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ABSTRACT

Speech Language Models (SLMs) that understand spoken language questions and
commands support only a few high-resource languages, limiting access to mod-
ern technology for millions of speakers worldwide. This gap in language cov-
erage stems from the scarcity of multilingual speech-language instruction-tuning
datasets. To address this issue, we present MULTISPEECHQA, a large-scale, syn-
thetically generated and human-verified dataset comprising 9200 hours of more
than 10.8 million spoken question-answer pairs in 23 typologically diverse lan-
guages, designed to improve the multilingual instruction-following capabilities
of SLMs. Using MULTISPEECHQA, we also introduce MULTISPEECH-BENCH,
a multi-task benchmark to evaluate SLM performance across 23 languages. We
compare the performance of a strong cascading system to three leading open-
weight SLMs on MULTISPEECH-BENCH and find that the cascading system out-
performs all existing open-weight SLMs. We then demonstrate the effective-
ness of MULTISPEECHQA by fine-tuning the best-performing open-weight SLM,
Qwen 2.5-Omni, on our dataset, which substantially improves its performance and
establishes new state-of-the-art results for open-weight models on our benchmark.
Our findings show that high-quality synthetic datasets offer a scalable solution to
improving the multilingual capabilities of SLMs, extending the benefits of natural
spoken interactions to a wider range of languages.

1 INTRODUCTION

Speech Language Models (SLMs) often combine a pretrained speech encoder with a pretrained
Large Language Model (LLM), using a modality adapter module to map the output of the speech
encoder into the language model input space to perform various speech and language processing
tasks (Arora et al., 2025). These models are trained with instruction tuning data to align the speech
encoder and LLM, and allow for natural spoken interactions.

SLMs have many advantages over alternatives like the popular multitask speech model Whisper
Radford et al. (2022), including allowing natural language instructions for speech tasks, doing ques-
tion answering out-of-the-box and enabling zero-shot performance in a variety of traditional speech
processing tasks, such as emotion recognition, audio captioning or audio-based storytelling. How-
ever, the open-weight SLMs that exist today are primarily developed for English and a few other
high-resource languages (Zhang et al., 2023; Fang et al., 2024; Tang et al., 2024; Chu et al., 2024bj;
Abouelenin et al., 2025). This limits access to the state-of-the-art speech-language technology for
many speakers worldwide.

The most critical challenge in developing multilingual SLMs is the scarcity of multilingual speech-
language instruction-tuning datasets. While there has been significant progress on curating such
multilingual data for text-only models (Singh et al., 2024; Ustiin et al., 2024), and vision-language
models (Yue et al.; Dash et al., 2025), the intersection of speech and language remains severely
limited. Moreover, and equally important, the existing evaluation benchmarks for SLMs also suffer
from the lack of language coverage, in particular, for open-ended generative instruction following.

To address this gap, we present MULTISPEECHQA, a large-scale multilingual spoken question-
answering (SQA) dataset comprising 10.8 million instructions and 9200 hours of synthetically gen-
erated and human-verified speech data in 23 typologically diverse languages. MULTISPEECHQA
consists of open-ended question-answer pairs from variety of tasks, and data sources designed to
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foster instruction following capabilities for SLMs in 23 languages. We combine MULTISPEECHQA
with CommonVoice (Ardila et al., 2020) automatic speech recognition (ASR) data and CovST-
2 (Wang et al., 2021) automatic speeech translation (AST) data to create MULTISPEECH-BENCH,
providing a multi-task evaluation suite of these models in 23 languages.

Our main contributions are as follows:

1. We validate the hypothesis that automated synthetic data generation can provide sufficiently
good instruction-tuning data to enable effective post-training of SLMs for many languages,
provided only that adequate machine translation (MT) and speech synhesis (TTS) systems
exist for those languages.

2. We provide MULTISPEECHQA, a multilingual speech-language instruction fine-tuning
dataset that consists of over 10.8 million spoken question-answer pairs in 23 languages,
where multilingual samples are generated by using translation and speech synthesis, com-
prising 9200 hours in total.

3. We develop MULTISPEECH-BENCH, a multilingual, multitask speech processing bench-
mark, facilitating evaluation of speech recognition, speech translation and spoken question
answering in 23 languages.

4. Validating the effectiveness of our dataset, we finetune Qwen2.5-Omni on MULTI-
SPEECHQA and show that it achieves state-of-the-art performance among open-weight
models on MULTISPEECH-BENCH, particularly outperforming Qwen2.5-Omni with 60%
win-rate across 23 languages.

By releasing our dataset and model weights, we aim to extend the benefits of modern speech tech-
nology to speakers of diverse languages worldwide.

2 RELATED WORK

Speech Language Models. SLMs can be broadly categorized into three architectural approaches:
(1) models of speech distribution; (2) models of joint speech-text distribution, and (3) models com-
bining pre-trained text LLMs with speech encoders (Arora et al., 2025). The third approach lever-
ages the instruction-following capabilities learned by the text LLM and typically requires less train-
ing data, enabling strong few-shot or zero-shot performance on a variety of multimodal tasks (Chen
et al., 2024). Many state-of-the-art models adopt this approach, including proprietary models such
as Gemini 2.5 (Comanici et al., 2025) and GPT-40 (OpenAl et al., 2024), as well as notable open-
source models, such as Phi-4-Multimodal Instruct (Abouelenin et al., 2025), SALMONN (Tang
et al., 2024), and Qwen2Audio Chu et al. (2024b).

Comparing open-source models reveals limited multilingual support. SALMONN is primarily
trained on English data, while Phi-4-Multimodal Instruct and Qwen2Audio support only eight
languages. Both SALMONN and Qwen2Audio leverage a Whisper-based encoder (Radford et al.,
2023), which is aligned with an LLM backbone, suggesting potential for broader language coverage
that remains largely unexplored. Our work substantially extends the language coverage of these
models by providing support for 23 languages with a comprehensive evaluation.

Multilingual SQA Datasets. Multilingual SQA datasets are scare, limiting the development of
truly multilingual SLMs. Existing multilingual speech benchmarks and datasets primarily target tra-
ditional tasks, rather than open-ended QA. For example, ASR and AST dataset FLEURS (Conneau
et al., 2023) and ASR dataset ML-SUPERB 2.0 (Shi et al., 2024) cover 102 and 143 languages,
respectively. For SQA specifically, Voice Assistant 400K (Xie & Wu, 2024) offers diverse question-
answer pairs but only in English. Additionally, recent work shows that high-quality synthetic speech
can effectively augment limited real data. Phi-4-Multimodal Instruct demonstrated strong perfor-
mance in QA tasks using synthetic speech from translations. Our training approach leverages this
insight, while substantially expanding the language coverage with MULTISPEECHQA.
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Figure 1: Summary of the dataset creation process. We translate the questions and answers of
the Voice Assistant 400K dataset into each of the Aya Expanse languages (in Table 2) with Seam-
lessM4T, synthesise the questions with XTTS for the languages covered by the model and Seam-
lessMA4T for the languages not covered by XTTS, leaving us with 10.8 million text questions, speech
questions and text answers.

3 DATASET CREATION

Figure | presents our two-stage process to create MULTISPEECHQA. We build upon the English
Voice Assistant 400K (VA 400K; Xie & Wu, 2024) dataset, which consists of synthesised speech
from text-only instruction-completion pairs. These instruction-completion pairs are sourced from
multiple datasets, as detailed in Table 1. We extend VA 400k to 22 additional languages covered by
the Aya Expanse 8B (Dang et al., 2024) model through translation and synthesis, which has been
shown to be effective in past work (Abouelenin et al., 2025). We summarise the languages in our
dataset in Table 2.

Dataset Number of pairs per language
Trivia (Multi-choice, 17K) Mihai (2024c¢) 16,528
Trivia (Single-choice, 20K) Mihai (2024c¢) 16,529
QA Assistant V1 (7K) Mihai (2024a) 5,769
QA Assistant V2 (20K) Mihai (2024b) 16,008
Alpaca GPT-4 (EN, 55K) Peng et al. (2023) 31,293
Identity Xie & Wu (2024) 4,306
RLHF Bai et al. (2022) 379,621
Total 470,054

Table 1: Splits in our dataset with Number of instruction-completion pairs per language.

3.1 TRANSLATION AND SYNTHESIS

For translation, we use Seamless M4T v2 Large (Seamless Communication et al., 2023) to translate
instruction-completion pairs from English into the 22 target languages languages. This model was
chosen as it is publicly available, free to use, and it achieves stronger performance compared to other
models of similar size, such as NLLB (Team et al., 2022), in our preliminary experiments.

For speech synthesis, we use different models based on language support. We use XTTS (Casanova
et al., 2024) for 15 languages, as we found its audio quality to be superior to other models in our
preliminary evaluations. For the remaining seven languages not supported by XTTS, we use Seam-
less M4T Seamless Communication et al. (2023) and language-specific MMS text-to-speech (TTS)
models (Pratap et al., 2024). To improve speaker diversity in the training data, which is important
for achieving robust performance (e.g., see Jia et al., 2018), we leverage XTTS’s voice cloning ca-
pability with short LibriVox (McGuire, 2005) clips of perceived male and female speakers. For each
language supported by XTTS, we randomly select a voice, whcih might be male or female, from all
the LibriVox clips during synthesis, resulting in 37 different voices across the dataset. Table 2 shows
the model assignment per language.
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Language Language Family ISO 639-3 TTS Model Naturalness Content Understood
Arabic Afro-Asiatic (Semitic) ara XTTS 2.8 3.7
Chinese (Simplified)  Sino-Tibetan (Sinitic) cmn XTTS 2.8 4.8
Czech Indo-European (Slavic, West) ces XTTS - -
Dutch Indo-European (Germanic, West) nld XTTS 3.1 4.4
English Indo-European (Germanic, West) eng XTTS - -
French Indo-European (Romance) fra XTTS 3.6 4.3
German Indo-European (Germanic, West) deu XTTS 3.0 4.4
Greek Indo-European (Hellenic) ell MMS 24 4.2
Hebrew Afro-Asiatic (Semitic) heb MMS 2.1 24
Hindi Indo-European (Indo-Aryan) hin XTTS 3.4 3.5
Indonesian Austronesian (Malayo-Polynesian)  ind XTTS 3.0 4.1
Italian Indo-European (Romance) ita XTTS 3.5 4.5
Japanese Japonic jpn XTTS 3.0 29
Korean Koreanic kor XTTS 2.3 4.2
Persian Indo-European (Iranian) fas Seamless 2.5 4.2
Polish Indo-European (Slavic, West) pol XTTS 4.0 4.4
Portuguese Indo-European (Romance) por XTTS 3.7 4.6
Romanian Indo-European (Romance) ron Seamless 1.8 4.0
Russian Indo-European (Slavic, East) rus XTTS 37 4.6
Spanish Indo-European (Romance) spa XTTS 3.6 4.9
Turkish Turkic (Oghuz) tur XTTS 34 4.3
Ukrainian Indo-European (Slavic, East) ukr Seamless 2.5 4.6
Vietnamese Austroasiatic (Vietic) vie Seamless 3.2 2.8

Table 2: Languages in MULTISPEECHQA with their language families, ISO 639-3 codes, TTS
model used, and human evaluation scores for naturalness and content understanding.

3.2 HUMAN EVALUATION

To measure both the quality of the translations and synthesised speech, we conduct a human evalua-
tion for our dataset. We sample 20 instruction-completion pairs for each language from our dataset,
and ask native speakers of each language to evaluate both the naturalness of the speech and the
amount of content they have understood on a 5-point scale (more details in Appendix A). We ensure
that each language’s examples were reviewed by at least two native speakers, except for Czech for
which we could not obtain any ratings.

As shown in Table 2, scores for the perceived naturalness of the speech range from 1.8 to 4.0, and
the scores for content understanding range from 2.4 to 4.9. Unsurprisingly, the average score for
naturalness (3.1) falls behind the content understanding (4.0), as the speech synthesis models often
struggle to generate the highest quality natural sounds in many languages (Casanova et al., 2024;
Pratap et al., 2024).

Comparing the models used for speech synthesis, XTTS shows better performance than language-
specific MMS TTS models, achieving an averaged score of 3.3 and 4.2 in 15 languages for natu-
ralness and the amount of content understood, respectively. Results for the language-specific MMS
TTS models are 2.25 and 3.3 averaged across two languages, and SeamlessM4T are 2.5 and 3.9.
Note that the languages that use MMS TTS models where XTTS does not have language coverage,
are lower-resource languages such as Farsi and Greek. These results show that our dataset is ade-
quate for multilingual instruction finetuning, while further improvements will primarily depend on
improving TTS quality rather than translation quality.

3.3 MULTISPEECH-BENCH FOR MULTILINGUAL AND MULTITASK EVALUATION

We split the MULTISPEECHQA dataset into train, development and test sets. We randomly sample
QA pairs with the same distribution as VA 400K, resulting in a development set of 2000 QA pairs
and a test set of 1000 QA pairs. All remaining data belongs to the train set.

We create MULTISPEECH-BENCH from a subset of our test split, sampling the same 200 QA pairs
per language. To ensure the quality of this evaluation dataset, we collect human annotations on all
200 QA pairs using Prolific, asking language experts to review and correct the translations where
necessary. Overall, 72% of translations required editing with language-specific correction rates
ranging from 43% to 86%. This manually verified subset is combined with existing test from Com-
monVoice (ASR) and CoVST-2 (ASR) for matching languages, creating our multilingual, multitask
benchmark.
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Input: %
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[Trivia] During a solar eclipse, the
Moon is directly between the Earth
and the Sun.

[Alpaca] O nivel de pH ideal para as
plantas de mirtilo é entre 4,5 e 5,5,
uma faixa ligeiramente acida que
garante a absorgao 6tima.....

[QA Assistant] OkTonogp!

Automatic Speech Recognition

” " ‘ Transcribe this
PRk { utterance.
Example text output:
[Arabic] § Wyauw jlo> @8) S35 Jo
[Spanish] El primer corto en el

que apareceria Oswald se
llamaria "Poor Papa".

[Greek] £bwve odnyieg o€
(PAVTAOTIKOUG UTINPETEG

Automatic Speech Translation

Translate this
Input W utterance into

English.
Example text output:

[From Japanese] She gave him a
fleeting glance.

[From Indonesian] | only eat
bread.

[From German] The city council
agreed to support the

MCNONb3YIT KaMydnaxK nod BoAown, . e S
BbICTPO MEHSAA LBET, TEKCTYPY 1 [Turkish] Uglii yeni bir ¢6zim

PUCYHOK KOXM, YTOBbI.... onerdi.

renovations.

Figure 2: MULTISPEECH-BENCH covers three tasks: (1) Spoken Question Answering (QA) which
we prompt without any specific text prompt. We use our dataset for SQA. (2) Automatic Speech
Translation (AST) with a speech input and text output using the CoVoST-2 (X to En) languages
covered that overlap with our dataset and (3) Automatic Speech Recognition (ASR) with Common-
Voice data in each of the 23 Aya Expanse languages.

4 EVALUATION ON OPEN-WEIGHT MODELS

To establish the performance of current multilingual SLMs, we evaluate leading open-weight SLMs
on MULTISPEECH-BENCH and compare it against a strong cascading system baseline. This eval-
uation quantifies the performance gap between languages and establishes baselines for measur-
ing QA performance improvements from training with MULTISPEECHQA. For the QA portion of
MULTISPEECH-BENCH, we adopt pairwise preference evaluations using LLM-as-a-judge, follow-
ing recent work involving open-ended multilingual generation (Ustiin et al., 2024). This approach
allows for consistent evaluation across our 23 languages, and is more cost-efficient than recruiting
human annotators for each language. We use the multilingual Command-A (Cohere et al., 2025)
model as our LLM-as-a-judge, which supports the 23 languages in our datasets (more details in
Appendix A.5).

Cascading System Baseline While end-to-end models that process speech directly have architec-
tural advantages (e.g., preserving acoustic information), we include a strong cascading system base-
line by first transcribing the speech with Whisper Large v3 (Radford et al., 2022), then prompting
Aya Expanse 8B (Dang et al., 2024) with the transcription. Whisper is a leading multilingual model
that supports over 100 languages and is trained to do ASR and AST into English. Aya Expanse
8B is a language model trained to respond to questions in all 23 languages in MULTISPEECHQA.
Such cascading baselines perform often on par or exceed the performance of SLMs on some spoken
language processing tasks (Chen et al., 2024). Our benchmark can help us learn whether this is true
for our three tasks, even though non-cascading SLMs have many other advantages — for example,
they are the only choice for performing speech-native tasks like spoken emotion detection or speaker
identification.

Open-Weight Models We evaluate three leading open-weight SLMs, representing different train-
ing approaches, covering different languages:

1. Qwen2-Audio (Chu et al., 2024a): Whisper Large v3 speech encoder (Radford et al.,
2022) combined with a QwenLM 7B decoder (Chu et al., 2024b). The modality adapter
is a multi-layer perceptron. The Whisper encoder is trained, but the language model is
left frozen. The model does not list supported languages, but evaluates performance on
English, French, and Chinese.

2. Qwen2.5-Omni (Xu et al., 2025): a multimodal model incorporating speech and vision
modalities into the Qwen 2.5 language model. For speech, it uses a Whisper encoder,
which is trained and the language model is frozen. The modality adapter is a multilayer
perceptron. The languages supported by the model are not eplicitly stated.
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Figure 3: Win rates on MULTISPEECH-BENCH averaged across languages for the open-weight
SLMs against the baseline cascading system of Whisper combined with Aya Expanse 8B. Bars
show % wins for each model and % ties (gray).

3. Phi4-Multimodal Instruct (Abouelenin et al., 2025): a multimodal model incorporating
speech and vision modalities into the Phi-4 language model. For speech, it uses a con-
former model, which is trained on an undisclosed dataset. The modality adapter is a multi-
layer perceptron. The model supports English, Chinese, German, French, Italian, Japanese,
Spanish, and Portuguese audio.

4.1 RESULTS

With Whisper combined with Aya Expanse 8B as the baseline, Figure 3 shows win rates on the
QA portion of MULTISPEECH-BENCH for each open-weight model tested against it. We find
that Qwen2.5-Omni outperforms all other open-weight models. This can likely be attributed to
the model’s broad language coverage, which is supported by our analysis of language-specific win
rates, revealing that SLMs perform better on the languages they explicitly support (details in Ap-
pendix A.1). Qwen2-Audio and Phi-4 Multimodal are competitive with the baseline in languages
that the models are trained on, but it is clear that they are outperformed by the cascading system
baseline, likely due to the strength of the individual ASR and language models on their specific
tasks and the lack of catastrophic forgetting that can occur during instruction tuning of the models
to enable multimodal processing.

In Table 3, we show the performance of the baseline and SLM models on ASR and AST, as indicated
by the word error rate (WER) and BLEU score, respectively. Qwen2.5-Omni shows the strongest
performance (average WER of 55.23; average BLEU of 22.05), outperforming the baseline on ASR.
The per-language results are mixed for both tasks, but generally models perform strongest on the
languages seen during training.

5 FINETUNING WITH MULTISPEECHQA

The open-weight model results show the need for further model improvement. We take the best
performing open-weight SLM, Qwen2.5-Omni and finetune it on MULTISPEECHQA. We do LoRA
finetuning on all linear modules in each transformer layer, using a rank of 32. We train for a fixed
number of steps, equalling roughly 3 epochs of the data. We then evaluate its performance on
MULTISPEECH-BENCH.
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Table 3: Speech Recognition (ASR) and Speech Translation (AST) performance across models and
languages.

Lang. ASR (WER %) | AST (BLEU) 1

Baseline Q2-Audio Phi4-MM Q2.5 Omni Baseline Q2-Audio Phi4¢-MM Q2.5 Omni
ar 14.0 118.1 146.1 45.7 34.24 7.25 0.07 30.58
cs 26.0 117.4 115.2 100.3 - - - -
de 9.4 33.3 7.0 7.1 - - - -
el 21.8 118.3 114.1 108.0 - - - -
en 3.2 34.6 13.9 13.8 - - - -
es 7.7 18.1 49 4.9 - - - -
fa 38.0 128.7 133.0 109.1 - - - -
fr 9.0 34.1 10.1 10.9 - - - -
he 40.6 128.4 447.8 122.9 - - - -
hi 30.8 123.2 105.3 68.9 - - - -
id 349 71.8 125.1 14.0 36.05 6.63 0.24 36.99
it 5.0 21.7 5.1 6.5 - - - -
ja 15.8 66.1 78.6 75.9 10.40 11.25 19.66 17.75
ko 20.9 61.4 144.4 23.0 - - - -
nl 9.5 90.8 101.5 14.0 - - - -
pl 7.5 110.8 118.6 94.7 - - - -
pt 6.7 28.5 7.4 9.6 - - - -
ro 15.1 114.6 106.1 89.3 - - - -
ru 17.10 57.4 123.9 9.3 - - - -
tr 11.4 114.6 131.9 74.5 20.03 0.57 0.14 5.51
uk 18.7 107.0 118.8 82.6 - - - -
vi 18.0 110.5 104.2 50.9 - - - -
zh 28.9 93.9 7.9 6.2 4.50 15.58 8.94 22.66
Ave. 14.1 80.2 104.9 432 18.91 8.57 5.34 22.05

5.1 RESULTS

Figure 4 shows the win rates of Qwen2.5-Omni finetuned with MULTISPEECHQA against the non-
finetuned Qwen2.5-Omni model. We find that parameter efficient finetuning improves QA perfor-
mance substantially. The finetuned model wins the majority of the time, struggling with languages
such as Hebrew, Greek and Farsi, where the judgements tie 48% of the time on average. When
considering all languages, our finetuned model wins 60.6% of the time on average. This finetuned
model also gives the best question answering performance against the cascading baseline, leading to
state-of-the-art SLM performance on the QA portion of MULTISPEECH-BENCH.

Comparing the ASR and AST performance of Qwen2.5-Omni and Qwen2.5-Omni finetuned on
MULTISPEECHQA, we find that the average ASR performance remains stable across languages
(per-langauage results shown in Table 5 in Appendix A.4). The average WER increases marginally
from 55.23 for the non-finetuned model to 57.57 for the finetuned model. On AST, the performance
of the finetuned model is similarly comparable, as shown by the slightly lower BLUE score of 22.05
compared to 21.05 for the non-finetuned model. Overall, we find that MULTISPEECHQA finetuning
substantially improves spoken QA, while leaving performance on core ASR and ASR capabilities
effectively unchanged.

6 HOW DO TRAINING DATA MIXTURES AFFECT SPEECH LANGUAGE MODEL
PERFORMANCE?

In Section 5, we show that MULTISPEECHQA improves the QA performance of Qwen2.5-Omni.
These results motivate a controlled study of data composition for multilingual SLMs. Specifically,
most existing SLMs, including Qwen2.5-Omni, are trained on undisclosed data mixtures, making
it impossible to understand whether performance differences across languages arise from the model
capacity being spread across many languages or from insufficient task diversity. We therefore ask
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Figure 4: Win rates on MULTISPEECH-BENCH averaged across languages for the Qwen2.5-Omni
and the Qwen2.5-Omni model finetuned on MULTISPEECHQA. Bars show % wins for each model
and % ties (gray).

two questions: (1) Does training with fewer languages lead to better performance? and (2) Does
adding AST data improve model performance?

To answer these questions, we train models from scratch using the SALMONN (Tang et al., 2024)
architecture, using Whisper as the speech encoder and Aya Expanse 8B as the language model.
The window-level Q-Former uses an mBERT text encoder. We choose this architecture, because
the Whisper encoder produces stable multilingual speech features, and the window-level Q-Former
allows us to leverage a pretrained text encoder to more efficiently learn intermediary representations.

As Whisper is trained to translate speech data of many of the Aya’s languages into English, we
hypothesise that adding AST data increases the task diversity in the training mixture and hence
could lead a better downstream performance. For this ablation, we set a threshold of 20% for the
speech translation data and use mixed batches for more robust multi-task instruction-tuning.

Training details We train our models in two stages: (1) multimodal alignment with ASR data,
followed by (2) multitask training with QA and AST data. Following the SALMONN training setup,
we train the window-level Q-Former and LoRA adapters and keep the speech encoder and language
model frozen. Although the model architecture allows us to append a text prompt to the speech
input, we train the model without any additional text prompt with our question answering examples
to enable the question-answering capability from the spoken questions alone. Further details on how
we train the models are in Appendix A.6.

In total, we train four models: (1) ALL+AST: a model trained on all of Aya’s 23 languages with
CoVoST-2 AST data; (2) ALL: a model trained on all of Aya’s 23 languages; (3) TEN: a model
trained with ten selected languages (English, French, Dutch, Turkish, German, Arabic, Spanish,
Russian, Indonesian, and Polish); (4) TEN+AST: a model trained with ten selected languages with
CoVoST-2 AST data.

6.1 RESULTS

Does training with fewer languages lead to better performance? Figure 5 summarises the dif-
ference in QA performance of the models trained with 10 languages (TEN/TEN+AST) and 23 lan-
guages (ALL/ALL+AST). We see that the model trained with 23 languages results in a better win
rate overall, suggesting that we do not experience capacity dilution at 23 languages, and adding more
languages in training leads to better performance across languages. This could be due to the fact
that we start with a pretrained speech encoder and a pretrained language model, meaning that we al-
ready have the question-answering capabilities present in the LM and the SLM training is primarily
learning how to project the speech encoder output into the LM space.
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Figure 5: Win rates on MULTISPEECH-BENCH averaged across languages for the from-scratch
SALMONN models. ALL+AST versus TEN+AST is shown at the top and versus ALL at the bot-
tom. Bars show % wins for each model and % ties (gray).

Does adding AST performance improve the models? We evaluate whether including speech
translation data improves performance by testing on CoVoST-2 languages (both X to En and En
to X translation directions) that overlap with the 23 languages in our dataset. We find that models
trained with AST data win 46.8% of the time against those without, indicating that additional AST
data alone does not lead to a consistent improvement. This result is likely due to two factors: (1)
the AST data comprises 20% of the training mixture, which is potentially too small to produce a
measurable effect, and (2) Whisper already supports speech translation into English, so adding a
small amount of AST instruction-tuning data provides only limited additional supervision.

7 CONCLUSION

In this paper, we address the lack of multilingual instruction-tuning data for SLMs by present-
ing MULTISPEECHQA, a synthetic, human-verified dataset of 10.8 million instructions and 9200
hours of spoken question-answering data in 23 languages, and introduce MULTISPEECH-BENCH,
a human-verified, multilingual and multitask benchmark to evaluate SLMs on spoken question-
answering, ASR and AST. Using MULTISPEECH-BENCH, we establish the strong performance of
Qwen2.5-Omni among the open-weight models we evaluate, and demonstrate the effectiveness of
finetuning this model on MULTISPEECHQA, leading to state-of-the art performance on the spo-
ken question-answering portion of MULTISPEECH-BENCH. These findings validate that automated,
synthetic pipelines provide sufficient instruction-tuning data for effective post-training of SLMs
across many languages.

8 LIMITATIONS

We present a synthetically generated dataset, which for several languages suggests the possibility
of errors in the machine translation, which could lead to unnatural or possibly incorrect question
prompts in our dataset. The quality of the generated speech is at the limit of the speech synthesis
models, so we ensured that the content could be understood by native speakers for each language.
Synthetic geeration of speech means we have a limited number of voices despite the vast amounts
of data in our dataset.
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Language

zh
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Model
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74. 8% 23.3%

77. 3% 21.5%

61. 0% 32.5%

86 0% 13.5%

73. 9% 25.5%
40.0% 48.5%
50.6% 14. 2% 35 2%
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—
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Figure 9: Win rates comparison: Qwen2.5-Omni vs Qwen2.5-Omni finetuned.
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Table 4: Listening test questions presented to participants for rating speech quality.

‘ Naturalness ‘ Content Understood
Instructions Listen to this speech sample, then | How much of the content of the
rate the naturalness of the speech. speech sample can you understand?

Table 5: Speech Recognition (ASR) and Speech Translation (AST) performance across models and
languages: Q2.5 Omni vs Q2.5 Omni FT.

Lang. ASR (WER %) | \ AST (BLEU) 1
QLSOmniQLSOmMFT\QLSOmniQLSOmMFT
ar 45.7 31.5 30.6 29.7
cs 100.4 101.6 - -
de 7.1 7.5 - -
el 108.0 108.3 - -
en 13.8 16.6 - -
es 4.9 5.1 - -
fa 109.1 107.5 - -
fr 10.9 10.8 - -
he 122.9 113.6 - -
hi 68.9 68.4 - -
id 14.0 13.9 37.0 34.7
it 6.5 6.2 - -
ja 75.9 31.3 17.8 17.2
ko 23.0 244 - -
nl 14.0 14.3 - -
pl 94.7 75.1 - -
pt 9.6 11.9 - -
ro 89.3 74.6 - -
ru 9.3 13.7 55 5.8
tr 74.5 66.4 55 5.8
uk 82.6 81.3 - -
vi 50.9 169.3 22.7 17.7
zh 6.2 6.8 22.7 -
Average 43.2 38.1 \ 22.05 21.02

A APPENDIX

A.1  WIN RATES OF OPEN-WEIGHT MODELS AGAINST THE WHISPER + AYA BASELINE
A.2 DETAILS ON HUMAN EVALUATIONS OF SYNTHESISED QUESTIONS

A.2.1 INSTRUCTIONS FOR PARTICIPANTS

A.3  WIN RATES OF QWEN2.5-OMNI VS QWEN2.5-OMNI FINETUNED

A.4 MULTISPEECH-BENCH PERFORMANCE ON QWEN2.5-OMNI MODELS

A.5 LLM-AS-A-JUDGE PROMPT

You are a helpful following assistant whose goal is to select the preferred
(least wrong) output for a given instruction in {LANGUAGE_NAME}.

Which of the following answers is the best one for given instruction
in {LANGUAGE_NAME} .
A good answer should follow these rules:

1) It should be in {LANGUAGE_NAME}

2) It should answer the request in the instruction

3) It should be factually and semantically comprehensible
4) It should be grammatically correct and fluent.

Instruction: {INSTRUCTION}
Answer (A): {COMPLETION_A}
Answer (B): {COMPLETION_B}
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FIRST provide a one-sentence comparison of the two answers, explaining which
you prefer and why.

SECOND, on a new line, state only ‘Answer (A)’ or ‘Answer (B)’

to indicate your choice.

If the both answers are equally good or bad, state ‘TIE’.

Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <‘Answer (A)’ or ‘Answer (B)’ or ‘TIE’>

A.6 MULTISPEECH MODELS TRAINING DETAILS

As a large amount of the training data of language models is English and Whisper is trained to
translate speech data of many of the Aya’s languages into English, we hypothesise that adding speech
translation data increases the task diversity in the training mixture and hence could lead a better
downstream performance. For this ablation, we set a threshold of 20% for the speech translation
data and use mixed batches for more robust multi-task instruction-tuning ().

We use MULTISPEECHQA to train models from scratch and glean insights on how training data
mixtures affect SLMs performance.

We chose the SALMONN (Tang et al., 2024) architecture to train our models, due to its combination
of speech and audio encoders and the use of a window-level Q-Former.

The pretrained encoders are the Whisper Large v3 (Radford et al., 2023) as our speech encoder and
Aya Expanse 8B (Dang et al., 2024) as our language model. We opt for these two models based on
their state-of-the-art performance in the respective multilingual capabilities. Note that the languages
in MULTISPEECHQA are the same languages on which Aya Expance 8B is trained. We use the
same window length for the window-level Q-Former as in SALMONN, but replace the BERT base
uncased language model encoder with an mBERT encoder to enable multilingual representations.

During the training, we use parameter-efficient LoRA adapters (?) to decrease the underlying com-
pute requirement. However, compared to SALMONN, we increase the LoRA rank and alpha to 64
for a higher trainable parameter capacity, enabling better optimization for 23 languages. We employ
a multi-stage training process with different types of data for our models.

Stage 1: ASR training Following the SALMONN training setup, we train the window-level Q-
Former and LoRA adapters using ASR data. To do this, we use a uniform amount of ASR data
(20 hours) in all languages. In this stage, we add the text instruction “Transcribe this utterance” to
the speech prompt. The goal of this stage is alignment between speech and text representations and
enabling the model to understand the speech inputs. . We start with CommonVoice data (Ardila
et al., 2020) for each language. Some of the languages have fewer than 20 hours of training data,
so we balance the number of hours of data in Vietnamese with 15 hours of the Bud500 dataset
(Pham et al., 2024), 18 hours of Hebrew with the Ivrit.ai dataset (Marmor et al., 2023), 14 hours
Hindi with the monolingual portions of the Multilingual and Code-Switching ASR Challenges for
Low Resource Indian Languages dataset (Diwan et al., 2021) and 19 hours Korean with the Zeroth-
Korean corpus Jo & Lee (2022).

Stage 2: Question Answering Training For the second stage of training, we use our MULTI-
SPEECHQA dataset for all 23 languages. For the Trivia QA, the QA Assistant, and the Alpaca
GPT-4 datasets, we use all the samples, but given the difference in distribution of Antophic-RLHF
data, we only subsample 1000 examples from this data source to ensure a training mixture that is bal-
anced and optimized for general-purpose speech instruction-following tasks. Overall, our training
mixture includes 2 070 000 samples distributed equally between 23 languages.

In addition to MULTISPEECHQA, we also run ablations where we include additional speech trans-
lation (AST) data from the CoVoST-2 (Wang et al., 2021) dataset to the training mixture.

Finally, although the model architecture allows us to append a text prompt to the speech input, we
train the model without any additional text prompt to enable the question answering capability from
the spoken questions alone.
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Hyperparameter | Stage 1 | Stage2
Learning rate le-5 le-5
Warmup steps 800 400

LoRA Rank 64 64
No. of epochs 10 3
Batch size 128 256

Number of samples per language | 20 hours | 90 000

Table 6: Hyperparameters used to train Stage 1 and Stage 2 of MULTISPEECH models.
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