

TURNING SPEECH LANGUAGE MODELS INTO MULTILINGUAL LISTENERS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Speech Language Models (SLMs) that understand spoken language questions and commands support only a few high-resource languages, limiting access to modern technology for millions of speakers worldwide. This gap in language coverage stems from the scarcity of multilingual speech-language instruction-tuning datasets. To address this issue, we present MULTISPEECHQA, a large-scale, synthetically generated and human-verified dataset comprising 9200 hours of more than 10.8 million spoken question-answer pairs in 23 typologically diverse languages, designed to improve the multilingual instruction-following capabilities of SLMs. Using MULTISPEECHQA, we also introduce MULTISPEECH-BENCH, a multi-task benchmark to evaluate SLM performance across 23 languages. We compare the performance of a strong cascading system to three leading open-weight SLMs on MULTISPEECH-BENCH and find that the cascading system outperforms all existing open-weight SLMs. We then demonstrate the effectiveness of MULTISPEECHQA by fine-tuning the best-performing open-weight SLM, Qwen 2.5-Omni, on our dataset, which substantially improves its performance and establishes new state-of-the-art results for open-weight models on our benchmark. Our findings show that high-quality synthetic datasets offer a scalable solution to improving the multilingual capabilities of SLMs, extending the benefits of natural spoken interactions to a wider range of languages.

1 INTRODUCTION

Speech Language Models (SLMs) often combine a pretrained speech encoder with a pretrained Large Language Model (LLM), using a modality adapter module to map the output of the speech encoder into the language model input space to perform various speech and language processing tasks (Arora et al., 2025). These models are trained with instruction tuning data to align the speech encoder and LLM, and allow for natural spoken interactions.

SLMs have many advantages over alternatives like the popular multitask speech model Whisper (Radford et al., 2023), including allowing natural language instructions for speech tasks, doing question answering out-of-the-box and enabling zero-shot performance in a variety of traditional speech processing tasks, such as emotion recognition, audio captioning or audio-based storytelling. However, the open-weight SLMs that exist today are primarily developed for English and a few other high-resource languages (Zhang et al., 2023; Chu et al., 2024b; Fang et al., 2024; Tang et al., 2024; Abouelenin et al., 2025). This limits access to the state-of-the-art speech-language technology for many speakers worldwide.

The most critical challenge in developing multilingual SLMs is the scarcity of multilingual speech-language instruction-tuning datasets. While there has been significant progress on curating such multilingual data for text-only models (Singh et al., 2024; Üstün et al., 2024), and vision-language models (Dash et al., 2025; Yue et al., 2025), the intersection of speech and language remains severely limited.

There are several benchmarks that have been introduced to measure speech language model capabilities. These include speech and audio understanding of AudioBench (Wang et al., 2025), spoken language understanding with SLUE (Shon et al., 2022) and safety, bias and fairness evaluation with AHELM (Lee et al., 2025) and AIR-Bench (Yang et al., 2024). The existing evaluation benchmarks

054 for SLMs also suffer from the lack of language coverage, in particular, for open-ended generative
 055 instruction following.
 056

057 To address this gap, we present **MULTISPEECHQA**, a large-scale multilingual spoken question-
 058 answering (SQA) dataset comprising of 10.8 million instructions and 9200 hours of syntheti-
 059 cally generated and human-verified speech data in 23 typologically diverse languages. **MULTI-**
 060 **SPEECHQA** consists of open-ended question-answer pairs from variety of tasks, and data sources
 061 designed to foster instruction following capabilities for SLMs in 23 languages. We combine **MUL-**
 062 **TISPEECHQA** with CommonVoice (Ardila et al., 2020) automatic speech recognition (ASR) data
 063 and CovST-2 (Wang et al., 2021) automatic speech translation (AST) data to create **MULTISPEECH-**
 064 **BENCH**, providing a multi-task evaluation suite of these models in 23 languages.
 065

Our main contributions are as follows:

- 066 1. We validate the hypothesis that automated synthetic data generation can provide sufficiently
 067 good instruction-tuning data to enable effective post-training of SLMs for many languages,
 068 provided only that adequate machine translation (MT) and speech synthesis (TTS) systems
 069 exist for those languages.
- 070 2. We provide **MULTISPEECHQA**, a **multilingual** speech-language instruction fine-tuning
 071 dataset that consists of over 10.8 million **spoken question-answer** pairs in 23 languages,
 072 where multilingual samples are generated by using translation and speech synthesis, com-
 073 prising 9200 hours in total.
- 074 3. We develop **MULTISPEECH-BENCH**, a **multilingual**, **multitask speech** processing bench-
 075 mark, facilitating evaluation of speech recognition, speech translation and spoken question
 076 answering in 23 languages.
- 077 4. Validating the effectiveness of our dataset, we finetune Qwen2.5-Omni on **MULTI-**
 078 **SPEECHQA** and show that it achieves state-of-the-art performance among open-weight
 079 models on **MULTISPEECH-BENCH**, particularly outperforming Qwen2.5-Omni with 60%
 080 win-rate across 23 languages.

081 By releasing our dataset and model weights, we aim to extend the benefits of modern speech technol-
 082 ogy to speakers of diverse languages worldwide. Our dataset, benchmark and models are publicly
 083 available.
 084

085 2 RELATED WORK 086

087 **Speech Language Models.** SLMs can be broadly categorized into three architectural approaches:
 088 (1) models of speech distribution; (2) models of joint speech-text distribution, and (3) models com-
 089 bining pre-trained text LLMs with speech encoders (Arora et al., 2025). The third approach lever-
 090 ages the instruction-following capabilities learned by the text LLM and typically requires less training
 091 data, enabling strong few-shot or zero-shot performance on a variety of multimodal tasks (Chen
 092 et al., 2024). Many state-of-the-art models adopt this approach, including proprietary models, such
 093 as Gemini 2.5 (Comanici et al., 2025) and GPT-4o (OpenAI et al., 2024), as well as notable open-
 094 source models, such as Phi-4-Multimodal (Abouelenin et al., 2025), SALMONN (Tang et al., 2024),
 095 and Qwen2Audio (Chu et al., 2024b).

096 Comparing open-source models reveals limited multilingual support. SALMONN is primarily
 097 trained on English data, while Phi-4-Multimodal and Qwen2Audio support only eight languages.
 098 Both SALMONN and Qwen2Audio leverage a Whisper-based encoder (Radford et al., 2023),
 099 which is aligned with an LLM backbone, suggesting potential for broader language coverage that
 100 remains largely unexplored. Our work substantially extends the language coverage of these models
 101 by providing support for 23 languages with a comprehensive evaluation.
 102

103 **Multilingual SQA Datasets.** Multilingual SQA datasets are scarce, limiting the development of
 104 truly multilingual SLMs. Existing multilingual speech benchmarks and datasets primarily target
 105 traditional tasks, rather than open-ended SQA. For example, ASR and AST dataset FLEURS (Con-
 106 neau et al., 2023) and ASR dataset ML-SUPERB 2.0 (Shi et al., 2024) cover 102 and 143 languages,
 107 respectively. For SQA specifically, Voice Assistant 400K (Xie & Wu, 2024) offers diverse question-
 answer pairs but only in English. Additionally, recent work shows that high-quality synthetic speech

Figure 1: Summary of the dataset creation process. We translate the questions and answers of the Voice Assistant 400K dataset into each of the Aya Expanse languages (in Table 2) with SeamlessM4T, synthesise the questions with XTTS for the languages covered by the model and SeamlessM4T for the languages not covered by XTTS, leaving us with roughly 10.8 million text questions, speech questions and text answers.

can effectively augment limited real data. Phi-4-Multimodal demonstrated strong performance in SQA tasks using synthetic speech from translations. Our training approach leverages this insight, while substantially expanding the language coverage with MULTISPEECHQA.

3 DATASET CREATION

Figure 1 presents our two-stage process to create MULTISPEECHQA. We build upon the English Voice Assistant 400K (VA 400K; [Xie & Wu, 2024](#)) dataset, which consists of synthesised speech from text-only instruction-completion pairs. These instruction-completion pairs are sourced from multiple datasets, as detailed in Table 1. We extend VA 400k to 22 additional languages covered by the Aya Expanse 8B ([Dang et al., 2024](#)) model through translation and synthesis, which has been shown to be effective in past work ([Abouelenin et al., 2025](#)). We summarise the languages in our dataset in Table 2.

Table 1: Splits in our dataset with number of instruction-completion pairs per language.

Dataset	Number of pairs per language
Trivia (Multi-choice, 17K) (Mihai, 2024c)	16,528
Trivia (Single-choice, 20K) (Mihai, 2024c)	16,529
QA Assistant V1 (7K) (Mihai, 2024a)	5,769
QA Assistant V2 (20K) (Mihai, 2024b)	16,008
Alpaca GPT-4 (EN, 55K) (Peng et al., 2023)	31,293
Identity (Xie & Wu, 2024)	4,306
RLHF (Bai et al., 2022)	379,621
Total	470,054

3.1 TRANSLATION AND SYNTHESIS

For translation, we use Seamless M4T v2 Large ([Seamless Communication et al., 2023](#)) to translate instruction-completion pairs from English into the 22 target languages languages. This model was chosen as it is publicly available, free to use, and it achieves stronger performance compared to other models of similar size, such as NLLB ([Team et al., 2022](#)), in our preliminary experiments.

For speech synthesis, we use different models based on language support. We use XTTS ([Casanova et al., 2024](#)) for 15 languages, as we found its audio quality to be superior to other models in our preliminary evaluations. For the remaining seven languages not supported by XTTS, we use Seamless M4T v2 Large and language-specific MMS text-to-speech (TTS) models ([Pratap et al., 2024](#)). To improve speaker diversity in the training data, which is important for achieving robust performance (e.g., see [Jia et al., 2018](#)), we leverage XTTS’s voice cloning capability with short LibriVox ([McGuire, 2005](#)) clips of perceived male and female speakers. For each language supported by XTTS, we randomly select a voice, which might be male or female, from all the LibriVox clips dur-

162
163
164
Table 2: Languages in MULTISPEECHQA with their language families, ISO 639-3 codes, TTS
model used, and human evaluation scores for naturalness and content understanding.

165	Language	Language Family	ISO 639-1	TTS Model	Naturalness	Content Understood
166	Arabic	Afro-Asiatic (Semitic)	ar	XTTS	2.8	3.7
167	Chinese (Simplified)	Sino-Tibetan (Sinitic)	zh	XTTS	2.8	4.8
168	Czech	Indo-European (Slavic, West)	cs	XTTS	—	—
169	Dutch	Indo-European (Germanic, West)	nl	XTTS	3.1	4.4
170	English	Indo-European (Germanic, West)	en	—	—	—
171	French	Indo-European (Romance)	fr	XTTS	3.6	4.3
172	German	Indo-European (Germanic, West)	de	XTTS	3.0	4.4
173	Greek	Indo-European (Hellenic)	el	MMS	2.4	4.2
174	Hebrew	Afro-Asiatic (Semitic)	he	MMS	2.1	2.4
175	Hindi	Indo-European (Indo-Aryan)	hi	XTTS	3.4	3.5
176	Indonesian	Austronesian (Malayo-Polynesian)	in	XTTS	3.0	4.1
177	Italian	Indo-European (Romance)	it	XTTS	3.5	4.5
178	Japanese	Japonic	ja	XTTS	3.0	2.9
179	Korean	Koreanic	ko	XTTS	2.3	4.2
180	Farsi	Indo-European (Iranian)	fa	Seamless	2.5	4.2
181	Polish	Indo-European (Slavic, West)	pl	XTTS	4.0	4.4
182	Portuguese	Indo-European (Romance)	pt	XTTS	3.7	4.6
183	Romanian	Indo-European (Romance)	ro	Seamless	1.8	4.0
184	Russian	Indo-European (Slavic, East)	ru	XTTS	3.7	4.6
185	Spanish	Indo-European (Romance)	es	XTTS	3.6	4.9
186	Turkish	Turkic (Oghuz)	tr	XTTS	3.4	4.3
187	Ukrainian	Indo-European (Slavic, East)	uk	Seamless	2.5	4.6
188	Vietnamese	Austroasiatic (Vietic)	vi	Seamless	3.2	2.8

183
184
185
ing synthesis, resulting in 37 different voices across the dataset. Table 2 shows the model assignment
per language.

186 187 3.2 HUMAN EVALUATION

188
189 To measure both the quality of the translations and synthesised speech, we conduct a human evalua-
190 tion for our dataset. We sample 20 instruction-completion pairs for each language from our dataset,
191 and ask native speakers of each language to evaluate both the naturalness of the speech and the
192 amount of content they have understood on a 5-point scale (more details in Appendix A). We ensure
193 that each language’s examples were reviewed by at least two native speakers, except for Czech for
194 which we could not obtain any ratings.

195
196 As shown in Table 2, scores for the perceived naturalness of the speech range from 1.8 to 4.0, and
197 the scores for content understanding range from 2.4 to 4.9. Unsurprisingly, the average score for
198 naturalness (3.0) falls behind the content understanding (4.1), as the speech synthesis models often
struggle to generate the highest quality natural sounds in many languages (Casanova et al., 2024;
Pratap et al., 2024).

199
200 Comparing the models used for speech synthesis, XTTS shows better performance than Seam-
201 lessM4T and language-specific MMS TTS models, achieving an averaged score of 3.3 and 4.2 in
202 15 languages for naturalness and the amount of content understood, respectively. Results for the
203 language-specific MMS TTS models are 2.25 and 3.3 averaged across two languages, and Seam-
204 lessM4T are 2.5 and 3.9. Note that the languages that use MMS TTS models where XTTS does not
205 have language coverage, are lower-resource languages such as Farsi and Greek. These results show
206 that our dataset is adequate for multilingual instruction finetuning, while further improvements will
207 most strongly depend on improving TTS quality.

208 209 3.3 MULTISPEECH-BENCH FOR MULTILINGUAL AND MULTITASK EVALUATION

210
211 We split the MULTISPEECHQA dataset into train, development and test sets. We randomly sample
212 SQA pairs of the different subsets with the same dataset distribution as VA 400K, resulting in a
213 development set of 2000 SQA pairs and a test set of 1000 SQA pairs. **To avoid speaker overlap, we**
214 **select different speakers for the train and test set where possible.** All remaining data belongs to the
train set.

215
216 We create MULTISPEECH-BENCH from a subset of our test split, sampling the same 200 SQA
pairs per language. To ensure the quality of this evaluation dataset, we collect human annotations

Figure 2: MULTISPEECH-BENCH covers three tasks: (1) Spoken Question Answering (SQA), where models are prompted with speech only (no text prompt); (2) Automatic Speech Translation (AST) from speech to English, using CoVoST-2 (X to En) for languages that overlap with the 23 languages in our dataset; and (3) Automatic Speech Recognition (ASR) on CommonVoice for each of the 23 supported languages.

on all 200 SQA pairs using Prolific, asking language experts to review and correct the translations where necessary. Overall, 72% of translations required editing with language-specific correction rates ranging from 43% (Turkish) to 86% (Chinese). This manually verified subset is combined with existing test from CommonVoice (ASR) and CoVST-2 (ASR) for matching languages, creating our multilingual, multitask benchmark.

4 EVALUATION ON OPEN-WEIGHT MODELS

To establish the performance of current multilingual SLMs, we evaluate leading open-weight SLMs on MULTISPEECH-BENCH and compare it against a strong cascading system baseline. This evaluation quantifies the performance gap between languages and establishes baselines for measuring SQA performance improvements from training with MULTISPEECHQA. For the SQA portion of MULTISPEECH-BENCH, we adopt pairwise preference evaluations using LLM-as-a-judge, following recent work involving open-ended multilingual generation (Üstün et al., 2024). This approach allows for consistent evaluation across our 23 languages, and is more cost-efficient than recruiting human annotators for each language. We use the multilingual Command-A (Cohere et al., 2025) model as our LLM-as-a-judge, which supports the 23 languages in our datasets (more details in Appendix A.5). **To check for calibration across LLMs, we also use GPT-4o as an LLM judge.**

Cascading System Baseline While end-to-end models that process speech directly have architectural advantages (e.g., preserving acoustic information), we include a strong cascading system baseline by first transcribing the speech with Whisper Large v3 (Radford et al., 2023), then prompting Aya Expanse 8B (Dang et al., 2024) with the transcription.

Whisper is a leading multilingual model that supports over 100 languages and is trained to do ASR and AST into English. Aya Expanse 8B is a language model trained to respond to questions in all 23 languages in MULTISPEECHQA. Such cascading baselines perform often on par or exceed the performance of SLMs on some spoken language processing tasks (Chen et al., 2024). Our benchmark can help us learn whether this is true for our three tasks, even though non-cascading SLMs have many other advantages – for example, they are the only choice for performing speech-native tasks like spoken emotion detection or speaker identification.

Open-Weight Models We evaluate three leading open-weight SLMs that represent different training approaches and cover different languages:

1. **Qwen2-Audio** (Chu et al., 2024a): A multimodal model that combines an audio encoder initialized from Whisper Large v3 (Radford et al., 2023) with a QwenLM 7B decoder (Chu

270 et al., 2024b). The modality adapter is a multi-layer perceptron. The authors do not specify
271 full language support, but model performance is reported on English, French, and Chinese.

2. **Qwen2.5-Omni** ([Xu et al., 2025](#)): A multimodal model incorporating speech and vision modalities into the Qwen2.5 language model. The processing of multimodal inputs and text generation happens in the ‘Thinker’ part of the model. For speech, it uses an encoder that is initialized with Whisper Large v3, and a multi-layer perceptron as the modality adapter. The languages supported by the model are not explicitly stated.
3. **Phi-4 Multimodal** ([Abouelenin et al., 2025](#)): A multimodal model incorporating speech and vision modalities into the Phi-4 language model. For speech, it uses a conformer model, which is trained on a proprietary dataset. The modality adapter is a multi-layer perceptron. The model supports English, Chinese, German, French, Italian, Japanese, Spanish, and Portuguese audio input.

Commercial SLMs We evaluate two leading commercial SLMs:

1. **GPT-Audio:** GPT-Audio is OpenAI's speech-enabled variant of the GPT family, designed for real-time multimodal interaction. It supports speech recognition, speech-to-text reasoning, and text-to-speech generation within a unified model.
2. **Gemini 2.5 Flash Lite:** Gemini 2.5 Flash Lite is a compact member of Google's Gemini 2.5 series. The model provides robust automatic speech recognition and basic audio-event understanding.

4.1 RESULTS

With Whisper combined with Aya Expanse 8B as the baseline, Figure 4 shows win rates on the SQA portion of MULTISPEECH-BENCH for each open-weight model tested against it. We find that Qwen2.5-Omni outperforms all other open-weight models, and our analysis of language-specific win rates reveals that SLMs perform better on the languages they explicitly support (details in Appendix A.1). Qwen2-Audio and Phi-4-Multimodal are competitive with the baseline in languages that the models are trained on, but it is clear that they are outperformed by the cascading system baseline, likely due to the strength of the individual ASR and language models on their specific tasks and the lack of catastrophic forgetting that can occur during instruction tuning of the models to enable multimodal processing.

In Table 3, we show the performance of the baseline and SLM models on ASR and AST, measuring ASR performance using the word error rate (WER; character error rate (CER) for Chinese (zh) and Japanese (ja)) and AST performance with BLEU (Papineni et al., 2002) and chrF (Popović, 2015). Qwen2.5-Omni shows the strongest performance among the evaluated SLM models (average ASR error rate of 49.7; average BLEU of 22.7; average chrF of 46.6), outperforming the baseline on AST. The per-language results are mixed for both tasks, but generally models perform strongest on the languages seen during training.

5 FINETUNING WITH MULTISPEECHQA

The open-weight model results show the need for further model improvement. We take the best-performing open-weight SLM, Qwen2.5-Omni and finetune it on MULTISPEECHQA. We perform LoRA finetuning (Hu et al., 2022) on all linear modules in each transformer layer, using a rank of 32. We train for a fixed number of steps, equalling roughly 3 epochs of the data. We then evaluate its performance on MULTISPEECH-BENCH.

5.1 RESULTS

Figure 5 shows the win rates of Qwen2.5-Omni finetuned with MULTISPEECHQA against the non-finetuned Qwen2.5-Omni model. We find that parameter efficient finetuning improves SQA performance substantially. The finetuned model wins the majority of the time, struggling with languages such as Hebrew, Greek and Farsi, where the judgements tie 48.0% of the time on average. When considering all languages, our finetuned model wins 60.6% of the time on average. This finetuned

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: Win rates on MULTISPEECH-BENCH averaged across languages for the open-weight SLMs against the baseline cascading system of Whisper combined with Aya Expanse 8B using the Command-A LLM-as-a-Judge. Bars show % wins for each model and % ties (gray).

Figure 4: Win rates on MULTISPEECH-BENCH averaged across languages for the open-weight SLMs against the baseline cascading system of Whisper combined with Aya Expanse 8B using the GPT-4o LLM-as-a-Judge. Bars show % wins for each model and % ties (gray).

378
 379 Table 3: Speech Recognition (ASR) and Speech Translation (AST) performance across models and
 380 languages. The baseline results are for the cascaded Whisper and Aya-Expanse 8B model. We
 381 compare the baseline to Qwen2-Audio (Q2-Audio), Phi-4 Multimodal (Phi-4 MM), and Qwen2.5-
 382 Omni (Q2.5-Omni). **We report CER for Chinese (zh) and Japanese (ja), and report chrF in addition**
 383 **to BLEU for AST performance.**

384 Lang.	385 ASR (WER %) ↓				386 AST			
	387 Baseline	388 Q2-A	389 Phi4-MM	390 Q2.5O	391 Baseline	392 Q2-A	393 Phi4-MM	394 Q2.5O
	395 BLEU/chrF	396 BLEU/chrF	397 BLEU/chrF	398 BLEU/chrF	399 BLEU/chrF	400 BLEU/chrF	401 BLEU/chrF	402 BLEU/chrF
ar	14.0	118.1	146.1	45.7	34.2/54.7	7.3/30.9	0.1/11.9	30.6/53.8
cs	26.0	117.4	115.2	100.3	—/—	—/—	—/—	—/—
de	9.4	33.3	7.0	7.1	—/—	—/—	—/—	—/—
el	21.8	118.3	114.1	108.0	—/—	—/—	—/—	—/—
en	3.2	34.6	13.9	13.8	—/—	—/—	—/—	—/—
es	7.7	18.1	4.9	4.9	—/—	—/—	—/—	—/—
fa	38.0	128.7	133.0	109.1	—/—	—/—	—/—	—/—
fr	9.0	34.1	10.1	10.9	—/—	—/—	—/—	—/—
he	40.6	128.4	447.8	122.9	—/—	—/—	—/—	—/—
hi	30.8	123.2	105.3	68.9	—/—	—/—	—/—	—/—
id	34.9	71.8	125.1	14.0	36.1/53.3	6.6/29.8	0.2/15.0	37.0/59.0
it	5.0	21.7	5.1	6.5	—/—	—/—	—/—	—/—
ja	15.8	66.1	78.6	75.9	10.4/23.4	11.3/38.5	19.7/46.6	17.8/41.5
ko	20.9	61.4	144.4	23.0	—/—	—/—	—/—	—/—
nl	9.5	90.8	101.5	14.0	—/—	—/—	—/—	—/—
pl	7.5	110.8	118.6	94.7	—/—	—/—	—/—	—/—
pt	6.7	28.5	7.4	9.6	—/—	—/—	—/—	—/—
ro	15.1	114.6	106.1	89.3	—/—	—/—	—/—	—/—
ru	17.1	57.4	123.9	9.3	—/—	—/—	—/—	—/—
tr	11.4	114.6	131.9	74.5	20.0/40.8	0.6/19.3	0.1/15.4	5.5/27.0
uk	18.7	107.0	118.8	82.6	—/—	—/—	—/—	—/—
vi	18.0	110.5	104.2	50.9	—/—	—/—	—/—	—/—
zh	28.9	93.9	7.9	6.2	4.5/16.9	15.6/45.8	8.9/39.7	22.7/51.2
Ave.	17.8	82.8	98.7	49.7	21.0/37.8	8.3/32.9	5.8/25.7	22.7/46.6

423
 424 Figure 5: Win rates on MULTISPEECH-BENCH averaged across languages for the Qwen2.5-Omni
 425 and the Qwen2.5-Omni model finetuned on MULTISPEECHQA. Bars show % wins for each model
 426 and % ties (gray).

427
 428 model also performs best on SQA against the cascading baseline, leading to state-of-the-art SLM
 429 performance on the SQA portion of MULTISPEECH-BENCH.

430
 431 Comparing the ASR and AST performance of Qwen2.5-Omni and Qwen2.5-Omni finetuned on
 432 MULTISPEECHQA, we find that the average ASR performance remains stable across languages

(per-language results shown in Table 4 in Appendix A.4). The average WER increases marginally from 49.7 for the non-finetuned model to 50.4 for the finetuned model. On AST, the performance of the finetuned model is similarly comparable, as shown by the slightly lower BLEU score of 21.0 compared to 22.7 for the non-finetuned model. Overall, we find that MULTISPEECHQA finetuning substantially improves spoken SQA, while leaving performance on core ASR and ASR capabilities effectively unchanged.

6 HOW DO TRAINING DATA MIXTURES AFFECT SPEECH LANGUAGE MODEL PERFORMANCE?

In Section 5, we show that MULTISPEECHQA improves the SQA performance of Qwen2.5-Omni. These results motivate a controlled study of data composition for multilingual SLMs. Specifically, most existing SLMs, including Qwen2.5-Omni, are trained on undisclosed data mixtures, making it impossible to understand whether performance differences across languages arise from the model capacity being spread across many languages or from insufficient task diversity. We therefore ask two questions: (1) Does training with fewer languages lead to better performance?; and (2) Does adding AST data improve model performance?

To answer these questions, we train models from scratch using the SALMONN (Tang et al., 2024) architecture, whose training code is publicly available. Specifically, in our setup, we use Whisper as the speech encoder and Aya Expanse 8B as the language model. The window-level Q-Former uses an mBERT text encoder. We choose this setup, because the Whisper encoder produces stable multilingual speech features, and the window-level Q-Former allows us to leverage a pretrained text encoder to more efficiently learn intermediary representations.

As Whisper is trained to translate speech data of many of the Aya’s languages into English, we hypothesise that adding AST data increases the task diversity in the training mixture and hence could lead a better downstream performance. For this ablation, we set a threshold of 20% for the speech translation data and use mixed batches for more robust multi-task instruction-tuning.

Training details We train our models in two stages: (1) multimodal alignment with ASR data, followed by (2) multitask training with SQA and AST data. Following the SALMONN training setup, we train the window-level Q-Former and LoRA adapters and keep the speech encoder and language model frozen. Although the model architecture allows us to append a text prompt to the speech input, we train the model without any additional text prompt with our question answering examples to enable the question-answering capability from the spoken questions alone. Further details on how we train the models are in Appendix A.6 and hyperparameter details are in Table 5.

In total, we train four models: (1) ALL+AST: a model trained on all of Aya’s 23 languages with CoVoST-2 AST data; (2) ALL: a model trained on all of Aya’s 23 languages; (3) TEN: a model trained with ten selected languages (English, French, Dutch, Turkish, German, Arabic, Spanish, Russian, Indonesian, and Polish); and (4) TEN+AST: a model trained with ten selected languages with CoVoST-2 AST data.

6.1 RESULTS

Does training with fewer languages lead to better performance? Figure 6 summarises the difference in SQA performance of the models trained with 10 languages (TEN/TEN+AST) and 23 languages (ALL/ALL+AST). We see that the model trained with 23 languages results in a better win rate overall, suggesting that we do not experience capacity dilution at 23 languages, and adding more languages in training leads to better performance across languages. This could be due to the fact that we start with a pretrained speech encoder and a pretrained language model, meaning that we already have the question-answering capabilities present in the LM and the SLM training is primarily learning how to project the speech encoder output into the LM space.

Does adding AST performance improve the models? We evaluate whether including speech translation data improves performance by testing on CoVoST-2 languages (both X to En and En to X translation directions) that overlap with the 23 languages in our dataset. We find that models trained with AST data win 46.8% of the time against those without, indicating that additional AST data alone does not lead to a consistent improvement. This result is likely due to two factors: (1)

Figure 6: Win rates on MULTISPEECH-BENCH averaged across languages for the from-scratch SALMONN models. ALL+AST versus TEN+AST is shown at the top and versus ALL at the bottom. Bars show % wins for each model and % ties (gray).

the AST data comprises 20% of the training mixture, which is potentially too small to produce a measurable effect; and (2) Whisper already supports speech translation into English, so adding a small amount of AST instruction-tuning data provides only limited additional supervision.

7 CONCLUSION

In this paper, we address the lack of multilingual instruction-tuning data for SLMs by presenting MULTISPEECHQA, a synthetic, human-verified dataset of more than 10.8 million instructions and 9200 hours of spoken question-answering data in 23 languages. We also introduce MULTISPEECH-BENCH, a human-verified, multilingual and multitask benchmark to evaluate SLMs on SQA, ASR and AST. Using MULTISPEECH-BENCH, we establish the strong performance of Qwen2.5-Omni among the open-weight models we evaluate, and demonstrate the effectiveness of finetuning this model on MULTISPEECHQA, leading to state-of-the art performance on the SQA portion of MULTISPEECH-BENCH. These findings validate that automated, synthetic pipelines provide sufficient instruction-tuning data for effective post-training of SLMs across many languages.

8 LIMITATIONS

We present a synthetically generated dataset, which for several languages suggests the possibility of errors in the machine translation, which could lead to unnatural or possibly incorrect question prompts in our dataset. The quality of the generated speech is at the limit of the speech synthesis models, so we ensured that the content could be understood by native speakers for each language. Synthetic generation of speech means we have a limited number of voices despite the vast amounts of data in our dataset.

REFERENCES

Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint arXiv:2503.01743*, 2025.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A massively-multilingual speech corpus. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.),

540 *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pp. 4218–4222, Mar-
 541 seille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4.
 542 URL <https://aclanthology.org/2020.lrec-1.520/>.

543 Siddhant Arora, Kai-Wei Chang, Chung-Ming Chien, Yifan Peng, Haibin Wu, Yossi Adi, Emmanuel
 544 Dupoux, Hung-Yi Lee, Karen Livescu, and Shinji Watanabe. On The Landscape of Spoken Lan-
 545 guage Models: A Comprehensive Survey, 2025. URL <https://arxiv.org/abs/2504.08528>.

546 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 547 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 548 assistant with reinforcement learning from human feedback. *CoRR*, 2022.

549 Edresson Casanova, Kelly Davis, Eren Gölge, Görkem Göknar, Iulian Gulea, Logan Hart, Aya Al-
 550 jafari, Joshua Meyer, Reuben Morais, Samuel Olayemi, et al. Xtt: a massively multilingual
 551 zero-shot text-to-speech model. In *Proc. Interspeech 2024*, pp. 4978–4982, 2024.

552 Yiming Chen, Xianghu Yue, Chen Zhang, Xiaoxue Gao, Robby T. Tan, and Haizhou Li.
 553 VoiceBench: Benchmarking LLM-Based Voice Assistants, 2024. URL <https://arxiv.org/abs/2410.17196>.

554 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
 555 Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report. *arXiv*
 556 preprint *arXiv:2407.10759*, 2024a.

557 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
 558 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
 559 2024b.

560 Team Cohere, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh, Yazeed Alnumay,
 561 Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Aumiller, et al. Command
 562 A: An enterprise-ready large language model. *arXiv preprint arXiv:2504.00698*, 2025.

563 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 564 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 565 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 566 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

567 Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang, Vera Axelrod, Siddharth Dalmia, Jason
 568 Riesa, Clara Rivera, and Ankur Bapna. Fleurs: Few-shot learning evaluation of universal repre-
 569 sentations of speech. In *2022 IEEE Spoken Language Technology Workshop (SLT)*, pp. 798–805,
 570 2023. doi: 10.1109/SLT54892.2023.10023141.

571 John Dang, Shivalika Singh, Daniel D’souza, Arash Ahmadian, Alejandro Salamanca, Madeline
 572 Smith, Aidan Peppin, Sungjin Hong, Manoj Govindassamy, Terrence Zhao, Sandra Kub-
 573 lik, Meor Amer, Viraat Aryabumi, Jon Ander Campos, Yi-Chern Tan, Tom Kocmi, Florian
 574 Strub, Nathan Grinsztajn, Yannis Flet-Berliac, Acyr Locatelli, Hangyu Lin, Dwarak Talupuru,
 575 Bharat Venkitesh, David Cairuz, Bowen Yang, Tim Chung, Wei-Yin Ko, Sylvie Shang Shi,
 576 Amir Shukayev, Sammie Bae, Aleksandra Piktus, Roman Castagné, Felipe Cruz-Salinas, Eddie
 577 Kim, Lucas Crawhall-Stein, Adrien Morisot, Sudip Roy, Phil Blunsom, Ivan Zhang, Aidan
 578 Gomez, Nick Frosst, Marzieh Fadaee, Beyza Ermis, Ahmet Üstün, and Sara Hooker. Aya ex-
 579 panse: Combining research breakthroughs for a new multilingual frontier, 2024. URL <https://arxiv.org/abs/2412.04261>.

580 Saurabh Dash, Yiyang Nan, John Dang, Arash Ahmadian, Shivalika Singh, Madeline Smith, Bharat
 581 Venkitesh, Vlad Shmyhlo, Viraat Aryabumi, Walter Beller-Morales, et al. Aya vision: Advancing
 582 the frontier of multilingual multimodality. *arXiv preprint arXiv:2505.08751*, 2025.

583 Anuj Diwan, Rakesh Vaideeswaran, Sanket Shah, Ankita Singh, Srinivasa Raghavan, Shreya Khare,
 584 Vinit Unni, Saurabh Vyas, Akash Rajpuria, Chiranjeevi Yarra, Ashish Mittal, Prasanta Kumar
 585 Ghosh, Preethi Jyothi, Kalika Bali, Vivek Seshadri, Sunayana Sitaram, Samarth Bharadwaj, Jai
 586 Nanavati, Raoul Nanavati, Karthik Sankaranarayanan, Tejaswi Seeram, and Basil Abraham. Mul-
 587 tilingual and code-switching asr challenges for low resource indian languages. *Proceedings of*
 588 *Interspeech*, 2021.

594 Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni:
 595 Seamless speech interaction with large language models. *CoRR*, 2024.
 596

597 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 598 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 599 *ference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeEFYf9>.
 600

601 Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, zhifeng Chen, Patrick
 602 Nguyen, Ruoming Pang, Ignacio Lopez Moreno, and Yonghui Wu. Transfer learn-
 603 ing from speaker verification to multispeaker text-to-speech synthesis. In S. Bengio,
 604 H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Ad-*
 605 *vances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 606 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/6832a7b24bc06775d02b7406880b93fc-Paper.pdf.
 607

608 Lucas Jo and Wonkyum Lee. Zeroth-korean: Korean open-source speech corpus for speech recog-
 609 nition, 2022. URL <https://openslr.org/40/>. Accessed: 2025-09-21.
 610

611 Tony Lee, Haoqin Tu, Chi Heem Wong, Zijun Wang, Siwei Yang, Yifan Mai, Yuyin Zhou, Cihang
 612 Xie, and Percy Liang. Ahelm: A holistic evaluation of audio-language models. *arXiv preprint*
 613 *arXiv:2508.21376*, 2025.

614 Yanir Marmor, Kinneret Misgav, and Yair Lifshitz. ivrit.ai: A comprehensive dataset of hebrew
 615 speech for ai research and development, 2023.
 616

617 Hugh McGuire. Librivox, Aug 2005. URL <https://librivox.org/>.
 618

619 Mihai. qa-assistant. <https://huggingface.co/datasets/Mihaiii/qa-assistant>,
 April 2024a. URL <https://huggingface.co/datasets/Mihaiii/qa-assistant>. Accessed: 2025-09-17.
 620

621 Mihai. qa-assistant-2. <https://huggingface.co/datasets/Mihaiii/qa-assistant-2>, June 2024b. URL <https://huggingface.co/datasets/Mihaiii/qa-assistant-2>. Accessed: 2025-09-17.
 622

623 Mihai. trivia-single-choice. https://huggingface.co/datasets/Mihaiii/trivia_single_choice, July 2024c. URL https://huggingface.co/datasets/Mihaiii/trivia_single_choice. Accessed: 2025-09-17.
 624

625 David Mueller, Mark Dredze, and Nicholas Andrews. Multi-task transfer matters during instruction-
 626 tuning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Associa-*
 627 *tion for Computational Linguistics: ACL 2024*, pp. 14880–14891, Bangkok, Thailand, August
 628 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.883. URL
 629 <https://aclanthology.org/2024.findings-acl.883/>.
 630

631 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 632 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 633 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 634 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 635 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 636 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 637 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 638 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 639 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 640 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 641 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 642 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 643 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 644 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 645 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 646 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 647

648 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 649 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 650 mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 651 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 652 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 653 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 654 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 655 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 656 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 657 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 658 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 659 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 660 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 661 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 662 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 663 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 664 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 665 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 666 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 667 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 668 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 669 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 670 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 671 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 672 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 673 jayvergyia, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 674 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lillian Weng,
 675 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 676 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 677 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 678 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report, 2024. URL
 679 <https://arxiv.org/abs/2303.08774>.

680 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 681 evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
 682 *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp.
 683 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
 doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040/>.

684 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
 685 with gpt-4. *arXiv preprint arXiv:2304.03277*, 2023.

686 Anh Pham, Khanh Linh Tran, Linh Nguyen, Thanh Duy Cao, Phuc Phan, and Duong A. Nguyen.
 687 Bud500: A comprehensive vietnamese asr dataset, 2024. URL <https://github.com/quocanh34/Bud500>.

688 Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar,
 689 Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara
 690 Logacheva, and Pavel Pecina (eds.), *Proceedings of the Tenth Workshop on Statistical Machine
 691 Translation*, pp. 392–395, Lisbon, Portugal, September 2015. Association for Computational Lin-
 692 guistics. doi: 10.18653/v1/W15-3049. URL <https://aclanthology.org/W15-3049/>.

693 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali
 694 Elkahky, Zhaocheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, et al. Scaling speech technology
 695 to 1,000+ languages. *Journal of Machine Learning Research*, 25(97):1–52, 2024.

696 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 697 Robust speech recognition via large-scale weak supervision. In *International conference on ma-
 698 chine learning*, pp. 28492–28518. PMLR, 2023.

702 Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning
 703 Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim,
 704 John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei
 705 Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan,
 706 Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov,
 707 Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom
 708 Kozhevnikov, Gabriel Mejia, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh
 709 Wood, Bokai Yu, Pierre Andrews, Can Balioğlu, Peng-Jen Chen, Marta R. Costa-jussà, Maha
 710 Elbayad, Hongyu Gong, Francisco Guzmán, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee,
 711 Xutai Ma, Alex Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers,
 712 Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang,
 713 Skyler Wang, and Mary Williamson. Seamless communication. 2023.

714 Jiatong Shi, Shih-Heng Wang, William Chen, Martijn Bartelds, Vanya Bannihatti Kumar, Jinchuan
 715 Tian, Xuankai Chang, Dan Jurafsky, Karen Livescu, Hung yi Lee, and Shinji Watanabe. Mi-
 716 superb 2.0: Benchmarking multilingual speech models across modeling constraints, languages,
 717 and datasets. In *Interspeech 2024*, pp. 1230–1234, 2024. doi: 10.21437/Interspeech.2024-2248.

718 Suwon Shon, Ankita Pasad, Felix Wu, Pablo Brusco, Yoav Artzi, Karen Livescu, and Kyu J Han.
 719 Slue: New benchmark tasks for spoken language understanding evaluation on natural speech. In
 720 *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing*
 721 (*ICASSP*), pp. 7927–7931. IEEE, 2022.

722 Shivalika Singh, Freddie Vargus, Daniel D’souza, Börje Karlsson, Abinaya Mahendiran, Wei-Yin
 723 Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura O’Mahony, Mike Zhang, Ramith
 724 Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Moura, Dominik Krzemiński, Hakimeh
 725 Fadaei, Irem Ergun, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Chien,
 726 Sebastian Ruder, Surya Guthikonda, Emad Alghamdi, Sebastian Gehrmann, Niklas Muennighoff,
 727 Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh Fadaee, and Sara Hooker. Aya dataset: An
 728 open-access collection for multilingual instruction tuning. In Lun-Wei Ku, Andre Martins, and
 729 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 730 putational Linguistics (Volume 1: Long Papers)*, pp. 11521–11567, Bangkok, Thailand, August
 731 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.620. URL
 732 <https://aclanthology.org/2024.acl-long.620/>.

733 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA,
 734 and Chao Zhang. SALMONN: Towards generic hearing abilities for large language models.
 735 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=14rn7HpKVk>.

736 NLLB Team, Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
 737 Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, et al. No language left behind:
 738 Scaling human-centered machine translation. *arXiv preprint arXiv:2207.04672*, 2022.

739 Ahmet Üstün, Viraat Aryabumi, Zheng Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude,
 740 Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne
 741 Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. Aya model: An
 742 instruction finetuned open-access multilingual language model. In Lun-Wei Ku, Andre Martins,
 743 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 744 putational Linguistics (Volume 1: Long Papers)*, pp. 15894–15939, Bangkok, Thailand, August
 745 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.845. URL
 746 <https://aclanthology.org/2024.acl-long.845/>.

747 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 748 Aw, and Nancy F Chen. Audiobench: A universal benchmark for audio large language models.
 749 *NAACL*, 2025.

750 Changhan Wang, Anne Wu, Jiatao Gu, and Juan Pino. Covost 2 and massively multilingual speech
 751 translation. In *Interspeech*, volume 2021, pp. 2247–2251, 2021.

752 Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
 753 streaming. *arXiv preprint arXiv:2408.16725*, 2024.

756 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
757 Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
758 report. *arXiv preprint arXiv:2503.20215*, 2025.

759 Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun
760 Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via
761 generative comprehension. *arXiv preprint arXiv:2402.07729*, 2024.

762 Xiang Yue, Yueqi Song, Akari Asai, Seungone Kim, Jean de Dieu Nyandwi, Simran Khanuja, Anjali
763 Kantharuban, Lintang Sutawika, Sathyanarayanan Ramamoorthy, and Graham Neubig. Pangea:
764 A fully open multilingual multimodal LLM for 39 languages. In *The Thirteenth International
765 Conference on Learning Representations*, 2025. URL [https://openreview.net/forum?
766 id=a3g214yEys](https://openreview.net/forum?id=a3g214yEys).

767 Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
768 Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
769 ities. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 15757–
770 15773, 2023.

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

A APPENDIX

In these appendices, we provide additional experimental details and results. Appendix A.1 reports win rates of open-weight SLMs against the baseline. Appendix A.2 then describes the human evaluation procedure for synthesized questions. We further examine model performance in Appendix A.3, which presents win rates of Qwen2.5-omni against its fine-tuned variant trained on MULTISPEECHQA, followed by ASR and AST results for Qwen2.5-omni models in Appendix A.4. The LLM-as-a-Judge prompt used in our evaluations is provided in Appendix A.5. Finally, Appendix A.6 contains comprehensive training details.

A.1 WIN RATES OF OPEN-WEIGHT MODELS AGAINST THE WHISPER + AYA BASELINE

We show language-wise win-rate breakdowns for each of the SLMs against the baseline model in Figures 7, 8 and 9.

Figure 7: Win rates comparison: Whisper + Aya vs. Phi-4-Multimodal. Whisper + Aya outperforms Phi-4-Multimodal on most languages, with the exception of a subset on which Phi-4-Multimodal is trained (i.e., English, Italian, and Japanese).

905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 8: Win rates comparison: Whisper + Aya vs. Qwen2-Audio. Whisper + Aya outperforms Qwen2-Audio on most languages, with the exception of a subset on which Qwen2-Audio is trained (i.e., English, Italian, Korean, Japanese and Chinese).

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Figure 9: Win rates comparison: Whisper + Aya vs. Qwen2.5-Omni. Whisper + Aya outperforms Qwen2.5-Omni on most languages, with the exception of several Asian languages and English.

972 A.2 DETAILS ON HUMAN EVALUATIONS OF SYNTHESISED QUESTIONS
973974 We ask native speakers of the 22 non-English language to assess the naturalness and amount of
975 content understood of a subset of synthesised questions in the test set. The participants rate the
976 naturalness and content understood on a scale of 1 to 5.977 **Naturalness:** Listen to this speech sample, then rate the naturalness of the speech.978 **Content Understood:** How much of the content of the speech sample can you understand?979 980 A.3 WIN RATES OF QWEN2.5-OMNI VS QWEN2.5-OMNI FINETUNED
9811013 Figure 10: Win rates comparison: Qwen2.5-Omni vs. Qwen2.5-Omni finetuned. Finetuning im-
1014 proves performance across most languages, meaning that our MULTISPEECHQA enables better
1015 SQA capability. Hebrew, and Czech seem to lag behind, with most of the results being a tie.
10161017 A.4 MULTISPEECH-BENCH PERFORMANCE ON QWEN2.5-OMNI MODELS
10181019
1020
1021
1022
1023
1024
1025

1026 Table 4: Speech Recognition (ASR) and Speech Translation (AST) performance across models and
 1027 languages: Qwen2.5 Omni vs. Qwen2.5 Omni finetuned (FT). **We report CER for Chinese (zh) and**
 1028 **Japanese (ja), and report chrF in addition to BLEU for AST performance.**

Lang.	ASR (WER %) ↓		AST (BLEU) ↑	
	Q2.5 Omni	Q2.5 Omni FT	Q2.5 Omni	Q2.5 Omni FT
ar	45.7	31.5	30.6	29.7
cs	100.4	101.6	—	—
de	7.1	7.5	—	—
el	108.0	108.3	—	—
en	13.8	16.6	—	—
es	4.9	5.1	—	—
fa	109.1	107.5	—	—
fr	10.9	10.8	—	—
he	122.9	113.6	—	—
hi	68.9	68.4	—	—
id	14.0	13.9	37.0	34.7
it	6.5	6.2	—	—
ja	75.9	31.3	17.8	17.2
ko	23.0	24.4	—	—
nl	14.0	14.3	—	—
pl	94.7	75.1	—	—
pt	9.6	11.9	—	—
ro	89.3	74.6	—	—
ru	9.3	13.7	—	—
tr	74.5	66.4	5.5	5.8
uk	82.6	81.3	—	—
vi	50.9	169.3	—	—
zh	6.2	6.8	22.7	17.7
Average	49.7	50.4	22.7	21.0

A.5 LLM-AS-A-JUDGE PROMPT

1055
 1056 We prompt our selected LLM with the prompt below, inserting the language name and completions
 1057 for each individual pair. We randomise the answers, ensuring that each model is both Answer A or
 1058 B across instances.

1059
 1060
 1061 You are a helpful following assistant whose goal is to select the preferred
 1062 (least wrong) output for a given instruction in {LANGUAGE_NAME}.

1063
 1064 Which of the following answers is the best one for given instruction
 1065 in {LANGUAGE_NAME}.

1066 A good answer should follow these rules:

1067 1) It should be in {LANGUAGE_NAME}

1068 2) It should answer the request in the instruction

1069 3) It should be factually and semantically comprehensible

1070 4) It should be grammatically correct and fluent.

1071 Instruction: {INSTRUCTION}

1072 Answer (A): {COMPLETION_A}

1073 Answer (B): {COMPLETION_B}

1074 FIRST provide a one-sentence comparison of the two answers, explaining which
 1075 you prefer and why.

1076 SECOND, on a new line, state only 'Answer (A)' or 'Answer (B)'
 1077 to indicate your choice.

1078 If the both answers are equally good or bad, state 'TIE'.

1079 Your response should use the format:
 Comparison: <one-sentence comparison and explanation>
 Preferred: <'Answer (A)' or 'Answer (B)' or 'TIE'>

1080
1081

A.6 MULTISPEECH MODELS TRAINING DETAILS

1082
1083
1084
1085
1086
1087
1088
1089

We use MULTISPEECHQA to train models from scratch and glean insights on how training data mixtures affect SLMs performance. We chose the SALMONN architecture to train our models. The pretrained components are Whisper Large v3 as our speech encoder and Aya Expanse 8B as our language model. We opt for these two models based on their state-of-the-art performance in the respective multilingual capabilities. Note that the languages in MULTISPEECHQA are the same languages on which Aya Expanse 8B is trained. We use the same window length for the window-level Q-Former as in SALMONN, but replace the BERT base uncased language model encoder with an mBERT encoder to enable multilingual representations.

1090
1091
1092
1093

We hypothesise that adding speech translation data increases the task diversity in the training mixture and hence could lead a better downstream performance. For this ablation, we set a threshold of 20% for the speech translation data and use mixed batches for more robust multi-task instruction-tuning (Mueller et al., 2024).

1094
1095
1096
1097
1098

During the training, we use parameter-efficient LoRA adapters (Hu et al., 2022) to decrease the underlying compute requirement. However, compared to SALMONN, we increase the LoRA rank and alpha to 64 for a higher trainable parameter capacity, enabling better optimization for 23 languages. We employ a multi-stage training process with different types of data for our models.

1099
1100
1101
1102
1103

Stage 1 ASR training Following the SALMONN training setup, we train the window-level Q-Former and LoRA adapters using ASR data. To do this, we use a uniform amount of ASR data (20 hours) in all languages. In this stage, we add the text instruction “Transcribe this utterance” to the speech prompt. The goal of this stage is alignment between speech and text representations and enabling the model to understand the speech inputs.

1104
1105
1106
1107
1108
1109
1110

We start with CommonVoice data (Ardila et al., 2020) for each language. Some of the languages have fewer than 20 hours of training data, so we balance the number of hours of data in Vietnamese with 15 hours of the Bud500 dataset (Pham et al., 2024), 18 hours of Hebrew with the Ivrit.ai dataset (Marmor et al., 2023), 14 hours Hindi with the monolingual portions of the Multilingual and Code-Switching ASR Challenges for Low Resource Indian Languages dataset (Diwan et al., 2021) and 19 hours Korean with the Zeroth-Korean corpus (Jo & Lee, 2022).

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

Stage 2 Question Answering Training For the second stage of training, we use our MULTISPEECHQA dataset for all 23 languages. For the Trivia QA, the QA Assistant, and the Alpaca GPT-4 datasets, we use all the samples, but given the difference in distribution of Anthropic-RLHF data, we only subsample 1000 examples from this data source to ensure a training mixture that is balanced and optimized for general-purpose speech instruction-following tasks. Overall, our training mixture includes 2,070,000 samples distributed equally between 23 languages.

1123
1124
1125
1126
1127
1128
1129
1130
1131

In addition to MULTISPEECHQA, we also run ablations where we include additional speech translation (AST) data from the CoVoST-2 (Wang et al., 2021) dataset to the training mixture. Finally, although the model architecture allows us to append a text prompt to the speech input, we train the model without any additional text prompt to enable the question answering capability from the spoken questions alone.

Hyperparameter	Stage 1	Stage 2
Learning rate	1e-5	1e-5
Warmup steps	800	400
LoRA Rank	64	64
No. of epochs	10	3
Batch size	128	256
Number of samples per language	20 hours	90 000

1132
1133

Table 5: Hyperparameters used to train Stage 1 and Stage 2 of MULTISPEECH models.

1134
1135

A.7 HUMAN VALIDATION OF LLM-AS-A-JUDGE

1136 In addition to checking for model calibration, we selected eight typologically diverse languages
1137 (Arabic, German, Hebrew, Hindi, Korean, Portuguese, Turkish and Chinese) to measure whether
1138 human judgements on SLM vs baseline pairs align with Command-A’s judgements. Eight of 23
1139 languages were chosen due to budget constraints. We evaluated an open model (Qwen2.5-Omni)
1140 and a commercial SLM (GPT-Audio) against the baseline and asked native speakers to judge the
1141 responses. Ensuring that we had three annotations for each pair of answers in the benchmark, we
1142 derived a consensus label from the three annotations and measured human–LLM alignment, observ-
1143 ing 75.6% agreement for Qwen2.5-Omni ($\kappa = 0.186$) and 52.4% for GPT-Audio ($\kappa = 0.185$). For
1144 GPT-Audio, annotators showed high disagreement as the outputs are of similar quality. Overall,
1145 these experiments provide evidence that our LLM-as-a-judge setup captures human preferences to a
1146 reasonable extent, especially for Qwen2.5-Omni.

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187