Note that y; 1L z;. Denote
the projection matrices

. 1.
P e Ph e

where P, is the orthogonal projection onto span{} and P ,J; is the orthogonal projection onto the
orthogonal complement of span{gt}. Then we have the following decomposition:

(i, B) = yi{p, B) + (zi, B) = vi(w, B) + (24, PpB) + <Zi,Pﬁﬁ>

12 . 123 ; Pt
<ﬁ’ ||u||2> loello + <ﬂ’ ||u|2> <z ’ ||u||2> (= Pub)

=yip |pelly + pui + (zi, Pﬁﬁ%

pe= (s ||u2> v <z||5||> ~ NGO, ).

Let Q € R™*("=1) be an orthonormal basis for the subspace span{u}+ (QTQ = I,,_1). Note that
(=i, Pt/@> = (2, QQT5> <QTzu QT/B> (9:,0),

where

where T
g;:=Q z; ~N(0,I;_1), g; 1L u,

0:=Q"BeR",  0],=1/IB8l— IP.BI3 < V1-p?
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We obtain a one-to-one map 3 <> (p, 8) in the unit ball. Therefore, we can reparametrize

d
(i, B) + Bo = yir | lly — pui — (9, 0) + Bo,
where p? + ||0H§ <1, and {(y;, u;, g;)}*, are ii.d., each has joint distribution:
yl—u—ulJ'LgZ7 P(y1:+l):1_P(y1:_l):7Ta UINN(Oal)v gzNN(OaId—l)

Now denote
w=(ui,...,up)" €R", G:(glv._”gn)TeRnX(d—l).

Therefore, &, /(0) wB = fn x5 defined in Eq. 1@} can be written as
0 _ 1
$opp = min max —— (KSy Oy—XB-—P[F1)

18Il <1 [IA]l,<1 f
\BOKB AOQy>0

1
min max —— kSy Oy —pllpll,y + pu+ GO — Bl
P+1613 <1||>\|\2<1\f T (rsy ([l )
|Bo|<B AOYy>0

1 ( T T

_ max — (A GO+ N (ks, Oy — "'U—Bl)

ot NS VA (ksy Oy —pllpll,y + pu — Fol)
|Bo|<B AQy=>0

On the other hand, recall 57(11,1 defined in Eq. lb

1 . 1
il = i max <o (IA1 970+ 10, h™A+ AT sy ©y = plluly + pu — Go1)).
2=
|Bol<B  AOY=0

Note that both minimization and maximization above are defined over compact and convex con-
straint sets, and the objective function in {;L((B_ p is a bilinear in (8, A) (not 3y). In addition, (y,u)

is independent of G, (g, h), so we can apply a variant of CGMT (Theorem by conditioning on
(y, u), which yields for any v € R and ¢ > 0:

<§TMB <v+t|y,u) < 2[?’(5;(71'3,3 §v+t|y,u>,
P(S;L((BB >v—t|y, ) < 2IP’<§:L(’1,3’B Zv—t|y,u>.
Taking expectation over (y, ) on both sides of the equation gives for any v € R and ¢ > 0:
P(einp vrt) <2P(ep <ot P(Rp2v—t) <2B(6l5 20 1),
which proves Theorem [E2] O

E.1.3 STEP 3 — DIMENSION REDUCTION: PROOF OF LEMMA [E. 3]

Proof of Lemma(E.3] The expression of § B can be further simplified to

(1) T T

§;m = mln max—()\ O+ XN (ksy Oy —pllplls y + pu+ 1|05 h — ﬂl)

o= i e o (IN0T0+ ATl © 3 — ol 18]l b 5o1)
\60\<B >\®y>0

i

0 0+ |[(ksy — pllully + pu 0y + 161,k 0y — o), )
RN <1f< sy ? ’ k),
\Bo\<B

@ 1

2 min - (rlall sy ol pu oy ROy =), )

r>0,|80|<B

where in (i) we use the fact

max (a [IAlly + )\Tb)

i2tSes 5T = (s )
2=

[0 1] Ivll;=1,v>0 Ivl,=1,v=0

(-t 10)ll,)

+
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nience, we write the parameter space as O := {(p,7,Bo) : p2 + 72 < 1,7 > 0,|B80| < B}. Now,
define

—1(1) . 1
Eumpi=  min_ —= (=rlgly + |55y — pllully + pu Oy +rh Oy~ Hoy), )

k,B T _
e (p,’r‘,,Bo)E@B \/Zi

in (ii) we use Cauchy—Schwarz inequality g'0 > — 0], ||g||,, and denote » = ||6||,. For conve-

: lgll nly 2
= min - + /== s(yi)k — + pu;y; + rhiy; — i
(o fo)EB \/& d\ln i:1( (yZ) P H/LHQ PUY; iYi ﬂoyz)Jr
=: minf fé}g(ﬂﬂ’, 60)3
(p,r,B0)€EOB

then 5;(1,3 5= (E;(IK) 5) - Recall that

_ 1/2
5;(21)3 = min_ —r+V8 (IE [(S(Y)FL —pllplly + pYG1 +rY Gy — ﬂOY)iD

(p,r,B0)EOB
51N 1/2
= min 7T+\/5(IE [(S(Y)/@—p||u||2+pG1 +rGo —ﬂoY)JrD
(p,r,B0)EOB
= mini fk(?)(pv’ra 50)7
(psr,B0)€EOB

whereY Il G; UL Go,P(Y =+41)=1-P(Y = —1) = 7, and G1,G2 ~ N(0, 1). We also define

1
¢£Ll) (p,7,Bo) = n Z(S(yz)’i —pllplly + pusys +rhiy; — 50%)1 =:E, [f(Y,G1,G2;p,7, bo)],

K
i=1

2
d)f?) (p7 T, 60) =K |:(S(Y)H —p HH’HQ + pGIY + TGQY - ﬁOY)+:| =K [f(Ya Gla G?a P T, 60)] 5
where E,, -] denotes the expectation over the empirical distribution of {(y;, w;, h;)}?_;. In order to
apply the uniform law of large numbers (ULLN), note that
» Opiscompact. (p, 7, 30) — f is continuous in © g for each (Y, Gy, G>), and (Y, G, Go) +— f
is measurable for each (p, r, 5p)
* [f(Y.G1,Gaip,1, Bo)| < 3((w7 + [|lully + B)? + GT + G3) for all (p,7,5) € Op and
E[G? =E[G3] =1 < .
Therefore, by ULLN (Newey & McFadden, |1994], Lemma 2.4), we have

sup_ [(68h(pm 50)) " = (62 (. 50)) 7|

(p,m,B0)EOE
1/2
S SU»pi ’QS'EL{L()O’ T, ﬂO) _¢,(§2)(P, T, BO)‘ - OP(1)7
(p,r,80)€EOB

where the inequality comes from the fact that 2z — +/z is 1/2-Holder continuous on [0, co). Then

I p.7. Bo) = £ (0.7 Bo)|

sup
(p,T,Bo)EéB
g n 1/2 1/2
< sup ropl9lz) | sup \/;(%zl,%(ﬂmﬁo))/ = Vo(6 (.1, 80)) /’
re[—1,1] \/g (p,r,B0)EOB
g n 1/2 1/2
< iUl (ot ) - (6200 )
d (p,7,B0)EOB
n 1/2
+’ s Vs sup (¢ (p,7, o)) /
(p,r,B0)EORB
= 0[@(1),
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by using n/d — & and law of large numbers ||g||5 /(d — 1) £ 1. Finally, since the function

x> (x)y s 1-Lipschitz we conclude

/(1) =(2)
f:z(?l,{)’g— (f }< Conn—Cnp| < sup  |f(p.r Bo) — £ (p,r, Bo)| = op(1).
(p,r,B0)EOEB
This completes the proof. O

E.1.4 STEP 4 — INVESTIGATION OF THE POSITIVITY: PROOF OF LEMMA [E.4]

Proof of Lemma|E.4] We claim 5 5, B = f when B is large enough. Recall that

(2 . 57N\ 1/2
7=, min =+ Vo (B[(s0)k— plll, + pGr +1Ga— oY) )
p+r <1,r>0
Bo€ER
Let (p,7, Bo) be a minimizer above and notice pG; + rG2 4 RG, where R = P2 + 72 and

G ~ N(0,1). Then

Bo € argminE [(S(Y)n —5llpll, + RG — BOY)j_]
Bo€R

= a%%g{in {WIE [(Tn — 7 llull, + RG — ﬂo)i} +(1—-mE [("5 — pllull, + RG + 50)1} }

=: argmin g5 (o).
Bo€ER

Notice that g5 #(/0) is convex and continuously differentiable, since
Gp(0) = =2 [ (v = Bllpl, + RG — Bo) , | +2(1 = m)E [ (5 — 7 ully + RG + fio) |

is non-decreasing, which is based on the fact that x — E[(G + x)4] is increasing. Then Eo must
satisfy g5 +(80) = 0. Since g5 z(+00) = +00, g5 x(—00) = —0o0, by our construction in the proof

of Theorem! we can choose B large enough such that §,€ B =¢, (2)

=2 . . .
We can rewrite £ ,({ ) as follows by introducing an auxiliary parameter c:

_ 1/2
5’(3) _ min —r+V0 (E [(s(Y)/{ —pllplly + pGi +rGa — ﬁoY)j_D ,
P +r <1 r>0 ﬁOGR
P 242 +[30—c c>0

and we also define the following quantity
~ 1 1/2
2 .= min - {—r +V0 (IE {(S(Y)KJ —pllplly + pGi +rGe — BOY)j_D }

p*+7r°<1,r>0,B0€R, C
PP +r?+B5=c,c>0

1/2
. r K T
= min ——|—\/S<IE [(S(Y)—p||u||2+pG1+G2—ﬁ0Y) }) )
P’ +r?<1,r>0,60€R, C c c c c +
PP HrP B3 =cc>0

Then for any £ > 0, we have the following observations:
* sign(&, 39 )) = sign(g,(f)). (Their objective functions differ only by a multiplier ¢ > O
¢ The minimizer in E,(f) must satisfy p? + 2 = 1.

Suppose (5,7, By, ¢) is a minimizer in €P such that 52 + 72 < 1. We can increase (5,7, Bo, ©)
proportionally, which results in a better solution. That is, define
1 5 1 y 1~ 1

p:: P ri= r, 60 = BOa ¢:= C,
P>+ 12 p?+ 72 p?+ 72 p? + 72

"We allow ¢ = 0. If ¢ = 0, then p = 7 = fo = 0 and the objective value in Ef) is
Vo(m7m2K2 + (1 — m)k2) > 0, and the objective value in €9 is defined as +oo. Both of them are positive.
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then (7, 7, Bo, ¢) has a smaller objective value (because 7 /c, p/c, Bo/c all remain unchanged,
but k/c decreases since ¢ > ¢), which contradicts the optimality of (p, 7, 5y, €).

As a consequence, we can simplify
~ 1/2
£ = min { Vi-p +\f( [( )/i—p||u||2+pG1+\/l—pQGz—ﬁgY)iD }

PE[ 1 1] Bo€R, €
BO ?—1,c>1

1/2
:pe[ {nll]nﬁneR c{ \/1_74_\[( [( Yk —plplly +G - [B’OY) D },
Bi=c*—1,c>1

())

where G := pG1 + /1 — p2G2 ~ N(0, 1). By the same argument, sign(§,. ") = sign(&x £ )) where

e = min —V/T=2+ V5 (B [(s(v)x = pllall, + G = Av)])
vy

Therefore, sign(gf)) = sign(g,(j)).
In order to show E,(f) = E,(j) when E,(f) < 0, we define the objective function of E,(f) as

/
T (p.r, o) 1= =1 + 6 (B[ (s0V )k = p il + G+ 1Ga — 7))

Then it suffices to show the minimizer of T}, must satisfy p?> + r? = 1. Again, suppose (p, 7, 50) is
a minimizer of T}, such that p? + 72 < 1. We can increase (p, 7, o) proportionally by defining

1 - 1 . ~
ﬁ = 7= T, BO = /607 K'/ = R,

VR N
n(ﬁa?750) _ ~ ~ D <~
W = Tw (p, 7, Bo) > T (p,7, Bo),

where the last inequality i 1s because x — E[(G + c1x + 02) ] strictly increasing for any ¢; > 0 and
¢o € R, and the fact that x’ > k. Therefore, a contradiction occurs and we complete the proof. [J

then

O>§ (p7 7ﬂ0)

E.1.5 STEP 5 — PHASE TRANSITION, MARGIN CONVERGENCE: PROOFS OF LEMMAS|[E.3]
IE. 6l

Proof of Lemma|E.5] We define the following two functions:

To(p. o) = VT~ 2+ V5 (B[ (s — o, + G~ 07)2]) "
Fu(p, B0) i= —(1 = p) + OF | (s(Y )i = p sl + G = BoY)? ]

= 7OE (G = pllull = Bo+ w7) | + (1= mGE (G = pllally + Bo + )} | + 52— 1,
(52)
and then
(3)

£ = i T (p, ’ ) = i F.(p, :
P T (p, Bo) &n . (p, Bo)

Clearly, sign(7(p, 5o0)) = sign(EFy(p, Bo)) for any p, 5y and sign(ffj’)) = 51gn(f( )) Also recall
that

_ 42
0% (k) = max  H (p,Bo),  Hulp, Bo) = L=p -
“e E[(s(V)r— pllall, + G — 5oY)?|

We can see that H,,(p, Bo) is well-defined since E[(s(Y)x — p ||p||, + G — BoY )2 ] is bounded away
from zero for any p € [—1,1] and Sy € RU {£o0}.
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Since z — E[(G + 1z + ¢2)2 ] is continuous and strictly increasing for any ¢; > 0, ¢ € R, it can

=3 . . . . . .
be shown that both xk — & Ei ), K &3) are continuous strictly increasing, and ¢* (k) is continuous
strictly decreasing (by restricting 3y : |S9| < B for some constant B large enough, similar as Step
4, and then use compactness). Therefore, we have the following equivalent definitions of x*:

k* :=sup{k € R:0"(k) > ¢}
={reR: 5 () =0t ={neR:E" =0} = {keR: & =0

Now we can consider the following two regimes, each with a chain of equivalence:

} ' (53)

sr D nsw & D@0 & <

S 6B E), =0 B PE.=0-1

(2) (54)

§ > 0" (k) PIUN K> K" JIUN ES);&?)>O & &x
£ B @), >0 - Pl =002 1

where (i) is from Eq. (53), (ii) is from Theorem[E-4] (iii) is from Theorem [E:2] [E3] and (iv) is from
Theorem Linear separability considers the special case £ = 0. From definition Eq. 7)), for
any k < 0 we have &, ,, = 0 (by taking 3 = 0, 5y = 0). Therefore,

 If § < §*(0), by Eq. k* > 0and P(&, ) = P(&, . = 0) — 1, which deduces the data
is linearly separable with high probability.

« If § > 6*(0), by Eq. k* <0and P(€, ) = P(&,s = 0) — Oforany x> 0 (as £ — &,
is non-decreasing), which implies the data is not linearly separable with high probability.

O

Proof of Lemma(E.6] 1f 6 < 6*(0), then * > 0 and Ef’) = 0. According to Eq. |i forany e > 0
small enough, we have

E,‘(i}3)—8 <0 = P(gn,n*—a) = P(f’n,m*—a = O) — 1,

=(3)
Epiye >0 = P(Eypte) = P(Enpege = 0) = 0.

Recall that k,, = Li<p, <n—15up{sx € R : &, , = 0}. By combining these arguments, we can see
that k* —e < R,, < k* + ¢ holds on the event D¢, with high probability. This proves %, 5 kx. O

E.1.6 CONVERGENCE OF ELD AND PARAMETERS FOR 7 = 1: PROOFS OF LEMMAS[E.7] [E_§]

In this section, we provide a proof of parameter convergence in Theoremﬂz[@ and ELD conver-
gence in ()] for the specml case 7 = 1. For convenience of notation, we drop the subscrlpts and

simply write p := p,, ﬁo = 50 n. Recall the ELD (well-defined version, i.e., Eq. ) and its
asymptotics are respectively defined as

1 n
- Z(g(yn(wi,,@)+§o)-l{Dﬁ}’ vV, = Law (YvaaX{/g*’p* Ipelly + G+ ﬂSY}) .

i=1

Here (p*, B, k*) is defined as the maximizer of Eq. (33)), and obviously x* also satisfies Eq. (53).
The uniqueness of (p*, 5;) will be given by Theorem [E.8] Analogous to the proof of (Montanari &
Zhou, 2022, Theorem 4.6), by using the theory of projection pursuit therein, we have the following
results.

Lemma E.7 (ELD and parameter convergence). Consider T = 1. As n,d — oo, we have
W2 (l//\n7 l/*) 3} 0

The convergence of p 2 p* and Bo 2 By are followed by continuity and convexity of H,, in
Eq. @8)
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Proof. Our proof primarily follows the setup in (Montanari & Zhoul 2022, Section 4.1) and tech-

niques in (Montanari & Zhoul 2022, Section 4.3). Recall that we can rewrite x; = y; 0 + z;, where

Zi b N(0,I;) and y; L z;. Using notation from (Montanari & Zhou, [2022), P(y; = 1| z;) =

o(plz ) where py = p/ ||pt]], and p(x) = 7 is a constant function. Recall that we reparametrize
P =y ﬁ Now, define random variables with joint distribution
YLNGUZ PY=+41|G)=1-PY =-1|G)=¢(G)=7, G,Z~N(0,1).

Let (YV,G,Z) 1L fi’ According to the definition in (Montanari & Zhou, 2022, Lemma 4.2), we have

Law (Y [J,Of)' G+ (ug,@)2-Z> = Law (Y,ﬁG+ 1—;32Z) = Lau(Y, Z).

Therefore, by using (Montanari & Zhoul [2022| Theorem 4.3), for any €, 7 > 0, with high probability

we have
V1=
Z itz By LY, 2) | < S e

where WQ(") is the n-constrained W5 distance (Montanari & Zhoul 2022} Definition 4.1). Formally,

for any 7 > 0, the n-constrained W distance between any two probability measures P and @ in R?
is defined by

1/2
Wi (p, ;( inf / - 2d><d> ,
" (P,Q) e o o Iz — yll; v(dz x dy)

where I'(") (P, () denotes the set of all couplings  of P and () which satisfy

1/2
(/ |@hmynawwxdw) <n, (55)
R4 xR

where e; = (1,0,...,0)T.

The following proof is analogous to the proof of (Montanari & Zhou, 2022} Theorem 4.6). We show
the convergence of logit margins W5 (L,,, L) 2, 0 first, where

n

< 1 * * *
L, = 52%(@@%)7 L, :=Law (max{r*, p* |pl, + G+ B;Y}).  (56)

i=1
Throughout this subsection, all the expectations (including the one in H,) are conditional on
{(yi, z4) } 71, which will be denoted as E.|,,[-]. Now, let

1 ¢ ) I ot
n 216(%,(21‘,,@)) =:Law(Y", Z'),

then by definition in Eq. (55) and the same arguments in the proof of (Montanari & Zhou, [2022]
Theorem 4.6), there exists a coupling (Y, Z, Y’ Z’) and a sufficiently small 5 ( < £/4), such that

B[y -Y) <0 Eulvz-vzE)) YR e e

Ve
holds with high probability. We can express the empirical distribution of logit margins Eq. (56) as
~ 1 Lzl |~ 2 v
Ln==2 0, e By lulruio) = LaW<Y Z +plpl; + BY ) (58)
i=1

=V
For convenience, denote V := Y Z + plinlly + BoY, then with high probability we have

1/2

BV = D22 2 @ [(vZ - V' Z)2)" 4 (B [(v - Y)2]) 210l

i) /1 — p2

<Y P L 9e4nB

é

(i) /1 — p2
< VP g (59)
Vo

>
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where (i) follows from Minkowski inequality, (ii) uses Eq. and \§0| < B from Theorem
by recalling that § < §*(0) and the data is linearly separable with high probability, while in (iii) we

choose 17 < min{e2/4,¢e/B}. According to &,, = x* from Theorem we know that
ILm P (yl(@i,:m) +B0) > K —eVie [n]) =1
Then by definition of V' in Eq. (58), with high probability we have

V>k"—e¢, almost surely. (60)

Now, recall § = *(k*) = Hg(p*,5;) by Eq. . where (p*,05) =
argmin,e(_q 1y goer Hix (p, Bo). Therefore,

~ 1—p2 1—p2
Ep[(V -V P Vol 3= V13 ©1)
\/g Hn* (p*a ﬂo)
holds with high probability. For p € [—1,1], 5y € R, let us define

1 1
w rfo) = \/H (0:Bo)  /He(p

Note that h%. (p, Bo) > 0. Hence, Eq. (61) implies that (reminding 7 = 1) with high probability

1/2 — 1 s ~
(Epn[(V = V) < \/ﬁ< 7([%50) by« (p ,50)) + 3¢

= (B[ = il + G = o)) = VIZ 7 b B + 30
O E (s =22 = V1= h (5, Bo) + 3¢,

which can be further written as (with hlgh probablhty)
E [V =V 4 V1= 22 b5 (5, o) < (B [(* — V)2])? + 3¢
(B [(V=V)]) | +

z (B (5 — = )2]) "2

In the derivation above, equation (i) follows from V = Y Z + 5 |||, + By £ G+ 7 lllly+ BoY
when conditioning on {(y;, z;) }?_;, and (ii) follows from the fact that

d coniz_ Bl —V)3]
—(E.n|(k—=V) = — <
( | [ +]) (E|n[(f€—v)i])l/2

dk
Besides, by using Eq. (60) and exactly the same arguments in the proof of (Montanari & Zhoul, 2022}
Theorem 4.6), we can show that with high probability,

E.p, [(v ~ max{k* — ¢, V}ﬂ <EL[(V=V)] B[ —e—T)2]. 63)

+ de. (62)

Combining Eq. (63) with (62) gives the following implications:
* Eq. (63) implies
E (" —e=V)i] <E.,[(V-V)?.
Plugging this into Eq. (62)) yields that with high probability,
Vl_/\Q'h* 5730 <457
w1 R (p, /3’0 ) £ 0. Note that if [p| — 1 (i.e., v/1 — p? = 0.(1)), the quantity
1/2 /T_ 2

VI (o o) = (E[(5" = pllully + G = BoY)}]) = AL

Hy» (p ’ 50)

is bounded away from 0, for any 3y € R U {#00}. Therefore, we must have A% (7, By) = 0.
By Theorem [E.8| (proof is deferred to the end of this subsection), we know k. (p, B9) > 0 for
all p € [-1,1], 80 € R, and (p, Bo) — (p*, ;) if and only if h%.(p, 5o) — 0. Hence, we

conclude
(7, Bo) = (07, 55),
which gives parameter convergence.
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e Let
Ii= (B [(V-V2DY? = (B[ —c—7)2])%
Then Eq. (62) implies I — II < 4e, and we also have (for ¢ > 0 small enough)
1< |5 = el + (B [V2)2 < 4 (B (G + Pl + oY)

* 1/2 ~ S
<K+ (BIG7]) T+ 1] el + 1ol
<K+ 14|l + B,

1/2 1/2

by using Minkowski inequality and |3y| < B (with high probability) from Theorem|E. 1| Based
on these results and Eq. (63)), with high probability, we have

B [(V = max{s* — 2, V})*| < 12 = 11 = (1 - I)(I - IT +210)
<de(4e +2(k* + 1+ |ull, + B))
< Ck,

where C' € (0, 00) is some constant depending on (7, |||, , 0) (through £*, B). Therefore, by
recalling V ia+ plleells + BoY, we obtain that with high probability,

Wo (En, Law(max{x* —&,G + p||pl, + BOY})> <VCe. (64)

As a consequence, the following holds with high probability:
Wa (L, L)
= Ws (En, Law(max{x*, G + p* ||p| 5 + ﬂSY}))
< W, <En, Law(max{r* —&,G + p||p|, + BOY}))
+Ws (Law(max{/i* —,G+pllplly + EOY}),Law(mao({/i*7 G+ pllpl|y + BOY}))
+ W, (Law(max{n*, G+ pllplly + ,B\OY}),LaW(maX{n*, G+ p"||plly + BE;Y}))

<VCe+e+0.(1) = 0.(1),

where in the last inequality, we use that (i) the result from Eq. (64), (ii) the fact that the mapping
%+ max{r, G + p||pll, + BoY'} is 1-Lipschitz, and (iii) the consequence of (3, Bo) = (p*, Bg)
and |p| < 1, |6p| < B (with high probability).

Now we prove the convergence of ELD. Denote £,, =: Law(L’), £, =: Law(L), where (L, L') is a
coupling such that
1/2
(B [(L = £)2]) " = 0.1). (65)
Therefore, for some constants C, Cs > 0, with high probability, we have

Wo (B 1) < (B [(V = V)Y 4 (B, [V - YD)

@) 1/2

<t (B [(vE =Y L) 4 (B [(VL - Y'L)2)
(i) 1/4 1/4

Lot 0 B Y)Y @Y+ ([ 1Y)
(iii) (iv)

<n-+ CQ\/ﬁ‘i‘ 05(1) < 05(1)7

where in (i) we use Eq. and Minkowski inequality, in (ii) use Cauchy—Schwarz inequality and
Y,Y’ € {£1}, in (iii) use Eq. (57) and (63)), while in (iv) recall that < min{e?/4,¢/B} = o.(1).
By taking € — 0, we can show that Wy (ﬁn, 1/*) 2, 0 for 7 = 1. This completes the proof. O

1/2

1/2

Finally, we prove the following technical lemma.
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Lemma E.8. For any fixed k € R and 7 > 0, the function H,(p, o) in Eq. admits a unique
maximizer (p*(k), B (k)) € [0,1) x R.

Proof. For simplicity, write p* := p*(k), 85 := (k). First, note that
2
1-p < 1 —
E[(s(V)s = plislly + G = BoY)’ |~ E[(s(V)n— [lplly + G — Go)? ]
which converges to 0 as Sy — +oo. Moreover, H.(—p, Bo) < H(p, Bo) for any p € (0,1].
Therefore, H,(p, Sp) must have a maximizer (p*, 85) € [0,1] x R. Further, p* € [0,1) since
H,.(1,5p) = 0. We prove the uniqueness of (p*, 8§) by contradiction. For future convenience, we

denote Hyax = H,.(p*, 53). Assume that there exist (p1, 5o,1) and (p2, Bo,2) such that (p1, 8o,1) #
(p2, Bo,2), and

Hﬁ(pv BO) =

Hn(pl;BO,l) = Hﬁ(p27ﬁ0,2) = Hmaxu

V1-p7 V1-p3
vaax ’ vaax ’

which implies
Gr(p1,B01) = Gr(p2,Po,2) =

where we define
1/2
GelpsBo) 1= (B[ (s = pllull, + G = o))

Similar to (Montanari et al.|[2023, Lemma 6.3), we can show that G, is strictly convex. Hence,

+ + 1
a. (p1 : Pz Bo1 : 5072) < =(Gr(p1, Bo,1) + Grlp2; Bo,2))

2
_ 11 ~ 2 ~ 2
RN (\/1 P+ V1 Pz)

< 1 1— p1+ p2 2
a vaa.X 2 ’

where in the last line we use the concavity of the mapping x — +/1 — 2. It finally follows that

H, p1+ P27 Bo,1 + Bo,2 S Ho
2 2
a contradiction. This concludes the proof. O

E.1.7 COMPLETING THE PROOF OF THEOREM [D.1]

Proof of Theorem|D.1] [(a)]is established by Theorem [E.3]

Notice the definition of (p*, 5}, x*) we used in our proof (Section [E.1.3] [E.1.6) is based on
Eq. (33). It suffices to show the equivalence of two optimization problems Eq. (3T) and (33). Now

we fix p, A in Eq. and X := pl|/p||2 + G + Y Bo. Then Eq. can be written as

maximize K,
£>0,£€L?

subject to X ++/1—p% > s(Y)k, E[¢2] < 1/6. (66)

Note that it can be written as a convex optimization problem, and it is infeasible if p = £1 (since X
has support R). Take p € (—1,1). According to the Karush-Kuhn—Tucker (KKT) and Slater’s con-
ditions for variational problems (Zalinescu, 2002, Theorem 2.9.2), (k, &) is the solution to Eq.
if and only if it satisfies the following for some A € £, A > 0 (a.s.) and v > 0:

“1+E[s(Y)A] =0, —+/1—p2A+20€=0 (as.),
v(E[E]-67") =0,  A(s(Y)r— X —/1-p%) =0 (as.).

Clearly v > 0 (otherwise, A = 0 a.s., a contradiction). Consider the following two cases:
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* On the event {s(Y (w))x — X (w) < 0}, we obtain s(Y(w))k — X(w) — /1 —p%(w) <0
which implies A(w) = 0. Therefore ¢(w) =

* On the event {s(Y (w))x — X (w) > 0}, we obtain /1 — 5 )) X(w) > 0,
which implies £(w) > 0. Therefore, A(w) > 0, and thus S(Y( - —v/1—p%(w
0.

(Note P(s(Y)x — X = 0) = 0.) By combining these, we get /1 — p?¢ = (s(Y)k — X)4. This
proves Eq. (32). Plug initinto Eq. (31) gives Eq. (33). The proof of p* € (0, 1) and its independence
of 7 is given by Theorem [E.9)in Section[E.2}

This concludes the proof of part[(b)] O

[(©)} 6 < 6%(0): We show that %, L k% in Theoremcan be strengthened to Rn %, %, To this
end, we show that & /i is uniformly integrable (u.i.). Recall that m(ﬁn, ﬂo n) > 0and

"i(ﬁmﬁo,n) = 32[1751] :171'(<$i7/8n> + 50,n) = lfg[lrfﬁ Yi (yi<#7ﬁn> + <Zm3n> + 50,n)
= min {z;?il}rl T (<N7 Bn> + <zi7Bn> + BO,n)7i:?§?:iIll(<N7 a ) — (=i, /3 ) — 60 n)} .

Hence, on the event D¢, (non-degenerate case), we have k,, = n(f‘]n, Bo,n) and it can be bounded by
the average from each class:

5B Bon) <7 (18 B,) + (5, Ba) + Bon) =
H(Brmgo,n) S <H,I/B\ //6\ .

where

. 1
Z Zi, Zy = E ‘ Z Z.
Y= VYi=—
Combine these two bounds and apply Cauchy—Schwarz inequality, we obtain

~ & TR + R, 2 ~ zZ -z, 4 2
< n n — n n < -~
BB < T = 2 (B + (FRERBL) ) < 2 (lady + 1),

zh -z, 1/1 1
=B E g yen (0 (L L)),
z 2 Znly < 4 n++n, d>

R P 2 _
0 <Rn = k(B Bon)licn,<n-1 < p—] (lelly + 1Znlly Ticny<n1) -

is u.i., it suffices to show that ||Zn||g Li<n, <n—1 is w.i.. Next, we prove this by

where

Therefore,

~2
In order to prove k.,

establishing that ||Z,, ||§ Ii1<n, <n—1 converges in L. It requires two steps (by Scheffé’s Lemma):

1 /1 1
E[ Nn 2]]- n nfi| N ’ 67
||Z ||2 1< +S 1 — 45 T + 1_ T ( a)
~ 112 P 1 1 1
2lls Li<n, <n— —-F+—]). 7b
1Zallz Ligny<n-1 = 5 | —+ 7= (67b)

For Eq. (674a), Observe

E [ IZnll3 L1<n, <n-1| = B [E[IZall3 Licn, <1 19]

ds1 1 d n n
=EK (7 7>]]- ny<n— =—EK (7 7)]1 ny<n— .
{4 s + o) H1sne < 1] In { s + P e S

To evaluate the expected value, note that (by law of large numbers)

n 2n n p 1 2n  p 2
11§n+§n71 S ) ]]-1§n+§n71 > —, -
ny+1 N4 ™ ny +1 m
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A classical result (Chao & Strawderman, |1972) gives

i B[ 2] = g 22002
1
So fil L—) %, which implies 211 isu.i., and so is ;- IL 1<n, <n—1. Therefore, by Vitali conver-

ﬁl
gence theorem, we have - ]11<n L<n—1 —> Slmllar arguments give - li<n,<n—1 — -

1—7
Hence
. d . n n 1 /1 1
lim E |:||zn||2 Ti<n, <n— 1} = lim —- lim E {( + 7)]ll<n+<n 1} = (7r + ) )

n— o0 n=o0 4n n—oo ny n_ 46 1—m

For Eq. (67b), notice that ||En||§ |y ~ anx?3, where a,, = i(i +-L). By concentration inequality

(e.g., Theorem|J.3(a)), we have
e ¢
Z € | y) S 2exp <_Cmin {CZCL%’ an}) = OP(l)v

~ 2
P ([Iz] - da,
where ¢ > 0 is a constant, a,, = op(1), day, LN %(% + ﬁ) By taking expectation on both sides

and using bounded convergence theorem, we have ||EnH§ — da,, = op(1). Then we get Eq. (67b).

Finally, Eq. (674) and (67B) imply that ||Z,,||3 T1<,, <,_1 converges in £', and thus is w.i.. So &2
is also u.i.. By Vitali convergence theorem, convergence in probability of %,, can be strengthen to
L? convergence.

This concludes the proof of part|[(c)]for § < 6*(0). O

d > 6*(0): For non-separable regime, we cannot work with &, , in Eq. to show a negative
margin, since k,, > 0 always holds (by taking 3 = 0, 5y = 0). To this end, we define

2 Ky~ © XB— foy), [

s n,euz 1[“

Bo€ER

b

which replace the constraint || 3|, < 1in &, « by |8, = 1. Here we define the margin as

Fn :=sup{x € R: E, , = 0}. (68)
Note that %,, = k,, on separable data, but k,, is allowed to be negative. Then our goal is to show
Fn < —F (69)

holds for some £ > 0 with high probability. Then followed by the proof outline at the beginning of
Section [E-T] we can also define a series of random variables in a similar way:

1
= = min max —=A' (ks, Oy — X3 — [ol),
w8 8], =1 AL <1 Vd v
|Bo|<B AOy>0

—(1) 1 ( T T T

Sn,p T, N ma A 0+ 0], h A+ X' (ksy Oy —p| ||,y + pu — [301)

BT L NN VT [Al,g76 + (6]l (Ksy |l )
|Bo|<B AQY=0

[1]]
|

’(2) ) 21\1/2
KB = p2+rr2’n:1111,r20 r+Vs (E [(S(Y)H pllplls + pGr +1rGa BOY)JrD ,
|Bol<B

where the constraints |||, < 1, p? + ||0||2 <1l,and p* +7r* < 1in¢,, p, gD and E;(Q; all

—= n,k,B?

become equality constraints. Then we follow the same arguments in Step 1—5 (Theorem [E-THHE.6).
* Analogous to the proof of Theorem we have |P(Z,, . = 0) —P(Z], . 5 = 0)| = 0.

+ Analogous to the proof of Theorem we can apply CGMT Theoremn to connect =,
with =)

—n,k,B"

IP(”;LKB <t) <2IP(”’(” <t>

Here we only get a one-sided inequality since {(p, 8) : p? + ||0H2 = 1} is non-convex.
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* Analogous to the proof of Theorem | we have =0 Py (E;(?,;)Jr.

n,k,B

* Notice that the optimal 7 in E;(Q; must be nonnegative. Hence, by substituting r = /1 — p2,
we have E;(QE); = ES) (Eq. ) for some B > 0 large enough.
Recall that in the proof of Theorem [E.5|and[E.6] if § > §*(0), then there exists a k¢ < 0, such that

E,:i) = 0. According to Eq. lb for any € > 0 small enough, by using above relations, we have

=3 _ =12 =/(1) p_ (=(3)
Ernpte = Srgyes >0 = Snsote,B 7 (£KO+E)+ >0

= g >0whp. = E,.y+e > 0whp..

=
—n,ko+te,

=

By Eq. , kn < ko + € < 0 holds with high probability (by taking ¢ to be sufficiently small),
which proves Eq. (69).

This concludes the proof of part|(c)|for § > §*(0). O

[(@}[®F We have shown parameter and ELD convergence for the case 7 = 1 in Theorem- Now
for any 7 > 1, denote ﬁ (1), 50 n(T), Rn(7) as the max-margin solution to Eq. , and define

~ 5 ©
)= (Bulr) 7).
el
Similarly, denote p*(7), B5(7), *(7) as the optimal solution to Eq. (33). By Theorem|C.1]
* We have

- ~ -~ T—1

pn(T) = pn(1), Bo.n(T) = Bowm(l) + 7'74-12“(1) (70)

¢ We can write

1 & .
;Z (s By tom () 0zy = LW (Y1 (@B} + Bon (7)) 1)
i=1 (71)

= Law (Y/]lpfl, (<(L'/,,/8\n> + B(),n(l))]lp% + :_:17%”(1)> .

Besides, according to Theorem [E.10]
¢ We have

p*(r)=p"(1),  Bolr) =HB(1) +

K*(1). (72)

¢ We can also write

v, = Law (Y,YmaX{S(Y)Ii*(T), G+ p" ||pll, + 5§(T)Y}>

~1 *(1)> . (73)

= Law (Y anax{n ), G+ p" |lll, + By (1 +1

2 o~
We have shown %, (1) £, k*(1) and Bon(1) 2 Bg(1) in Theorem Then by continuous
mapping theorem, comparing Eq. and (72), it follows that By ,(7) 2 B (7) for any 7 > 0.
In Theorem we have shown that W5 (U, v..) = 0-(1) for 7 = 1 with high probability, i.e.,

Wo (Law(Y’ILD%, ((w',B,) + Bo,n(l))lpc) Law(Y Y max{r*(1),G + p* |||, + B (1 Y})) =o0.(1).
=U, U~

(74)
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Then there exists a coupling (Y, Y, U,,, U*) such that, with high probability,
1
-1 -1 27\ 2
+ (E_n [(Un —Ut TR (1) - TR () D

T4+ 1 _T+1ﬁ
T

N|=

Wa (U, vi) < (B [(Y1pe —Y)?])

< (1 [(v"1p; - Y)) -

T+1

N
Nl

+ (B[00 = U] * 4 T (B [(Ra() — #7(1)2)

(i)
= O¢ (1)7
2
where in (i) we use Minkowski inequality, while in (i) we use %, (1) £ k*(1) inand Eq. .

By taking & — 0, we can show that Wy (7, ) = 0 holds for any 7 > 0.
For TLD convergence, we give a proof of i/\ffsi 2 V;\eSt. Write Thew = Ynewl + Znews Znew ~
N(0,1,), and recall %" = Law (y™%, ("%, B8,,) + Bo,n). Let G ~ N(0,1) and G 1L 4%, then
(@, By) + Bon = (4" + 2", B,) + Bonn
= 4" Bn |lly + (2", B) + Bon
Sy (p" ey + G+ ™" 55),
where in the last line we use Slutsky’s theorem and y™¢% 1L (y"Vz"eV, ,@n, B\O,n)-

This concludes the proof of part[(d)]and [()} O

In[(f)] above, we showed that

n 3 5 d
f(mncw) = <$ncwa/8n> + ﬂO,n — yncWﬁ< H“HQ +G + ﬁg
Therefore, by bounded convergence theorem, the errors have their limits

lim Erry , =P (4+p" |plly, + G+ 55 <0) =@ (—p" |u|ly — Bg)

n—oo

lim Err_, = P(=p" ull, + G+ 55 > 0) = @ (=" lly + 55).
This concludes the proof of part[(e)} O
Finally, we complete the proof of Theorem [D.I] O

E.2 ANALYSIS OF THE ASYMPTOTIC OPTIMIZATION PROBLEM: PROOF OF LEMMA [E.9]

We provide an analysis of the low dimensional asymptotic optimization problem Eq. in this
subsection. The conclusion below has been used in the proofs of Theorem [D.I[b)] [(d)]and [()] It will
be also used in Section [G]to obtain monotonicity results.

For G ~ N(0,1) and ¢t € R, we define two auxiliary functions
n(t)=E[(G+1t)4], g0)=E[G+1)37]. (75)

Clearly both g; and g are strictly increasing mappings from R to R+ . Then g := g2 0 g1 s also
strictly increasing. The following lemma shows that the limiting parameters (p*, 55, x*) defined in
Theorem can be characterized by the following system of equations, involving g and g; L

Lemma E.9 (Analysis of the asymptotic problem). In the separable regime § < §*(0), (p*, 5, K*)
is the unique solution to the system of equations

P P 2
ms-g<>+ 17r5.g<>1 , (76a)
arfall,5) T T\ ST Tl ,
_ p
—Bo + KT = +g7" () ; (76b)
0 14 ”MHQ 91 o ”MH2 5
- p
Bot+r=rpln +gl<)7 (76¢)
" Il + 9 Gy Tl 5

where p* € (0, 1) does not depend on T and k* > 0.
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Proof. Recall that in the proof of Theorem|[E.5|and[E.7} we established that (p*, 35, £*) is the ungiue
solution to

maximize K,
p€[0,1],80€ER,KER

subject to H,.(p, Bo) > 9.

Let F(p, Bo, k) := Fi.(p, Bo), where F, is defined in Eq. (52). Then the above optimization problem
is equivalent to

maximize K,
p€[0,1],80 €ER,KER

subjectto  F(p, Bo, k) <0,

Note F' is convex (since x — (:Jc)i is a convex map, and expectation preserves convexity). Setting
0,F = 0 and 0g, F = 0, we obtain the first-order conditions satisfied by (p*, 55):

E{(G—prMHQ‘ﬁ%‘*“T)+}::igﬂ%ﬂgg’
77
E [(G = pllplly + Bo + ’f)J - m'

Moreover, we have §*(k*) = ¢ and thus F(p, k, Bo) = 0 at (p*, k*, 5§), which leads to

) [(G —pllnlly = Bo + m)ﬂ +(1—7)E [(G —pllpelly + Bo + m)i] —1-p2 (18

Using g1, g2 defined in Eq. (73), the first-order conditions Eq. (77) can be rewritten as

p
g1 (=plelly = Bo+KT) = s>
1 ( || ||2 0 ) o ||”||2 5 ="
(=p elly + Bo + ) E "
g1 (=p|lp 0 tK) =
? 21 =) [|pell5 0
Similarly, we recast Eq. (78) into
w092 (=p llpelly = Bo + £7) + (1 = m)dg2 (—p |plly + Bo + &) =1 = p*. (80)

By combining Eq. (79) and (80), we get Eq. (76a). Eq. (76b) and directly come from Eq. (79).

Note that function g : R~g — Rxq satisfies g(0T) = 0. As p varies from 0 to 1, the L.H.S. of
Eq. increases from 0 to a positive number while the R.H.S. decays to 0, which guarantees the
existence and uniqueness of p* > 0. Since Eq. does not depend on 7 and x*, we know that p*
does not depend on 7 and x*. This concludes the proof. O

In parallel to Theorem|[C.1|for the original non-asymptotic problem, we provide the following similar
result on the asymptotic problem Eq. (33).

Corollary E.10. In the separable regime § < 6*(0), let (p*(7), B3 (7), * (7)) be the optimal solu-
tion to Eq. (33) under hyperparameter . Then

PEO=rW), B =H0 R ), K =

k*(1).  (81)

Proof. Conclusion for p* is already shown in Theorem For 3§ and «*, note that the R.H.S. of
Eq. (76b) and are constants under p = p* (depending on 7, |||, and ). Then we have
—By(1) + k" (1) = =85 (1) + k*(1),
By (1) + k" (1) = B3 (1) + £*(1).

Combining these two equations gives the expression of 83 (7), k*(7) in terms of 8% (1), x*(1) as in
Eq. (81), completing the proof. O

55



Published as a conference paper at ICLR 2026

E.3 PROOF OF PROPOSITION

Proof of Proposition[D.2] We can prove a more general result by replacing £:°* with p and £,
with v := Law(max{x*, X}), where X ~ p and p is any probability measure with atomless
(continuous) CDF F},. As aspecial case, in Theorem@we consider y as a mixture of two Gaussian
distributions, and the cost function ¢(z,y) = (x — y)=.

We now prove the general statement. Note the CDF of v has the form
E,(t), ift<k*
F,(t):=¢ "7 ’
®) {1, ift > k*.
According to the optimal transport theory (Santambrogiol 2015, Theorem 2.5), the unique (also

monotone) optimal transport map from 4 to v is given by T* := F, o F),, where F; is the quantile
function of v:

_ . F Yz), ifz < F,(k%)
F, =inf{t eR: F,(t) >ax}=4q F 7 SIS
S =int e Rs R0 > ) = {700 e < B0
Then we have T*(z) := F,, (F},(z)) = max{x*,z}, which concludes the proof. O

F LOGIT DISTRIBUTION FOR NON-SEPARABLE DATA: PROOFS FOR
SECTION

F.1 PROOF OF THEOREM [D.3|

Throughout this section, we assume the loss function £ : R — R is non-increasing, strictly
convex, and twice differentiable. Based on these assumptions, we establish the following properties
of /.

Lemma F.1. Let ¢ € C'(R) be a nonnegative, non-increasing, and strictly convex function. Then
(a) ¢ is strictly decreasing.

(b) £(—00) = 400 and {(+00) = L for some £ € [0, +00).

Proof. Notice that ¢'(u) < 0 (by non-increasing) and ¢’ (u) is strictly increasing (by strict convexity),
which implies that #'(u) < 0 for all u € R and hence deduces part (a). For part (b), the limits
limy,_, + oo ¢(u) are well-defined, and ¢(+o0) = £ for some £ € [0, +00) since ¢ is monotone and
bounded from below. It remains to show ¢(—o0) = +o0.

Assume ¢(—o0) = £ < oo by contradiction. By convexity, we have £(u)

(£(2u) + £(0)) for any
u € R. Taking u — —oo on both sides yields ¢ < £ (¢ 4 £(0)), hence ¢ < £(0), which contradicts

the fact that £ is strictly decreasing. Therefore, we must have ¢(—o00) = +oo0. O

1
<3
</

Without loss of generality, assume £ := ¢(+o00) = 0. Otherwise, we can just consider ¢ — £ instead
of /. In addition, we also assume ¢ is pseudo-Lipschitz, i.e., there exists a constant L > 0 such that,
forall x,y € R,

[0(a) — £)| < L1+ o] +]yl) = —y].
For ease of exposition, we assume 7 = 1, as it is not fundamentally different from the case of
arbitrary 7 > 0. In Section[F.1.7] we will discuss how to extend our proof to general 7 > 0.

Recall the original unconstrained empirical risk minimization (ERM) problem Eq. (2a)):

=1

BERY, BoER BERY, BoeR N

We first provide an outline for the proof of Theorem [D.3] which involves several intermediate steps
of simplifying the random optimization problem M,,.

Step 1 _ Step 2 —
M, —P (05,8, ———= MM (04,E,) = M?P(O.,E,)
Theorem[E2] Theorem[E3] ™
Step 3 M(3)(® = ) - M(3)(® ) Step 4 M*(@ ) Ny eorem |E.6
Theorem[E4] n ¢ =u n ¢ Theorem[E3] ¢ ’
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Step 1: Boundedness of 3 and 5y (from M, to M, (©3,E,)) Notice that by introducing the
auxiliary variable u = (ug,...,u,)" € R™ and Lagrangian multiplier v = (vq,...,v,)" € R",
we can rewrite Eq. (82)) as a minimax problem

BeRY, BocR VER™
ueck”

M, = min max {TlL Zﬂ(ui) + % Zvi (yi(<wi,ﬁ> + Bo) — Uz)}

i=1

1 n 1 n
= min max { — Lu;) + — E V; , + (2, + Y;Po — U; ,
ﬁeRd,ﬁoeRveR"{n;( ) n (b2, B) + (=3, B) + wifo )}

ueR™ =

where in the second line, we reformulate «; = y;(u + z;), z; ~ N(0,1;), y; 1L z;. For any closed
subsets @5 C Re x R, B, C R", we also define the quantity Mn(®g, =), which can be viewed
as the constrained version of ERM problem M,,.

(B,B0)€Op vER™
uceE,

n 1 n
M,(©p,8y) := min max{i;aumn;vl««u,ﬂw<zi,ﬂ>+yiﬁo—ui>}

_ , 1< 1 1 1, + 1 7
= (g,éﬂl)uel@ﬁ ‘TI%%ZE {n z;é(uz) + nv 1, B) + nv ZB+ nﬁov Y — nv u,,
uezE, =
o (83)
where Z = (z1,...,2,)" € R" 9. Let (8,,B0.n) be the unique minimizer of Eq. . The

following lemma implies that Bn and BO,n are bounded with high probability, which enables us to
work with M,,(®g, By) instead of M,, for some compact sets @ g and Z,.

Lemma F.2 (Boundedness of 3 and fy). In the non-separable regime § > 6*(0), there exists some
constants Cg, Cg,, Cy € (0,00), such that M,, = M, (®g, Ey) with high probability, where

05 ={(8.50) ER* xR :|Bll, < Cg,|Bo| < Cp,},  EBu={ueR":|ul, <Cuvn}.

See Section [F.I.1]for the proof.

Step 2: Reduction via Gaussian comparison (from 1/, (©g, E,) to M (©3,84)) The ob-
jective function of M,,(®g, E,) in Eq. is a bilinear form of the Gaussian random matrix Z. To
simplify the bilinear term, we will use the convex Gaussian minimax theorem (CGMT), i.e., Gor-
don’s comparison inequality (Gordon, 1985} Thrampoulidis et al [2015). To do so, we introduce
another quantity:

1 — 1 1 1
MY (Og,8,) = i =N u) + —vT1 - h'B+ = T
2 )(0p,8u) = min  max nz; (i) + v, B) + — V], AT B + ~ 1Bl 97V
ucE, =

1 1
+ *50VT2J - VTU};
n n

where h ~ N(0,1;), g ~ N(0,I,) are independent Gaussian vectors. However, the classical CGMT
cannot be directly applied to M,(Ll) (©3,E,) since v is maximized over an unbounded set. To this
end, we proved the following version of CGMT, which connects MY (©g,E,) with M,,(Og, By).

Lemma F.3 (CGMT, unbounded for maximum). For any compact sets © g and E,, (not necessarily
convex) and t € R, we have

P (Mn(eﬁ, Eu) < t) < 2P (M,gl)(eg, Ea) < t). (84)
Additionally, if ® g and 2, are convex, then

P (Mn(eﬂ, Eu) > t) <2P (Mgﬂ(eﬁ, Eu) > t). (85)
See Section for the proof.
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Reparametrization in low dimensions (from M (@5,_.u) to My(f)( 0.,E,)) To simplify
M,Sl) (@g, E.), we consider the following change of variables
po B > ,
; , ifB#0,
<|u2 181l
0, if3 =0,

pi= cos(. B) i= R:=|8]l,- (86)

Now, for any closed subset ©, C [—1,1] x R>¢ x R, we define the quantity M2 (0., E,) by

1 & 1 1
M2 (e ,By) = min max ¢ — Ou;) + =v'1{w, B+ = ||v AT
POa=) = omin D) T8+ TS
(cos(p,8),118ll5,80) €O -
uc=, 1 T 1 T 1 -
+=1Bll,g v+ =Bov'y——viu,.
n n n

Therefore, Mflz)(@C =y) can be viewed as reparametrization of M, ,(L )(('-)g, E.,) when ©®g C R? x
R takes the form

®ﬁ = {(ﬂaﬁO) € Rd xR: (COS(I’L7B)7 ||/6H2 760) € 60} .
Then we can simplify M (©g,Ey) as follows:
MP(©,Eu)

(i) . YT
= min ax O(u;) + v R1 + Rg + —u)+ —h
rAico. 18T e T 1{ Z o (0 Nl g+ oy —w)+ ﬂ}

ue=u  cos(p,B)=p

(i) . 7 YT

= min (u;) + = R1+ Rg + —ull,+ —h

I { Z )+ 2lpllull, R1 + Rg + Boy — ul, + @}
UEE,  cos(u.B)=

iii 1o .
W in max{ E é(ui)+1||p\|u||2R1+Rg+ﬂoy—uH2+1 min hTB}
n n n

(0sR,B0)€E®: 720 I1Bll,=R
ueE, cos(pu,B)=p
(W) IR
iv
o s a0+ Tl R -,
uE_.u -

+ 1R (” £ Vi |Plh2)} (87)

where in (i) we apply the change of variables Eq. (86) and optimize v by its length ~ and direction
vo separately, (ii) follows from Cauchy—Schwarz inequality, (iii) is from the linearity of objective
function in ~, and (iv) is based on direct calculation by decomposing 3:

min  h'@= min ( ++v1 ) Rl - \/1—p2HPthH2,
BEeR®:|B|l,=1 ocra: 191l>= || Il ||2
cos(u,B)=p </~"79>

2
where P := 1y — pp' / || l5-

Step 3: Convergence in variational forms (from M (2 )(90, ) to My, (3) (©.,E,)) To proceed
from Eq. (87), we adopt the following trick from (Montanari et al.|[2023), where u could be viewed
as a funct10nal of the empirical measure given by g = (g1, . . ., gn) "and y = (y1,...,yn)". For-
mally, let Q,, be the empirical distribution of the coordinates of (g, y), i.e., the probability measure

on R? defined by
1 n
Qn = ﬁ Zé(giayi)'
i=1
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Let £2(Qy) := £2(Q,,, R?) be the space of functions U : R? — R, (g,y) ~ U(g, y) that are square
integrable with respect to Q,,. Notice that the n points that form Q,, are almost surely distinct, and
therefore we can identify this space with the space of vectors u € R". We also define the two
random variables in the same space by G(g,y) = ¢, Y (9,y) = y. Denote Eq,,, | - [|o, the integral

and norm with respect to Q,, in £2(Q,,), i.e

Eq, [U] := /IR2 U(g,y)dQu(g,y) ZU i Yi)s ||UH(Q)n = (Eq, [Uz})l/Q'
Let =, C £2(Q,,) be the corresponding subset identified by Z,, C R", that is,

={ve 2@ u= U, Ulgn )" €Zal-

—

Then with these definitions, we can rewrite the expression of M,(LQ) (O, E,) as

M2 =,) = i E s Y —
0 (©c, Bu) (p,Rfﬁi?e@CT%‘{ Q. [(U +\/ﬁ||P||H||2R+RG+Bo Ullg,
UeE,

R (n Iz ﬁ”PLh'b)}

= i i Eg. [¢(U)],
(p,R{%i?E@cUegjgNn Q"[( )]

where we define the (stochastic) subset NV, = N, (p, R, Bo) b

N, {U6£2 @)l laly R+ RG + oy = Ul < = (VI ZIPgl = o )}
2

(88)
It can be shown that as n, d — oo,
L N p. Ry1—p?
V1=p%|P,hl2 - - ——.
7Tl V6
This convergence then motivates us to define another quantity
M (©.,E,) = min min _Eq, [((U)], (89)

(p,R,B0)€EO. UEE,NNS

where the subset N0 = N%(p, R, By) is given by

R\/1— p?
NS {Ue£2 Qu) : [lollplly R+ RG + BoY = Ul < \/gp}. (90)

The following lemma shows that M,(f) and M,(l?’) are close to each other:

Lemma F.4. For any compact sets ®. C [—1,1] xR>¢ xR and 2, C R" (not necessarily convex),
asn — oo, we have

MO, 80) - M) (©.,E4)| 0.
See Section for the proof.

Step 4: Asymptotic characterization (from Mff)(@u Bu)s M, (3)(60) to M*(®,.), M*) For
any closed subsets ©, C [—1,1] x R>¢ x R, we define the quantity Mé?’)(QC) by

M3 (@,) = Eq [6(U))].
n(Oc) (p,RHéé?ee Unélf}s Q. [{(U)]
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Compared with Eq. (89)), clearly MT(L ) O, =,) =M, S (®.) when E,, is large enough. To analyze
M (®.), we consider the change of varlabl

_pluly R+ RG+ oY U

$:= R
Then we have
MO(@,) = min Eq. [¢(p lsll, R+ RG+ 5oY + RV 72¢)]
(p,R,B0)€EO,

€€L(Qn),lI€Nlg, <1/VE

Denote Qo := IP the population measure of (G, Y) (so that (G,Y) ~ N(0, 1) x P, under Q = Q,
and we have Eq_ :=E, [|U]|_ := (E[U?])"/?). Then we also define the asymptotic counterpart

of M7(13) (©.) by replacing Q,, with QDO:

M*(©,) = min E [e(p Ipall, R+ RG + BoY + Ry/T— ng)] .
(p,R,B0)€EBO,
¢€L2(Quo); l1€llg, <1/VE

Uoo —

The following lemma shows that VAR (©.) converges to the deterministic quantity M*(©..):

Lemma F.5. For any compact subset ©, C [—1,1] x R>¢ X R, as n — oo, we have
MP(®©,) 5 M (®e,).
See Section [F.1.4]for the proof.

Finally, combining Theorem [F.3}-F3] we obtain the following theorem.
Theorem F.6. Consider any compact sets © g and Ey, such that © g has the form of

05 = {(8,8) € R" xR : (cos(p, 8), 1Bl Bo) € O} 91)

for some compact domain ®, C [—1,1] x R>g x R of (p, R, o). Assume B, is large enough.
Then, for any € > 0, as n — 0o, we have

P (M, (©g,Ey) < M*(O,) —¢) — 0.
Further, if both ® g and E,, are convex, then
M,(©g,Ey) & M*(©,).
Proof. According to Theorem | H and [F . we have M2 )(60, Eu) B M *(@ ) for any compact
sets ©, C [~1,1] x R>o x R and E,, C R" large enough such that =, C N2. When © takes the
form Eq. ©1), by CGMT Theorem [F3] for any ¢ > 0 we have
P (M, (©p,80) < M*(O,) —2) < 2P (M(V(©5,8,) < M*(O,) - ¢
— 9P (Mff)(@c JEu) < M*(©,) — 5) LN
If both ®3 and E,, are also convex, then we can similarly show that

P (Mo(©p,8u) > M(0,) +2) < 2P (M (O, ,5y) = M*(©,) +¢) 225 0.

Combining these implies M,, (@, Ey) = M*(0..), which concludes the proof. O

"2We will show in Theoremlater that the minimizer of M (©.) must satisfy R1/1 — p2 > 0, hence
the change of variable £ can be well-defined.
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Parameter convergence Next, we define M* := M*([—1, 1] x R>¢ x R) to be the unconstrained
optimization problem Eq. (33), i.e.,

M* = min E[E(p\|u||2R+RG+ﬂOY+R\/1fp2§)}.

pE[-1,1],R>0,80€R
£€L%(Qoo)slléllg,, <1/VE

Joo —

An analysis of the Karush—-Kuhn—-Tucker (KKT) conditions shows that M/ * has the unique solution
(p*, R*, B%, &), with p* € (0,1), R* € (0,00), and 5} € (—00, 00). Combined with Theorem [F.6]
it implies M, 2, M*, which leads to the convergence of parameters:

Lemma F.7 (Parameter convergence). As n,d — oo, we have M, 2y M*, which implies
B _m
18,12 Il

1Bl & B, ﬁn=< >$p*, Bom B 8.

See Section [F1.3] for the proof.

ELD convergence Finally, to establish the ELD convergence, we use a proof strategy similar to
that in Theorem [E-7] by first defining the following measures

~ 1 - * * * * * * *
L, = ﬁzayi(@iﬁHﬁo)’ L, :=Law (U*) = Law (p* ||y R* + R*G + Y + R*\/1 — p*2&*).

Let By, () (¢ > 0) be the e-W5 ball at L,, i.e.,

1 n
B = R™ : — L. .
w, (€) {ue W2(n;5“”£) <g}

Then by showing that
lim P (M, (R, B, (e) > M,) =1,

n— oo

we can prove the convergence of logit margins Wg(/jn, L) 25 0, and hence the ELD convergence.
The result in summarized in the following lemma.

Lemma F.8 (ELD convergence). As n,d — oo, we have VVg(En7 L) 20 and Wa(Un, Vi) 2 0.

See Section [F1.6] for the proof.

F.1.1 STEP | — BOUNDEDNESS OF 3 AND f3;: PROOF OF LEMMA [F.2]

Proof of Lemma[F2] We first assume 3 # 0. By Theorem|D.1fc)| if § > 6*(0), there exists & € [n]

and constant & > 0, such that
yk<<mk, B > 4 bo > <R (92)
1812 1812

holds with high probability. Therefore, we have

i 1 N i T

(0) 2 23 il B) + ) 2 Syl B) + Fo) = (=Bl

where in (i) we note that En(O, 0) > ﬁn(ﬁ, Bo) = M, in (ii) we use £ > 0, and in (iii) we use (92).
Clearly the above inequalities also hold for 3 = 0. Notice that 1 /(—F|[|3||2) = +ocoas [|3]|2 — oo,
which contradicts £(0) < +oco. Hence, it implies ||3||2 is bounded with high probability.

Meanwhile, let j, k € [n] be any two indices y; = +1, y, = —1. Then as Bo — 400, we have

~

€0) 2 3 (@ B) + ) = (s B + o) + ({0 B) = o) > +oc,
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which leads to a contradiction. So | §0| is also bounded with high probability.

Finally, in the minimax representation of M,,, the optimal u must satisfy u; = y; ((x;, ,@) + Bo) for
all ¢ € [n]. Therefore, according to the tail bound of Gaussian matrices (Vershynin, 2018, Corollary
7.3.3),

lall, = ly © (XB+ Boln)ll2 = {2, B)1n + ZB + Boyll2
< Vollpl2lBlz + 1Zllop 1812 + vl Bol
< Vi|ull2llCp + (Vi1 + o(1)) + Vd)Cp + v/nCp,
< VnCy

with high probability, where C, > 0 is some constant. This completes the proof. O

F.1.2 STEP 2 — REDUCTION VIA GAUSSIAN COMPARISON: PROOF OF LEMMA [E.3]

Proof of Lemma|F.3] Form € N, denote K,,, = {v € R" : ||v||, < m}, and define

(B,80)€EOg VEK 1,
uc=,

1 ¢ 1 1 1 1
M, (©g,Ey; Ky) '= min  max {n ;ﬁ(ul) + ﬁVT1<N"B> + EVTZB + HBOVTy _ anu},

1 — 1 1 1

(1) = L . - . . - T - T

M7 (©g, Eu; Kin) = o in g Jax {n 4§1€(uz)+ v 1w, B) + - [vl,h' B+ - 18ll,9"v
ueE, =

1 1
+ *Bova — 7VT }
n n

‘We first show that

lim M,(®g,Ey; Kn) = M,(0g,E,).

m—roo

To this end, note that for any fixed (3, 5y, u), by Cauchy—Schwarz inequality we have

1 — 1 1 1 1
—Zé ; “v1(p, Tz e T, 2T
vrg?(};{n,_l (u)—l—nv (n '6>+nv ﬁ—’_nﬁov Y nv v

1 n
= gﬂ(ui)Jr?:Hu<u,ﬁ>12ﬁﬂoy||2- (93)

n-

Let (8™, B(()Zf), uﬁm)) be the minimizer of M, (©g, Ey; Ky,). Since £ > 0, we know that

AN

A

w™ — (u, BN — 2B - Sﬁ)y’L

u&m) B </—1136§<m)>1 - Zﬁim) . 587?:““2

Mn(gﬁ, Eu; Km) < Mn(@,ﬁa Eu)

_— —

IN

1 1
LM, (©g,Ey).
’ - (©3,Eu)

Letu := (u, BU"1 + ZB™ + Béz)y, then we have

1
ol

n

m 1
u — |, < —M.(©p,80), (94)
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) = (ufﬁ), e ,u&TL))T, u = (uy,. ., ul)T)

1 n
M,(®g,E,) = min — 4%
( P ) (B, 50)695{ ; ( )

ue=E,

1 n 1 m n m
~ ZM < o DDA+ 3 fealt?) - e

which implies that (u'™

(1, B) + (24, B) +yiffo —u; = 0,Vi € [n]}

IN
\

INS
S|m
=M= 1
N
§
3\Q

(11) 1 (m) 1\ i) 1
(u — )| < M,(Og,Ey; K, Om!|— 1,
Z (m> Eat @5, 2ui15m) +0n ()

where (i) follows from the pseudo-Lipschitzness of ¢, the compactness of =, and C, > 0 is some
constant, (ii) follows from Eq. (94), while (iii) follows from Eq. (93). This proves that

lim M (@,@7'—‘U7K ) Mn(GB,Eu).

m—roo

Similarly, one can show that

lim M{V(Og,Ey; Kpn) = MY (©p, Ey).

m=—roo
Now for any fixed m, applying Theorem yields that V¢ € R:
P (Mo(©p,Bui Kn) < 1) < 2P (M) (O, Bu; ) < 1),
thus leading to Eq. (84) (by continuity and using the two limits above)
P(M,(©g,84) <t) = hmOOIP’(Mn(@g,Eu;Km) <t)

<2 lim P (M(”(@ﬁ,uu,l(m) < t) = 2P (Mgl)((aﬁ,au) < t) :

m— oo

Further, if ®g and E,, are convex, Theorem b) implies that
P (Mn(@ﬁ, B Kpn) > t) <2P (Mgﬂ(eﬁ, B Kpn) > t).
Sending m — oo similarly proves the other inequality Eq. (83). O

F.1.3 STEP 3 — CONVERGENCE IN VARIATIONAL FORMS: PROOF OF LEMMA [F.4]

Proof of Lemma First, by definition of M,(LZ) and M,(LS):

< sup

min = Eq, [¢(U)] — min EQH[E(U)]’.
(p,R.B0)EB

‘Mf)(@cvau) - MP (O, Ey) U€ELNN, UEEunNy

For any fixed (p, R, 89) € O, by definition of A,, in Eq. and A2 in Eq. , we have

i Eo, [(U)] — i Eq, [£(U)]| < Eq. [0(U)] —Eg [6(U’
omin, B (V) — | win EqMU)| < | max  [Eq, V)]~ Eo, ()]
HU_U/”@nSEn(PaRaBO)

where

(paR BO

vl VAT L ||2> - Rw\/? '

By our assumption that ¢ is pseudo-Lipschitz, the following estimate holds:

n

L
(e, [(U)] ~ Eq, [ Zlm )= )] < =D il o) s —

i=1

(i)
‘L A+ 1Ulg, + 11U o) IU = Ullg, < C(1+ 0p(1)) enlp, R, Bo),
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where (i) follows from Cauchy—Schwarz inequality, (ii) follows from the compactness of A0 and
©., and the upper bound below:

Ry/1—p?
IIUIIQHS( sup Hpu|2R+RG+60Y||Qn+\/\/7

p,R,B0)EO.

Rmax
< plpllz Bmax + Fmax [ Gllg, + Bomax Vg, + ==
(*) Rmax
=p ||“'H2 Rmax + Rmax(l + 0[?(1)) —+ BO,max + ﬁ ,

by denoting Ryax := max(, g g,)co, & Bomax = Mmax(, g, |, and C' > 0 is some

constant. Here, () is from the law of large numbers: ||G||, 2, 1Gllg. = (BIG*)Y? =1
Combining these estimates, we finally deduce that '

M® (0., Eu) — M (©,50)| < C(L+0p(1))  max  en(p, R, fo)

(p,R, BO)EQC
1—p?
=C(1+op(1 max ( Plh )—R\/i
(o) e | (VI= PRl =) - A7
1 1 1 ‘hTN| P
< O(1 4 0(1)) - B ’HPLhz - ’ L 0
Voo H Vol v llwll,
The convergence in the last line follows from
[Pihlz  IPyhl: Vd=T1 , 1 | ANTI.

N : 5 =D,
v PEle v Ve Vaul,

according to Theorem E and [P} [lop = 1 = +/d — 1. This completes the proof. [J

F.1.4 STEP 4 — ASYMPTOTIC CHARACTERIZATION: PROOFS OF LEMMAS

We need the following auxiliary result, which studies a general variational problem for both Q = Q,,
and Q = Q. with parameters (p, R, Bo) fixed. In particular, we are able to express the random
variable £ by (p, R, o), (G,Y), and an additional scalar (Lagrange multiplier). Then, we can

rewrite M) (®.), M*(©,) as low-dimensional convex-concave minimax problems.

Lemma F.9. For any fixed parameters p € (—1,1), R > 0, By € R, and the probability measure
Q= Q, or Q = Qu, consider the following variational problem

: min X, . X% =Eg |¢ R+ RG + BoY + R/1 — p2£)|.
o @ =, v, | Fole), Hol6) = Eo [((p I, BY + B/1= %)
95)
(a) Zqo(§) has a unique minimizer §* = &5 (p, R, o), which must satisfy
A*
N
where \* is the unique solution such that ||£* ”Q = 1/4. As a consequence, we have

Cp.r.80(Q) = Eq [€(proxy-(p [lusll, B+ RG + BoY))]

where proxy., and e~y are the proximal operator and Moreau envelope of { defined in Sec-
tion[J.3] Moreover, \* is a decreasing function of .

£5(p, R, Bo) = =’ (proxy-¢(p | ully R+ RG + BoY')), (96)

(b) With change of variables A := Rp, B := R+/1 — p2, the variational problem Eq. can be
recast as Cp r.3,(Q) = sup, s Zv.0(A, B, Bo), where

v B
%A, B, By) = — X + Eq [eZ<A pall, + AGy + BGa + BoY; V)} ,

B
20
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and (Y,G1,G2) ~ Py x N(0,1) x N(0,1) under Q = QOO.E Moreover, #,.o(A, B, Bo) is
convex in (A, B, Bo) over R~ x Rsg x R and concave in v.

Proof. For[(a), we first show the existence of a minimizer. The proof is a standard application of
direct method in calculus of variations. Since ¢ is lower bounded, we know that

inf Hg(§) > —o0.
€€L2(Q),lI€N3<1/8 ¢

Let {& bmen € £2(Q) be a minimizing sequence such that ||§m|\é <1/6, and

lim Zo(&m inf Ho(§).
iz Holm) = ceL2(Q)lig12<1/5 ol&)

Since £2(Q) is a Hilbert space (and hence self-reflexive), Banach-Alaoglu theorem implies that
{&n} has a weak-* convergent (and hence weak convergent) subsequence, which we still denote as
{&m}. Let £ denote the weak limit of {£,,,}. By using Mazur’s lemma, we know that there exists
another sequence {&;,, } men. such that each £, is a finite convex combination of {&x }rn<k<m-+N(m)
(N(m) > 0 depends on m), and that £, strongly converges to £*. Now since Zg is convex (this
follows from convexity of ¢ and the fact that integration Eg preserves convexity), we have

liminf Zg(&,) < liminf Zg(&n) = inf Ho(§).
i Inf #o(&m) < lminf #o(Em) £eL(Q),E12<1/5 ol&)

On the other hand, Fatou’s lemma implies that
Ro(£*) < liminf Zg(&),).
m—r oo

This immediately leads to

(&) = inf X, ,
0= o) l€l3<1/6 ©

i.e., £ is a minimizer of Zg. In order to prove uniqueness of the minimizer, we will show that
Rg : L2(Q) — Ry is strictly convex. For any o € (0,1) and &1,&2 € £2(Q), with a shorthand
V :=p|plls R+ RG + ByY, we notice that

Ho(alr + (1 — a)é2)
= Eg [¢(a(V + RVI=p26) + (1= ) (V + RV - &) )|
< B [al(V + RVT= 21) + (1 - a)(V + Ry/1— 26) | = ag(€1) + (1 — o) Ra(E2),

where the inequality follows from strong convexity of ¢, and it becomes equality if and only if
Q(& # &2) = 0. Hence we conclude Z is strictly convex. Since {¢ : ||§||é < 1/8} is a convex
set, it implies the uniqueness (Q-a.s.) of the minimizer £*.

As a consequence, the unique minimizer is determined by the Karush—Kuhn-Tucker (KKT) and
Slater’s conditions for variational problems (Zalinescul 2002, Theorem 2.9.2). £ is the minimizer if
and only if, for some scalar v (dual variable), the followings hold:

U=plpll, R+ RG+ BY + R\/1— p2¢, (U)+vE=0,

G
Hf”é—&_l <0, v >0, V(HgHé_(;—l) _

We claim that the KKT conditions imply that any minimizer £ and its associated dual variable v
must satisfy

0<v<oo, £>0(Qas), [lg5=0"

To show this, we notice that R1/1 — p2 > 0 and / is decreasing. Therefore, for any £ € £2(Q),
Ho(&) > Zo(l€]). It implies that & > 0 if £ is the minimizer. Hence, by stationarity in Eq. (97)

]3Acc0rding to the change of variables, we have relation AG1; + BG2 4 RG under Q = Q. We can
also construct the realizations {G1(g:, i), G2(9i, yi) }i=1 such that AG1 + BG2 = RG, Qp-as., that is,
AG1(9i,yi) + BG2(gi, yi) = RG(gi, yi), for all i € [n].
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vE=—0'(U) >0, which implies the positivity of v, . Then ||£ Hé = 61 comes from complemen-
tary slackness in Eq. (97). To show v must be finite, notice that v — 400 1mphes 0({U) - —o0.
Then U — —oo since E’ is strictly increasing, while it contradicts £ > 0 and ||£ ||Q =1L

By change of variable A := Ry/1 — p? /v, now we can rewrite KKT conditions Eq. as
U+MU)=pllul,R+RG+5Y, 0<i<oo, [¢lg=0" 98)

where £ and U are related by

=2 o). (99)

R\/1—p?

Notice that Eq. has a unique solution for U, since x — x + A'(z) is a strictly increasing
continuous function from R to R, for any A € (0, 00). Then, according to Theorem U can be
expressed by the proximal operator of ¢,

U = proxy,(p||p|ly R+ RG + BoY). (100)

Combine it with Eq. (99) glves the expression of £ in Eq. (96). To establish the uniqueness of A,
we show that v satisfying Eq. (97) must be unique. Note that £ = £(v) is determined by

vEW) + (p lielly B+ RG + oY + R/1T— g%€(v)) = 0.

Since v, £(v) > 0 and ¢ is strictly increasing (by strong convexity), we know that £(v) is strictly
decreasing in v. The uniqueness of v immediately follows from the condition ||§ (u)||é = ¢~ 1. This
also implies that £(v) > 0 is decreasing in 0. Then we conclude v is increasing in ¢, or equivalently
A is decreasing in 4. This completes the proof of part[(a)]

For[(b)] as a consequence we have

R,B,(Q) = min 4
om0 (Q) cer2(Q)lel2<1/6 old)
= min Eg [€(p||u||2R+RG+5OY+R\/1—p%)}

 cerr(@),lgl2<1/o

v 1
:sé?%?@)buplE@[ (pllplly R+ RG + BoY + Ry/1 = p%) + R\/1—p2- 2( 5)]
' 1
Zsup min ]E@[ (p||u||zR+RG+BoY+R\/1—7§)+R\/1— ”(52_)]
v>08€L%(Q) 2 1)
D sup min Eg [(U) + — (U — pllully R — RG — BY) — 3217—
e 2A Pk 0

iii R p?
(:)sup {]EQ lec (p llpally B+ RG + 5oY; A)] — ()\5,0)} ’
A>0

where (i) comes from strong duality in part (ii) is by change of variable U := p ||p||, R+ RG +
BoY +R\/1 — p2€and A = R\/1 — p?/v, (iii) is from the definition of Moreau envelope Eq. (174).

Now, consider change of variable
A = Rp, B = Ry\/1— p?, v=~R\1-p2/\.

Note that 0 < v < oo by part then (, r g,(Q) can be expressed as

C, ,UQ min K 5 :Sup%m A,B,B s
prpo@= lElz<1/s 2(8) = sup Zu.a o)

where
B

28

Finally, we complete the proof by the following arguments:

B
%yo(A, B, Bo) = +Eq [e4<A||u||2+AG1 + BGy + BoY; )}

66



Published as a conference paper at ICLR 2026

* %,0(A, B, By) is convex in (A, B, Bp). It comes from Theorem [J.§(a)|that (z, A) — es(x; A)
is convex, and the fact that integration Eg preserves convexity.

* %,0(A, B, By) is concave in v. This comes from Eq. (174) that

B v

y (A litll, + AGy + BGa + BoY; 7) — min {é(t) + (A, + AGy + BG, — t)?} :
v teR 2B

with the fact that pointwise minimum and integration E¢ preserves concavity.

This concludes the proof of part[(b)} O
Then we can use Theorem to show convergence MY (©,) 2 M*(©,) in Theorem

Proof of Lemma[F.3] Recall the change of variables A = Rp and B = R./1 — p? defined in

Theorem Note that f : (p, R, B0) — (Rp, R\/1— p2,5p) is a continuous map. Then
f(©.) C R>¢ x Rxq x Ris still compact. Hence, by Theorem[F.9) we have

M3 (Oe,) = min sup Zv.0,(A,B,B), M*(©.) = min sup Z,.0.. (4, B, Bo).

(A,B,B0)€f(Oc) v>0 (A,B,B0)Ef(Oc) v>0

For any fixed A, B > 0, By € R, v > 0, by law of large numbers,

Bv B
‘%II,Q” (A7 B7BO) = _75 + ]EQn |:e€ (A HIJ’HQ + AGl + BGQ + BOY, y):|
P Bv B
— e@u,(@oc (AaBaﬂo) = _75 +E ey (A HH‘HQ + AGy + BGy + ﬂoY; ;) .

Recall Z,, g, (A, B, Bo) is concave in v. Also, note that %, g__ (A, B, By) — —o0 as v — o0, since

by Theorem [l.3(a)] we have
B
i B [ex (4Ll + AGs + BGa + Y5 2 )| = B[4 lully + AG1 + BGa + 60Y)] <

This implies there exits 7 € R, such that sup,,~ %0, (4, B, Bo) < sup,Z%v.0.. (4, B, Bo).
So, we can apply (Thrampoulidis et al.l, 2018, Lemma 10) and conclude the uniform convergence

sup %0, (A, B, Bo) 2 sup R 0. (A, B, Bo).

v>0

Recall that both sup,~o %0, (4, B, Bo) and sup,~ ¢ %..q.. (4, B, o) are convex in (A, B, o)
(since pointwise supremum preserves convexity). Then we could obtain uniform convergence on
compact set f(©,.) by convexity (Liese & Miescke, 2008, Lemma 7.75):

MP(O,.) - M*(©.)| <  sup sup %00, (A, B, Bo) — sup Zu.0.. (A, B, Bo)| 2 0.
(A,B,Bo)Ef(®,;) | v>0 v>0

This completes the proof. O

F.1.5 PARAMETER CONVERGENCE, OPTIMALITY ANALYSIS: PROOFS OF LEMMAS

E1T
Recall that
* — . — 2
= omin R [l R RG Y £ RVTS2]aon

£€L(Qoo) Nl <1/VE

where R, 3y are optimized over unbounded sets. The following lemma shows that any minimizer
R*, 8§ of Eq. (101)) must be bounded.

Lemma F.10 (Boundedness of R* and 535). Let (p*, R*,3;,£*) be any minimizer of Eq. (101).
Then in the non-separable regime (§ > §*(0)), we have R* < oo and |B§| < oc.
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Proof. We first prove the following claim: There exists an € > 0, such that for any (a,b) € Rso xR

satisfying a? +b% = 1, any p € [—1,1], and any £ € £2(Qw), o, < 1/V/6:
P(ap||u||2—l—aG—i—bY—&-a\/l—p?gg —g) > e (102)

We prove this claim by contradiction. Assume it is not true, then for any m € N, there exists the
corresponding (a,y,, by Pms Em) such that (apm, b)) € Rug x R, with a2, + b2, = 1, p,, € [—1,1],
and &, € L2(Qoo), [[€mlg < 1/V/6, which satisfy

1 1
P(ampm lelly + amG + b)Y + am/1 — p2.&m < _m> < o (103)

We can always assume that (a,,, by, pm) — (a, b, p) and &, — & weakly in £2(Qoo) when m —
oo. Otherwise, such a convergent subsequence always exists according to Heine—Borel Theorem

and Banach—Alaoglu Theorem. Therefore, @, prm, || pt|ly + amG + b Y + amy/1 — p2,&n weakly

converges to ap ||p|, + aG 4 bY + ay/1 — p?¢ in £?(Qw). For any nonnegative Z € £%(Quo),
one has

E {(ap el + aG + bY + a/T — p2§)Z]
= n}gnooE [(ampm lelly + amG + b0 Y + am/1 — pfnfm)Z} .
Denote Up, := @ pm || 1t]lo+0m G40 Y +am /1 — p2,&m, then we obtain the following estimate:
E[UnZ] = E [Unly, > 1/mZ] +E [Unly, < 1/mZ]
1/2

>~ Lz - ©U2)" (B12°10, <1))

where the last line follows from Cauchy—Schwarz inequality. By definition of U,,,, we know that
E[UZ,] is uniformly bounded for any m € N. Further, since Z € £?(Q) and P(U,, < —1/m) <

m

1/m — 0as m — oo by Eq. (103), we know that E[Z?1y;, <_1/,,,] — 0. It finally follows that

E [(ap Ity + aG + bY + ay/T — p2g)z] = lim E[U,,Z] > 0.
Since this is true for any nonnegative Z € £?(Q4), we know that

ap ||p|ly + aG + DY + a\/1 — p2£ >0, almost surely,
or equivalently, there exists (p, R, Bp) € [-1,1]xRsoxRand ¢ € £2(Qq), E[¢?] < 1/6 satisfying

Rp||plly + RG + BoY + R\/1 — p2£ > 0, almost surely.
It implies the constraint of the variational problem for the separable regime (SVM) Eq. (31), i.e.,

pliplly + G+ ByY + /1 — p2£ > k holds for some £ > 0 (with change of variable 3 := 8o/ R).
)

According to Theorem D. 1[b), we obtain * > 0, or equivalently § < 6*(0), which contradicts the
non-separable regime ¢ > 0*(0). Our claim Eq. (102) is thus proved.

Now for any (p, R, B0, &) such that R > 0, denote

V(p. R, s €) i= Jﬁ(ﬁ lally R+ RG + BoY + Ry/T— 176).
We know that P(V (p, R, B0, ) < —e) > ¢ by Eq. (T02). Therefore,

(o Ially R+ RG + BoY + R/T= %)
(VB + BV (p R.50.0))]

> E (VR + B V(0. B, Bo. &) v oy <]
> 64(76\/32—%),

which diverges to infinity as R? + 32 — oo. This completes the proof. O

E
E
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A direct consequence of Theorem is that M* = M*(0..) for ©, large enough. The following
result shows that A/* in Eq. (I01)) has a unique minimizer.

Lemma F.11. Consider the variational problem M* defined in Eq. (101).
(a) M* has a unique minimizer (p*, R*, 35, £*), which must satisfy
)\*
&= ———— 0 (prox,u,(p* ]| R* + R*G + B5Y)),
R*m ( A @( || ||2 0 ))
where \* is the unique solution such that E[¢*?] = 1/6. As a consequence, we have

M* =E [{(proxy.,(p* ||l R* + R*G + B3Y))] .

(b) (p*, R*, 5§, \*) is also the unique solution to the system of equations

Rp ,
-~ =E4 R+ RG + 50Y)) |,
20 (|l [ (prox/\e(pH,u,HQ Bo ))]
R
Y E [/ (proxy(p |ully R+ RG + oY) G] (104)
0=E[¢'(proxy(p llmll, R + RG + BoY)) YT,
R2 1— 2
(}\25,0 ) =E {(6/(”0)()\@(/7||N||2R+RG+50Y)>>2} )

where (p*, R*, 85, \*) € (0,1) x Ry x R x Rso.

(c) With change of variables A := Rp, B := R+\/1 — p2, the original variational problem
Eq. (IOT)) can be reduced to the following minimax problem

* . By B
M - Azn&%lzols/li% {_25 + ]E |:ee(A ”HHZ + AGI + BG2 + ﬁoya I/):| }7
BoER

where (Y,G1,G2) ~ Py x N(0,1) x N(0, 1), and the objective function is convex-concave.

Proof. We first show the optimization problem Eq. (101)) has a unique minimizer. Since its original
formulation is non-convex, we make the following change of variables:

A = Rp, B := R+\/1— p?, ¢p = BE. (105)

Then, the optimization problem is recast as

B
min E [E(A llells + AG1 + BGo + BoY +£B)] , subjectto ||£B||Q < = (106)

A,B>0,B0€R NI
EBEL%(Quo)

which is convex, where (Y, G1,G2) ~ P, x N(0,1) x N(0,1) (recall that AG, + BG> 4 RQG).
Now we show that the above optimization problem has a unique minimizer. Note that Theorem [F.10]
also implies that any minimizer of this optimization problem is finite. Therefore, a similar argument
as in the proof of Theorem shows that Eq. (TO6) has a unique minimizer. Since the mapping
(p, R, &) — (A, B,Ep) is one-to-one, this also proves the original optimization problem Eq. (101)
has a unique minimizer.

As a consequence, the unique minimizer is determined by the KKT and Slater’s conditions for
variational problems (Zalinescu, 2002, Theorem 2.9.2). (A, B, 5o, &p) is the minimizer of Eq. (106)
if and only if, for some scalar vp (Lagrange multiplier), the followings hold:

Allplly + AGy + BGy + oY + & = U,
E@)(lnll, + Gl =0,

E[¢(U)Gs] —vp s =0,

E[¢(U)Y] =0,

¢(U) +vpép =0,

SE[¢] < B*, vp >0, vp(sE[ER]— B*) =0.

(107)

69



Published as a conference paper at ICLR 2026

Using a similar argument as in the proof of Theorem[F.9(a)] we can also show that
0<wvp<oo, £&p>0 (as), E[¢3] =B/,

which implies B > 0. Plugging this into Eq. (I07) solves two conditions

2 B?
E[(¢(U))7] = V?ST, E[/'(U)Y] = 0. (108)
By Stein’s identity, we also have relation
E['(U)Gi] = AE["(U)],  E[('(U)G2] = BE[("(U)].

Combine the above with Eq. (107), we obtain

A A B
E / = — _— E / = - E ! = rs
(W) =g, WG =w,  EE@)G] =y,
which is equivalent to (recall that AGy + BG4 4 RG)
A R
E[¢'(U)] = —vg———, E[¢/(U)G] =vp~—. (109)
CW) = vogpr  EIWO)E =]

The above implies A > 0 since ¢’ < 0 by Theorem .1} Since both A, B > 0, by Eq. (T03)) we have
p € (—1,1)\ {0} and R > 0. Moreover, notice that for any p > 0,

E [6(=pully R+ RG + BoY + RVT= p%)| > E [0(p lull, R+ RG + foY + Ry/1 = p%¢)] .

Therefore, we must have p € (0,1). Then we prove (p*, R*, 83, A*) € (0,1) x Rsg X R x Ry.
Lastly, by combining Eq. (108) and (T09) with change of variable A := 1/vp, and recalling Eq. (100)
in the proof of Theorem |[F.9] we obtain the KKT conditions Eq. expressed in (p, R, Bo, A).
Then we complete the proof of part[(b)] Finally, part[(c)|directly follows from Theorem [F.9] O

We are now in position to establish the convergence of parameters.

Proof of Lemma[F.7] Consider any ¢ > 0 and Cg, Cj, € (0,00), let
QZ(E) = {(pv R, BO) € [_1’ 1] X [O’CR] X [_Cﬂmcﬁo] : H(p’ R, BO) - (P*;R*7ﬁg)”2 > 5}

and let © (<) defined as Eq. . By Theorem|F.2|and [F.11} we can choose some C'r, Cg, > 0 and
compact convex set =,, C R" Targe enough, such that asn,d — oo,

M, = M,(©5(0),E,) (w.h.p.), M* = M*(©%(0)).
Then according to Theorem [F.6] we have global convergence
M, & M~
However, for any € > 0 and ¢ > 0, by Theorem@we have
Mn(©5(),R") = M,,(©g(¢),Eu) (whp.), P (Mn(BZ;,(s), Bu) < M (O%(e)) — C) — 0.

This implies
p-liminf M, (®5(e), R") > M* (O (¢c)) > M*,

n—r oo

where the strict inequality comes from the uniqueness of minimizer (p*, R*, 85, &*), established
in Theorem Since ¢ > 0 can be arbitrarily small, this proves (p,, 8,12, Bo.n) —

~

(p*, R*, B%). Moreover, we know that R* > 0 by Theorem So B,, # 0 and therefore
Pn is well-defined with high probability. This concludes the proof of Theorem [F.7] O
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F.1.6 ELD CONVERGENCE: PROOF OF LEMMA [E.§]

Proof of Lemma[F.8] We first establish the convergence of logit margins. Recall that

n

~ 1
Ln = n 25%((%‘,@4#30)’
L. =Law (U*):=Law (p* |pull, R* + R*G + B;Y + R*\/1 — p*2¢*)
= Law (proxy.o(p* [|plly R* + R*G + B;Y)).
For any £ > 0 small enough, we have defined the -W5 open ball by

Bw,(e) = {u e R": W, (71L iéui,ﬁ*) < 5} .
For Cg,Cj, € (0,00), let ©, = [-1,1] x [0, CR] x [-Cj,, Cj,] and let O g be defined as Eq. O1).
When Cg, Cg, > 0 and compact set =, C R™ are large enough, by Theorem@we have
M = My (R, Bfy, (€)) = Ma(©p,8u \ Bws (€)) (whp),
ME® = M (O, Biy, (2)) = M{P(©c, Eu \ B (€)-
Combining these with Theorem [F3]and [F:4] obtains that for any ¢ > 0,
lim P (M;—; < ME® g) —0. (110)

n—oo

In order to show Wg(/jn, L) 2,0, our goal is to show that

lim P (1\75 > Mn) =1

n—oo
Then according to Eq. (TT0) and Theorem[F7] it suffices to show that
p-lim inf M5®) > p-lim M,, = M*. (111)
n—oo n—oo
By Eq. (89) and (90), recall that
— 1 &
M:®) = min min -y L(uy),

(0 R.B0) €@ uENS, (p. R 50)\Buws () 1 4

where we temporarily define

1
N (p, R, Bo) := {u eR"™: %HP |ull, R1, + Rg + Boy —ul|, <

R+\/1— p?
V6 '
Now we split M:® into two parts by

n

i=1

1 n
oomin Sy () ¢
(psR,B0)EO®NBy x(n) T pr
ueN? (p.R.50)\Bw, (<)

1

min —
(p;R,80)E®\Bg o+ (1) T
ueN?, (p, R,B0)\Bw, ()

M§(3) = min {/, IT} := min

where 7 > 0 and
BQ,C* (77) = {<p7 R7 60) € RB : H(p7 R7 60) - (p*aR*7B(§)”2 < TI}
is a n-L? open ball around the global minimizer (p*, R*, 83).

For the first term, with ®, large enough such that (p*, R*, 5}) € ©., by Theorem we have

1 n
I> min min = — E (u;
(P R,Bo)EO:\Bz o (n) ueNS, (p,R.Bo) T T ()
= min E [( R+ RG+ B)Y +R 1_2}
g BN, -y [0 1412 BoY + R/ = %)

£eL(Qn),NIEN3, <1/6
= M7(13)(®c \ B2, (77)) RS M, (ec \ B2,c (77)) > M*(©.) = M",

71



Published as a conference paper at ICLR 2026

where the strict inequality follows from the uniqueness of (p*, R*,3) according to Theo-

rem|[F. 11j(a)]
For the second term, we can take 7 > 0 small enough, such that (p, R, 5o) € Bs .- (1) implies

Ws (Law (U ns,)  £-)
9

=Ws (Law (U;,R,ﬁo) ,Law (U;*,R*,ﬁg)) < 3 Y (p,R,Bo) € O, N Bgcx(n),

where Up Rpo = P lpelly R + RG + ﬁoY + R\/1—p265_(p, R, Bo), and &, (p, R, Bo) is the
unique minimizer of Zg(€) defined in Eq. (95), with an express10n given by Eq. l%) The existence

of such ) > 0 is guaranteed by continuity of W2 distance and (p, R, B0) = U 5 by Theorem-
Then u ¢ By, (¢) implies (by triangle inequality)

1 & . €
W2(n Zaui?LaW (Up,R,BO)> > 57 V(p, R7 50) € 90 N B2,c* (77)

i=1
Thus we have
1 n
I = min — U(u;) > min Eg, [¢(U)], 112
(p,R,ﬁo)eecmBZ,c*(n)n; (ui) (0 FoBo )@ 0, [¢(U)] (112)
ueN), (p,R,fo)\Bw, () UeN?(p,R,B0)NCE (p,R,Bo)
where denote _
il o) = {U € @) U = U g, = 5} 1)

and recall Eq. (90) that
R\/l— 2
N2 (p, R, Bo) = {UGEQ Q) : |lpllelly R+ RG + BoY = Ul|y, < — 5 P } (114)

Now, denote Uy, g g, := p ||ully R + RG + FoY + Ry/1— p2£5, (p, R, Bo). According to Theo-
rem we know that [|£5, (p, R, Bo)|3, = 1/9, that is,

R+/1 —
o llslly R+ RG + BoY = Uy, .|, = LAY (115)
n f
We claim ||U > R.fo UP’ R || 0 P, 0. Otherwise, there exits a convergent sequence {Am }men

such that p-lim,, _, X # \*, where \,,, satisfies the conditions in Theorem|F.9(a)|under Q = Q,,.,
and \* satisfies the conditions in Theorem [F.9(a)|under Q = Q.. This contradicts the convergence

argmax, o %,.0,,(A, B, Bo) % arg max, - %..0.. (A, B, By) by an argmax theorem for the con-
cave process (Liese & Miescke, 2008, Theorem 7.77) according to Theorem [F.9(b)] and change of

variable v = Ry/1 — p2/\. Hence, for all n large enough, we have

* -~ e
105,780 = Up.rosolg, < 3
Combining this with Eq. (TT3)—(TT3) together, by triangle inequality, we obtain
N2 (p, R, Bo) N C;(p, R, o) € N<(p, R, fo) (116)

where

N2<(p, R, Bo) == {U € L2(Qn) : [[pllully R+ RG + BoY = U], <

R\/ 1—p2
—€0.
Rz
Recall that Cr = max(, g g,)co. 1. Denote 6. > § as a constant such that
1 1 €

= - —. 117
. Vo Cr )
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Then following Eq. (T12), we have
II'’> min min Eg, [¢(U)]
(p,R,B0)E® UEN] (p,R,B0)NCE (p, R, Bo)

min _min  Eg, [{(U)]
(P, R,B0)EO Ue NS (p,R,B0)

Q
2

Eg, [g(p |y B+ RG + BoY + Ry/1— p2g)}

= min min
(9., 50)€®. £€£2(Qn) g, < 5~ iy

(ii)

> min min En[é R+ RG + oY + Ry/1 — p? }
(5 RuBo)€@. £L2(Qu) JIEI2, <1/52 O (0l P r%)

P . .

= min min E[( R+ RG+ ByY + R/1 — p? }
(P, R,B0)EOC £€L2(Qov ), lI€NIR, <1/6L (PHNHQ o r 5)

(iif)

> min min E[e R+ RG + BoY + R\/1— p2 }
(P, R,0) €O, £€L2(Qo0 ), [I€]IZ__<1/6 (PHNHz Bo P f)

=M"(®,) =M,

where (i) follows from Eq. (T16), (ii) follows from Eq. (IT7) and the fact that

v(pa R7 BO) S 907

1 € 1
_ < ,
Vi RJ1—p2 ~ /oL
the convergence follows from Theorem and (iii) follows from the uniqueness of (p*, R*, 55)
and KKT conditions ||£* Héoo =1/6in Theorem

Finally, combining everthing together, we have

p-lim inf Mi(3) > min {p—lim inf I, p-lim inf H} > M*.

n—oo n—oo n—oo

This shows Eq. (TTI)), and hence completes the proof. O

Using an argument similar to the one at the end of the proof of Theorem [E.7] we can show the
convergence of empirical logit distribution W (D, ) — 0 from Wo(L,, £.) = 0 given by The-

orem[E8]

F.1.7 COMPLETING THE PROOF OF LEMMA [D.3|

Proof of Lemma([D.3] Consider the ERM problem Eq. with arbitrary 7 > 0. Recall that y; =
yi/s(y;) where s : {£1} — {1} U {7} is defined as per Eq. (29). M,, is redefined as Eq.

n

M, := min EZE(@((%,,@) +BO))-

BER, BoER N ]

Under this modification, M, (©g, E,) can be redefined and expressed as

1 — U 1 —

M Eu) = i - - i (Yi((Zi, — Ui

n(©p,Eu) (ﬂ%g@ﬁvﬂgg{n§'_1:€<s(yi))+n.E_lv(y(<a: B) + bo) u)}
uce=E, = =

n
1=

. 1 ’U:Z‘ 1 T 1 T 1 T 1 T
- =3 VT NTZB 4~ 2 .
(ﬁ,g)l)lreleﬁ vakn {n - (s(yﬁ) * n (. 8) + n s+ nﬁov ym—pv e

uceE,
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Consequently, quantities bek), k =1,2,3 and M* used in the proof can be similarly redefined as

1< [ ) X
M (©p,8y) = i =y = —v'1 - hT
» (G20 (ngﬂl)ueleﬁ vern | n Z s(ys) + ny {1, B) + " [vl,h' B

ucE, i=1
1 1 1
+=Blag"v+ =Bov'y — vTu},
n n n
M2 (O, By) = i in  Eq [0(U/s(Y
2 (O Bu)i=  wmin | win, Bo, [(U/sM)]

(O 5)— m ~
MP(©:2u):= min  min Eo, [((U/s(1)],

M(?’)(Qc) = min min_ Eq, [K(U/S(Y))} )

(p,R,0)€E@® UENS
£<p||,,b|2}z+ RG + BoY + Ry/1— p2§>]
s(Y) ’

= min Eq
(p,R,80)€EO,
§EL?(Qn),lI€llg, <1/VE

n

M*(®,) = min E
(p,R,B0)EBO,
£€L7(Qoo),lIEllg,, <1/VE

M*:= M*(]-1,1] x R»¢ x R),

g(p lpslly B+ RG + BoY + Ry/1— p?&)}

s(Y)

where N,,, N2 are still defined as Eq. , (90), and we still apply the change of variable

U=pl|plly R+ RG + BoY + R\/1 — p2¢.

One can use exactly similar arguments to conclude Theorem and Theorem [F.6] with defi-
nitions above. For Theorem [F.9] we can also get similar results, but the KKT condition in Eq. (98)
now becomes

U+ M(U/s(Y)) = plully R+ RG + oY,

which implies

pllplls R+ RG + BY A
- : 11
g = (T ) e
as a substitute of Eq. (I00), and
A pllplls R+ RG + BY A
*(p, R, = - v ( rox < 2 ; )
SQ(/) /BO) Rm prox, S(Y) S(Y)
as a substitute of Eq. (96).
[@); According to the definition above, the KKT conditions Theorem [F.1T| will become
Rp [
— =E U)l, (119)
I Gl
R 17
= =E[& 0], (120)
0=F ~’Y(U)Y} , (121)
R*(1—p?) [ 2
FUZ7) s [@w)?].

where

b (U) = séf)” (sg/)) - s&)” ("”’Xf <M|2R;£G+BOY; sg’))) ’
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and U follows the relation Eq. (TT8). By Stein’s identity, Eq. (I20) can be expressed as

% =k [Z/Y(U)G] =E _s(;)fﬁ <s([}]/)) ' d(UéSG(Y))}

_E 1 o ( U ) . 1 R
W) (Y )
s(Y) s(Y)
which gives the third KKT condition in[(@)] Besides, Eq. (IT9) and[T21]can be rewritten as

_ B o[ (e, (21 B RG o A
AS (|l T T T

+ (1 —=m)E [¢' (prox, (p ||ully R+ RG — Bo; N))]
0— 1K Egl (pmx[ (p Iully R+ RG + fo. A))}

T T

= (L =mE[¢ (prox, (p|ully R + RG — Bo: N))] ,
which solves the first two KKT conditions in[(a)] This concludes the proof of part[(a)]

[(b)f Theorem[F7]still remains valid under arbitrary 7 > 0, which concludes the proof.

Similar to the proof of Theorem|D.1fe)] we can show that for any test point (Znew, Ynew)s

Ny P ) d * % * *

f(mnew) = <mnewa5n> + BO,n — ynewR P HIU’HQ +R G + 507
where (y"°V,G) ~ P, x N(0,1). Therefore, by bounded convergence theorem, the errors have
limits

n—roo R*

i B = P (Rl + R°G+ 55 < 0) = 0 (="l = ).

lim Err_, =P(-R*p" ||pll, + R*"G+ 55 >0) = (—p eally + 22 ).

n—oo R*

This concludes the proof of part[(c)}

[(d)} Based on Eq. (I18), we redefine L, in Section[F.1.6]by
. pllplly "+ R*G + 55Y A
L, :=Law (U*) = Law <s(Y) prox, ( 2 S Ll S
Then Theorem [F:§and the corresponding convergence of ELD still hold. The convergence of TLD
directly comes from the proof of part[(c)] This concludes the proof of part[(d)]

Finally, we complete the proof of Theorem[D.3] O

G MARGIN REBALANCING IN PROPORTIONAL REGIME: PROOFS FOR

SECTION[D.2.T]
G.1 PROOFS OF PROPOSITIONS [D.4] AND
We show the monotonicity of Err’, for 7 = 1 in this subsection by first analyzing the monotonicity

of asymptotic parameters p*, 55, which are the solution to the system of equations in Theorem @
We restate these equations here.

P p 2
7r6-g<>—|— 1—7r)6~g(>:1—p, (122a)
o0 ) T 50— m) [l 0
_ p
—Bo+ KT = +o7t <> ) (122b)
0 p”p’”Q gl 271_”“”25
- p
Bo+r=pl|p +gl<>. (122¢)
" leelle +91"\ 53—y a6

The properties of functions g;, g2, g therein are summarized below.
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Lemma G.1. Recall gi(z) =E[(G +2)4], g2(z) =E [(G+ )2 ], and g = g2 0 g7 .
(a) g1, g2 are increasing maps from R to R, and g : R~o — R is increasing with g(0") = 0.
(b) g1, g2 have explicit expressions
gi(z) = 20(@) + ¢(x),  ga2(v) = (2 + 1)0(2) + 2¢().
(c) g1(x) ~ x, go(x) ~ 22, and g(x) ~ 22, as v — +oo.

The following preliminary result gives the monotonicity of p*. By Theorem D.1{b)| p* € (0,1) is
invariant with respect to 7. Hence p* can be viewed as a function of model parameters (7, || gt|, , 9)

determined by Eq. (1223).
Lemma G.2 (Monotonicity of p*). p* is an increasing function of 7 € (0, 3),

|y and 9.

Proof. Recall that p* € (0, 1) as stated in Theorem D. Ij(b)

(a) 1 in |||,z This point is obvious from Eq. (122a) and Lemma|G.1{a).

(b) 1 in §: Notice that Theorem|G.6|implies z — x - g(1/z) is decreasing in 2. As a consequence,
if we fix p and increase & on the L.H.S. of Eq. (1224), then the L.H.S. will decrease, and p* have to
increase to match the R.H.S.. Therefore, p* is an increasing function of 4.

(¢) Tin 7 € (0, 3): We prove this using a similar strategy. Define

-1 P -1 P
Tl =x1\m) (=g — = |, To = x2(m) =g _ |,
am=a () e = o ()
then we know that the L.H.S. of Eq. (122a) (for fixed § and ||||,) is proportional to
. <92(x1(7f)) n 92(352(”))) ’ (123)

gi(z1(m)  gi(w2(m))
with the only constraint on x; and x5 being

1 1 2 1)
+ _ o= A9
gi(z1(m))  g1(wa(m)) P
Taking derivative with respect to 7, it follows that
/ / 2 /
79%(1'1) . xll o) — g;(l’g) . .Tl2(’/T) — O, — Ill'/l(ﬂ') _ 79}(‘%1) . gé(xQ) . ‘T/Q(’/T),
gi(x1) gi(w2) g1(z1)  gi(z2)

thus leading to

d (92($1(W))+92(9C2(7T)))

dr \gi(x1(m)) * g1(wa(m))
_ ga(@)gi(@1) —ga(21)gi(21) () + 95(w2)g1(x2) — ga(z2)91(w2) ()
a 9 (x1) ! gt (22) ?
AC)) () - <9§($1)91($1) —g2(x1)gi(z1)  ga(w2)g1(22) —92($2)9'1(x2))
A C) g1(z1 91(z2)
= — S i) () ~ ).

where , ,
h(z) = gz(x)gl(ff)/ gz(x)gl(x)7 VreR
g1(z)
is a monotone increasing function according to the proof of Theorem|G.6] Therefore, h(z1) > h(x2)
(since m < 1/2 = 1 > x2). By definitions of x5 and g;, we know that z5(7) > 0 and
gi(z2) > 0. As a consequence,

d <92($1(7T)) n 92($2(7T))> <o
dr \g1(z1(7)) ~ gi(w2(m))

Similar to points (a) and (b), by combining Eq. (122a)) and (T23)), we conclude that p* is an increasing
function of 7 € (0, %) This completes the proof. O
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As long as 7 # 0, the linear system Eq. (122b) and for (8o, 7) is non-singular, so one can
solve for By and k:

_ ! -1(_ P ) _ -1 P B

=iz (o (i)~ (sriges) 0~ o). a2
=1ax s ) T +2 : 124b)
= (o (=5 alo) * 0 \arfal,s) 20 Ik (

The following lemma establishes the monotonicity of 85 when 7 = 1.

Lemma G.3 (Monotonicity of 33). B is an increasing function of w € (0, 1), ||t
T = 1 (without margin rebalancing). Moreover, 35 < 0.

o and 6, when

Proof. When 7 = 1, the above equations reduce to

A ) ()
Ao 2(91 20— mlulys) % \anlul6)) (12)
=5 (" GG s) o (arppngs) 20w
—- S N R S (P .
g 2(91 20— Tuls) T \arfal,s) T2 Il

Clearly 3 < 0, since g; ! is an increasing function and 7 < 3.

(a) Tin || p||,: Fixing 7 and 0, taking derivative with respect to || ||, in Eq. (125)), we have

m:;(mml), (2(1—7:;u||5) =l )'<2w||f»|26>>'d||in2 (nupn)'

Since 7 < % from Theorem we know that

1 _ p 1 p

s ) (st )~ o () <0
2i-ms ) \sa=mulye) 2w ) an g0

According to Theorem if we increase ||p]|,, then p will increase, and Eq. (122a) implies that

p/ || e], will decrease. Hence
d
( P ><0
dflplly \lleelly

Combining the above inequalities, we know that df3/d |||/, > 0.

(b) 1 in §: Similarly, according to Eq. (122a) and Theorem [G.2} for fixed 7 and || ||, we can show
that p/& will decrease if ¢ increases. By same approach as (a), we can conclude dfy/dé > 0.

(¢)tin 7 € (0, ) Lastly, we note that if 7 € (0, ) increases, then 1 — 7 will decrease and p will
increase. Accordlng to Theorem|[G.6] we know that

(1 —[)77)5 g (2(1 = 7:; 21l 5>

will increase. Since (1 — p?)/p will decrease, combining with Eq. (122a)), we can show that

%o (zns)
g (—Lr
P 27 || el 0

will decrease. By Theorem again, we conclude that p/(1 — 7) will increase and p/7 will
decrease, which implies that 3y Eq. (125)) will increase. This completes the proof. O

The monotonicity of minority error is a direct consequence of the two lemmas above.

Proof of Proposition When 7 = 1, according to Theorem [G.2] and [G.3] both p* and By are
increasing in 7 € (0, 5), [|||5, and 5 We complete the proof by Err’, = & (—p* |||, — 5). O
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Now we fix model parameters m € (0, 1), 6, ||p||,, and consider test errors as functions of 7. In
order to prove Theorem we need the following result on the monotonicity of p*, 55 on .

Lemma G.4 (Dependence of 7). Fixm € (0,3), ||

o and §, then we have

(a) piy does not depend on .
(b) B is an increasing function of T € (0, 00).
(c) k* is a decreasing function of T € (0, 00).

As a consequence, Err’, is decreasing in T € (1, 00), and Exr” is increasing in T € (1, 00).

Proof. @ is already proved in Theorem [D For. [(©)] the conclusion is followed by Eq. (124b),
since £* o< (14 7)1 For | note that 50 + #* is a fixed value according to Eq. (122c). Then by
O

using|(c), we conclude is increasing in 7. This concludes the proof.
o

These are consistent with the non-asymptotic monotonicity between (p, 3y, %) and 7 in Theo-
rem [C.1} Then the monotonicity of test errors is a direct consequence of Theorem [G.4]

Proof of Proposition[D.5] According to Theorem [G.4(a}(b)] we know that —p* ||u|, + B is in-
O

creasing in 7 and —p* |||, — [ is decreasing in 7. This completes the proof.

G.2 PROOFS OF PROPOSITIONS [D.6]AND[D.7]

Proof of Proposition|D.6] Recall that

1
Brr = 5 (0 (=" laal, = B5) + ® (=" lall, + 52) )

Notice that p* does not depend on 7, and p* |||, > 0. We first show that 7 = 7°P* if and only if
By = 0. Then is suffices to show that for any fixed ¢ > 0, function

flz) ==®(—a+2)+ P(—a—x), reR

has unique minimizer z = 0. This is true by observing f'(z) = ¢(—a + z) — ¢(—a — x) < 0 for
all z < 0,and f’(z) > 0 for all z > 0. Hence we conclude 3§ = 0 and Err’, = Err® = Erry.

Setting 8y = 0 in Eq. (1244) and solving for 7, we get Eq. (38). This completes the proof. O

As stated in Remark [D.3| when |||, d are fixed and 7 is small, the numerator of 7°P* scales as
\/1/m. We formally prove this in the following lemma.

Lemma G.5. When m = o(1), we have

g7t (p) P
o ull, 6 Vo

Proof. By Theorem p* is monotone increasing in = € (0, 3). It can be easily shown that
p* — 0asm — 0. Otherwise, suppose p* — p > 0 as 7 — 0, then by Theorem|G. I{c)|

p* P\ 1
ﬁ5-g()~ﬂ'5~<> X — — 00,
2 ||l 6 2 ||l 6 Q

while the other terms in Eq. (1224) are all finite, which is a contradiction. Substitute p* — 0 into

Eq. (122a),

N
g ~ — 0 ~Y .
2r ||l 6/ 7o 27 ||plly 6 T
The proof is complete by using Theorem [G.1jc)| again. O
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Remark G.1. We notice that when 7 is very small or || p||,, 0 are very large, then p* is close to 0
and the denominator of T°P' can be zero or negative, leading T°P* infinity of negative. According to
Fig. this happens when the optimal decision boundary (the red solid line) falls on or under the
margin of majority class (the black dashed line below with negative support vectors). In such cases,
we have T < —1 and the training error for majority class is nonzero.

Actually, our theory remains valid when T < —1. When 7 < —1, one can modify the objective of
Eq. to minimizing k (since k < 0 and Tk > 0), then the relation Eq. in Theorem still
holds. For the asymptotic problem, one can similarly modify the variational problem Eq. Then
one may extend Theorem [D.1| to negative T by relating Eq. (U7) to ®T), where Eq. 1) is derived
from Eq. (122a)—(122¢)), which also admits a unique solution when T < —1.

Finally, prove the monotonicity of test errors after margin rebalancing.

Proof of Proposition[D.7} According to Theorem Err} = Err’ = Erry = ®(—p" ||pl,)-
Since p* is increasing in 7 € (0, 3), |||, and 4 by Theorem the proof is complete. O

G.3 TECHNICAL LEMMAS

Some technical results used in the proof are summarized below.

Lemma G.6. The function go(x)/g1(x) is increasing in x. This implies g(x)/x is increasing in x,
and x - g(1/x) is decreasing in x.

Proof. By direct calculation, we have
9 ()91 (z) — g2(2)g} (z) = 2 (B[(G + ) 4])* — ©(2)E[(G + 2)7].
It suffices to show that
2 (B[(G +2)4))°
D(x)
To this end, note that lim,_, o, A(z) = 0, and that

h(z) := -E[(G+2)1]>0, VzekR

B (z) = 2E[(G + z)4] (1 _ E[(GHJ)WW) _

O(x)?
Hence, one only need to show that h'(z) > 0,V € R, namely

R C
r(x) = o) E[(G+ x)4+] > 0.

Notice again that lim,_, _, 7(z) = 0, and
d(x)
r’:c:q)m(l—i-x >>O
(@) = o(a) (1+ 25

by Mill’s ratio, thus we finally conclude that () > 0 for any 2 € R. Consequently, g2(z)/¢1(2)
is increasing in x.

By change of variable y = gy (), we show that gs(x)/g1(z) = g(y)/y is increasing in y. O

Lemma G.7. The function x — x - (g7 *) (x) is monotone increasing.

Proof. Letx = g1(y), then we know that

Since y is increasing in z, it suffices to show that g, ()/g} () is increasing in y. Note that

d (gl(y)> _ 9’ — e (y) _ ¢y)ry)

dy \g1(y) 91(y)? ny)?
where the function 7(y) is defined in the proof of Theorem and we know that r(y) > 0 for all
y € R. Therefore, g1 (y)/g} (y) is increasing. This completes the proof. O
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H MARGIN REBALANCING IN HIGH IMBALANCE REGIME: PROOF OF
THEOREM [D.8]

Without loss of generality, we may consider the following case as a substitute of Eq. (§):

—a 2 c
T=d % |l = d, n=dth
Consider a linear classifier based on f (z) = (z, B)+ Bo with || B]|, = 1. Denote projection matrices

1
P, = 2uu , Pri=I— ——upt,
el [

where P, is the orthogonal projection onto span{ s} and Pi is the orthogonal projection onto the
orthogonal complement of span{u}. Then we define auxiliary parameters

L 1
P.8 _ PuB <1
<ﬁ, lleell > 6:=1 IPuBl: 1— 2 ; (126)
2 r, if |p| _ 17

where pt | € §771 is some deterministic vector such that g1, 1 p. Therefore, we have the following
decomposition:

B=P.,B+P,8= p || +4/1 — p26.
2

Note that ||@||, = 1, @ L p, and there exists a one-to-one correspondencefj] between 3 and (p, 6).
Therefore, the logit margin of f(a) for the i-th data point (x;, y;) can be reparametrized as

ki = Ki(B, Bo) = ?ji(<$i7ﬂ> + o)
- \/1—79> + ﬂo)

=5 (P lelly + yiBo + pyigi + /1 — 02yi<zi,9>) =: ki(p, 0, Bo), (127)

= Si¥i (<%H + Ziy p ||
2

where z; ~ subG, (0,1,; K) according to Deﬁnition K > 0 is some absolute constant, and

“Lify; =41
Si S{T A gi = <Zi7u>7
17 1fy7 = 717 ||l‘l’||2

where g == (g1,...,9n)" ~ subGy (0,1,; K) by Theorem [J.2(b)l Therefore, the margin (in
Eq. (20)) of f(z) can be viewed as function (3, 8y) + & or (p,0,5y) — r based on different

parametrization:
=r(B,50) = 212[17111] xi(B, Bo)
= r(p, 0, Bo) = min ki(p, 0, Bo).

As a consequence, the max-margin optimization problem Eq. (I3) or (7) can be expressed as

(128)

maximize k(p, 0
.30 CR,OCRA (py 750)7

subjectto p € [—1,1], (129)
6l,=1, 6 L p,
where
K(p, 8, B80) = rg[lg] 5 (p leelly + wiBo + pyigs + V1 — p?yi(zi, 0>) -

“In fact, this one-to-one mapping B — (p, 8) is restricted to §~! — ©, 9, where the range is ©,,¢ :=
{(p,0) : p € (—-1,1),]160|l, = 1,0 L u} U{(p,0) : p = £1,0 = p,}. However, for simplicity, we
can expand the parameter space of (p, @) into {(p,0) : p € [-1,1],]|0||, = 1,0 L u}. This is because if
p = *£1, we have Pt,@ =0, and \/1 — p20 = 0 for any 8. We will see that  always appears in the form of
v/ 1 — p?8 (for example, in the decomposition of (3, and the expression of x; and x). That also explains why
we can take g4, arbitrarily in Eq. (126).
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Recall that (3, Bo) is the max-margin solution to Eq. , and the maximum margin is given by

7 = r(B,Bo) = Dél[lfﬁ k:(B, Bo)- (130)
Similarly, we can also reparametrize B as in Eq. (126):
P.3 PLj3
SO P = wb__ Pub ., if|p] <1,
pi= (B, T/ 0:= 1 |PLB|2 1-p2 (131
M, if 7] = 1.

Then, (7,8, Bo) is the optimal solution to Eq. (129)f'’l Combining Eq. (128) and (T30), the maximum
margin can be rewritten as

/l%: H(Z)\7§7§0) = {2[17?1 Hi(ﬁa/é730)a (132)
which is also the optimal objective value of Eq. (I29). Finally, we define a few quantities:
g ot 5 . ~._9+—9-
Gy =2 o D DL T b s
i€l i€l
_ 1 _ 1 . ZL-Z_
Zy = — Zi zZ_ = — Zi z =
+ ) n ) 2
+ €Ty T iET_

The proof structure of Theorem [D.8]is as follows:

1. In Section |[H.1| we provide a (stochastic) tight upper bound for the maximum margin %, and a
constructed solution (p, 8, By) which approximates (p, 8, 8y) well.

2. In Section we derive the asymptotic orders of (p, 0, B\o) by using (p, 0, 50).

3. In Section[H.3] we use these asymptotics to analyze test errors and conclude Theorem [D.§]

H.1 A TIGHT UPPER BOUND ON MAXIMUM MARGIN: PROOF OF LEMMA [H 1

The following Lemma provides a data-dependent upper bound on the margin «(3, 8y) which holds
for all linear classifiers with ||3||, = 1. The bound is tight in sense that it can be (almost) achieved
by a constructed solution. Therefore, such tightness ensures the optimal margin < should have the
same asymptotics given by its upper bound, which also deduces the data is linearly separable with

probability tending to one (as d — o). Notably, Theorem implies that 7 has no effect on 3,
and % o< (1 + 7)~! in a fixed dataset. Hence, T simply scales the magnitude of %, and it suffices to
consider 7 = 1 in the following lemma.

Lemma H.1. Fix 7 = 1. Denote
7=/l +8)2 + [PAZI3. (133)
(a) (Upper bound) k(p, 8, 30) < R, forany p € [~1,1], 8 € §9=1, 8 L u, By € R. Moreover,

/ 1
K= (1+0]p>(1)) db+ Zda_c,

(b) (Tightness) k(p, 5, BO) >FK— 6]137(1), where

as d — oo.

.- el + 5 5. FPuz
2 132 . ||PJ'E||27
V laly +3)2 + P23 g (134)
~ gL +7_ Zyt+zZ_
50::—/)'4_7— 1—ﬁ2'<+270>

is a feasible solution to Eq. (129).

15 According to Eq. 1) and Theorem |C.1| for linearly separable data, (p, 30) is the unique solution to
Eq. (129). If |p|] < 1, then @ is also the unique solution to Eq. (129). Otherwise, if p = +1, then
1 — p?yi(z:,0) = 0 and thus any feasible 0 could solve Eq. |D
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(c) (Asymptotics of k) As a consequence, the data is linearly separable with high probability, and
the maximum margin satisfies & — Op(1l) <K < R.

Proof. We reparametrize x(3, 8o) = £(p, 8, Bo) by using Eq. (126) and (127). Then, the upper
bound is established by calculating the average logit margin for each class. Let

1
E+(p>0760) = ni Z Hi(P,B,BO) = pHN‘HQ +60 +p§+ + 1- p2<2+70>7

i (135)
F-(p,0,50) == — Z Ki(p,0,80) = pllplly — Bo — pg_ — /1 - p2(Z_,06).
T iET_
Clearly, x(p, 8, Bo) < F+(p, 0, Bo) and k(p, 8, By) < F_(p, O, Bo). By averaging these two bounds,
7i(p, 0, 50) +F_(p,0,
k(0,0 Bo) < +(p: 6, Bo) (p, 0, Bo)

2
=plluly+p- 2g+m-<z+;z_,0>
pllull, +9)+ V1= 2 (2.6)
<p (leelly +9) + V1 = p?|[P 2] |2 (136)
< Sl + 97 + [PAzIE = =

which leads to % defined in Eq. (I33). Here, (i) is based on the fact that

~ Pﬁz N
argmax (z,0) = —— =, max  (z,0) = [P,z (137)
ocpa. |012=1 [Pzl ocra. 102=1
ER% (u,0)=0 (11,8)=0

and recall that the optimal @ equals 6 defined in Eq. (134). Moreover, (ii) is a consequence of
Cauchy—Schwarz inequality (A € R, B > 0)

P A
A++/1— 2Bl = — /A2 1 B2
perr[lgfl]{p + p } pé?affl]<< /71_p2>a<3>> VA + B2,

A (138)
argmax i pA++/1—p?B} = ——,
pe[—1,1] { } VA2 + B?

and also note that the optimal p in (ii) equals p defined in Eq. (134).

To study the asymptotics of &, recall that m = ny /n = o(1),n_ =n —n4 =n(1 — o(1)). Then

1 1 1 1 1
R I — | 1)).
ny + n_ mn + n(1 —o(1)) 7Tn( +ol ))
Denote
1 1 1

Theorem [J.2(b)|implies Z/ay ~ subGj (0,14; K). Then according to Theorem [J.3(b)]
IPLZl2 ‘ ) ( o2 |[PL2 (d—1)
Pl|—&E———1|>t) <2exp| —— 7t =2exp| —————2 |,
( ad|Py e K4 [Py3, K1
where [P, [lp = vd — 1, [P} |lop = 1, and ¢ is an absolute constant. Therefore,

(1+0(1))-vVd—1(1+0p(1)) = ;\/Z(I—FO]p(l)).
(140)

1
1= 1
1Py 2l = aall Py llr (1+0p (1)) = 5o
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In addition, by Theorem[J.3(c)|

§=Os(ca) = Os (\%)

Recall that a — ¢ — 1 < 0. Finally, we have
7= /(lull, + 92 + [P£Z3

\/(||M||2 +0p(1/v/mn))” + i(1 + op(1))

_ \/(db/Q + O]P,(d(a—c—l)/Q))2 + Zda—c(l + op(1))

=+ (14 oef). (141)

This concludes the proof of part[(a)

Next we show that the upper bound % is nearly attainable, by a constructed solution (p, 5, Bo)

defined in Eq. (134). Clearly, (p, 5, BO) satisfies the constraints in Eq. (129). This candidate solution
is motivated by the optimal (p, 8) that makes (i) and (ii) equal in Eq. (136), i.e.,

= (llely+9) +v1-p*z0),
and [ that balances the magnitude of average logit margins from the two classes, i.e., we choose
fBo such that %, = %_ in Eq. (135). Substituting (5, 8, 5y) back into Eq. (127), we obtain

ki(p, 0, Bo) = p|llls + yiBo + pyigi + V1 — p?yi(z4, 0)

_ 9. +9_ T 4+Z
p(llullg+yz'giy¢+2>+ 1ﬁ2<y¢ziyi70>-

2
Therefore, the difference between each logit margin and the upper bound can be expressed as
— ~7n a ~ [ ~ ? + §_ z +z ~
E—ri(p,0,60) = p (9 + yi% - yi.‘]i) +Vv1-p? <Z + sz yizi70>

G — o 2% _ . A
_ {p<g+ g) + V1= P(Es — 2:,0), ify; = +1, (142

(i —g_) +\/1—p2(z; —2_,0), ify; =—1,

where the leading terms p ||/, (Z_,0) (fori = +1), (Z4,0) (for i = —1) are all cancelled out.
Our goal is to bound the maximum difference over all data points. Note that

?61?73]( Kf_'%l(p79 BO) = ?Gl%}f E_Hi(1576730)‘ \/{Iel%i(‘ﬁ—liz(ﬁ7fé7§0)‘
< {Iel%x{|gz 9.+ (=i —E+79>!} \/{Iel%}f{‘gi —g_|+ (= —277‘9)!} (143)

IN

{?el%flgz 74 +£n%x|<z z+,5>\} Vv {max|gi -9 +£1€1%3<]<zi z_,5>|}.

For the first term involving g;’s, recall that max;c ) [|gi(|,5, < . Therefore, as per Theorem
and Theorem [I.3(c)} g;, 7. are sub -gaussian, and

1
lnel%flgi -4 < max |gi] + |9+ = Or(\/logny) + OP(H) = Op(/log d),

(144)
1
< ; g_|= logn_ — | = 1 .
max|g; —§_| < max|g;| + [g_| = Op(y/logn )+On»< T) Op(+/log d)
For the second term involving zi’s note that
z 5 < — ) Tl '7PJ—~ )
{2%14 2+ ey ny Z [(2i — 2;,0)] < ||PLZ||2 Z,]Eaz}i| —z;,P,%)|
B (145)
—z < - - . P13y,
ZIIEI%X’ z,,B max —— Z | - z;,0 ‘ < PLal ”6 ’ ZJ7P”z>‘

&3
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So it remains to bound (z; — z;, P}, Z) uniformly. We decompose it as

=~ ~ 14 ~ M
zi—2;, P2 = (2, —2,,Z —<zi—z-7><z,>::I—H.
< »PuF) ={ 7 7l [[1ell

We will show that both I and II are sub-exponential. To bound ||/||,,, via Theorem|J.4(b), we claim

the inner product
d

I=(2i—2;,2) = (2i—2)s(Z)
k=1
is the sum of d mean-zero random variables, i.e., E[(z; — z;)x(2)x] = 0, Vk € [d], where we write
(a) as the k-th entry of vector a. To see this, we decompose Z into terms that are independent or
dependent of (z;, z;).

hd Ifyl =Y; = +1 and ¢ 7&], then

Bl - ) 07 ~E[(si—2)0 (i 3 st I )|+ o Blle - 5) 0 (s + )

=Elz; — z;] OE[ZT,.] + 1 (Elz; © z;] — E[z; ® 2;]) (z* T AL zi, z5)
n4

— 0004+~ (1-1)=0
o 2n+ o
e Ify; = y; = —1 and i # 7, similarly
_ 1 z. 1
E[(zi —2z;) © 2] = E{(zi —2;)0© (2_ Z z + 2)} + ﬁE[(zi —2j) O (z; + 25)]

k#i,j
Ry =21

=z,

= Elzi - ) OEET, 1+ 5 (Blzi0 2] ~Elz 02]) (o L 2i%)
=0.

Therefore, when d is large enough, we have

d
11y, = Kz — 25, 2)ll,,, = Z = 2j)s(2)k
k=1 Y1
< . ~
<V mas (71 -z,
(ii) ~
< VA max [(z: - 2)ell, max )il

(iii) d
<VAK - agK < | —K?,
™

where (i) results from coordinate independence and Theorem[J.4(b)] (ii) is from Theorem[J.4[d)} and
(iii) is based on Z /v, (zi — z;)/V/2 ~ subG (0,14; K). For the term II, we have

i, —\<z,-zj,“ ><~ 2 >
2 ||/~‘||2 ||:“||2 1
N T el /1y,
(ii)
< .
S ax (i zj)kllwzlglggdll( Jilly,

< K- 04K < —KQ
N
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where (i) is from Theorem [J:4[[d)] and (ii) is from Theorem [J.2[b)} Hence,

(zi — zj,P‘{z”> ™ 2
T i < j(||f||¢1 +l,,) S K.
Y1

Substituting this back into Eq. (T43), referring to Eq. (I40) and Theorem [J.4[c)} we obtain

- <Zi — Zj,PlE>
- Pz = (1 1 ARG ieds
mael(zi =21, 0)| <z (e — 25 PE)| = (L4 o (D) | =2
Jje I JET4
= Op(logn?) = Op(logd),
_ 1 . (z; — 25, PLZ)
_,0 —_— Pt =(1 1 —_—
{Iel%X| -z, >’ > ||PJ‘ZH2 Zeax} - Zj, HZ>| ( + OIF’( )) ?el%i( \/W
JET_ JET_
= Op(logn?) = Op(log d). (146)
Finally, incorporating Eq. (I44) and Eq. (T46) into Eq. (T43), we have
max |7 — (7, 0, 50)‘
i€[n]
< = _=. 0 _ 5 _= 9
< {?el%f’gz 94|+ max|(=i Z+70>!} v {Q%X\gz g-| + max|(z; z,0>|}
< {OP(«/logd) + Op(log d)} v {Op(\/log d) + Os(log d)} = Op(log d).

Therefore, the difference between the margin of classifier characterized by (p, 5, 50) and its upper
bound % is bounded by

K= H(ﬁa 5a BO) =K - Hel[ln] Ki(ﬁ767§0) = Hé?)]( K= H’i(ﬁvfé7§())‘ = O]P’(logd) = 6[?(1)

This concludes the proof of part[(b)}

According to max-margin optimization problem Eq. (I29), note that

- ’0’ Z ~7’é7~7
pel ioen 1 O o) 2 (7. 6,fo)

0csi~lolp

=)

hence the asymptotics of & is followed by (a) and (b). As d — oo, note that

~ 1 1
E>F—0p(1) = (1+ OP(l))\/db +4de \/db +qdome > d"? = oo,

which implies % diverges with high probability, i.e., limg_, o, P(k > C) = 1,V C € R. As the result,
P{linearly separable} = P(k > 0) — 1 as d — oo, deducing ||3||2 = 1 with high probability. This
concludes the proof of part[(c)] O

H.2 ASYMPTOTICS OF OPTIMAL PARAMETERS: PROOFS OF LEMMAS

Followed by tightness of the upper bound %, we show that the optimal parameters p, 8 should be
very “close” to the constructed solution p, 0 defined in Eq. (134) in some sense. On the event that

the data is linearly separable, we have showed that ﬂ and therefore both p and 6, do not depend on
7 in Theorem [C.I} Hence, it still suffices to consider 7 = 1 in our proof.

H.2.1 ASYMPTOTIC ORDER OF p: PROOF OF LEMMA

The following technical Lemma is important for deriving the asymptotics of p, which introduces a
function of p used implicitly in Eq. (I36) and (I38)) for optimization.
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Lemma H.2. Define Fs g(p) = pA++/1—p?B, p € [-1,1], with A € R, B > 0. Then
p 1
Fyplp)=A—-—F—=B Fip(p)=—

=

V1=p2

which implies F4 g is B-strongly concave, that is, for all p1, p2 € [—1,1],

1
Fap(p2) < Fap(pr) + Fiplp1)(p2 — p1) — QB(Pz - p1)*.

Moreover,
A
argmax Fy, = max Fy =\ A2+ B2,
pE[—1,1] 5(P) VA2 + B2 pE[—1,1] 5(p)

Proof. Strongly concavity is given by direct calculation and the fact that

sup FAB(P) —B.
pE[-1,1]

The optimality condition is already derived in Eq. (I38). This concludes the proof. O

In the rest of this section, the (stochastic) parameters A, B are defined as
A= lplly +g = d?(1+ op(1)), = PLZl2 = d(“_c)/2(1+0nﬂ>(1))- (147)

Then followed by Theorem[H.2] we have p = arg max,¢(_1 1) Fa,5(p) and F}y 5(p) = 0, where p
is defined in Eq. (134). The following Lemma describes the asymptotics of p with respect to p.

Lemma H.3 (Asymptotics of p and p). Suppose that a < ¢+ 1.
(a) Ifa <b+c¢ thenp=1—o0p(1), p=1—0p(1), and

32

1
1-p2 = 5d(a*b*c)/?(l +op(1)).

Moreover, we further assume:
i. Ifa> % +c then /1 —p%=/1-p2(1+ op(1)).

ii. Ifa< + ¢ then \/1 — p? O]P’d /%Y and thus \/1 — p \/d/wn—Op

(b) Ifa > b+ c then p=op(1), p=op(1), and
p = 2dbT/2(1 + op(1)).

Moreover, we further assume:
i. Ifa <2b+c, thenp=p(1+ op(1)).

ii. Ifa > 2b+ ¢, then p = Op(d=*=9/*) and thus p |||, = op(1).
Proof. According to Eq. and (I47), an explicit expression of p is given by
A lall, + e
VATEBE il + 97 + IPGZIR b+ dao—e

In order to connect p with p, recall Eq. that
K(p,0,P0) < Fap(p) < Fap(p) =F, Vpel[-1,1], 0§60 Ly, B eR.
Apply this to K = k(p, 0, Bo) and use Theorem we have

0 < Fap(p) — Fap(p) < Os(1). (149)

p= (1+op(1)). (148)
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Since Op(1)/Fa.5(p) = Op(1)/v/AZ + BZ < Op(d~/2) = 0p(1), it implies

Fars(p pA V1- 2B
1—op(l) = ap(p) D + P2 5+ /11— 21—

C Fap(p) A2+ B2 AT B2

Therefore,
pzl—O]p(l) - ﬁzl—O]p(l)
0 e p=op(l)

150
p=op(l) (150)

If a — ¢ < b, then d*/? > d(*=¢)/2 and by Eq. (148) and (T50) we have 5, p = 1 — op(1). Also,

B 1 gla=b—c)/2
V1-7p2 2

1
- - 1 1)) = =dle=t=9)/2(1 1)).
\/A2+B2 \/1+idabc( +OP( )) 2 ( +OP( ))

To derive the precise order of \/1 — p2, we define r := /1 — p? and Fig 4(r) :=rB++v1 —r2A.

Then Fa p(p) = Fp a(r) forany p € [0, 1]. We similarly define 7 := /1 — p% and 7 := /1 — p2.
On the event £ = {A > 0, > 0, > 0}, by Theorem[H.2] we have

~ 5 1
FaB(p) — Fa,B(p) = Fp,a(T) — Fp,a(r) < —514(7” — 7).

Combined with Eq. (T49), it implies

(=7 < 2(Fan() — Fas(p) < Os(d™2)

s0 [F—7] = Op(d~"/*). Now consider different scenarios. Recall that 7 = 1d(@=b=9/2(14-0p(1)).
e Ifa —c > b/2, then |7 — 7| /7 = Op(d(~20+0+20)/4) — 5(1), deduces 7 = 7(1+4 op(1)).

* Ifa—c < b/2, then we only get 7 = Op(d~?/4), and 7/d/mn = Op(d22~0=20)/4) < Op(1).

Recall that these hold on event £. Since P(£) — 1 as d — oo, these asymptotic results involving
op( - ) and Op( - ) also hold on the whole sample space 2. This concludes the proof of part

If a — ¢ > b, then d*/? < d(®=)/2 and by Eq. (148) and (T50) we have p, p = op(1). Also,

_ A d(b—a+c)/2

= = 1+ 1 :Qd(b—a+c)/2 1+ n).
VR B \/db_a+c+}1( ) (1+0x(1))

Again, by Theorem [H.2]
R 1, .
Fap(p) = Fap(p) < —5B(p —p)*.
Combined with Eq. (T49), it implies

(07 < 5 (Fas(® — Fan(@) < Opld =),
s0 |[p— p| = Op(d—(==9/%). Now consider different scenarios.
« Ifa—c < 2b, then |p — p|/p = Op(d@=20=9)/4) = 0p(1), deduces p = p(1+ op(1)).
« If a — ¢ > 2b, then we only get p = Op(d~(2=9)/4), and pllpll, = Op(d@b=ate)/4) = gp(1).
This concludes the proof of part[(b)} O

Remark H.1. In each part i. of Theorem and [(b)] we can derive the precise asymptotic of
P, which is same as p. It is difficult to do so in part ii. of|(a) and@ However, as we will show in

Theorem H and in case ii. the corresponding term (\/1 — p or p) is negligible, which won’t
affect the asymptotics of test errors.
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H.2.2 ASYMPTOTIC ORDER OF (z;,0)’S ON THE MARGIN: PROOF OF LEMMA

Next, we discuss the asymptotics of 8 and 6. In fact, it suffices to consider the magnitude of their
projection on some “important” z;, which is related to the support vectors, defined in Eq. 22). As
we mentioned, SV (3), SV_(03) only depend on 3 and (X, y), not 3y or 7. If we fix p = p, then
the dependency of SV on 3 only comes from 6. So, recalling Eq. (127),

ki(p, 0, Bo) = si (P lelly + viBo + pyigi + V1 — p?yi(zi, 9>> ;
we can rewrite Eq. in terms of 6:

SV =8V (0) := argmink;(p, 0, fo) = argmin{ pgi + /1 —p*(zi, 0)} ;
€T, €T,

(151)
SV_ =8V_(0) := argmink;(p, 0, By) = argmin {fﬁgi - M(zi, 0)} .

€T €T
As before, let sv (0),sv_(0) be (the indices of) any positive and negative support vectors, i.e.,

svi(0) € SV, (0), sv_(0) € SV_(0).

Now, recall that whenever a slope parameter 3 is given, the optimal intercept 3y := 5’0(,6') (defined

in Eq. (26)) must satisfy the margin-balancing condition Eq. (27), according to Theorem|C.3] Hence,
fixing p = p and considering arbitrary 6, we can rewrite Eq. (25) and as

K(5,0, Bo) = K, (0)(D: 0, 50) = Bllielly + Bo + Psus o) + V1 — 77 (2ev. (6), 0)

= ks (0)(7,0,50) = Pty — Bo — Psv_(0) — V1 — P*(2sv_(0),0

In particular, if @ = 6, we denote sv (6) € SV, (6), sv_(a) € SV_(8) as the support vectors of
max-margin classifier. The Lemma below describes the magnitude of (z 0) and (z 0).

|| (152)

sv+(§)7 sv_(0)’

-~

Lemma H.4 (Asymptotics of (z;, 8)’s for support vectors). Suppose that a < ¢+ 1.
(a) Ifa < b+ c, then

o, _
V172, 5.0) = Op(d*$ = v 1), L=z, @5 0) = 0:(1).

(b) Ifa > b+ c, then
. d P
<ZSV+(§), 0> = o (1 + 0[@(1)), <Z5V7(§), 0> = Op(l).

Proof. SV 1(6) may not be tractable, since it involves a nuisance term pg; as defined in Eq. (151).
Therefore, we introduce a proxy of support vectors, which is easier to work with. Formally, let

Vi =V4(0) := argmin+(z;, 6),
€Ty

V_ =V_(0) := argmin —(z;,0),

€T _

(153)

where V., V_ are sets of (the indices of) the smallest y;(z;, 8) from each class. Similarly, let
Vi (0) € V+ (9), V- (0) €V (0)3

which are arbitrary elements in V. (0) and V_(0). Note that V. is simply SV but ignoring term
pg;. Indeed, as we will show later, the impact of pg; = Op(1) is almost negligible.

We are going to prove Theorem [H.4] by deriving tight upper bounds and lower bounds for both
+/1— p? <zsvi @) 6). Then we conclude the precise asymptotics by verifying the upper and lower
bounds are matched.
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Upper bounds  Applying the same idea as Eq. (135), we can bound £(z,, (¢), ) via averaging:

(2v,(0):0) < (4.,0) < |PiZill2, —(2_(6),0) < —(2-.0) <[P Z_]2, (154)

o~

where the second inequality for each comes from Eq. Ii To create a connection between sv (6)
and v (), note that by definition Eq. (151)

ﬁgsv+(§) + vV 1_,52<zs\,+(§)70> < ﬁgV+(§) + \/1_52<z\,+(§)7 ),
9_@) — V1 _ﬁ2<zv,(§)’ )-

Using Eq. 1} therefore we obtain the following non-asymptotic upper bounds on <zsvi @)’ 6):

)
)

IN
)

_Z)\gs\_(a) -Vv1i- ﬁ2<z5\,7(§)’ )

)

VI=0%(z,, 5)0) < V1I-0(z, 35,0 +0(9, 6 ~ 9. @)
< vl—ﬁQI\PtE+II2+2ﬁ§r€1%§]<Igil,
~ o (155)
—V1=p%z,_5),0) <-V1-0*z,_ 4),0)— p(gv,(é) - gsv,(é))
<

< VI=RIPLE_ | + 2pmax ol
i€[n]

To compute its asymptotics, recall that /ny - Zy ~ subGy (0,I;K), /n- - Z_ ~
subG (0,14; K), and [P, |lp = v/d — 1. Then by Theorem

Izl = S PEl(1-+0r(1) = 1/ 2 (14 0x(1).
P72 = =Pl (1 or(D) = Vo) —m.  ase

While, by maximal inequality Theorem or Eq. (T44), we have

1€

m?)]c |gi| = Op(logn) = Op(1), (157)
Plugging Eq. (156) and (137) into Eq. (155) gives the asymptotic upper bounds (involving p):
. d .
V1=704z, 5 0) <V1- 52,/%(1 +o0p(1)) + p- Op(1),
1=z, 50) < V1= -op(1) + - Op(1).
Lower bounds Similar as the proof of Theorem [H.I] a lower bound can be obtained by plugging

our constructed solution 6 = PIJ;Z / HPIJZEHQ, which can be a good “proxy” of 8. Again, by margin-
balancing condition Eq. (152)), we can express the optimal @ aﬂ

(158)

= PP Koy A,G,A + Koy ’\,0,/\
9 c argmax K(p, 07 BO) = argmax S +(9)(p ﬁo) S ,(9) (p 60)
081,01 6e8d-1.01p 2

~ ~Ysv - vV _ Zsv 30 — (Rsv_ 70
— g max {pl,u||2+pgs+(e) Js (e)+m< . (0),0) — (2e_(0) >}

0c§i-1.01p 2 2
= eaggmgf {ﬁ(gsu(e) —9v_ ) + V1 =0 (2o, (0),0) + (Zsv_(8) 9>)} .
€8d-1.01

"®Notice that if |5| < 1, then arg maxgegi-1.g.1, (P, 0, Bo) is unique (on the event of {# > 0}), and we
could write & = arg maXgesa—1 g, , k(P 0, Bo). However, if || = 1, then according to our construction
Eq. (126), the arguments of the maxima can be any 8 € §%~! such that @ L p, while 0= p, as defined in
Eq. (131
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Therefore, recalling Eq. (I53), we have
v 1— Z)\2(<zsv+(§)’ 0> B <zsv,(a)’0>)

> V1= (24,3 0 — (20_3)9) + P9s, @ — Isv_ @ ~ Isv. @ T Isv_(®)

>V1-= ﬁ2(<z (5)70> - <Zv_(’é)70>) - 4P?61?[3;f]< |gi] -
Combining it with Eq. (155]), we can obtain a lower bound for each term using 0:

V31— f)2<zsv+(§),0> >4/1- ”2(<zv+(»9~),5> (2, @ >) —4pmax|gl\ +V1-p*(z,, (9)7

(= — [Pz ||)_6p£2?5]<|9i|+\/1_p z
((= v+(9)’ - <Zv_(§)’0>) _4[7?61%(@\ —V1=-p%z, )0

V4

R~

|
T
Y
*
|<
)
“<1>>
Q g Q

ey, :0) — IPE=4 ) — 6Pl - VI— (2,5,
B (159)
To derive its asymptotic order, we first define two statistics that are closely related to 6:
~ Plz ~ -Plz_
0 =L 6= A (160)
IPuZl2 IPuz |2

Then, the difference terms inside the parentheses in Eq. (I59) can be expressed as
<zv+(5)’ 0> - HP;J;E-FHQ - Ig%n<+zia 0> - <E+v 0+> = zrg%ri<zl —Z4, 0> + <E+’ 0 — 0+>7

IPLz_ l2 = min (-~ 2,0)+ (z_,0_) =min(z_ — 2;,0) — (Z_,0 — 6_).
1€l

i€Z-
(161)
Now we study the two terms on the R.H.S. of Eq. (T6T). For the first term, based on Eq. (T46),

7< v_ (g)a >

min (z; — z4,0) > — max|<zi ~Z4,0)| = 0p(1),

1€L L
© L (162)
z - > - —z = .
min (z_ z;,0) > max|(z; — %, 0)| = Op(1)
For the second term,
~  ~ 1 - 1
(7,0-0,)= - (z, PLz)- — L _(z, Plz,)
[Pzl . [Pz 12 "
1 _ P2l
= — z 7:E)J‘,Z z ,P ”7
Lzl {< o PuE = Fe P ez
o 1 _ 1 [Pz l2
> —— (2., PL2) — (z,,Plz,) = (1 + ==
= PL { +ot o 2 PL
P [FEAP 63
(i) ~ plo 1= 1o
= *M (<z+,Puz_> + ||Puz+||2||PMz_H2)

@_ﬁ(l_kop( )){Q{»(\/i) \/>\/71+01p }
Lt o) = orl1),

where (i) is from triangular inequality 2[|P; 2|2 < [|PLZ4ll2 4 [|P;Z_[2. (i) uses 22 — z; =
—Z_, and (iii) applies the asymptotic results Eq. - @ and the fact that = z, 1l z_,

_ _ 1 d
(22 Pa) = —==0n(IPl) = 02y 5 )
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by Theorem [Jl.3[(d)] Similarly, we also have
- 1

(zZ_.0-6_)= _Hf’t75||2<2_’Pt~> IIPll 0 (z_,P,z.)
> 2||P1LE| (e Paz) +IIPpz o Phz_]e)  (6Y
= op(1).
Substituting Eq. (T62), (I63)), and (T64) into Eq. (T6T)), we get
(2,590 — IPuZl22 Op(1), (2, 5)0) — [Pu=z_[l2 = Op(1).  (165)

And combining this with Eq. (I56), we have

o8 |14 ) 40 (2, 9B 200, (66)

Plugging Eq. (I63), (I66), and (I37) into Eq. (I39) gives the asymptotic lower bounds (involving
0):

VI (o002 VTR (1) (0 020) 4 86t1)) 47620,
1=z, 50) = V1= 0e(1) +75- Op(1).

(167)

Finally, combining upper bounds Eq. (I58) and lower bounds Eq. (I67), we obtain the exact order

1- ﬁ2<zSV+(5),§) =+/1-p? (\/7(1 +op(1)) + 5]1)(1)) +7-05(1)

ﬁQU lJrO]p JrO]p()
52

_vl_ﬁ2<zs\,7(§)a0>—\/1 P OIP’ )+p- OlP’()

If a < b+ ¢, according to Theorem [H.3(a), p = 1 — op(1). It is clear that Theorem [H.4] holds
for p = +1. Now, restrict on the event {|p] < 1}.

e Ifa> 5 +4c then\/1—p2= %d(a_b_c)ﬂ (1+ op(1)), hence
) 1 a—2%—c
VI= Pz, 30 = 5 (14 02 ).

e Ifa< % + ¢, then /1 — p24/d/7n = 5p(1), hence
V1I=7(z,,. 5 0) = Os(1).

If a > b+ ¢, according to Theorem [H.3(b)l p = op(1). Hence, on the event {|p] < 1},
~ d
<zsv+(§)’0> = E(l—i_OP(l))
This also holds regardless of p, since P(|p] < 1) — 1 as d — oo. Then we complete the proof. [J

H.2.3 ASYMPTOTIC EXPRESSION OF 3y: PROOF OF LEMMA

Finally, we consider arbitrary 7 > 1 and give an explicit expression for 30 with its asymptotics. Be
aware that 7 = 74 may depend on d.
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Lemma H.5 (Asymptotics of Eo)- Suppose that a < ¢+ 1 and T > 1. Then we have

~ ~

~ 2 - " T9«_(® +gv ) T<ZV7§70>+<ZV 570>
ﬂo:(l_ )plluz—p >0 2@ 1O >+ ()

T+1 T+1 T+1
2 1 ~ ~
_ __% )\~ - 1= N
= (1 TJrl)pHNz r+1 1—p <st+(9),0>+0p>(1)-

(a) Ifa < b+ c, then

~ 2\ [P _
o= (1= 27 ) Pl ~ O 1)+ B)

_(__2 b/2 IR S A ~
—(1 T+1)d (1+o0p(1)) T+1Op(d V1) 4 Op(1).

(b) Ifa > b+ c, then

~ 2 N 1 d ~
o= (1= 27 ) il — - (14 0n(1)) + Bo(1)

2 1 ~
(1 - 1) 2d@0=/2(1 + 0p(1)) — T—Hd(“_c)/z(l +op(1)) +Op(1), ifa<2b+e,

1 a—c A .
—~ md( )2(1+0p(1)) + Op(1), ifa>2b+ec.

Proof. We rewrite the margin-balancing condition Eq. , in terms of p, 8, By, which gener-
alizes Eq. (I52) to arbitrary 7 > 1:

55,0, Bo) = iy, 3,0, Bo) = 77 (B latlly + Bo + Pay,, 3y + VI~ (2, 3):0))
= Fev_(9) (P, 8,50) = ﬁ||pr2 = Bo— ﬁgs\,f(ﬁ) -Vvi- ﬁ2<zs\,7(§)a 0).

Then we can solve the expression for 3 (this equals Eq. in Theorem |C.3|with parametrization
Eq. (I31)). Its asymptotic simplification is followed by Eq. (I57):

T9sv_ (9) + gsv+ ()

9sv_@)| + 195, @) ~
o OO < maxgi| = Ow(1),

r
<

and Theorem [H.4}

= Op(1).

T ~
_ 752 _
Vi PR @) )

-~

For , plugging p = 1 — op(1) by Theorem and asymptotics of (z_, o) 6) by Theo-
rem m For plugging p = 2d(®—a+o) 2(1 + Op(l)) by Theorem from i., while

ol uﬂ 5 = op(1) from ii., and asymptotics of <zsv+(§), 6) by Theorem m This completes t};
proof.

H.3 CLASSIFICATION ERROR: COMPLETING THE PROOF OF THEOREM [D.8]

Proof of Theorem Let (Tpew,Ynew) be a test data point independent of the training set

~

{(=;,y:)}7, such that Tpew = Ynewl + Znew, ad Zpew ~ subGy (0,14 K). Recall f(x) =
(@, B) + Bo. Following the same decomposition as Eq. (127),

ynewf(mnew) = ynew(<mnewa /8> + BO)
= Z)\HI”I’HQ + ynewﬂo + Ynew (ﬁgnew +v1- ﬁ2<z1’leW7 0>)
= Z)\”NHQ + ynewﬁo + ynedea
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where

Inew ‘= <ZIIEW7 /JI> > Gq:= Z)\gnew +v1- 52<znewa 0>'

el
Therefore, the minority and majority test errors are

Brry =P (F(@new) < 0| pnew = +1) =B (5l + o+ Ga 0)
Err_ =P (f(wnew) > 0| Yuow = —1) =P (ﬁ||uH2 —Bo—Ca< o) .
By Theorem we have ||gnew|l,, » H<chw,5>||¢2 < K, since zyew AL () 5) and then V¢ > 0,
P (|(zncw,5)| > t) =E {IP’ (|(zncw,§)| >t | ’0\)} < 267Ct2/K2, for some ¢ > 0.
Then by Theorem [J.2(a)]
1Gally, < 1AGnewlly, + V1= 2 (2news )l < lgnewlly, + [(Znew: Ol S K,
which implies G4 = Op(1).

High signal: If < b+ ¢, then we have p = 1 — op(1) by Theorem Therefore, according
to Theorem [H.5(a)| for all 74 > 1, we have

~ 2 1 =~ b ~
) =(2——)p — ———0Op(d*27°V1 Op(1
plula+ 5o = (2= =2 ) pllall, — O )+ 061

> d"?(1+ 0p(1)) — Op(d*~ 27V 1)
2 /2 (1 4 0p(1)), lim d*/2 = +oo,
d—o0

~
=

where (i) is because d%/2 > d*~ 3¢, as d — co. If 1 < 74 < d*/2, we also have

1 A a—L2—c A
+1O]p(d Vv 1)+ 0Op(1)

Alelly - Bo = ——pllul, +
Plully = o= ——=Plull, + —

2 1 =~ b ~
= db/? Op(d*"27°Vv 1)+ Op(1
P p(d""* )+ Op(1)

@ 2 ~
= — 14 o0p(1)) + Op(1
4+ 1d ( O]p( )) [[»( )

> 7712 (1 + op(1)) + Op(1), lim 7, 1d"? = 400,

d—o0

where (ii) is because (7441)"1d?/2 > (14+1)"*d*~ 2 ¢ and (t4+1)"*d®/2 > (logd)*,Vk > 0,
as d — oo. Under these conditions, both p || ||, £ B diverges to +oco with high probability, i.e.,
Jim P (m|u||2 +Bo+Ga > C) ~ Jim P (,3||M||2 —Bo—Gy> c) -1, VCeR

Hence
Erry = o(1), Err_ = o(1).

This concludes the proof for high signal regime.

Moderate signal: If b + ¢ < a < 2b + ¢, then p = 2d(*~*+)/2(1 + 0p(1)) by Theorem [H.3(b)|
Therefore, according to Theorem [H.3(b)l if 74 > d*~?~¢, then

~ -~ 2 N 1 d ~
— (o= - /= 1 1
Pl + B = (2= =21 ) Pl = /5 (14 0n(1)) 4 Go(1)
= 442 =9+/2(1 4 0p(1)) — 75,172 (1 4 0p(1)) + O (1)
(E)4d(2b7a+c)/2(1 + O[P(l)), lim d(2b7a+6)/2 = 400,

d—o0
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where (iii) is because d(2°=2+¢)/2 s 7771q(4=¢)/2 and d(2*=9+9)/2 > (log d)*,V k > 0,as d — 0.
If1 <75 < d@9)/2 we also have

~ 2 1 d ~
) — =D ——/ — (1 1 Op(1
Plllly = Bo = =72 llnlly + — 4/ - (14 0p(1)) + Op(1)
4 1 ~
= ——d®7 21 4 op(1)) + Td<a—0>/2(1 +op(1)) + Op(1)
Td

Tq+ 1
W 1 g %)
= d 1 1)) + Op(1
Ta+1 ( + ox( ))+ p(1)
1 ~
> o7y AR (14 0p(1)) + O0p(1), lim 75d 7% = oo,
—00

where (iv) is from (74 4+ 1)71d(2b=9+9)/2 <« (7, 4+ 1)71d(@=)/2, Under these conditions on 7,
both p |||, £ By diverges to +oco with high probability. Using the same approach, we can show

that
Erry = o(1), Err_ = o(1).

~

Now suppose 74 < 1, then again p|| ||, — B0 — o0 and hence Exrr_ = op(1) still holds. However,

~ 2 1 d ~
~ S ) W B — —(1 1 1
pllata +Fo= (2= =27 ) Al — =g/ (4 or0) + et
< 2d@=4/2(1 4 op(1)) — Cd@2(1 + 0p(1)) + Op(1),
) _Cdla—o)/2 (1 + 0]}»(].)), lim —q(e—9)/2 — —00,
d—oo

where (v) is because d?b=ate)/2 « gla=)/2 "and C' € (0,00) is an absolute constant. As the

result, —p ||¢||, — Bo diverges to +oco with high probability. Using the same approach, we have
Erry =1-0(1).

This concludes the proof for moderate signal regime.

Low signal: If > 2b + ¢, then p || ||, = op(1) > 0 by Theorem H.3(b)| Therefore,
Brry +EBrr =P (5l + fo + Ga < 0) + P (3llull, — Bo — Ga < 0)
= 1-P(~plul, < Fo+Ga < plul,)
=1-o0(1).
Hence, we have Erry, > % — o(1). This concludes the proof for low signal regime.

Finally, we complete the proof of Theorem [D.8§] O

I CONFIDENCE ESTIMATION AND CALIBRATION: PROOFS FOR SECTION [D.3]

I.1 PROOF OF PROPOSITION[D.9|

The following preliminary result summarizes the precise asymptotics of three quantities: p(x) (max-
margin confidence), p* (x) (Bayes optimal probability), and py(x) (true posterior probability).

Lemma L1. Consider 2-GMM and proportional settings in Section [D.1.1) on separable dataset
(0 < 6%(0)). Let (p*, 53) be defined as per Theorem and (Y,G,H) ~ P, x N(0,1) x N(0, 1).
Let G' := p*G + /1 — p*2H. Then for any test point (x,y) ~ Py, independent of p, as n — o0,

Y Y

Dl o (p*||pll2Y + G + 55

(@) | o ("l + + ) 168
P (@) o (2lpll2(lplaY + G +log 125
@) \o (207l lmllaY + G) +log 125 )
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Proof. Rewrite * = yu + z where z ~ N(0,1,). By direct calculation, the three quantities p(x),
p*(x), and py(x) can be expressed by

P(@) = o((@.B) + Bo) = o (Pllullyy + (=.B) + o) (169)

re—3llz—nll3

(@) =Ply=112) = e (1 mye-tleral? (170)
a(2<m,u>+log17_r7r>
= o (20ula (Iallyy + (2. 1/ I 1al2) ) +log T a7
= o 2lullz(llellyy + = p/lkll2) ) +log 77— )

e~ 3(F(@)—plul2—Bo)?

po(xz) =Py =1|p(x)) = — — — — 172
Po(x) =PB(y =1|p(=)) e 2T @ plnla—Bo)® 4 (1 — 7)e- 2T @ +plula—Bo)? (172)

~ -~ i
~ o (2 llate,B) +1og )

— o (20Nl (Plally-+ (2.3) + 1w 7). (73

where the Bayes’ law is applied in Eq. (170) and (172).
Next, it suffices to obtain the joint asymptotics of (z, ,@) and (z, pu/||p||2), which appear in the

expressions of Eq. li (T71). (T73). Note that (z, 3) 4 N(0,1) (since z 1L B, P(||B]2 = 1) —

1), (2, /| mll2) ~ N(0,1). Moreover, E[(z, B)(z, st/ ||sl2)] = E[5] — p by Theorem[D.1]and
bounded convergence. These implies

<<z,<,f/’€i||2>) SN ((8) / (pl* pl)) - (g) |

Since y 1L (z,8) and (7, B0) 2 (p*, ;). we conclude Eq. (168) by Eq. (169). (T7T). (T73) and
O

then using the Slutsky’s theorem. This completes the proof.
The proof of Theorem [D.9]is primarily based on asymptotics in Theorem .|

Proof of Proposition|D.9] [(a); For MSE, by directly using the asymptotics in Theorem [[.T] and
bounded convergence theorem, we have

lim MSE(p) = lim E [(1{y = 1} - (=)’
—E[(1{Y =1} =0 (5" lulY +G + 5))’]
= E[o(=p" |ull, - B5Y +G)°] = MSE",
lim mMSE(p) = MSE* — Var [1{y = 1}| = MSE* — 7(1 — 7).

n—00

For CalErr, we similarly get

lim CalErr(p) = lim E [(ﬁ(a}) fﬁo(m)ﬂ

n—oo n—o0

=E

2
* * * * 7T *
(U(p IIM\\2Y+G+BO)—0(20 el (o ||u||2Y+G)+1og1_7r)) ] = CalErr".
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For ConfErr, we can first obtain
lim E[p*(2)(1 - p*(z))] = lim E [Var [1{y =1} m]}

= lim E {(]l{y =1} —p*(a:))z]

n—oo

=E

(1{1/ =1} - a(2||u||2(||u||2Y +G)+log - w))Z]

T 2 "
=& o (~2 il Ul + &)~ tog -7 ) | =

and then by relation between ConfErr and MSE Egq. (39)

lim ConfErr(p) = n11_>H010 MSE(p) — nlggOIE [p*(z)(1 - p*(x))] = MSE" —

This concludes the proof of part|[(a)]
When 7 = 7°Pt, by Theorem By = 0. Then we can simplify
* * -2
MSE* = E [(1 +exp(p” |, + G)) } .

According to Theorem we know that p* ||p||, is increasing in 7 € (0,1), ||p],, and 4. It
suffices to show that MSE" is decreasing in p* ||p||,, which is obvious by noticing ¢ > (1 +

exp(t))~2 is a strictly decreasing function.

For mMSE*, note that w(1 — 7) is a increasing function of = € (0, 3), and it does not depend on
[|t]|5, 6. These shows the monotonicity of mMSE* = MSE* — (1 — 7).

For ConfErr*, note that Vy*‘w does not depend on §. This implies that ConfErr* has the same

monotonicity in § as MSE*, which concludes the proof of part|(b) O

1.2 VERIFICATION OF CLAIM[D. 10!

The analytical dependence of CalErr* and ConfErr® on model parameters is more complicated.
We provide a numerical verification of Theorem

Verification of Claim[D.10} For CalErr”*, denote
2
hi(t):=E [(0(215(6‘ +1)+¢) —o(G+ t)) ]
2
hao(t) = E [(a(zt(c —t)+c)—o(G— t)) ]
where ¢ < 0 is a constant. When 7 = 7°P*, we have 3§ = 0 and

CalErr” = mhy (" |ally) + (1 — Who(p” ull,),  where ¢ = log

1—m

According to Fig. 15| we can numerically show that h(t) := 7why(t) + (1 — 7)hz(t) is a decreasing
function when 7 <7 =~ 0.25 is fixed. Under this condition, CalErr” is decreasing in p* || pe||,. Then
by using Theorem [G.2] and similar arguments in the proof of Theorem we can conclude the
monotonicity of CalErr™ in ||ul|, and 6.

For ConfErr”, in Fig. [I5| we numerically show that Ve is increasing in m when ||p|, is fixed.

Since ConfErr* = MSE® — V* and we have shown in Theorem D.9(b)|that MSE™ is decreasing

yle
in 7, we conclude ConfErr™ is also decreasing in 7.
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Figure 15: Monotonicity of z — h(x) and 7 — V1. Left: h is not monotone when 7 > 7 ~

0.25. Middle: h is monotone decreasing when 7 < 7 ~ 0.25. Right: Vy*Im is monotone increasing
in 7 for different values of || ftl|,.

J TECHNICAL LEMMAS

J.1 PROPERTIES OF GAUSSIAN RANDOM VARIABLES

We need the following variant of Gordon’s comparison theorem for Gaussian processes.

Lemma J.1 (CGMT). Let D, C R™*"2 D, C R™*™2 pe compact sets and let Q : Dy X
D, — R be a continuous function. Let G = (G ;) RN N(0,1), g ~ N(0,1,,), b ~ N(0,1,,,)
be independent standard Gaussian vectors. For any u € R™7T"2 gnd v € R™1™2 we define

a= (ug,...,Un,)andv = (vy,...,0py, ). Define

C*(@) = min max v'Gu + Q(u,v),

ueD, veD,

L*(g,h) = min max [¥ag"a + [@2h7% + Q(u,v).

Then we have:

(a) Forallt € R,
P(C*(G) <t) < 2P(L*(g,h) <1).

(b) If Dy and Dy, are convex and if Q) is convex concave, then for all t € R,
P(C*(G) > 1) <2P(L*(g.h) > 1).
Proof. See (Miolane & Montanari, 2018} Corollary G.1). O

J.2 PROPERTIES OF SUB-GAUSSIAN AND SUB-EXPONENTIAL RANDOM VARIABLES
Definition J.1 (Sub-gaussianity). The sub-gaussian norm of random variable X is defined as
X, :=inf {K >0:E[exp(X*/K?)] < 2}.
* A random variable X € R is called sub-gaussian if || X{|,, < oc.

* A random vector & = (X1,...,Xq)" € R is called sub-gaussian if sup,, cga—1 || (2, V), <

o0. Specifically, write  ~ subGy (0,14; K) if X1, . .., X4 are independent random variables
with ]E[XZ] =0, Var(Xz) =1, and maxi<i<d HXinz 5 K.

Theorem [J.2) and [J.3] summarize some basic facts and concentration inequalities about sub-gaussian
random variables and vectors.

Lemma J.2. Some facts about sub-gaussian random variables.

(a) |||, is a norm on the space of sub-gaussian random variables.

97



Published as a conference paper at ICLR 2026

(b) Let X1,..., XN be independent mean-zero sub-gaussian random variables. Then Zfil X is
also a sub-gaussian random variable, and

N
2
<Oy Xy,
i=1

P2

where C'is an absolute constant.

(c) (Maximum) Let X1, ..., XN be sub-gaussian random variables (not necessarily independent)
with K := maxi<i<n || Xi|,- Then

E Lgﬂfgv Xi|] <CKy/logN, (N =2),
where C'is an absolute constant.
Proof. See (Vershynin, 2018| Exercise 2.5.7, Proposition 2.6.1, Exercise 2.5.10). O

Lemma J.3 (Concentration). Suppose x,y ~ subG (0,14 K) and x 1L y.
(a) (Hanson-Wright inequality I) Let A € R%*¢ be a matrix. Then, for every t > 0,

t? t
P(lz" Az — E[z"Az]| > t) < 2exp (c min{ , }),
( 1) KT |A]% KAl

where c is an absolute constant.

(b) (Hanson-Wright inequality II) Let B € RY %4 pe g matrix. Then, foreveryt > 0,

IBx|| ‘ ) ( ct®||BJI% )
P( —1|>t]) <2exp| — ,
1Bl K4B[Z,

where c is an absolute constant. In particular, when B = 1,

llz]|2 ct?d

(c) (Hoeffding’s inequality) Let a € R be a vector. Then, for every t > 0,

|{(x,a) ) ( ct2>
]P’( >t) <2exp| ——5 |,
all, K>

where c is an absolute constant.

(d) (Bernstein’s inequality) Let B € R**? be a matrix. Then, for everyt > 0,

=" By| ) ( : {t2 tIBllr })
P >t| <2exp|—cmin —, ——=—/ |,
( IBlle K% K2(Blop

where c is an absolute constant. In particular, when B = 1,

(LU ) <oy (-emind £, 1),

Proof. For|[(a)] and . see (Vershymn 2018, Theorem 6.2.1, Theorem 6.3.2, Theorem 2.6.3).
For (d) let T = E) , then apply Z' AZ = 2" By toand simplify. O

Definition J.2 (Sub—exponentlahty). The sub-exponential norm of random variable X is defined as
X1, =inf{K >0:Elexp(|X|/K)] < 2}.

* A random variable X € R is called sub-exponential if || X[, < oo.
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Theorem [J.4] summarizes some basic facts about sub-exponential random variables.
Lemma J.4. Some facts about sub-exponential random variables.

(a) |||, is a norm on the space of sub-exponential random variables.

(b) Let X1,..., XN be independent mean-zero sub-exponential random variables. Then Zfil X;
is also a sub-exponential random variable. If K := maxi<;<n || Xil|,,, and N > C, then

< C'KVN,

1

where C,C' are absolute constants.

(c¢) (Maximum) Let X1, ..., XN be sub-exponential random variables (not necessarily indepen-
dent) with K := maxi<;<n || Xi|,,. Then

E{max | X |} < CKlogN, (N >2),
1<i<N

where C' is an absolute constant.
(d) Let X and'Y be sub-gaussian random variables. Then XY is sub-exponential. Moreover,
XY [y, < MX Ny, Y1), -
In particular, X? is sub-exponential, and
X2l < IX11, -

Proof. For|(a)land[(d)} see (Vershynin, 2018] Exercise 2.7.11, Lemma 2.7.6, Lemma 2.7.7). For (b),
the proof is analogous to (Vershynin 2018, Proposition 2.6.1). For any |A\| < 1/K, we have

N
Elexp| A X; Eexp (A X)) < exp C/\ X; <exp(CANNK
2 d} 2 2

i=1

i=1
where sub-exponential propertles (Vershynln, 2018}, Proposition 2.7.1 (iv)(v)) are used, and C'is an
absolute constant. If N > 1/C, then 1/v/CNK? < 1/K and therefore

1
ex X; )| <ex )\ZC’NK2 for all A such that |\ < ——.
{p<§ )} p( ), N < Tevrk
Then the proof is completed by using (Vershyninl 2018| Proposition 2.7.1 (iv)(v)) again.

For (d), the proof is analogous to (Vershynin, 2018, Exercise 2.5.10). By (Vershynin, 2018, Propo-
sition 2.7.1 ()(@v)), P(|X;| > 1) < 2exp(—ct/ [ X||,,) < 2exp(—ct/K), Vt > 0, where c is an
absolute constant. Denote to := 2K /c, then

X’i e i Xi
E max|7‘, §t0—|—/ P maX¥ dt< / |7“>t dt
i>1 1+ logi to i>1 1+ logs 1+ logi

= Z/t (1X:| > t(1 + logi))dt < TK-FZ/ 2exp(—ct(1 +logi)/K)dt

2K 2K
S — —(logi)cty/K) - 2exp(—ct/K)dt < =— =2 [ Qexp(—ct/K)dt
S +;/ exp(—(logi)cto/K) - 2exp(—ct/K)dt < y +;z /0 exp(—ct/K)
2K 2K
= v CO 7<CK

where Cy, C are absolute constants. Hence, for any N > 2,
| X
| <
E[lrélzzix | X; @ (1+1ogN)- E[lrgniag}ivl—i—logi < Klog N.
This concludes the proof. O
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J.3 PROPERTIES OF THE MOREAU ENVELOPE AND PROXIMAL OPERATOR

Let £ : R — R>( be a continuous convex function. For any € R and A > 0, the Moreau envelope
of £ is defined as
1
S)) = ‘= min < () + —(t — x)2 174
eewi) = exs(a) = in {0) + 50— 2 | (174
and the proximal operator of ¢ is defined as

prox,(x; A) = prox,,(z) := arg min {E( )+ i(t —x)? }
teR 2)

Lemma J.5. Forany x € R, A > 0, prox,(z; A) is uniquely determined by stationarity condition
prox,(z; A) + M (prox,(z; A)) — . = 0.

(a) ee(z; )\) is continuous and convex in (x, \). If  is differentiable, then e;(x; X) is also differen-
tiable in its domain, with partial derivatives

86 IE,>\ = —
% )\ (x — pI’OXg(fE; )\)) - gl(z) |z pI’OXg(w§)‘)’
6@ (Ia )\) 1 - - Z < =prox,(x
57)\ _ T(z plOXg(x;A)) 2( ,( )) ’Z pr Xe( ;)‘).

Moreover, eg(x; \) is non-increasing in X and eg(x; \) — £(x) when A — 0T,

(b) prox,(xz; A) is continuous in (x, \). If £ is twice differentiable, then prox,(x; \) is also differen-
tiable in its domain, with partial derivatives
Oprox,(z; A) 1 dprox,(z; X) (2)
ox L M(2)

z=prox, (z;\) oA 1+ /\EN(Z) z=prox, (z;\)

Moreover, prox,(z; \) — x when A — 0.

Proof. See (Thrampoulidis et al.,[2018, Lemma 15), (Donoho & Montanari, 2016, Proposition A.1),
(Salehi et al., 2019, Lemma 2, Lemma 4), and relevant references therein. O

K MISCELLANEOUS

Let K be the optlmal objective value in Eq. ( Wthh is the maximum margin for data (X, y).

Moreover, (,3 ﬂo, k) is also the optimal solutlon to Eq. (7). Notice & > 0 always holds (by taking
B =0, By = 0in Eq. (I3)), and we can observe the followmg relation.

(linearly separable) 33 # 0, By € R, such that y;({(x;, 3) + Bo) > 0, Vi € [n],
= £>0, = |Bl.=1,
(not linearly separable) V3 # 0, By € R, such that y; ((x;, 3) + 5o) (;) 0,Vi € [n],
— k=0 = fizO, Bo = 0 is a solution["]
When data is linearly separable, it turns out Eq. (7)) also has the following equivalent form:

minimize ||w||§ ,
WER, wo R (175)
subject to  y;({(@i, W) +wp) > 1, Vi€ [n].

The parameters in Eq. (7) and have one-to-one relation (, 3, 59) = (1, w,wp)/||w||2. No-
tably, Eq. (175) is known as the hard-margin SVM (Vapnik, 1998)) if 7 = 1.

LLM usage statement We used a large language model (LLM) solely for polishing the writing of
this paper (e.g., grammar, wording). All edits were checked and revised by the authors.

21f () is strict (<), then ﬁ =0, B\o = 0 is the unique solution.

100



Published as a conference paper at ICLR 2026

L ADDITIONAL EXPERIMENTS
L.1 LOGIT DISTRIBUTION FOR NON-GAUSSIAN DATA
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Figure 16: Empirical logit distribution (ELD) and testing logit distribution (TLD) under a
non-Gaussian setting. We train a max-margin classifier f on synthetic data sampled from a two-
component mixture of multivariate ¢ distributions (with degree of freedom 2 and 8). Colors denote
labels y;, and the x-axis shows the logits f(x;). ELD: truncated ¢ distributions (histograms). TLD:
t distributions (curves). Transparent lines indicate the theoretical TLD derived under the Gaussian
assumption (Theorem [2.T).

To examine how our theory adapts to non-Gaussian data, we repeat the experiment in Fig. |1| but
replace the Gaussian mixture with a mixture of multivariate ¢ distributions with a chosen degree of
freedom, while keeping all other parameters fixed. The key observations from Fig.[I6]are as follows:

¢ We find that the TLDs follow ¢ distributions, whereas the ELDs follow the same ¢ distributions
but truncated at the margin. This shows that even when the data are non-Gaussian, the effect
of overfitting is still characterized by truncation.

* We observe that the intersection of the actual minority and majority TLD curves nearly coin-
cides with the intersection predicted by the Gaussian-based theory Theorem as illustrated
by the two transparent curves. This demonstrates the robustness of margin rebalancing tech-
nique, suggesting that the hyperparameter 7°P* derived in Theorem may still perform well
under non-Gaussian data.
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L.2 PHASE TRANSITION IN HIGH IMBALANCE REGIME
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Figure 17: Phase transition in high imbalance regime. Minority/majority errors under different
settings of parameters b (signal) and 7 = d”. Left: minority accuracy is (i) high for any 7 under
high signal, (ii) high for 7 > d*~"~¢ under moderate signal, but (iii) low for any 7 under low signal.
Right: majority accuracy is close to 1 under high and moderate signal as long as 7 is not too large.

To illustrate how the acceptable range of 7 varies with the signal strength b (recall that ||p]|3 o< d?),
we repeat the experiment in Fig. [5| but modify the setting by fixing @ = 0.5 and ¢ = 0.1 while
varying b and r. As shown in Fig the same three phases in majority/minority errors given by
Theorem [3.2] emerge. The plot also reveals the upper and lower bounds on the admissible range of
T as the signal strength changes.
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L.3 LOGIT DISTRIBUTION FOR CIFAR-10 IMAGE DATASET

Logit distribution of class 0
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Figure 18: Joint empirical logit distributions of multi/l\lomial logistic regression for CIFAR-10.
The heatmaps show the empirical joint logits ( fo(;), fi(2;)) for features x; from class 0, where
k=1,2,...,9. The vertical axis is fo(x;) for all subplots, and the horizontal axis is fj(x;). The
truncation boundaries are indicated by the red dashed lines.

We extend our experiment in Fig. [/| to the full 10-class setting. We first simulate an imbalanced
CIFAR-10 dataset, where class 0 has sample size 500, class 9 has 100, and the sizes of the remaining
classes follow an exponential decay. We then train a linear probe (multinomial logistic regression) on
the ResNet-18 features extracted from this dataset. In Fig.[T8] we visualize the logits for data whose
true label is 0. Again, we observe truncation in two directions of the pairwise logits (fo(), fi(x)),
where fi(-) denotes the logit for label k.
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