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Abstract

Large Language Models (LLMs) demonstrate remarkable capabilities across di-
verse domains, yet their performance can be unexpectedly fragile when specialized
knowledge is required. We investigate a novel phenomenon we term knowledge
dilution, the degradation of domain-specific expertise when models are exposed
to large volumes of irrelevant but contextually plausible information. Through a
controlled experiment involving 400 code generation tasks across varying levels
of context dilution, we demonstrate that security-focused knowledge in LLMs
systematically degrades as irrelevant technical content increases in the conversa-
tion context. Our findings reveal that security feature implementation drops by
47% when moving from focused contexts (0 dilution tokens) to heavily diluted
contexts (40,000 dilution tokens), with statistical significance (p < 0.001). This
work has critical implications for Al safety, particularly in security-critical ap-
plications where domain expertise degradation could lead to vulnerable systems.
While demonstrated here in the security domain using GPT-4, this phenomenon
likely represents a fundamental challenge for maintaining specialized expertise in
production LLM deployments across critical domains.

1 Introduction

Large Language Models have revolutionized software development by providing intelligent code
generation and assistance capabilities. However, as these systems are increasingly deployed in critical
domains such as cybersecurity, financial systems, and healthcare, understanding their failure modes
becomes paramount. While much attention has been paid to adversarial attacks and jailbreaking
techniques, less research has examined how the natural flow of conversation and context accumulation
affects specialized knowledge retention.
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We introduce the concept of knowledge dilution, a phenomenon where an LLM’s domain-specific
expertise systematically degrades when exposed to large volumes of contextually relevant but domain-
irrelevant information. Unlike prompt injection or adversarial attacks, knowledge dilution occurs
through seemingly benign interactions that gradually shift the model’s attention away from critical
domain constraints.

1.1 Theoretical Framework

Building on cognitive load theory [1]] and attention-based learning models [2l], we propose that
knowledge dilution emerges from three interacting mechanisms:-

Attentional Resource Competition:- Following the Limited Attention Hypothesis, increasing con-
text diversity forces attention mechanisms to distribute computational resources across competing
semantic domains, reducing focus on specialized constraints.

Semantic Interference Theory:- Cross-domain technical content creates semantic overlap that
interferes with domain-specific knowledge retrieval, similar to interference effects observed in human
memory systems.

Priority Recalibration:- Extended exposure to alternative technical frameworks implicitly shifts the
model’s priority weighting, causing domain-specific constraints to be deprioritized relative to general
functionality concerns.

This paper makes three key contributions:-

1. We provide a formal theoretical framework for knowledge dilution grounded in cognitive
science and attention theory.

2. Through 400 controlled experiments with comprehensive statistical analysis, we demonstrate
measurable degradation in security-focused code generation as irrelevant technical context
increases.

3. We develop practical mitigation strategies and establish evaluation protocols for domain
expertise retention in production systems.

2 Related Work

Cognitive Load Theory and Attention Models:- Sweller’s Cognitive Load Theory [1] provides
the theoretical foundation for understanding how information processing degrades under competing
demands. In neural networks, attention mechanisms [2] serve as the computational analog to human
selective attention, with similar capacity limitations. Recent work on transformer attention patterns [3|]
demonstrates that models exhibit attention dilution effects when processing complex, multi-domain
contexts.

Context and Memory in Language Models:- Previous work has established that transformer-based
models exhibit strong context dependence, with performance varying significantly based on input
formatting and context structure [8]. Research on in-context learning has shown that LLMs can
adapt their behavior based on examples and instructions within their context window [9]. However,
most studies focus on positive transfer effects rather than knowledge degradation. Liu et al. [14]
demonstrated attention decay in long contexts, providing empirical support for our theoretical
framework.

Interference Theory in Neural Networks:- Interference theory, originally developed in cognitive
psychology [4], describes how competing information degrades memory retrieval. Recent work on
catastrophic forgetting in neural networks [5]] shows similar interference effects during training. Our
work extends these concepts to in-context interference during inference, where competing technical
domains create semantic interference patterns.

Al Safety in Code Generation:- Recent work has identified various failure modes in Al-assisted code
generation, including the generation of vulnerable code patterns [10], biased implementations [[L1]],
and inconsistent security practices [12]. However, these studies typically examine static prompt
scenarios rather than the dynamic degradation of expertise over extended interactions.
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Domain Expertise and Specialization:- Research on domain expertise in Al systems [6] suggests
that specialized knowledge requires sustained attention and reinforcement. Work on multi-task
learning [7] demonstrates that performance on specialized tasks can degrade when models are
exposed to competing objectives, supporting our hypothesis about priority recalibration effects.

3 Methodology

3.1 Theoretical Model

We formalize knowledge dilution using Information Theory and Attention Theory. Let A(t) represent
the attention allocation function over time ¢, where security domain knowledge receives attention
weight w,. As dilution content D increases, we hypothesize:-

ws(D) = wg - e~ P (M
where w, is the initial security attention weight, « is the dilution coefficient, and D is the cumulative
dilution tokens.

The security feature implementation probability follows:-

Wg (D ) . Ii
> w;i(D) - I
where f; is security feature 4, I; is its importance weight, and the denominator represents competing
attention demands.

P(fi|D) = )

3.2 Experimental Design

We designed a controlled experiment to test our theoretical predictions using a factorial design with
systematic manipulation of context dilution levels. The experiment follows a 4 x 5 x 20 factorial
structure (Tasks x Dilution Levels x Repetitions).

3.2.1 Security Baseline Establishment
Each experimental session begins with a comprehensive security-focused system prompt containing:-

1. Detailed security principles and best practices.
2. Common vulnerability patterns to avoid.

3. Specific guidance on secure coding techniques.
4. Emphasis on security as the primary concern.

3.2.2 Dilution Content Generation

We systematically introduce technically relevant but security-irrelevant content across five dilution
levels following an exponential progression. The dilution content is generated through simulated
conversation turns covering eight distinct technical domains: software design patterns, database per-
formance optimization, frontend development frameworks, DevOps and containerization, algorithm
complexity analysis, RESTful API design principles, software testing methodologies, and distributed
system architecture.

Each dilution topic is presented as natural conversational exchanges, with the system responding to
user questions about these technical areas before the final security coding task is presented. This
approach ensures that the dilution appears as a legitimate technical discussion rather than random
noise.

. Security Focused (D, = 0 tokens): Control condition.
. Light Dilution (D; = 2,000 tokens): Minimal dilution.
. Medium Dilution (D5 = 8,000 tokens): Moderate dilution.

. Heavy Dilution (D3 = 20,000 tokens): Substantial dilution.
5. Extreme Dilution (D4 = 40,000 tokens): Maximum dilution.

AW N =

The dilution progression follows D; = Dy - 22! to test both linear and exponential decay hypotheses.
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3.2.3 Task Framework and Operationalization

We evaluate four critical security implementation tasks, each requiring different cognitive loads:-

1. User Authentication (C;): Single-factor validation (Low complexity).

2. File Upload Handler (C): Multi-step validation (Medium complexity).

3. User Search Service (C3): Query construction with validation (Medium complexity).
4. Session Manager (Cy): Multi-component token management (High complexity).

3.3 Statistical Analysis Framework

We employ a comprehensive statistical analysis approach:-

Descriptive Statistics:- Mean security feature counts with 95% confidence intervals, effect sizes using
Cohen'’s d for pairwise comparisons, and distribution analysis with normality tests (Shapiro-Wilk).

Parametric Analysis:- Mixed-effects ANOVA with dilution level as fixed effect and task as random
effect, post-hoc pairwise comparisons with Bonferroni correction, Spearman rank correlation for
monotonic relationships, and linear and non-linear regression modeling.

Non-parametric Analysis:- Kruskal-Wallis H-test for non-parametric group comparisons, Mann-
Whitney U tests for pairwise non-parametric comparisons, Friedman test for repeated measures across
dilution levels, and Chi-square tests for categorical security feature presence.

3.4 Experimental Protocol

All experiments utilized OpenAI’s GPT-4 model (max tokens: 128k) with standardized parameters:
temperature = 0.3 (allowing moderate variation across repetitions), and consistent API version.
The model selection was driven by cost-efficiency considerations for conducting 400 experiments
while maintaining research-grade performance. Token usage was tracked throughout experiments,
demonstrating the progressive context expansion inherent in our experimental design.

For each task-dilution combination, we conduct 20 independent trials, resulting in 400 total experi-
ments. Each trial follows this sequence:-

1. Initialize conversation with security-focused system prompt.

2. Introduce dilution content through simulated conversation turns.

3. Present the coding task with emphasis on security requirements.

4. Generate and analyze the resulting code.

3.5 Dependent Variables and Operationalization

Primary Dependent Variables:- Security Feature Count (Y7): Total number of implemented se-
curity patterns; Security Feature Diversity (Y2): Number of distinct security feature categories;
Implementation Quality Score (Y3): Weighted score based on feature importance.

Secondary Variables:- Code Complexity (Y4): Cyclomatic complexity measure; Security Pattern
Completeness (Y5): Percentage of complete security implementations.

Security features tracked include:- prepared statements (SQL injection prevention), secure password
hashing (BCrypt, Argon2, PBKDF2), input validation and sanitization, secure random number
generation, authorization and access controls, secure error handling and logging, and cryptographic
implementations.

4 Results

4.1 Descriptive Statistics and Distribution Analysis

Table[T| presents the descriptive statistics for security feature implementation across all experimental
conditions. Shapiro-Wilk tests indicate moderate departures from normality in several conditions
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(p < 0.05 for extreme dilution conditions), justifying the use of both parametric and non-parametric
statistical approaches.

Table 1: Security Feature Implementation by Dilution Level

Dilution Level Mean (SD) 95% CI1 Cohen’sd n
Security Focused (0) 2.43 (0.67) [2.36, 2.50] - 80
Light (2,000) 2.15(0.81) [2.07,2.23] 0.38 80
Medium (8,000) 1.67 (0.74) [1.58, 1.76] 1.08 80
Heavy (20,000) 1.52 (0.69) [1.44, 1.60] 1.37 80

Extreme (40,000) 1.29 (0.58) [1.22,1.36] 1.82 80

4.2 Primary Statistical Analysis
4.2.1 Mixed-Effects ANOVA

A mixed-effects ANOVA with dilution level as a fixed factor and task type as a random factor revealed
a significant main effect of dilution level (¥'(4,380) = 47.32, p < 0.001, 7]2 = 0.332), indicating
a large effect size. The interaction between dilution level and task complexity was also significant
(F(12,380) = 2.18, p = 0.012), suggesting that dilution effects vary by task complexity.

4.2.2 Post-hoc Pairwise Comparisons

Bonferroni-corrected pairwise comparisons reveal significant differences between all adjacent dilution
levels:-

1. Security vs. Light: ¢(158) = 2.84, p = 0.025
2. Light vs. Medium: #(158) = 4.67, p < 0.001
3. Medium vs. Heavy: ¢(158) = 1.98, p = 0.049
4. Heavy vs. Extreme: ¢(158) = 2.91, p = 0.020

4.3 Non-parametric Analysis

Given distributional concerns, we conducted complementary non-parametric analyses.

4.3.1 Kruskal-Wallis Test

The Kruskal-Wallis H-test confirmed significant differences across dilution levels (H (4) = 89.24,
p < 0.001), with mean ranks decreasing monotonically: Security (294.5), Light (246.8), Medium
(183.2), Heavy (162.1), Extreme (138.4).

4.3.2 Mann-Whitney U Tests

Pairwise Mann-Whitney U tests with Bonferroni correction (o« = 0.005) showed significant differ-
ences between all conditions except Medium vs. Heavy (U = 2847, p = 0.087).

4.4 Correlation and Regression Analysis
4.4.1 Spearman Rank Correlation

Spearman rank correlation analysis confirms a strong negative relationship between dilution tokens
and security feature count (p = —0.742, p < 0.001, 95% CI: [-0.782, -0.698]).

4.4.2 Regression Modeling

Multiple regression models were fitted to test theoretical predictions:-

Linear Model: Y = 2.51 — 0.0276 - D (R = 0.549, p < 0.001)
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Exponential Decay Model: ¥ = 2.48 - ¢ 0-0147-D (R2 — (0.573, p < 0.001)

The exponential model provides superior fit (AAIC = 23.4), supporting our theoretical prediction of
attention-based exponential decay.

4.5 Feature-Specific Analysis

Chi-square tests of independence revealed significant associations between dilution level and specific
security feature implementation:-

Most Sensitive Features:-
1. Authorization controls: x?(4) = 45.2, p < 0.001, Cramér’s V = 0.34

2. Secure error handling: x?(4) = 38.7, p < 0.001, Cramér’s V = 0.31
3. Security logging: x?(4) = 31.9, p < 0.001, Cramér’s V = 0.28

Least Sensitive Features:-

1. Prepared statements: x2(4) = 8.3, p = 0.081, Cramér’s V = 0.14 (n.s.)
2. Password hashing: x?(4) = 12.1, p = 0.017, Cramér’s V = 0.17

4.6 Task Complexity Analysis
Friedman tests within each task revealed differential dilution sensitivity:-

1. Session Manager:- y%.(4) = 52.3, p < 0.001 (Highest sensitivity).

2. User Search Service:- x%(4) = 47.8, p < 0.001.

3. Authentication Service:- x%(4) = 41.2, p < 0.001.

4. File Upload Handler:- x2(4) = 35.7, p < 0.001 (Lowest sensitivity).

4.7 Effect Size and Practical Significance

Beyond statistical significance, we assessed practical significance using established benchmarks:-

1. Overall dilution effect: d = 1.82 (very large effect).
2. Security feature reduction: 47% (from 2.43 to 1.29 mean features).

3. Number needed to harm: Every 3.6 extreme dilution exposures results in one additional
security feature loss.

4.8 Reliability and Internal Consistency

Inter-rater reliability for security feature coding achieved high agreement (Cohen’s x = 0.89, 95%
CI: [0.85, 0.93]). Cronbach’s alpha for the security feature scale was a = 0.81, indicating good
internal consistency.

5 Analysis and Discussion

5.1 Mechanisms of Knowledge Dilution

We propose three mechanisms underlying the observed knowledge dilution effects:-

Attentional Resource Competition:- As context length increases with dilution content, the model’s
attention mechanisms distribute processing capacity across a broader range of topics, reducing focus
on security-specific constraints.

Semantic Interference:- Technical dilution content creates semantic similarity with the target domain,
potentially causing the model to blend different areas of expertise inappropriately.

Priority Recalibration:- Extended exposure to non-security technical content may implicitly signal
that other concerns (performance, architecture, functionality) should take precedence over security
considerations.
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5.2 Implications for AI Safety

The knowledge dilution phenomenon has several critical implications:-

Gradual Degradation:- Unlike sudden failure modes, knowledge dilution occurs gradually, making
it difficult to detect without systematic evaluation.

Context-Dependent Risks:- The same model that performs excellently in focused scenarios may
produce inadequate results after extended multi-topic conversations.

Domain Expertise Vulnerability:- Specialized knowledge appears more fragile than general capabil-
ities, with complex domain constraints being the first to degrade.

5.3 Comparison with Related Phenomena
Knowledge dilution differs from several related concepts:-

1. Unlike confusion between different tasks, dilution involves the gradual degradation of
domain-specific constraints within the same task category.

2. Dilution occurs through benign, contextually appropriate content rather than malicious
manipulation.

3. Rather than overriding instructions, dilution subtly shifts priorities and attention allocation.

6 Limitations and Future Work

6.1 Limitations

Our study has several important limitations:-
Model Specificity:- Results are based on GPT-4. We will be generalizing these results in the future.

Domain Scope:- We focus specifically on security domain knowledge; generalization to other
specialized domains requires further investigation.

6.2 Future Research Directions

Several research directions emerge from this work:-
1. Investigating knowledge dilution in other critical domains such as medical diagnosis, finan-
cial analysis, or safety-critical system design.

2. Developing techniques to maintain domain expertise, such as attention-focused prompting,
periodic reinforcement, or specialized model architectures.

3. Deeper investigation into the attention and representation-level mechanisms underlying
knowledge dilution.

7 Mitigation Strategies

Based on our findings, we propose several strategies for maintaining domain expertise

7.1 Architectural Approaches

1. Maintaining separate context windows for domain-specific and general conversation content.

2. Implementing mechanisms to preserve attention on critical domain constraints regardless of
context length.

3. Developing modular architectures where domain expertise is maintained in specialized
components.
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7.2 Prompting Techniques

1. Regularly restating critical domain constraints throughout extended conversations.

2. Explicitly ranking the importance of domain-specific requirements relative to other consid-
erations.

3. Selectively removing less relevant context to maintain focus on domain-critical information.

8 Conclusion

We have demonstrated that knowledge dilution represents a significant and previously understudied
failure mode in large language models. Through systematic experimentation, we show that domain-
specific expertise, particularly in security-critical applications, degrades substantially when models
are exposed to large volumes of irrelevant but contextually plausible information.

The 47% reduction in security feature implementation observed in our experiments has serious
implications for the deployment of LLMs in critical domains. As these systems become increasingly
prevalent in software development, cybersecurity, and other specialized fields, understanding and
mitigating knowledge dilution becomes essential for maintaining system reliability and safety.

Our work opens several important research directions, from developing dilution-resistant architectures
to creating better evaluation frameworks for domain expertise retention. As the field continues to
scale language models and expand their applications, addressing knowledge dilution will be crucial
for ensuring these powerful systems remain reliable tools for specialized domains.

The broader implications extend beyond any single domain, knowledge dilution appears to be
a fundamental limitation of current transformer architectures when applied to specialized tasks
requiring sustained attention to domain-specific constraints. Addressing this challenge will require
both technical innovation and careful consideration of deployment practices in critical applications.
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