
Who Wrote this Code? Watermarking for Code Generation

Anonymous ACL submission

Abstract

Since the remarkable generation performance001
of large language models raised ethical and002
legal concerns, approaches to detect machine-003
generated text by embedding watermarks are004
being developed. However, we discover that005
the existing works fail to function appropri-006
ately in code generation tasks due to the task’s007
nature of having low entropy. Extending a008
logit-modifying watermark method, we pro-009
pose Selective WatErmarking via Entropy010
Thresholding (SWEET), which enhances de-011
tection ability and mitigates code quality degen-012
eration by removing low-entropy segments at013
generating and detecting watermarks. Our ex-014
periments show that SWEET significantly im-015
proves code quality preservation while outper-016
forming all baselines, including post-hoc detec-017
tion methods, in detecting machine-generated018
code text. Our code is available in the supple-019
mentary materials.020

1 Introduction021

In understanding and generating software pro-022

grams, large language models have rapidly ad-023

vanced towards expert-like proficiency (Chen et al.,024

2021; Luo et al., 2023; Li et al., 2023b; Nijkamp025

et al., 2023; Zheng et al., 2023; Gunasekar et al.,026

2023; Touvron et al., 2023; OpenAI, 2023a). This027

breakthrough in the automation of the coding pro-028

cess improves the productivity and efficiency of029

software engineer and lowers the barriers to creat-030

ing programs for non-experts (Vaithilingam et al.,031

2022).032

However, this advance comes with significant le-033

gal, ethical, and security concerns, including code034

licensing issues, code plagiarism, code vulnerabil-035

ity, and malware generation (He and Vechev, 2023;036

Sandoval et al., 2023; Pearce et al., 2022; Carlini037

et al., 2021; Mirsky et al., 2023; Hazell, 2023). For038

example, there is an ongoing class-action copy-039

right lawsuit between a group of individuals and040

Question
def check_list_value(t):

"""Return true if all numbers in the list
l are below threshold t.
"""

(a) Solution
for elem in l:

if elem >= t:
return False

return True
(b) WLLM, Strong watermark

for k in range(l):
if t <= k:

break
return True

(c) WLLM, Weak watermark
for elem in l:

if elem >= t:
return False

return True
(d) SWEET(ours) Selective watermarking

for k in l:
if t <= k:

return False
return True

Detection: / Correctness:✅ ❌

Detection: / Correctness:✅❌

Detection: / Correctness:✅ ✅

Figure 1: Illustrated comparison of WLLM (Kirchen-
bauer et al., 2023a) and SWEET (ours). Note that this
example is a short hypothetical explanatory example.
LLMs can generate working source code (a) without a
watermark. Strong watermark (b) or weak watermark
(c) may result in detection or correctness failure, but (d)
selective watermarking may avoid both failures.

Microsoft, GitHub, and OpenAI, arising from al- 041

legations of unlawful utilization and reproduction 042

of the source code12. Furthermore, shortly after 043

the launch of ChatGPT, numerous malicious actors 044

on the Dark Web were observed sharing machine- 045

generated malware and spear phishing tutorials3. 046

Therefore, the development of reliable tools for 047

detecting machine-generated code is a very timely 048

matter and is of utmost importance for fairly de- 049

ploying LLMs with coding capabilities. 050

Despite the need for immediate treatment of the 051

1Code plagiarism
2Code licensing issue
3Malware generation

1

https://drewdevault.com/2022/06/23/Copilot-GPL-washing.html
https://www.reuters.com/legal/litigation/openai-microsoft-want-court-toss-lawsuit-accusing-them-abusing-open-source-code-2023-01-27/
https://www.recordedfuture.com/i-chatbot

machine-generated code detection problem, few052

efforts have been made to address it. Instead, many053

works still prioritize a detection problem on normal054

text (Solaiman et al., 2019; Ippolito et al., 2020;055

Guo et al., 2023; Tian and Cui, 2023; OpenAI,056

2023b; Yu et al., 2023; Gehrmann et al., 2019;057

Mitchell et al., 2023; Yang et al., 2023). While058

these post-hoc detection methods (i.e., no control059

during the text generation) have demonstrated pow-060

erful performance in the many domain of natural061

language tasks, their application to programming062

language remains unexplored.063

Contrary to the post-hoc detection methods,064

another line of research for detecting machine-065

generated text has gained attention: Watermarking-066

based methods, which embed a hidden signal067

within the generated text (Kirchenbauer et al.,068

2023a,b; Kuditipudi et al., 2023; Wang et al., 2023).069

For example, a method proposed in Kirchenbauer070

et al. (2023a) – which we refer to as WLLM (Wa-071

termarking for Large Language Models) – ran-072

domly divides the entire vocabulary into two073

groups (i.e., the green list and the red list) at074

each generation step and enhance the probability075

of green list tokens to be sampled. By adding076

scalar values to the logits of a green list tokens,077

the model favors generating tokens from the green078

list rather than the red one. To detect the water-079

mark in a text, we count the number of green080

tokens and check whether this number is statis-081

tically significant (through hypothesis testing) to082

conclude whether the model output is generated083

without knowledge of the green-red rule.084

While both watermarking-based methods and085

post-hoc detection methods work well in many lan-086

guage generation tasks, we observe that these per-087

formances do not transfer well to code generation088

tasks, for example, in Figure 1. In other words, it089

is much more challenging to embed watermarks090

in a detectable way without impairing the code091

functionality. We attribute this to the nature of092

extremely low entropy4 of code generation. If wa-093

termarking is applied strongly, it can severely de-094

grade the quality of the model output, which is095

particularly critical in code generation, as a single096

violation of a rule can break the entire code (see097

“strong watermark” in Figure 1). On the other hand,098

if watermarking is applied too weakly, the low en-099

tropy hinders properly embedding watermarks and100

4We calculate entropy over the probability of the next token
prediction. Please refer to Eq. 5 for details.

results in insufficient green tokens appearing, lead- 101

ing to increased difficulty in detection (see “weak 102

watermark” in Figure 1). These failures are not 103

significant in plain text generation because the rela- 104

tively higher entropy allows for more flexibility in 105

candidate selections for watermarking. 106

To address these failure modes, we extend the 107

WLLM and propose Selective WatErmarking via 108

Entropy Thresholding (SWEET) for Code LLMs 109

(and LLMs). Instead of applying the green-red 110

rule to every single token during generation, we 111

only apply the rule to tokens with high enough en- 112

tropy given a threshold. That is, we do not apply 113

the green-red rule to the important tokens for mak- 114

ing functional code, while making sure there are 115

enough green list tokens to make a detectable wa- 116

termark for less important tokens, hence, directly 117

addressing each of the above failure modes. In 118

code generation tasks, our method outperforms all 119

baselines, including post-hoc detection methods, in 120

detecting machine-generated code while achieving 121

less code quality degradation than WLLM. Fur- 122

thermore, through various analyses, we demon- 123

strate that our method operates well even without 124

prompts or with a small surrogate model, indicating 125

its robust performance under practical settings. 126

Our contributions are as follows: 127

• We are the first to empirically explore the 128

breakdown of existing watermarking and post- 129

hoc detection methods in the code domain. 130

• We propose a simple yet effective method 131

called SWEET, which improves WLLM 132

(Kirchenbauer et al., 2023a) and achieves 133

significantly higher performance in machine- 134

generated code detection while preserving 135

code quality more than WLLM. 136

• We have demonstrated the practical applica- 137

bility and predominance of our method even 138

in real-world settings, i.e., 1) without prompts, 139

2) utilizing a smaller model as a detector, or 140

3) under paraphrasing attacks. 141

2 Related Work 142

Software Watermarking Software watermarking 143

is the research field where a secret signal is em- 144

bedded in the code without affecting its perfor- 145

mance, to prevent software piracy. Static water- 146

marking (Hamilton and Danicic, 2011; Li and Liu, 147

2010; Myles et al., 2005) imprints watermarks typ- 148

ically through code replacement and reordering. 149

2

On the other hands, dynamic watermarking (Wang150

et al., 2018; Ma et al., 2019) injects watermarks151

during the compiling or executing stage of a pro-152

gram. For a detailed survey, please refer to Dey153

et al. (2018).154

Watermarking code text generated from a LLM155

is closer to static watermarking. For example, Li156

et al. (2023c) proposes a method employing the157

replacement of synonymous code. However, since158

this method heavily relies on language-specific159

rules, a malicious user knowing these rules could160

reverse the watermarking.161

LLM Text Watermarking The majority of wa-162

termarking methods for texts from LLMs are based163

on the modification of the original text via a prede-164

fined set of rules (Atallah et al., 2001, 2002; Kim165

et al., 2003; Topkara et al., 2006; Jalil and Mirza,166

2009; Meral et al., 2009; He et al., 2022a,b) or an-167

other language model, such as transformer-based168

networks. (Abdelnabi and Fritz, 2021; Yang et al.,169

2022; Yoo et al., 2023).170

Recently, a line of work embeds watermarks into171

tokens during the sampling process of LLMs (Liu172

et al., 2024). They embed watermarks within LLM-173

generated texts by either motifying logits from174

the LLM (Kirchenbauer et al., 2023a,b; Liu et al.,175

2023a; Takezawa et al., 2023; Hu et al., 2023) or176

manipulating the sampling procedure (Christ et al.,177

2023; Kuditipudi et al., 2023). Moreover, some re-178

cent works focus on the robustness of watermarks179

against attacks to remove watermarks (Zhao et al.,180

2023; Liu et al., 2023b; Ren et al., 2023). Lastly,181

Gu et al. (2023) investigates the learnability of wa-182

termarks in the distillation process from teacher to183

student model.184

However, these watermark methods exhibit vul-185

nerability in their watermark detection performance186

under low entropy situations (Kirchenbauer et al.,187

2023a; Kuditipudi et al., 2023), and a limited num-188

ber of studies, such as CTWL (Wang et al., 2023),189

try to handle it. We directly address the degradation190

of watermark detection performance in low entropy191

situations and demonstrate our method’s efficacy192

in low entropy tasks, such as code generation.193

Post-hoc Detection Post-hoc detection methods194

aim to differentiate between human-authored and195

machine-generated text without embedding any196

signal during generation. One line of work lever-197

ages perplexity-based features like GPTZero (Tian198

and Cui, 2023), Sniffer (Li et al., 2023a), and199

LLMDet (Wu et al., 2023). Another line of work200

uses pre-trained LM, such as RoBERTa (Liu et al.,201

2019), and fine-tunes it as a classifier to identify 202

the source of text (Solaiman et al., 2019; Ippolito 203

et al., 2020; OpenAI, 2023b; Guo et al., 2023; 204

Yu et al., 2023; Mitrović et al., 2023). Mean- 205

while, some recent works tackle the detection 206

problem without additional training procedures, 207

such as GLTR (Gehrmann et al., 2019), Detect- 208

GPT (Mitchell et al., 2023), and DNA-GPT (Yang 209

et al., 2023). However, post-hoc detection meth- 210

ods remain challenging. For example, while the 211

GPTZero (Tian and Cui, 2023) is still in service, 212

OpenAI’s AI text classifier (OpenAI, 2023b) was 213

discontinued after six months due to low accu- 214

racy rates. Furthermore, we have demonstrated 215

that post-hoc detection methods failed to detect 216

machine-generated code, with low entropy. 217

3 Method 218

We propose a new watermarking method, SWEET, 219

that selectively watermarks tokens only with high 220

enough entropy. 221

3.1 Motivation 222

Although the previous watermarking method 223

WLLM (Kirchenbauer et al., 2023a) can be applied 224

to any domain of LLM-generated text5, it incurs 225

two critical problems during embedding and detect- 226

ing watermarks in code generation, attributed to a 227

dilemma regarding watermark strength. 228

Watermarking causes performance degrada- 229

tion. There are only a few different ways of ex- 230

pressing the same meaning in a programming lan- 231

guage, and just one wrong token can be attributed 232

to undesirable outputs. If watermarks are embed- 233

ded strongly, as WLLM randomly divides the vo- 234

cabulary into green and red lists without leveraging 235

any information about the context, promoting the 236

logits of only green list tokens must heighten the 237

chance of generating the wrong token. For ex- 238

ample, in Figure 2 (a), after “return” token in the 239

second row, the next token with the highest logit 240

is “sum”, which is also part of the canonical solu- 241

tion. However, WLLM puts “sum” into the red list 242

while putting “mean” into the green list. Hence, the 243

sampled token was “mean”, resulting in a syntax 244

error. 245

Low Entropy Sequences Avoid Being Water- 246

marked. Another critical issue is when watermark 247

strength is too weak to embed watermarks into a 248

text with low entropy. If a red list token has a too 249

5Please refer to Appendix A for the details of WLLM.

3

(a) WLLMQuestion (HumanEval[4])

(b) SWEET – Entropy Threshold (Low)

Canonical solution

(d) SWEET – Entropy Threshold (High)(c) SWEET – Entropy Threshold (Moderate)

Correctness: / z-score: 2.45 / watermarking ratio: 1.0❌

Correctness: / z-score: 3.39 / watermarking ratio: 0.44❌

Correctness: / z-score: 4.67 / watermarking ratio: 0.19✅Correctness: / z-score: 4.96 / watermarking ratio: 0.20✅

Figure 2: A real example of HumanEval/4 for comparing between (a) WLLM and (b)–(d) our SWEET with different
thresholds. Text colors annotate whether tokens are in the green or red list. Gray tokens have entropy smaller
than the threshold and are not watermarked. The intensity of the yellow background color visualizes the entropy
value. (a) While WLLM produces an incorrect code and less detectable watermarks with a few green tokens
(low z-score), (b)-(d) SWEET improves both code quality and z-score by selectively embedding and detecting
watermarks using an entropy threshold. Interestingly, (c) the z-score peaks with a moderate threshold, and (d) as the
threshold increases, the z-score declines due to the decrease in the watermarking ratio.

high logit value to be inevitably generated, it hin-250

ders watermark detection. For example, in Figure 2251

(a), tokens with white backgrounds representing252

low entropy have few green tokens. This becomes253

much more fatal in code generation tasks where254

outcomes are relatively shorter than the plain text,255

such as asking only a code block of a function6.256

The WLLM detection method is based on a sta-257

tistical test, which involves counting the number258

of green list tokens in the entire length. However259

detecting watermarks based on a statistical test de-260

teriorates if the length is short.7261

3.2 The SWEET Method262

SWEET can mitigate this dilemma regarding the263

watermark strength by distinguishing watermark-264

applicable tokens, meaning we embed and detect265

watermarks only within tokens with high entropy.266

Generation. The generation step of our method267

is in Algorithm 1. Given a tokenized prompt268

x = {x0, . . . , xM−1} and already generated to-269

kens y[:t] = {y0, . . . , yt−1}, a model calculates an270

entropy value (Ht) of the probability distribution271

for yt. We then only apply the watermarking when272

6The average token length of human-written solution codes
in HumanEval, MBPP, and DS-1000 datasets is only 57.

7We measured detectability according to the length of
generated texts and observed that WLLM performs rela-
tively poorly while SWEET is robust in detecting water-
marks within short texts. For more details, please refer to
Appendix E.

Ht is higher than the threshold, τ . We randomly 273

bin a vocabulary by green and red with a fixed 274

green token ratio γ. If a token is selected to be 275

watermarked, we add a constant δ to green tokens’ 276

logits, aiming to promote the sampling of the green 277

tokens. By limiting the promotion of green tokens 278

only to tokens with high entropy, we prevent the 279

model’s logit distribution changes for tokens where 280

the model has confidence (and, therefore, low en- 281

tropy), resulting in preserving code quality. 282

Detection. We outline our detection process 283

in Algorithm 2. Given a token sequence y = 284

{y0, . . . , yN−1}, our task is to detect watermarks 285

within y; therefore, determine whether it is gen- 286

erated from the specific language model. Like in 287

the generation phase, we compute the entropy val- 288

ues Ht for each yt. Let Nh denote the number of 289

tokens that have an entropy value Ht higher than 290

the threshold τ , and let Nh
G denote the number of 291

green tokens among in Nh. Finally, with the green 292

list ratio among entire vocabulary γ used in the 293

generation step, we compute a z-score under the 294

null hypothesis where the text is not watermarked 295

by 296

z =
Nh

G − γNh√
Nhγ(1− γ)

(1) 297

We can say the text is watermarked more confi- 298

dently as z-score goes higher. We set zthreshold as a 299

cut-off score. If z > zthreshold holds, we decide that 300

4

the watermark is embedded in y and thus generated301

by the LLM. The effect of the entropy threshold in302

the detection phase is described in the following303

section.304

3.3 Effect of Entropy Thresholding305

This section shows that selective watermark detec-306

tion based on the entropy threshold improves the307

detectability.308

Theorem 1 implies that we can ensure a higher309

lower bound of z-score by the SWEET detection310

method than WLLM. Recalling Sec 3.1, this is311

achieved by ignoring tokens with low entropy, lead-312

ing to increases in the ratio of green tokens within313

the text and detectability.314

For the sake of theoretical analysis, we use spike315

entropy (Eq. 4), which is a variant of entropy de-316

fined in Kirchenbauer et al. (2023a). In practice,317

we use the entropy in Eq. 5.318

Theorem 1. Consider a token sequence y =319

{y0, . . . , yN−1} generated by a watermarked code320

LLM. (S0, . . . , SN−1) is a sequence of corre-321

sponding spike entropy, in which the modulus is322
(1−γ)(eδ−1)
1+(eδ−1)γ

. Let τ be an entropy threshold, N l and323

Nh be the number of tokens whose spike entropy is324

lower or higher than the threshold.325

If the following assumption regarding the ratio326

of low entropy tokens holds327

N l

N
≤ 1− (

αS − 1

αSh − 1
)2328

then there is a lower bound of z-score that is329

always higher when the entropy threshold is ap-330

plied, where α = eδ

1+(eδ−1)γ
, S = ΣN

t=1St/N , and331

Sh = ΣN
t=1St × 1(St ≥ τ)/Nh.332

Remark. The assumption means choosing an333

entropy threshold that does not ignore too many334

tokens (N l) is important.335

4 Experiments336

We conduct a series of experiments to evaluate the337

effectiveness of our watermarking method in code338

generation for two aspects: (i) quality preserving339

ability and (ii) detection strength. Our base model340

is StarCoder (Li et al., 2023b), which is an open-341

source LLM specifically for code generation. We342

also conduct experiments on one of the general-343

purpose LLM, LLaMA2 (Touvron et al., 2023) (see344

the results in Appendix F).345

4.1 Tasks and Metrics 346

We select three python code generation tasks, Hu- 347

manEval (Chen et al., 2021), MBPP (Austin et al., 348

2021), and DS-1000 (Lai et al., 2023), as our 349

testbeds. These tasks contain python programming 350

problems, test cases, and human-written canonical 351

answers. Language model is prompted with pro- 352

gramming problems and expected to generate the 353

correct code that can pass the test cases. 354

To evaluate the functional quality of generated 355

source code, we use pass@k (Chen et al., 2021) by 356

generating n(> k) outputs for each programming 357

problems. This metric estimates the percentage 358

of code generated correctly-performing. For the 359

detection ability, we use AUROC (i.e., Area Under 360

ROC) value as a main metric. We also report the 361

true positive rate (TPR; correctly detecting LLM- 362

generated code as LLM-generated) when the false 363

positive rate (FPR; falsely detecting human-written 364

code as LLM-generated) is confined to be lower 365

than 5%. This is to observe the detection ratio of a 366

practical setting, where high false positive is more 367

undesirable than false negative. 368

4.2 Baselines 369

We compare SWEET with machine-generated 370

text detection baselines. Post-hoc detection base- 371

lines do not need any modification during gener- 372

ation so that they never impair the quality of the 373

model output. LOGP(X), LOGRANK (Gehrmann 374

et al., 2019), and DETECTGPT (Mitchell et al., 375

2023) are zero-shot detection methods that need 376

no labeled datasets. GPTZERO (Tian and Cui, 377

2023) and OPENAI CLASSIFIER (Solaiman et al., 378

2019) are trained classifiers. For Watermarking- 379

based methods, we have included two base- 380

lines: WLLM (Kirchenbauer et al., 2023a) and 381

EXP-EDIT (Kuditipudi et al., 2023). To embed a 382

watermark, methods that distort the model’s sam- 383

pling distribution, such as WLLM or ours, tend to 384

have better detection ability, but degradation of text 385

quality may arise. On the other hand, EXP-EDIT 386

is expected to cause no degradation in text quality 387

as they do not distort the sampling distribution of 388

the model.8 More details of implementation are in 389

Appendix D. 390

8When evaluating code generation performance through
pass@1, a low temperature was applied to all models. How-
ever, the spiky distribution resulting from the low temperature
hindered EXP-EDIT from adequately embedding watermark-
ing. Therefore, we have also included EXP-EDIT baseline
with a high entropy by setting temperature=1.0 and top-p=1.0.

5

Method HUMANEVAL MBPP DS-1000

PASS@1 AUROC TPR FPR pass@1 AUROC TPR FPR pass@1 AUROC TPR FPR

Non-watermarked 33.4 - - - 37.8 - - - 26.3 - - -
Non-watermarked (w/ high entropy) 18.3 - - - 21.4 - - - 12.7 - - -

Post-hoc

LOG P(X)

33.4

0.533 0.113 < 0.05

37.8

0.525 0.054 < 0.05

26.3

0.566 0.100 < 0.05
LOGRANK 0.553 0.127 < 0.05 0.527 0.052 < 0.05 0.562 0.105 < 0.05

DETECTGPT (T5-3B) 0.549 0.092 < 0.05 0.531 0.040 < 0.05 0.433 0.070 < 0.05
DETECTGPT 0.533 0.165 < 0.05 0.565 0.158 < 0.05 0.606 0.113 < 0.05

GPTZERO 0.521 0.122 < 0.05 0.449 0.026 < 0.05 0.539 0.063 < 0.05
OPENAI CLASSIFIER 0.518 0.053 < 0.05 0.500 0.036 < 0.05 0.524 0.075 < 0.05

Watermarking

EXP-EDIT 33.6 0.489 0.085 < 0.05 37.5 0.536 0.044 < 0.05 26.2 0.546 0.066 < 0.05
EXP-EDIT (w/ high entropy) 19.3 0.733 0.427 < 0.05 22.7 0.744 0.33 < 0.05 12.7 0.743 0.378 < 0.05

WLLM (∆PASS@1 ∼ −10%)⋆ 29.6 0.822 0.402 < 0.05 34.5 0.718 0.178 < 0.05 23.9 0.627 0.152 < 0.05
SWEET (∆PASS@1 ∼ −10%)⋆ 32.6 0.943 0.835 < 0.05 33.8 0.873 0.590 < 0.05 23.7 0.815 0.384 < 0.05

WLLM (AUROC≥ 0.9)† 25.3 0.904 0.652 < 0.05 24.2 0.930 0.718 < 0.05 8.6 0.944 0.793 < 0.05
SWEET (AUROC≥ 0.9)† 32.6 0.943 0.835 < 0.05 33.2 0.906 0.548 < 0.05 18.8 0.924 0.649 < 0.05

Table 1: Main results of code generation performance and detection ability. Since calibration on watermarking
strength leads to trade-offs between code generation quality and detection ability, we present two results for WLLM
and SWEET. ⋆ for the best detection score (i.e., AUROC and TPR) while allowing a code generation quality
decrease of ∼10% compared to Non-watermarked, and † for the best code generation quality (PASS@1) among
AUROC ≥ 0.9. The selected points are shown in Figure 3. We add EXP-EDIT and a Non-watermarked baseline
with a high entropy setting (i.e., temperature=1.0 and top-p=1.0) since EXP-EDIT hardly detects watermarking in
low entropy environments.

Figure 3: The tradeoff between AUROC and pass@1 of detecting real and generated samples of HumanEval, MBPP,
and DS-1000 datasets. The pink line represents a Pareto frontier of SWEET, while the blue line represents that
of WLLM. SWEET shows consistent dominance. The red/orange line and circles are the points used in Table 1.
The entropy threshold value used for SWEET is 1.2 here, and Pareto frontier figures for all threshold values are in
Figure 6.

5 Results391

5.1 Main Results392

Table 1 presents results from all baselines and our393

approach. In WLLM and SWEET, there is a clear394

trade-off between detection and code generation395

ability depending on the watermarking strength.396

Therefore, we measure the maximum scores of397

one domain while setting a lower bound for the398

scores of other domain. Specifically, to measure399

AUROC scores, we find the best AUROC scores400

around 90% of the pass@1 performance of the non-401

watermarked base model. On the other hand, for402

measuring pass@1, we select from those with an 403

AUROC of 0.9 or higher. 404

Detection Performance. Table 1 shows that 405

overall, our SWEET method outperforms all base- 406

lines in detecting machine-generated code with 407

a price of 10% degradation of code functional- 408

ity. Both in the MBPP and DS-1000 datasets, 409

SWEET achieves AUROC of 0.873 and 0.815, 410

respectively, whereas none of the baselines ex- 411

ceeded 0.8. SWEET even achieves an AUROC 412

of 0.943 in HumanEval with a 2.4% degradation 413

of code functionality. However, when only near 414

10% degradation of code functionality is allowed, 415

6

WLLM shows lower detection performance than416

our method. In the case of the distortion-free wa-417

termarking method, due to the lower entropy of the418

code generation task, EXP-EDIT fails to achieve419

an AUROC score exceeding 0.6 in all cases, and420

even EXP-EDIT with high entropy setting could421

not outperform our methods with regard of the de-422

tection performance. While all post-hoc detection423

baselines preserve code functionality as they do not424

modify generated code, none of them achieve an425

AUROC score above 0.6.9426

Code Quality Preservation. In the last two427

rows of Table 1, despite the inevitable text qual-428

ity degradation caused by WLLM and SWEET,429

our SWEET method preserves code functional-430

ity much more while maintaining the high detec-431

tion ability of AUROC > 0.9 when compared to432

WLLM. Specifically, pass@1 of WLLM for Hu-433

manEval decreases from 33.4 to 25.3, a 24.3% loss434

in the code execution pass rate. Similarly, for the435

MBPP and the DS-1000 dataset, the drops in per-436

formances are 36.0% and 67.3%, respectively. On437

the other hand, our approach loses only 2.4% (Hu-438

manEval), 12.2% (MBPP), and 28.5% (DS-1000),439

respectively, which are significantly less than those440

of WLLM.441

5.2 Comparison of Pareto Frontiers442

between SWEET and WLLM443

In the cases of SWEET and WLLM, watermark-444

ing strength and spans can vary depending on the445

ratio of the green list tokens γ and the logit increase446

value δ. To demonstrate that SWEET consistently447

outperforms the baseline WLLM regardless of the448

values of γ and δ, we draw Pareto frontier curves449

with axes pass@1 and AUROC in Figure 3. We ob-450

serve that the Pareto frontiers of SWEET are ahead451

of those of WLLM in all three tasks. Moreover,452

as presented in Figure 6, whatever value our ap-453

proach chooses for the entropy threshold, SWEET454

outperforms the baseline in all configurations. This455

indicates that in a wide range of hyperparameter456

settings, our SWEET model can generate better457

results in terms of detection and code generation458

ability. Full results and different settings are in459

Appendix F.460

9We defer a more in-depth discussion about the breakdown
of Post-hoc methods to Appendix J.

6 Analysis 461

6.1 Impact of Entropy Thresholds 462

Figure 4 presents how code generation performance 463

and detecting ability trade-off when calibrating the 464

entropy threshold in our method. WLLM is when 465

the entropy threshold is not applied (i.e., entropy 466

threshold=0). As the entropy threshold increases, 467

the ratio of watermarked tokens decreases, so the 468

code generation performance converges to a non- 469

watermarked base model. This indicates that our 470

method always lies between the WLLM and a non- 471

watermarked base model in terms of code genera- 472

tion performance. On the other hand, the detection 473

ability, as the entropy threshold increases, reaches 474

a local maximum but eventually declines. While 475

our method with a moderate threshold effectively 476

restricts generating the red list tokens compared to 477

the WLLM, detection ability eventually decreases 478

if the threshold is so high that few tokens are wa- 479

termarked. 480

6.2 Detection Ability without Prompts 481

As entropy information is required in the detec- 482

tion phase, approximating entropy values for each 483

generation time step t is essential in our method. 484

In the main experiments, we prepend the prompt 485

used in the generation phase (e.g., the question 486

of Fig. 2) before the target code to reproduce 487

the same entropy. However, we hardly know the 488

prompt used for a given target code in the real 489

world. Thus, instead of using the gold prompt, 490

we attach a common and general prompt for code 491

generation to approximate the entropy information, 492

such as "def solution(*args): """Generate 493

a solution"""". We use five general prompts 494

(see Appendix G), and their z-scores are averaged 495

for use in detection. 496

Figure 7 demonstrates how the detection abil- 497

ity varies when using general prompts in the Hu- 498

manEval dataset. SWEET with general prompts 499

shows lower AUROC values than the original 500

SWEET, indicating inaccurately approximated en- 501

tropy information impairs detection ability. Never- 502

theless, it still outperforms the WLLM baseline re- 503

garding detection ability, drawing a Pareto frontier 504

ahead of WLLM in all entropy threshold values. 505

6.3 Use of Surrogate Model 506

When detecting watermarks in a text, utilizing a 507

smaller LM as a surrogate could be more compu- 508

tationally efficient and cost-effective (Wang et al., 509

7

Figure 4: Plots of code quality pass@1 and detection
AUROC when calibrating the entropy threshold of our
methods, SWEET, on the three code benchmarks. We
set γ = 0.25 and δ = 3.0. While code generation
performance increases with a higher entropy threshold,
detection AUROC scores make an up-and-down curve.

2023). We investigate the impact of employing510

this surrogate model during the detection phase.511

Specifically, we generate watermarked code using512

the original model (LLaMA2-13B) and detect wa-513

termarks using a smaller model (LLaMA2-7B).514

In the results of Figure 9, the detection perfor-515

mance declines are insignificant, and our approach516

utilizing the surrogate model continues to surpass517

the baseline. Such performance preservation may518

be due to that LLaMA2 7B and 13B are trained519

on the identical training corpus (Touvron et al.,520

2023). Further analysis for computational cost can521

be found in Appendix H.522

6.4 Robustness to Variable Renaming523

Even with the text watermarked, a malicious user524

might attempt to remove watermarks in the text by525

paraphrasing (Krishna et al., 2023; Sadasivan et al.,526

2023). Paraphrasing the code text is more restric- 527

tive than dealing with plain text because it must 528

avoid triggering any code malfunctions. We assess 529

the robustness of watermarking methods against 530

paraphrasing by employing a straightforward ap- 531

proach - changing the names of variables. Specifi- 532

cally, we select variables in the watermarked code 533

and rename them with randomly generated strings 534

of varying lengths, ranging from 2 to 5 characters. 535

Figure 10 presents the results of the detection 536

performance on the renamed variables in the code. 537

All watermarking methods show the decline of AU- 538

ROC scores when more variables are renamed, 539

while our approaches continue to show better 540

performances than baselines. However, our ap- 541

proaches also show that the AUROC scores drop 542

to about 0.8 when all variables are renamed. We 543

found that this is because variable names comprise 544

a large proportion of high entropy tokens in the 545

code text (See Appendix I for details). 546

7 Conclusion 547

We identified and emphasized the need for Code 548

LLM watermarking, and formalized it for the first 549

time. Despite the rapid advance of coding ca- 550

pability of LLMs, the necessary measures to en- 551

courage the safe usage of code generation models 552

have not been implemented yet. Our experiments 553

showed that existing watermarking and detection 554

techniques failed to properly operate under the 555

code generation setting. The failure occurred in 556

two modes: either 1) the code does not watermark 557

properly (hence, cannot be detected), or 2) the wa- 558

termarked code failed to properly execute (degra- 559

dation of quality). Our proposed method SWEET, 560

on the other hand, improved both of these failure 561

modes to a certain extent by introducing selective 562

entropy thresholding which filters tokens that are 563

least relevant to execution quality. In code gener- 564

ation tasks, our method performs better than base- 565

lines, including post-hoc detection methods, while 566

achieving less code quality degradation. More- 567

over, comprehensive analysis demonstrates that 568

our method still works well in real-world settings, 569

specifically when the prompts are not given, uti- 570

lizing even a smaller surrogate model, or under 571

paraphrasing attacks. 572

Limitations 573

We identify limitations of this work and suggest 574

ways to mitigate them. We want to note that these 575

8

limitations are not weaknesses of our work as they576

are shared by the status quo of this field.577

The first one is about the robustness issue. As578

users can tailor LLM’s code to their specific needs,579

it is crucial to be robust against any kind of para-580

phrasing attacks. Though such robustness is not the581

focus of this work, we acknowledge the importance582

of robustness and leave it for future work.583

The necessity to calibrate an additional hyper-584

parameter, the entropy threshold, for our method585

could pose another limitation. While we demon-586

strate that our method with a moderate threshold587

value outperforms the baselines (see Sec 6.1), the588

imperative manual procedure of selecting the en-589

tropy threshold demands additional computational590

expenses.591

Furthermore, during detection, we also need the592

source Code LLM, hence this method works only593

in a completely white-box setting. Although it has594

been shown that employing even a smaller surro-595

gate LM can still maintain the detection perfor-596

mances to some degree (see Sec 6.3), this can be a597

computational burden for some users who want to598

apply our work.599

Ethical Statement600

Although watermarking methods are designed to601

address all potential misuse of LLMs by detecting602

machine-generated texts, they can simultaneously603

pose a new risk. For example, if a watermarking604

mechanism for a specific LLM is leaked to the pub-605

lic, a malicious user aware of this mechanism could606

abuse the watermarks to create unethical texts em-607

bedded with the model’s watermarks. To prevent608

such scenarios, we recommend that all users exer-609

cise caution to avoid exposing the detailed mecha-610

nism, such as the key value for the hash function611

used to divide green and red lists in our method.612

References613

Sahar Abdelnabi and Mario Fritz. 2021. Adversarial wa-614
termarking transformer: Towards tracing text prove-615
nance with data hiding. In 2021 IEEE Symposium616
on Security and Privacy (SP), pages 121–140. IEEE,617
IEEE.618

Mikhail J. Atallah, Victor Raskin, Michael Crogan,619
Christian Hempelmann, Florian Kerschbaum, Dina620
Mohamed, and Sanket Naik. 2001. Natural lan-621
guage watermarking: Design, analysis, and a proof-622
of-concept implementation. In Information Hiding,623
pages 185–200. Springer, Springer Berlin Heidel-624
berg.625

Mikhail J. Atallah, Victor Raskin, Christian F. Hempel- 626
mann, Mercan Karahan, Radu Sion, Umut Topkara, 627
and Katrina E. Triezenberg. 2002. Natural language 628
watermarking and tamperproofing. In Information 629
Hiding, pages 196–212. Springer, Springer Berlin 630
Heidelberg. 631

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 632
Bosma, Henryk Michalewski, David Dohan, Ellen 633
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 634
Program synthesis with large language models. arXiv 635
preprint arXiv:2108.07732. 636

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, 637
John Schulman, Christine McLeavey, Jerry Tworek, 638
and Mark Chen. 2022. Efficient training of lan- 639
guage models to fill in the middle. arXiv preprint 640
arXiv:2207.14255. 641

Nicholas Carlini, Florian Tramer, Eric Wallace, 642
Matthew Jagielski, Ariel Herbert-Voss, Katherine 643
Lee, Adam Roberts, Tom B Brown, Dawn Song, Ul- 644
far Erlingsson, et al. 2021. Extracting training data 645
from large language models. In USENIX Security 646
Symposium, volume 6. 647

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 648
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 649
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 650
Greg Brockman, et al. 2021. Evaluating large 651
language models trained on code. arXiv preprint 652
arXiv:2107.03374. 653

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un- 654
detectable watermarks for language models. arXiv 655
preprint arXiv:2306.09194. 656

Ayan Dey, Sukriti Bhattacharya, and Nabendu Chaki. 657
2018. Software watermarking: Progress and chal- 658
lenges. INAE Letters, 4(1):65–75. 659

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 660
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, 661
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder: 662
A generative model for code infilling and synthesis. 663
In International Conference on Learning Representa- 664
tions. 665

Sebastian Gehrmann, Hendrik Strobelt, and Alexander 666
Rush. 2019. GLTR: Statistical detection and visual- 667
ization of generated text. In Proceedings of the 57th 668
Annual Meeting of the Association for Computational 669
Linguistics: System Demonstrations, pages 111–116, 670
Florence, Italy. Association for Computational Lin- 671
guistics. 672

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tat- 673
sunori Hashimoto. 2023. On the learnability of 674
watermarks for language models. arXiv preprint 675
arXiv:2312.04469. 676

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 677
César Teodoro Mendes, Allie Del Giorno, Sivakanth 678
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 679
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 680
you need. arXiv preprint arXiv:2306.11644. 681

9

https://doi.org/10.1109/sp40001.2021.00083
https://doi.org/10.1109/sp40001.2021.00083
https://doi.org/10.1109/sp40001.2021.00083
https://doi.org/10.1109/sp40001.2021.00083
https://doi.org/10.1109/sp40001.2021.00083
https://doi.org/10.1007/3-540-45496-9_14
https://doi.org/10.1007/3-540-45496-9_14
https://doi.org/10.1007/3-540-45496-9_14
https://doi.org/10.1007/3-540-45496-9_14
https://doi.org/10.1007/3-540-45496-9_14
https://doi.org/10.1007/3-540-36415-3_13
https://doi.org/10.1007/3-540-36415-3_13
https://doi.org/10.1007/3-540-36415-3_13
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/s41403-018-0058-8
https://doi.org/10.1007/s41403-018-0058-8
https://doi.org/10.1007/s41403-018-0058-8
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://doi.org/10.18653/v1/p19-3019
https://doi.org/10.18653/v1/p19-3019
https://doi.org/10.18653/v1/p19-3019

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,682
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng683
Wu. 2023. How close is chatgpt to human experts?684
comparison corpus, evaluation, and detection. arXiv685
preprint arXiv:2301.07597.686

James Hamilton and Sebastian Danicic. 2011. A687
survey of static software watermarking. In 2011688
World Congress on Internet Security (WorldCIS-689
2011), pages 100–107. IEEE, IEEE.690

Julian Hazell. 2023. Large language models can be used691
to effectively scale spear phishing campaigns. arXiv692
preprint arXiv:2305.06972.693

Jingxuan He and Martin Vechev. 2023. Large language694
models for code: Security hardening and adversarial695
testing. arXiv preprint arXiv:2302.05319.696

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu,697
and Chenguang Wang. 2022a. Protecting intellectual698
property of language generation apis with lexical699
watermark. In Proceedings of the AAAI Conference700
on Artificial Intelligence, volume 36, pages 10758–701
10766.702

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu,703
Fangzhao Wu, Jiwei Li, and Ruoxi Jia. 2022b. Cater:704
Intellectual property protection on text generation705
apis via conditional watermarks. Advances in Neural706
Information Processing Systems, 35:5431–5445.707

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and708
Yejin Choi. 2020. The curious case of neural text de-709
generation. In International Conference on Learning710
Representations.711

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,712
Hongyang Zhang, and Heng Huang. 2023. Unbiased713
watermark for large language models. arXiv preprint714
arXiv:2310.10669.715

Daphne Ippolito, Daniel Duckworth, Chris Callison-716
Burch, and Douglas Eck. 2020. Automatic detec-717
tion of generated text is easiest when humans are718
fooled. In Proceedings of the 58th Annual Meeting of719
the Association for Computational Linguistics, pages720
1808–1822, Online. Association for Computational721
Linguistics.722

Zunera Jalil and Anwar M. Mirza. 2009. A review of723
digital watermarking techniques for text documents.724
In 2009 International Conference on Information and725
Multimedia Technology, pages 230–234. IEEE, IEEE.726

Young-Won Kim, Kyung-Ae Moon, and Il-Seok Oh.727
2003. A text watermarking algorithm based on word728
classification and inter-word space statistics. In Sev-729
enth International Conference on Document Analysis730
and Recognition, 2003. Proceedings., pages 775–779.731
Citeseer, IEEE Comput. Soc.732

John Kirchenbauer, Jonas Geiping, Yuxin Wen,733
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023a.734
A watermark for large language models. The Fortieth735
International Conference on Machine Learning.736

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli 737
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fer- 738
nando, Aniruddha Saha, Micah Goldblum, and Tom 739
Goldstein. 2023b. On the reliability of water- 740
marks for large language models. arXiv preprint 741
arXiv:2306.04634. 742

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, 743
John Wieting, and Mohit Iyyer. 2023. Paraphras- 744
ing evades detectors of ai-generated text, but re- 745
trieval is an effective defense. arXiv preprint 746
arXiv:2303.13408. 747

Rohith Kuditipudi, John Thickstun, Tatsunori 748
Hashimoto, and Percy Liang. 2023. Robust 749
distortion-free watermarks for language models. 750
arXiv preprint arXiv:2307.15593. 751

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 752
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih, 753
Daniel Fried, Sida Wang, and Tao Yu. 2023. DS- 754
1000: A natural and reliable benchmark for data sci- 755
ence code generation. In Proceedings of the 40th 756
International Conference on Machine Learning, vol- 757
ume 202 of Proceedings of Machine Learning Re- 758
search, pages 18319–18345. PMLR. 759

Jun Li and Quan Liu. 2010. Design of a software wa- 760
termarking algorithm based on register allocation. In 761
2010 2nd International Conference on E-business 762
and Information System Security, pages 1–4. IEEE, 763
IEEE. 764

Linyang Li, Pengyu Wang, Ke Ren, Tianxiang Sun, and 765
Xipeng Qiu. 2023a. Origin tracing and detecting of 766
llms. arXiv preprint arXiv:2304.14072. 767

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 768
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 769
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 770
2023b. Starcoder: may the source be with you! 771
arXiv preprint arXiv:2305.06161. 772

Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun 773
Gao. 2023c. Protecting intellectual property of large 774
language model-based code generation apis via wa- 775
termarks. In Proceedings of the 2023 ACM SIGSAC 776
Conference on Computer and Communications Secu- 777
rity, pages 2336–2350. 778

Aiwei Liu, Leyi Pan, Xuming Hu, Shu’ang Li, Lijie 779
Wen, Irwin King, and Philip S. Yu. 2023a. An un- 780
forgeable publicly verifiable watermark for large lan- 781
guage models. 782

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and 783
Lijie Wen. 2023b. A semantic invariant robust wa- 784
termark for large language models. arXiv preprint 785
arXiv:2310.06356. 786

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming 787
Hu, Lijie Wen, Irwin King, and Philip S. Yu. 2024. 788
A survey of text watermarking in the era of large 789
language models. 790

10

https://arxiv.org/abs/2301.07597
https://arxiv.org/abs/2301.07597
https://arxiv.org/abs/2301.07597
https://doi.org/10.1109/worldcis17046.2011.5749891
https://doi.org/10.1109/worldcis17046.2011.5749891
https://doi.org/10.1109/worldcis17046.2011.5749891
https://arxiv.org/abs/2305.06972
https://arxiv.org/abs/2305.06972
https://arxiv.org/abs/2305.06972
https://arxiv.org/abs/2302.05319
https://arxiv.org/abs/2302.05319
https://arxiv.org/abs/2302.05319
https://arxiv.org/abs/2302.05319
https://arxiv.org/abs/2302.05319
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.1109/icimt.2009.11
https://doi.org/10.1109/icimt.2009.11
https://doi.org/10.1109/icimt.2009.11
https://doi.org/10.1109/icdar.2003.1227767
https://doi.org/10.1109/icdar.2003.1227767
https://doi.org/10.1109/icdar.2003.1227767
https://arxiv.org/abs/2301.10226
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1109/ebiss.2010.5473660
https://doi.org/10.1109/ebiss.2010.5473660
https://doi.org/10.1109/ebiss.2010.5473660
https://arxiv.org/abs/2304.14072
https://arxiv.org/abs/2304.14072
https://arxiv.org/abs/2304.14072
https://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2307.16230
http://arxiv.org/abs/2307.16230
http://arxiv.org/abs/2307.16230
http://arxiv.org/abs/2307.16230
http://arxiv.org/abs/2307.16230
http://arxiv.org/abs/2312.07913
http://arxiv.org/abs/2312.07913
http://arxiv.org/abs/2312.07913

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-791
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,792
Luke Zettlemoyer, and Veselin Stoyanov. 2019.793
Roberta: A robustly optimized bert pretraining ap-794
proach. arXiv preprint arXiv:1907.11692.795

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-796
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,797
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:798
Empowering code large language models with evol-799
instruct. arXiv preprint arXiv:2306.08568.800

Haoyu Ma, Chunfu Jia, Shijia Li, Wantong Zheng,801
and Dinghao Wu. 2019. Xmark: Dynamic soft-802
ware watermarking using collatz conjecture. IEEE803
Transactions on Information Forensics and Security,804
14(11):2859–2874.805

Hasan Mesut Meral, Bülent Sankur, A. Sumru Özsoy,806
Tunga Güngör, and Emre Sevinç. 2009. Natural lan-807
guage watermarking via morphosyntactic alterations.808
Computer Speech & Language, 23(1):107–125.809

Yisroel Mirsky, Ambra Demontis, Jaidip Kotak, Ram810
Shankar, Deng Gelei, Liu Yang, Xiangyu Zhang,811
Maura Pintor, Wenke Lee, Yuval Elovici, and Bat-812
tista Biggio. 2023. The threat of offensive AI to813
organizations. Computers & Security, 124:103006.814

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,815
Christopher D Manning, and Chelsea Finn. 2023. De-816
tectgpt: Zero-shot machine-generated text detection817
using probability curvature. The Fortieth Interna-818
tional Conference on Machine Learning.819

Sandra Mitrović, Davide Andreoletti, and Omran Ay-820
oub. 2023. Chatgpt or human? detect and explain.821
explaining decisions of machine learning model for822
detecting short chatgpt-generated text.823

Ginger Myles, Christian Collberg, Zachary Heidepriem,824
and Armand Navabi. 2005. The evaluation of two825
software watermarking algorithms. Software: Prac-826
tice and Experience, 35(10):923–938.827

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan828
Wang, Yingbo Zhou, Silvio Savarese, and Caiming829
Xiong. 2023. Codegen: An open large language830
model for code with multi-turn program synthesis. In831
The Eleventh International Conference on Learning832
Representations.833

OpenAI. 2023a. Gpt-4 technical report. OpenAI Blog.834

OpenAI. 2023b. New ai classifier for indicating ai-835
written text. OpenAI Blog.836

Hammond Pearce, Baleegh Ahmad, Benjamin Tan,837
Brendan Dolan-Gavitt, and Ramesh Karri. 2022.838
Asleep at the keyboard? assessing the security of839
GitHub copilot’s code contributions. In 2022 IEEE840
Symposium on Security and Privacy (SP), pages 754–841
768. IEEE, IEEE.842

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang 843
Wang, Dawei Yin, and Jiliang Tang. 2023. A 844
robust semantics-based watermark for large lan- 845
guage model against paraphrasing. arXiv preprint 846
arXiv:2311.08721. 847

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala- 848
subramanian, Wenxiao Wang, and Soheil Feizi. 2023. 849
Can ai-generated text be reliably detected? arXiv 850
preprint arXiv:2303.11156. 851

Gustavo Sandoval, Hammond A. Pearce, Teo Nys, 852
Ramesh Karri, Siddharth Garg, and Brendan Dolan- 853
Gavitt. 2023. Lost at c: A user study on the security 854
implications of large language model code assistants. 855
In 32nd USENIX Security Symposium (USENIX Se- 856
curity 23). 857

Irene Solaiman, Miles Brundage, Jack Clark, Amanda 858
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad- 859
ford, Gretchen Krueger, Jong Wook Kim, Sarah 860
Kreps, et al. 2019. Release strategies and the so- 861
cial impacts of language models. arXiv preprint 862
arXiv:1908.09203. 863

Yuki Takezawa, Ryoma Sato, Han Bao, Kenta Niwa, 864
and Makoto Yamada. 2023. Necessary and sufficient 865
watermark for large language models. arXiv preprint 866
arXiv:2310.00833. 867

Edward Tian and Alexander Cui. 2023. Gptzero: To- 868
wards detection of ai-generated text using zero-shot 869
and supervised methods. 870

Umut Topkara, Mercan Topkara, and Mikhail J. Atallah. 871
2006. The hiding virtues of ambiguity. In Proceed- 872
ings of the 8th workshop on Multimedia and security, 873
pages 164–174. ACM. 874

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 875
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 876
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 877
Bhosale, et al. 2023. Llama 2: Open founda- 878
tion and fine-tuned chat models. arXiv preprint 879
arXiv:2307.09288. 880

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glass- 881
man. 2022. Expectation vs. experience: Evaluating 882
the usability of code generation tools powered by 883
large language models. In Chi conference on hu- 884
man factors in computing systems extended abstracts, 885
pages 1–7. 886

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, 887
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun. 888
2023. Towards codable text watermarking for large 889
language models. arXiv preprint arXiv:2307.15992. 890

Yilong Wang, Daofu Gong, Bin Lu, Fei Xiang, and 891
Fenlin Liu. 2018. Exception handling-based dynamic 892
software watermarking. IEEE Access, 6:8882–8889. 893

Kangxi Wu, Liang Pang, Huawei Shen, Xueqi Cheng, 894
and Tat-Seng Chua. 2023. LLMDet: A third party 895
large language models generated text detection tool. 896

11

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs//2306.08568
https://arxiv.org/abs//2306.08568
https://arxiv.org/abs//2306.08568
https://arxiv.org/abs//2306.08568
https://arxiv.org/abs//2306.08568
https://doi.org/10.1109/tifs.2019.2908071
https://doi.org/10.1109/tifs.2019.2908071
https://doi.org/10.1109/tifs.2019.2908071
https://doi.org/10.1016/j.csl.2008.04.001
https://doi.org/10.1016/j.csl.2008.04.001
https://doi.org/10.1016/j.csl.2008.04.001
https://doi.org/10.1016/j.cose.2022.103006
https://doi.org/10.1016/j.cose.2022.103006
https://doi.org/10.1016/j.cose.2022.103006
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
https://arxiv.org/abs/2301.11305
http://arxiv.org/abs/2301.13852
http://arxiv.org/abs/2301.13852
http://arxiv.org/abs/2301.13852
http://arxiv.org/abs/2301.13852
http://arxiv.org/abs/2301.13852
https://doi.org/10.1002/spe.657
https://doi.org/10.1002/spe.657
https://doi.org/10.1002/spe.657
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2303.08774
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
https://doi.org/10.1109/sp46214.2022.9833571
https://doi.org/10.1109/sp46214.2022.9833571
https://doi.org/10.1109/sp46214.2022.9833571
https://www.usenix.org/system/files/sec23fall-prepub-353-sandoval.pdf
https://www.usenix.org/system/files/sec23fall-prepub-353-sandoval.pdf
https://www.usenix.org/system/files/sec23fall-prepub-353-sandoval.pdf
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://gptzero.me
https://gptzero.me
https://gptzero.me
https://gptzero.me
https://gptzero.me
https://doi.org/10.1145/1161366.1161397
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1109/access.2018.2810058
https://doi.org/10.1109/access.2018.2810058
https://doi.org/10.1109/access.2018.2810058
https://aclanthology.org/2023.findings-emnlp.139
https://aclanthology.org/2023.findings-emnlp.139
https://aclanthology.org/2023.findings-emnlp.139

In Findings of the Association for Computational Lin-897
guistics: EMNLP 2023, pages 2113–2133, Singapore.898
Association for Computational Linguistics.899

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang,900
Zehua Ma, Feng Wang, and Nenghai Yu. 2022. Trac-901
ing text provenance via context-aware lexical sub-902
stitution. In Proceedings of the AAAI Conference903
on Artificial Intelligence, volume 36, pages 11613–904
11621. Association for the Advancement of Artificial905
Intelligence (AAAI).906

Xianjun Yang, Wei Cheng, Linda Petzold, William Yang907
Wang, and Haifeng Chen. 2023. Dna-gpt: Divergent908
n-gram analysis for training-free detection of gpt-909
generated text. arXiv preprint arXiv:2305.17359.910

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun911
Kwak. 2023. Robust natural language watermark-912
ing through invariant features. In Proceedings of the913
61th Annual Meeting of the Association for Compu-914
tational Linguistics. Association for Computational915
Linguistics.916

Xiao Yu, Yuang Qi, Kejiang Chen, Guoqiang Chen,917
Xi Yang, Pengyuan Zhu, Weiming Zhang, and Neng-918
hai Yu. 2023. Gpt paternity test: Gpt generated text919
detection with gpt genetic inheritance. arXiv preprint920
arXiv:2305.12519.921

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and922
Yu-Xiang Wang. 2023. Provable robust water-923
marking for ai-generated text. arXiv preprint924
arXiv:2306.17439.925

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan926
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,927
Yang Li, et al. 2023. Codegeex: A pre-trained model928
for code generation with multilingual evaluations on929
humaneval-x. arXiv preprint arXiv:2303.17568.930

12

https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.1609/aaai.v36i10.21415
https://arxiv.org/abs/2305.17359
https://arxiv.org/abs/2305.17359
https://arxiv.org/abs/2305.17359
https://arxiv.org/abs/2305.17359
https://arxiv.org/abs/2305.17359
https://arxiv.org/abs/2305.01904
https://arxiv.org/abs/2305.01904
https://arxiv.org/abs/2305.01904
https://arxiv.org/abs/2305.12519
https://arxiv.org/abs/2305.12519
https://arxiv.org/abs/2305.12519
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2303.17568

A Preliminaries for WLLM931

In this section, we provide brief preliminaries932

for Kirchenbauer et al. (2023a). For a given lan-933

guage model fLM with vocabulary V , the likelihood934

probability of a token yt is calculated as follow:935

lt = fLM(x,y[:t]), (2)936

937

pt,i =
el

i
t∑|V|

i=1 e
lit
, (3)938

where x = {x0, . . . , xM−1} and y[:t] =939

{y1, . . . , yt−1} are a M -length tokenized prompt940

and the generated token sequence, respectively, and941

lt ∈ R|V| is the logit vector.942

Watermarking in LM-generated Text. In the943

watermarking (Kirchenbauer et al., 2023a), the en-944

tire tokens in V at each time-step are randomly945

binned into the green Gt and red groupsRt in pro-946

portions of γ and 1− γ (γ ∈ (0, 1)), respectively.947

The method increases the logits of green group to-948

kens by adding a fixed scalar δ, promoting them to949

be sampled at each position. Thus, watermarked950

LM-generated text is more likely than γ to contain951

the green group tokens. On the other hand, since952

humans have no knowledge of the hidden green-953

red rule, the proportion of green group tokens in954

human-written text is expected to be close to γ.955

The watermarked text is detected through a one-956

sided z-test by testing the null hypothesis where957

the text is not watermarked. The z-score is cal-958

culated using the number of recognized green to-959

kens in the text. Then, the testing text is consid-960

ered as watermarked if the z-score is greater than961

zthreshold. Note that the detection algorithm with the962

higher zthreshold can result the lower false positive963

rate (FPR) and reduce Type I errors.964

Spike Entropy Kirchenbauer et al. (2023a) used965

spike entropy for measuring how spread out a dis-966

tribution is. Given a token probability vector p and967

a scalar m, spike entropy of p with modulus m is968

defined as:969

S(p,m) =
∑ pk

1 +mpk
. (4)970

B Watermark Embedding/Detecting971

Algorithm of SWEET972

Algorithms 1 and 2 show the detailed steps of gen-973

erating a watermark and later detecting it using our974

selective entropy thresholding method (SWEET).975

Algorithm 1 Generation Algorithm of SWEET

1: Input: tokenized prompt x =
{x1, . . . , xM−1}; entropy threshold
τ ∈ [0, log |V|], γ ∈ (0, 1), δ > 0;

2: for t = 0, 1, 2, . . . do
3: Compute a logit vector lt by (2);
4: Compute a probability vector pt by (3);
5: Compute an entropy Ht by (5);
6: if Ht > τ then
7: Compute a hash of token yt−1, and use it

as a seed for a random number generator;
8: Randomly divide V into Gt of size γ|V|

andRt of size (1− γ)|V|;
9: Add δ to the logits of tokens in Gt;

10: end if
11: Sample yt;
12: end for

Algorithm 2 Detection Algorithm of SWEET

1: Input: tokenized prompt x; token sequence to
be tested y = {y0, . . . , yN−1}; entropy thresh-
old τ ∈ [0, log |V|], γ ∈ (0, 1), zthreshold > 0;

2: Set Nh = 0 and Nh
G = 0;

3: for t = 0, 1, 2, . . . N − 1 do
4: Compute a logit vector lt by (2);
5: Compute a probability vector pt by (3);
6: Compute an entropy Ht by (5);
7: if Ht > τ then
8: Nh ← Nh + 1;
9: Compute a hash of token yt−1, and use it

as a seed for a random number generator;
10: Recover Gt andRt;
11: if yt ∈ Gt then
12: Nh

G ← Nh
G + 1;

13: end if
14: end if
15: end for
16: Compute z-score by (1);
17: if z > zthreshold then
18: return True; (i.e., y is watermarked)
19: else
20: return False;
21: end if

Instead of the spike entropy used in WLLM, we 976

use the classical Shannon entropy. Given a token 977

probability distibution vector p, the entropy of p is 978

computed by 979

Ht = −
∑

pk log pk. (5) 980

13

C Proof of Theorem 1981

We begin with a lemma from Kirchenbauer et al.982

(2023a), which predicts the probability of a green983

list token sampled from a language model employ-984

ing the watermarking.985

In our proof, we predict the lower bounds of z-986

score when detecting watermarks via WLLM or987

SWEET methods and compare the z-score lower988

bounds.989

Lemma C.1. Suppose p ∈ (0, 1)|V| is a raw prob-990

ability vector generated from a language model991

where |V| is the vocabulary size. Before sam-992

pling p, watermarks are embedded by dividing993

randomly a green list of size γ|V| and a red list994

of size (1 − γ)|V| for some value γ ∈ (0, 1). It995

then promotes the logits of tokens in the green list996

by δ. When sampling a token index k from this997

watermarked distribution, the probability that the998

token is sampled from the green list (considering999

the randomness of green list) is at least1000

P[k ∈ G] ≥ γeδ

1 + (eδ − 1)γ
S(p,

(1− γ)(eδ − 1)

1 + (eδ − 1)γ
).1001

Let’s begin the proof.1002

Proof. In WLLM, we consider all tokens in y =1003

{y0, . . . , yN−1} for detection. We can get a lower1004

bound of the number of green list tokens in y by1005

summing the result of Lemma C.1 over the tokens1006

yt. The expectation of the number of green list1007

tokens, Ng, in y is at least1008

E[NG] ≥ αγNS. (6)1009

where α = eδ

1+(eδ−1)γ
, and S =

∑N
t=1 St/N .1010

We can get the lower bound of the z-score by1011

applying the z-score definition in Eq. 1:1012

z ≥ γ
√
N

αS − 1√
γ(1− γ)

. (7)1013

If the entropy threshold is applied, we consider1014

only tokens with entropy values higher than the1015

threshold to be tested. Let Nh be the number of1016

tokens that have higher entropy values. Following1017

Eq. 6 and Eq. 7 again with Nh, we can get the1018

lower bound of the z-score of SWEET:1019

z ≥ γ
√
Nh

αSh − 1√
γ(1− γ)

,1020

where Sh =
∑N

t=1 St × 1(St ≥ τ)/Nh.1021

Sh ≥ S is ensured as we ignore all tokens with 1022

lower entropy than the threshold. By comparing 1023

Eq. 7 and Eq. 8, 1024

γ
√
Nh

αSh − 1√
γ(1− γ)

≥ γ
√
N

αS − 1√
γ(1− γ)

, 1025√
N −N l

N
≥ αS − 1

αSh − 1
, 1026

N l

N
≤ 1− (

αS − 1

αSh − 1
)2, 1027

where N l = N −Nh. 1028

D Implementation Details 1029

We have used three datasets for our testbeds: Hu- 1030

manEval, MBPP, and DS-1000. They have 164, 1031

500, and 1000 Python code problems, respectively. 1032

For our base models, StarCoder and LLaMA2, we 1033

use top-p (Holtzman et al., 2020) sampling with 1034

p = 0.95 for both models, and temperature 0.2 1035

and 0.1, respectively. When generating output 1036

for each code problems, we use zero-shot setting 1037

in HumanEval and DS-1000 but 3-shot in MBPP. 1038

Prompts used in MBPP are similar to the prompt 1039

in Austin et al. (2021). For calculating pass@1 1040

scores, we set n = 40 for HumanEval and DS- 1041

1000, and n = 20 for MBPP. 1042

D.1 DetectGPT 1043

We used two masking models for DetectGPT. 1044

When T5-3B is used for DetectGPT, we search 1045

hyperparameters for the length of the spans in 1046

[1,2,5,10] words, and for the proportion of masks 1047

in [5,10,15,20]% of the text. When utilizing San- 1048

taCoder, we simulate the single-line fill-in-the- 1049

middle task scenario by masking only one line of 1050

code per perturbation, which is a task that Santa- 1051

Coder is trained to perform well. (Fried et al., 2023; 1052

Bavarian et al., 2022). We search hyperparameters 1053

for the number line to be rephrased in [1,2,3,4]. 1054

We make 100 perturbations following the original 1055

paper. 1056

D.2 WLLM and SWEET 1057

Depending on the strength of watermark, trade- 1058

off between code functionality and watermarking 1059

detectability exists. We search hyperparameters 1060

for the ratio of the green list γ in [0.1,0.25,0.5], 1061

and for the green token promotion value δ in 1062

[0.5,1.0,2.0,3.0,4.0]. For the entropy threshold 1063

14

Method
HumanEval

pass@1 AUROC TPR FPR

Non-watermarked 17.3 - - -
Non-watermarked (w/ high entropy) 6.8 - - -

EXP-EDIT 17.1 0.612 0.110 <0.05
EXP-EDIT (w/ high entropy) 7.1 0.844 0.561 <0.05

WLLM (∆PASS@1 ∼ −10%)⋆ 15.4 0.777 0.402 <0.05
SWEET (∆PASS@1 ∼ −10%)⋆ 15.5 0.921 0.616 <0.05

WLLM (AUROC≥ 0.9)† 9.2 0.908 0.720 <0.05
SWEET (AUROC≥ 0.9)† 15.5 0.921 0.616 <0.05

Table 2: Results of code generation performance and detection ability in LLaMA2 13B. We calculate pass@1
metrics by generating n = 40 examples. Hyperparameters for decoding strategy is top-p decoding with p = 0.95
and temperature=0.1, except for baselines with high entropy; temperature=1.0 and top-p=1.0. We set the maximum
length of the model generation to 512. This table corresponds to the Table 1 version for LLaMA2, but only for
watermark-based methods.

values used in SWEET, we search thresholds in1064

[0.3,0.6,0.9,1.2].1065

D.3 EXP-EDIT1066

In most tasks we have conducted experiments, the1067

length of the generated code hardly exceed 1001068

tokens. Therefore, considering that length of the1069

watermark key sequence significantly affected the1070

detection speed, we search hyperparameters for the1071

length of the key sequence only in [100, 500]. The1072

block size was set equal to the length of the model1073

output, and the resample size T = 500 for all in-1074

stances. To generate n outputs to calculate pass@k,1075

we shift the watermark key sequence randomly n1076

times. Finally, we set edit distance hyperparameter1077

γ = 0.0 for EXP-EDIT as used in their paper.1078

E Detectability with Varying Code1079

Lengths1080

We experiment the detection performance across1081

different code lengths. Based on the detectabil-1082

ity@T metric proposed in Kirchenbauer et al.1083

(2023b), we evaluate the detection performance1084

within the first T tokens of the machine-generated1085

and human-written code sequences and calculate1086

AUROC scores.1087

As presented in Figure 5, SWEET demonstrates1088

superior detection performance even in the short1089

code texts. This is particularly important feature1090

in code generation tasks comprised of relatively1091

shorter texts than plain text generation. Moreover,1092

in HumanEval and MBPP, we can observe that 1093

the AUROC of SWEET reaches 1.0 with the text 1094

length exceeding 70, while none of the baselines 1095

could achieve it. 1096

F Further Pareto Frontier Results on 1097

StarCoder/LLaMA2 1098

HumanEval pass@100. Figure 8 shows a trade- 1099

off between pass@100 score and AUROC at Hu- 1100

manEval task in temperature 0.8. We generated 1101

200 samples in HumanEval to calculate pass@100. 1102

The tendency of the Pareto Frontier are the same, 1103

SWEET is consistently placed in the front. While 1104

pass@100 score is much higher than the pass@1 1105

score at temperature=0.2, we see the range of AU- 1106

ROC remains similar. This indicates temperature 1107

does not affect the detection strength of each sam- 1108

ples heavily. 1109

LLaMA2. Furthermore, Table 2 shows the re- 1110

sults on HumanEval when using LLaMA2 13B 1111

(a general-purpose LLM), as the backbone for 1112

code generation. We can observe similar trends 1113

as demonstrated in Figure 9. SWEET in LLaMA2 1114

achieves a higher AUROC than all other baselines 1115

while preserving code quality more than WLLM. 1116

Consequently, we observe that SWEET also ap- 1117

plies to general-purpose LLM, which is not code- 1118

specific. 1119

15

Figure 5: Detectability@T (Kirchenbauer et al., 2023b) at HumanEval, MBPP, and DS-1000. We set γ = 0.25
and δ = 3.0 for WLLM and SWEET. For EXP-EDIT, we use it with a high entropy setting. When calculating
AUROC, we ensure at least 20 code texts of human-written solutions and machine-generated codes, respectively.
We can observe that SWEET shows superior detection performance regardless of the text length in all tasks.

Figure 6: The tradeoff between AUROC and pass@1 of detecting real and generated samples of HumanEval and
MBPP datasets. The pink line represents a Pareto frontier of SWEET, while the blue line represents that of WLLM.
In all tasks and the entropy threshold configurations, SWEET shows consistent dominance. The red/orange line
and circles are the points used in Table 1.

G More Details about Experiments with1120

General Prompts1121

All general prompts we mentioned in Sec 6.2 at1122

HumanEval task are listed below: These prompts1123

are chosen randomly without any prompt tuning.1124

def solution(*args):
"""
Generate a solution
"""

1125

<filename>solutions/solution_1.py
Here is the correct implementation of the code

exercise
def solution(*args):

1126

def function(*args, **kargs):
"""
Generate a code given the condition
"""

1127

from typing import List

def my_solution(*args, **kargs):
"""
Generate a solution
"""

1128

def foo(*args):
"""
Solution that solves a problem
"""

1129

16

Figure 7: Effect of general prompts in SWEET in HumanEval. In this setting, the detector does not know what
information would have been included in a prompt if the given sample source code had been model-generated.
SWEET appends the sample to the fixed number of ’general prompts’ that contain no information except for the
format consistent with the answer. The purple line represents the Pareto frontier of the ’General prompts’ version
SWEET. Our approaches with general prompts still outperform WLLM in both code quality preservation and
watermark detection, drawing the Pareto frontiers ahead of those of WLLM.

Figure 8: The tradeoff between AUROC and pass@100 of detecting real and generated samples of HumanEval
using temperature of 0.8 instead of 0.2 as other figures. We also generate n = 200 outputs for calculating pass@100
scores. The pink line represents a Pareto frontier of SWEET, while the blue line represents a Pareto frontier of
WLLM. We observe consistent improvement in SWEET.

Figure 9: [LLaMa2 13B Results] The tradeoff between AUROC and pass@1 of detecting real and generated samples
of HumanEval. The pink line represents a Pareto frontier of SWEET, while the blue line represents a Pareto frontier
of WLLM. Additionally, we include the results of the SWEET with the surrogate model (purple line), in which a
smaller LM is used to detect watermarks to save computational costs. Our approaches mostly draw Pareto frontiers
ahead of those of WLLM, even with the surrogate model. The red/orange line and circles are the points used in
Table 2.

H Analysis of Computation Cost1130

It is practically important to detect machine-1131

generated text without a huge computational over-1132

load. We here analyze computation costs for each 1133

baseline and our method. 1134

WLLM does not require any additional com- 1135

17

Figure 10: Watermark detection performance on re-
named variables in the code. For each watermark
method, we choose 273 source codes from the MBPP
task, for which three methods succeed in generating
with no syntax error. We set γ = 0.25 and δ = 3.0
for WLLM and SWEET. For EXP-EDIT, we search
the hyperparameter for the block size in [20,30,40] with
a high entropy setting. We use five random seeds for
renaming and calculate the average AUROC scores.

putation as it only needs a random number gen-1136

erator and a seed number to put. On the other1137

hand, all zero-shot post-hoc detection methods ex-1138

cluding DetectGPT need at least one forward pass1139

of that LLM. DetectGPT needs to run forward1140

passes as much as the number of perturbations1141

for increased accuracy (the original paper gener-1142

ated 100 perturbed samples, so we did the same).1143

Our method needs one time forward pass to calcu-1144

late the entropy, which is the same with zero-shot1145

post-hoc detection methods except for DetectGPT.1146

However, we demonstrated that our method out-1147

performs baselines even when utilizing a smaller1148

surrogate model (Sec 6.3), indicating the capabil-1149

ity of computationally more efficient employment.1150

On the other hand, while EXP-EDIT does not need1151

LLM for detecting watermarks, it requires measur-1152

ing the Levenshtein distance to compute the test1153

statistic, which demands an extensive calculation1154

of O(mnk2), where m be the length of the target1155

text, n be the length of the watermark key sequence,1156

and k be the block size. Moreover, T = 500 times1157

of test statistic is also necessary for reporting the1158

p-value. Although these computations do not re-1159

quire LLM and can be implemented in parallel, one1160

can consider the computation cost of EXP-EDIT as1161

high.1162

I Analysis of Lexical Type Distributions 1163

Watermarking a text without degrading its quality 1164

is possible when many candidates are alternatively 1165

available. In code generation, it is challenging 1166

to achieve this, so SWEET selectively apply wa- 1167

termarking only on high entropy, i.e., when there 1168

are many candidates. Using Python built-in tok- 1169

enize module10, we here tokenize outputs of our 1170

SWEET method and analyze the distributions of 1171

lexical types both above and below the entropy 1172

threshold. 1173

I.1 List of Lexical Types 1174

Below is the list of lexical types we use for analysis 1175

and corresponding examples. All list of types the 1176

tokenize module actually emits can be found in 1177

https://docs.python.org/3/library/token.html. We 1178

merged and split the original types. 1179

• NAME : identifier names, function names, etc. 1180

• OP : operators, such as {, [(+, =, etc. 1181

• INDENT : we merge NEWLINE, DEDENT, 1182

INDENT, NEWLINE, and NL. 1183

• RESERVED : split from NAME. In Python 1184

docs, they are officially named keywords. 1185

• BUILT-IN : split from NAME. Please refer to 1186

Python docs11. 1187

• NUMBER 1188

• STRING 1189

• COMMENT 1190

• FUNCNAME : split from NAME. We manu- 1191

ally build a list of function name almost be- 1192

ing used only for function. For examples, ap- 1193

pend(), join(), split() functions are included. 1194

I.2 Lexical Types Distributions Above 1195

Threshold 1196

Figure 11 shows lexical types distributions of out- 1197

put tokens above the entropy threshold (i.e., wa- 1198

termarked tokens) across seven thresholds. As the 1199

entropy threshold rises, the proportion of NAME 1200

type tokens increases by the most (26%p to 63%p). 1201

Intuitively, this can be easily understood, consid- 1202

ering there would be many alternative candidates 1203

10https://docs.python.org/3/library/tokenize.html
11https://docs.python.org/3/library/functions.

html#built-in-functions

18

https://docs.python.org/3/library/functions.html#built-in-functions
https://docs.python.org/3/library/functions.html#built-in-functions

Figure 11: Distribution of lexical types of SWEET output on HumanEval task. We draw examples when γ = 0.25
and δ = 3.0. The proportion of NAME type tokens increases the most while that of INDENT type tokens converges
to zero.

for defining identifier names. Unfortunately, this1204

would lead to vulnerability to an adversarial at-1205

tack on watermarking, such as changing variable1206

names. Following the NAME type, the ratio of1207

the RESERVED type also increases slightly (12%p1208

to 20%p), meaning that the model has multiple1209

choices of logical flow in code generation, con-1210

sidering RESERVED tokens usually decide code1211

execution flow.1212

I.3 Lexical Types Distributions Below1213

Threshold1214

Figure 12 shows lexical types distributions of out-1215

put tokens below the entropy threshold. In contrast1216

to the distributions above the threshold, NAME and1217

RESERVED types do not increase as the threshold1218

rises. Meanwhile, the proportion of INDENT types1219

slightly increases (18%p to 22%p), indicating that1220

the model has more confidence in the rules, such1221

as indentation.1222

J Further Analysis of Breakdown of1223

Post-hoc methods1224

The performance of post-hoc detection methods in1225

the machine-generated code detection task is sur-1226

prisingly low compared to their performance in the1227

plain text domain. In both HumanEval and MBPP,1228

none of the post-hoc baselines have an AUROC1229

score exceeding 0.6, and the TPR is around 10% or1230

even lower. In this section, we analyze the failures 1231

of post-hoc detection baselines. 1232

Out-Of-Domain for classifiers. Methods lever- 1233

aging trained classifiers, such as GPTZero and 1234

OpenAI Classifier, inherently suffer from out-of- 1235

domain (OOD) issues (Guo et al., 2023; Yang et al., 1236

2023). Since the machine-generated code detec- 1237

tion problems are relatively under explored, we 1238

can conjecture that there are not enough examples 1239

of machine-generated code for training, especially 1240

even though we do not know of the dataset on 1241

which GPTZero was trained. 1242

Relatively Short Length of Code Blocks. De- 1243

tectGPT presumes the length of the text being de- 1244

tected as near paragraph length. OpenAI Classifier 1245

released in 2023 (OpenAI, 2023b) takes only text 1246

longer than 1,000 tokens. Even in the WLLM and 1247

their following paper (Kirchenbauer et al., 2023b), 1248

the length is one of the prime factors in detec- 1249

tion and is used in a metric, detectability@T. De- 1250

spite the importance of the length, in our exper- 1251

iments, the length of the generated code text is 1252

generally short. The token lengths generated by 1253

the model were are 59 and 49 tokens on average 1254

for HumanEval and MBPP, respectively. Unless 1255

embedding some signals in the text intentionally, 1256

like WLLM and ours, it seems that it is challenging 1257

for post-hoc methods to detect short text. 1258

Failures in DetectGPT. Specifically, in Detect- 1259

19

Figure 12: Distribution of lexical types of SWEET output on HumanEval task. We draw examples when γ = 0.25
and δ = 3.0. In contrast to the distributions above the threshold, there is almost no distribution change.

GPT, we attribute the failure to detect machine-1260

generated code to poor estimation of perturbation1261

curvature. We hypothesize two reasons for this.1262

Firstly, considering the nature of the code, it is1263

challenging to rephrase a code while preserving its1264

meaning or functionality. To minimize the degra-1265

dation of perturbation, we use SantaCoder for the1266

masking model and paraphrase only one line of1267

code at a time. Yet, in most cases, the rephrased1268

code is either identical to its original or broken in1269

functionality. Secondly, LLMs have not achieved1270

as satisfactory code generation performance as1271

plain text generation. Hence, the base and masking1272

models cannot draw meaningful curvature.1273

20

	Introduction
	Related Work
	Method
	Motivation
	The SWEET Method
	Effect of Entropy Thresholding

	Experiments
	Tasks and Metrics
	Baselines

	Results
	Main Results
	Comparison of Pareto Frontiers between SWEET and WLLM

	Analysis
	Impact of Entropy Thresholds
	Detection Ability without Prompts
	Use of Surrogate Model
	Robustness to Variable Renaming

	Conclusion
	Preliminaries for WLLM
	Watermark Embedding/Detecting Algorithm of SWEET
	Proof of Theorem 1
	Implementation Details
	DetectGPT
	WLLM and SWEET
	EXP-edit

	Detectability with Varying Code Lengths
	Further Pareto Frontier Results on StarCoder/LLaMA2
	More Details about Experiments with General Prompts
	Analysis of Computation Cost
	Analysis of Lexical Type Distributions
	List of Lexical Types
	Lexical Types Distributions Above Threshold
	Lexical Types Distributions Below Threshold

	Further Analysis of Breakdown of Post-hoc methods

