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ABSTRACT

Speech Language Models (SLMs) that understand spoken language questions and
commands support only a few high-resource languages, limiting access to mod-
ern technology for millions of speakers worldwide. This gap in language cov-
erage stems from the scarcity of multilingual speech-language instruction-tuning
datasets. To address this issue, we present MULTISPEECHQA, a large-scale, syn-
thetically generated and human-verified dataset comprising 9200 hours of more
than 10.8 million spoken question-answer pairs in 23 typologically diverse lan-
guages, designed to improve the multilingual instruction-following capabilities
of SLMs. Using MULTISPEECHQA, we also introduce MULTISPEECH-BENCH,
a multi-task benchmark to evaluate SLM performance across 23 languages. We
compare the performance of a strong cascading system to three leading open-
weight SLMs on MULTISPEECH-BENCH and find that the cascading system out-
performs all existing open-weight SLMs. We then demonstrate the effective-
ness of MULTISPEECHQA by fine-tuning the best-performing open-weight SLM,
Qwen 2.5-Omni, on our dataset, which substantially improves its performance and
establishes new state-of-the-art results for open-weight models on our benchmark.
Our findings show that high-quality synthetic datasets offer a scalable solution to
improving the multilingual capabilities of SLMs, extending the benefits of natural
spoken interactions to a wider range of languages.

1 INTRODUCTION

Speech Language Models (SLMs) often combine a pretrained speech encoder with a pretrained
Large Language Model (LLM), using a modality adapter module to map the output of the speech
encoder into the language model input space to perform various speech and language processing
tasks (Arora et al., 2025). These models are trained with instruction tuning data to align the speech
encoder and LLM, and allow for natural spoken interactions.

SLMs have many advantages over alternatives like the popular multitask speech model Whisper
(Radford et al., 2023), including allowing natural language instructions for speech tasks, doing ques-
tion answering out-of-the-box and enabling zero-shot performance in a variety of traditional speech
processing tasks, such as emotion recognition, audio captioning or audio-based storytelling. How-
ever, the open-weight SLMs that exist today are primarily developed for English and a few other
high-resource languages (Zhang et al., 2023; Chu et al., 2024b; Fang et al., 2024; Tang et al., 2024;
Abouelenin et al., 2025). This limits access to the state-of-the-art speech-language technology for
many speakers worldwide.

The most critical challenge in developing multilingual SLMs is the scarcity of multilingual speech-
language instruction-tuning datasets. While there has been significant progress on curating such
multilingual data for text-only models (Singh et al., 2024; Üstün et al., 2024), and vision-language
models (Dash et al., 2025; Yue et al., 2025), the intersection of speech and language remains severely
limited.

There are several benchmarks that have been introduced to measure speech language model capa-
bilities. These include speech and audio understanding of AudioBench (Wang et al., 2025), spoken
language understanding with SLUE (Shon et al., 2022) and safety, bias and fairness evaluation with
AHELM (Lee et al., 2025) and AIR-Bench (Yang et al., 2024). The existing evaluation benchmarks
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for SLMs also suffer from the lack of language coverage, in particular, for open-ended generative
instruction following.

To address this gap, we present MULTISPEECHQA, a large-scale multilingual spoken question-
answering (SQA) dataset comprising of 10.8 million instructions and 9200 hours of syntheti-
cally generated and human-verified speech data in 23 typologically diverse languages. MULTI-
SPEECHQA consists of open-ended question-answer pairs from variety of tasks, and data sources
designed to foster instruction following capabilities for SLMs in 23 languages. We combine MUL-
TISPEECHQA with CommonVoice (Ardila et al., 2020) automatic speech recognition (ASR) data
and CovST-2 (Wang et al., 2021) automatic speech translation (AST) data to create MULTISPEECH-
BENCH, providing a multi-task evaluation suite of these models in 23 languages.

Our main contributions are as follows:

1. We validate the hypothesis that automated synthetic data generation can provide sufficiently
good instruction-tuning data to enable effective post-training of SLMs for many languages,
provided only that adequate machine translation (MT) and speech synthesis (TTS) systems
exist for those languages.

2. We provide MULTISPEECHQA, a multilingual speech-language instruction fine-tuning
dataset that consists of over 10.8 million spoken question-answer pairs in 23 languages,
where multilingual samples are generated by using translation and speech synthesis, com-
prising 9200 hours in total.

3. We develop MULTISPEECH-BENCH, a multilingual, multitask speech processing bench-
mark, facilitating evaluation of speech recognition, speech translation and spoken question
answering in 23 languages.

4. Validating the effectiveness of our dataset, we finetune Qwen2.5-Omni on MULTI-
SPEECHQA and show that it achieves state-of-the-art performance among open-weight
models on MULTISPEECH-BENCH, particularly outperforming Qwen2.5-Omni with 60%
win-rate across 23 languages.

By releasing our dataset and model weights, we aim to extend the benefits of modern speech technol-
ogy to speakers of diverse languages worldwide. Our dataset, benchmark and models are publicly
available.

2 RELATED WORK

Speech Language Models. SLMs can be broadly categorized into three architectural approaches:
(1) models of speech distribution; (2) models of joint speech-text distribution, and (3) models com-
bining pre-trained text LLMs with speech encoders (Arora et al., 2025). The third approach lever-
ages the instruction-following capabilities learned by the text LLM and typically requires less train-
ing data, enabling strong few-shot or zero-shot performance on a variety of multimodal tasks (Chen
et al., 2024). Many state-of-the-art models adopt this approach, including proprietary models, such
as Gemini 2.5 (Comanici et al., 2025) and GPT-4o (OpenAI et al., 2024), as well as notable open-
source models, such as Phi-4-Multimodal (Abouelenin et al., 2025), SALMONN (Tang et al., 2024),
and Qwen2Audio (Chu et al., 2024b).

Comparing open-source models reveals limited multilingual support. SALMONN is primarily
trained on English data, while Phi-4-Multimodal and Qwen2Audio support only eight languages.
Both SALMONN and Qwen2Audio leverage a Whisper-based encoder (Radford et al., 2023),
which is aligned with an LLM backbone, suggesting potential for broader language coverage that
remains largely unexplored. Our work substantially extends the language coverage of these models
by providing support for 23 languages with a comprehensive evaluation.

Multilingual SQA Datasets. Multilingual SQA datasets are scare, limiting the development of
truly multilingual SLMs. Existing multilingual speech benchmarks and datasets primarily target
traditional tasks, rather than open-ended SQA. For example, ASR and AST dataset FLEURS (Con-
neau et al., 2023) and ASR dataset ML-SUPERB 2.0 (Shi et al., 2024) cover 102 and 143 languages,
respectively. For SQA specifically, Voice Assistant 400K (Xie & Wu, 2024) offers diverse question-
answer pairs but only in English. Additionally, recent work shows that high-quality synthetic speech
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Figure 1: Summary of the dataset creation process. We translate the questions and answers of
the Voice Assistant 400K dataset into each of the Aya Expanse languages (in Table 2) with Seam-
lessM4T, synthesise the questions with XTTS for the languages covered by the model and Seam-
lessM4T for the languages not covered by XTTS, leaving us with roughly 10.8 million text ques-
tions, speech questions and text answers.

can effectively augment limited real data. Phi-4-Multimodal demonstrated strong performance in
SQA tasks using synthetic speech from translations. Our training approach leverages this insight,
while substantially expanding the language coverage with MULTISPEECHQA.

3 DATASET CREATION

Figure 1 presents our two-stage process to create MULTISPEECHQA. We build upon the English
Voice Assistant 400K (VA 400K; Xie & Wu, 2024) dataset, which consists of synthesised speech
from text-only instruction-completion pairs. These instruction-completion pairs are sourced from
multiple datasets, as detailed in Table 1. We extend VA 400k to 22 additional languages covered by
the Aya Expanse 8B (Dang et al., 2024) model through translation and synthesis, which has been
shown to be effective in past work (Abouelenin et al., 2025). We summarise the languages in our
dataset in Table 2.

Table 1: Splits in our dataset with number of instruction-completion pairs per language.

Dataset Number of pairs per language
Trivia (Multi-choice, 17K) (Mihai, 2024c) 16,528
Trivia (Single-choice, 20K) (Mihai, 2024c) 16,529
QA Assistant V1 (7K) (Mihai, 2024a) 5,769
QA Assistant V2 (20K) (Mihai, 2024b) 16,008
Alpaca GPT-4 (EN, 55K) (Peng et al., 2023) 31,293
Identity (Xie & Wu, 2024) 4,306
RLHF (Bai et al., 2022) 379,621

Total 470,054

3.1 TRANSLATION AND SYNTHESIS

For translation, we use Seamless M4T v2 Large (Seamless Communication et al., 2023) to translate
instruction-completion pairs from English into the 22 target languages languages. This model was
chosen as it is publicly available, free to use, and it achieves stronger performance compared to other
models of similar size, such as NLLB (Team et al., 2022), in our preliminary experiments.

For speech synthesis, we use different models based on language support. We use XTTS (Casanova
et al., 2024) for 15 languages, as we found its audio quality to be superior to other models in our
preliminary evaluations. For the remaining seven languages not supported by XTTS, we use Seam-
less M4T v2 Large and language-specific MMS text-to-speech (TTS) models (Pratap et al., 2024).
To improve speaker diversity in the training data, which is important for achieving robust perfor-
mance (e.g., see Jia et al., 2018), we leverage XTTS’s voice cloning capability with short LibriVox
(McGuire, 2005) clips of perceived male and female speakers. For each language supported by
XTTS, we randomly select a voice, which might be male or female, from all the LibriVox clips dur-
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Table 2: Languages in MULTISPEECHQA with their language families, ISO 639-3 codes, TTS
model used, and human evaluation scores for naturalness and content understanding.

Language Language Family ISO 639-1 TTS Model Naturalness Content Understood

Arabic Afro-Asiatic (Semitic) ar XTTS 2.8 3.7
Chinese (Simplified) Sino-Tibetan (Sinitic) zh XTTS 2.8 4.8
Czech Indo-European (Slavic, West) cs XTTS – –
Dutch Indo-European (Germanic, West) nl XTTS 3.1 4.4
English Indo-European (Germanic, West) en – – –
French Indo-European (Romance) fr XTTS 3.6 4.3
German Indo-European (Germanic, West) de XTTS 3.0 4.4
Greek Indo-European (Hellenic) el MMS 2.4 4.2
Hebrew Afro-Asiatic (Semitic) he MMS 2.1 2.4
Hindi Indo-European (Indo-Aryan) hi XTTS 3.4 3.5
Indonesian Austronesian (Malayo-Polynesian) in XTTS 3.0 4.1
Italian Indo-European (Romance) it XTTS 3.5 4.5
Japanese Japonic ja XTTS 3.0 2.9
Korean Koreanic ko XTTS 2.3 4.2
Farsi Indo-European (Iranian) fa Seamless 2.5 4.2
Polish Indo-European (Slavic, West) pl XTTS 4.0 4.4
Portuguese Indo-European (Romance) pt XTTS 3.7 4.6
Romanian Indo-European (Romance) ro Seamless 1.8 4.0
Russian Indo-European (Slavic, East) ru XTTS 3.7 4.6
Spanish Indo-European (Romance) es XTTS 3.6 4.9
Turkish Turkic (Oghuz) tr XTTS 3.4 4.3
Ukrainian Indo-European (Slavic, East) uk Seamless 2.5 4.6
Vietnamese Austroasiatic (Vietic) vi Seamless 3.2 2.8

ing synthesis, resulting in 37 different voices across the dataset. Table 2 shows the model assignment
per language.

3.2 HUMAN EVALUATION

To measure both the quality of the translations and synthesised speech, we conduct a human evalua-
tion for our dataset. We sample 20 instruction-completion pairs for each language from our dataset,
and ask native speakers of each language to evaluate both the naturalness of the speech and the
amount of content they have understood on a 5-point scale (more details in Appendix A). We ensure
that each language’s examples were reviewed by at least two native speakers, except for Czech for
which we could not obtain any ratings.

As shown in Table 2, scores for the perceived naturalness of the speech range from 1.8 to 4.0, and
the scores for content understanding range from 2.4 to 4.9. Unsurprisingly, the average score for
naturalness (3.0) falls behind the content understanding (4.1), as the speech synthesis models often
struggle to generate the highest quality natural sounds in many languages (Casanova et al., 2024;
Pratap et al., 2024).

Comparing the models used for speech synthesis, XTTS shows better performance than Seam-
lessM4T and language-specific MMS TTS models, achieving an averaged score of 3.3 and 4.2 in
15 languages for naturalness and the amount of content understood, respectively. Results for the
language-specific MMS TTS models are 2.25 and 3.3 averaged across two languages, and Seam-
lessM4T are 2.5 and 3.9. Note that the languages that use MMS TTS models where XTTS does not
have language coverage, are lower-resource languages such as Farsi and Greek. These results show
that our dataset is adequate for multilingual instruction finetuning, while further improvements will
most strongly depend on improving TTS quality.

3.3 MULTISPEECH-BENCH FOR MULTILINGUAL AND MULTITASK EVALUATION

We split the MULTISPEECHQA dataset into train, development and test sets. We randomly sample
SQA pairs of the different subsets with the same dataset distribution as VA 400K, resulting in a
development set of 2000 SQA pairs and a test set of 1000 SQA pairs. To avoid speaker overlap, we
select different speakers for the train and test set where possible. All remaining data belongs to the
train set.

We create MULTISPEECH-BENCH from a subset of our test split, sampling the same 200 SQA
pairs per language. To ensure the quality of this evaluation dataset, we collect human annotations
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Figure 2: MULTISPEECH-BENCH covers three tasks: (1) Spoken Question Answering (SQA),
where models are prompted with speech only (no text prompt); (2) Automatic Speech Translation
(AST) from speech to English, using CoVoST-2 (X to En) for languages that overlap with the 23
languages in our dataset; and (3) Automatic Speech Recognition (ASR) on CommonVoice for each
of the 23 supported languages.

on all 200 SQA pairs using Prolific, asking language experts to review and correct the translations
where necessary. Overall, 72% of translations required editing with language-specific correction
rates ranging from 43% (Turkish) to 86% (Chinese). This manually verified subset is combined
with existing test from CommonVoice (ASR) and CoVST-2 (ASR) for matching languages, creating
our multilingual, multitask benchmark.

4 EVALUATION ON OPEN-WEIGHT MODELS

To establish the performance of current multilingual SLMs, we evaluate leading open-weight SLMs
on MULTISPEECH-BENCH and compare it against a strong cascading system baseline. This eval-
uation quantifies the performance gap between languages and establishes baselines for measuring
SQA performance improvements from training with MULTISPEECHQA. For the SQA portion of
MULTISPEECH-BENCH, we adopt pairwise preference evaluations using LLM-as-a-judge, follow-
ing recent work involving open-ended multilingual generation (Üstün et al., 2024). This approach
allows for consistent evaluation across our 23 languages, and is more cost-efficient than recruiting
human annotators for each language. We use the multilingual Command-A (Cohere et al., 2025)
model as our LLM-as-a-judge, which supports the 23 languages in our datasets (more details in
Appendix A.5). To check for calibration across LLMs, we also use GPT-4o as an LLM judge.

Cascading System Baseline While end-to-end models that process speech directly have archi-
tectural advantages (e.g., preserving acoustic information), we include a strong cascading system
baseline by first transcribing the speech with Whisper Large v3 (Radford et al., 2023), then prompt-
ing Aya Expanse 8B (Dang et al., 2024) with the transcription.

Whisper is a leading multilingual model that supports over 100 languages and is trained to do ASR
and AST into English. Aya Expanse 8B is a language model trained to respond to questions in
all 23 languages in MULTISPEECHQA. Such cascading baselines perform often on par or exceed
the performance of SLMs on some spoken language processing tasks (Chen et al., 2024). Our
benchmark can help us learn whether this is true for our three tasks, even though non-cascading
SLMs have many other advantages – for example, they are the only choice for performing speech-
native tasks like spoken emotion detection or speaker identification.

Open-Weight Models We evaluate three leading open-weight SLMs that represent different train-
ing approaches and cover different languages:

1. Qwen2-Audio (Chu et al., 2024a): A multimodal model that combines an audio encoder
initialized from Whisper Large v3 (Radford et al., 2023) with a QwenLM 7B decoder (Chu
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et al., 2024b). The modality adapter is a multi-layer perceptron. The authors do not specify
full language support, but model performance is reported on English, French, and Chinese.

2. Qwen2.5-Omni (Xu et al., 2025): A multimodal model incorporating speech and vision
modalities into the Qwen2.5 language model. The processing of multimodal inputs and text
generation happens in the ‘Thinker’ part of the model. For speech, it uses an encoder that
is initialized with Whisper Large v3, and a multi-layer perceptron as the modality adapter.
The languages supported by the model are not explicitly stated.

3. Phi-4 Multimodal (Abouelenin et al., 2025): A multimodal model incorporating speech
and vision modalities into the Phi-4 language model. For speech, it uses a conformer model,
which is trained on a proprietary dataset. The modality adapter is a multi-layer perceptron.
The model supports English, Chinese, German, French, Italian, Japanese, Spanish, and
Portuguese audio input.

Commercial SLMs We evaluate two leading commercial SLMs:

1. GPT-Audio: GPT-Audio is OpenAI’s speech-enabled variant of the GPT family, designed
for real-time multimodal interaction. It supports speech recognition, speech-to-text reason-
ing, and text-to-speech generation within a unified model.

2. Gemini 2.5 Flash Lite: Gemini 2.5 Flash Lite is a compact member of Google’s Gemini
2.5 series. The model provides robust automatic speech recognition and basic audio-event
understanding.

4.1 RESULTS

With Whisper combined with Aya Expanse 8B as the baseline, Figure 4 shows win rates on the
SQA portion of MULTISPEECH-BENCH for each open-weight model tested against it. We find that
Qwen2.5-Omni outperforms all other open-weight models, and our analysis of language-specific
win rates reveals that SLMs perform better on the languages they explicitly support (details in Ap-
pendix A.1). Qwen2-Audio and Phi-4-Multimodal are competitive with the baseline in languages
that the models are trained on, but it is clear that they are outperformed by the cascading system
baseline, likely due to the strength of the individual ASR and language models on their specific
tasks and the lack of catastrophic forgetting that can occur during instruction tuning of the models
to enable multimodal processing.

In Table 3, we show the performance of the baseline and SLM models on ASR and AST, measuring
ASR performance using the word error rate (WER; character error rate (CER) for Chinese (zh) and
Japanese (ja)) and AST performance with BLEU (Papineni et al., 2002) and chrF (Popović, 2015).
Qwen2.5-Omni shows the strongest performance among the evaluated SLM models (average ASR
error rate of 49.7; average BLEU of 22.7; average chrF of 46.6), outperforming the baseline on AST.
The per-language results are mixed for both tasks, but generally models perform strongest on the
languages seen during training.

5 FINETUNING WITH MULTISPEECHQA

The open-weight model results show the need for further model improvement. We take the best-
performing open-weight SLM, Qwen2.5-Omni and finetune it on MULTISPEECHQA. We perform
LoRA finetuning (Hu et al., 2022) on all linear modules in each transformer layer, using a rank of
32. We train for a fixed number of steps, equalling roughly 3 epochs of the data. We then evaluate
its performance on MULTISPEECH-BENCH.

5.1 RESULTS

Figure 5 shows the win rates of Qwen2.5-Omni finetuned with MULTISPEECHQA against the non-
finetuned Qwen2.5-Omni model. We find that parameter efficient finetuning improves SQA perfor-
mance substantially. The finetuned model wins the majority of the time, struggling with languages
such as Hebrew, Greek and Farsi, where the judgements tie 48.0% of the time on average. When
considering all languages, our finetuned model wins 60.6% of the time on average. This finetuned
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Figure 3: Win rates on MULTISPEECH-BENCH averaged across languages for the open-weight
SLMs against the baseline cascading system of Whisper combined with Aya Expanse 8B using the
Command-A LLM-as-a-Judge. Bars show % wins for each model and % ties (gray).

Figure 4: Win rates on MULTISPEECH-BENCH averaged across languages for the open-weight
SLMs against the baseline cascading system of Whisper combined with Aya Expanse 8B using the
GPT-4o LLM-as-a-Judge. Bars show % wins for each model and % ties (gray).
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Table 3: Speech Recognition (ASR) and Speech Translation (AST) performance across models and
languages. The baseline results are for the cascaded Whisper and Aya-Expanse 8B model. We
compare the baseline to Qwen2-Audio (Q2-Audio), Phi-4 Multimodal (Phi-4 MM), and Qwen2.5-
Omni (Q2.5-Omni).We report CER for Chinese (zh) and Japanese (ja), and report chrF in addition
to BLEU for AST performance.

Lang. ASR (WER %) ↓ AST

Baseline Q2-A Phi4-MM Q2.5O Baseline Q2-A Phi4-MM Q2.5O
BLEU/chrF BLEU/chrF BLEU/chrF BLEU/chrF

ar 14.0 118.1 146.1 45.7 34.2/54.7 7.3/30.9 0.1/11.9 30.6/53.8
cs 26.0 117.4 115.2 100.3 –/– –/– –/– –/–
de 9.4 33.3 7.0 7.1 –/– –/– –/– –/–
el 21.8 118.3 114.1 108.0 –/– –/– –/– –/–
en 3.2 34.6 13.9 13.8 –/– –/– –/– –/–
es 7.7 18.1 4.9 4.9 –/– –/– –/– –/–
fa 38.0 128.7 133.0 109.1 –/– –/– –/– –/–
fr 9.0 34.1 10.1 10.9 –/– –/– –/– –/–
he 40.6 128.4 447.8 122.9 –/– –/– –/– –/–
hi 30.8 123.2 105.3 68.9 –/– –/– –/– –/–
id 34.9 71.8 125.1 14.0 36.1/53.3 6.6/29.8 0.2/15.0 37.0/59.0
it 5.0 21.7 5.1 6.5 –/– –/– –/– –/–
ja 15.8 66.1 78.6 75.9 10.4/23.4 11.3/38.5 19.7/46.6 17.8/41.5
ko 20.9 61.4 144.4 23.0 –/– –/– –/– –/–
nl 9.5 90.8 101.5 14.0 –/– –/– –/– –/–
pl 7.5 110.8 118.6 94.7 –/– –/– –/– –/–
pt 6.7 28.5 7.4 9.6 –/– –/– –/– –/–
ro 15.1 114.6 106.1 89.3 –/– –/– –/– –/–
ru 17.1 57.4 123.9 9.3 –/– –/– –/– –/–
tr 11.4 114.6 131.9 74.5 20.0/40.8 0.6/19.3 0.1/15.4 5.5/27.0
uk 18.7 107.0 118.8 82.6 –/– –/– –/– –/–
vi 18.0 110.5 104.2 50.9 –/– –/– –/– –/–
zh 28.9 93.9 7.9 6.2 4.5/16.9 15.6/45.8 8.9/39.7 22.7/51.2

Ave. 17.8 82.8 98.7 49.7 21.0/37.8 8.3/32.9 5.8/25.7 22.7/46.6

Figure 5: Win rates on MULTISPEECH-BENCH averaged across languages for the Qwen2.5-Omni
and the Qwen2.5-Omni model finetuned on MULTISPEECHQA. Bars show % wins for each model
and % ties (gray).

model also performs best on SQA against the cascading baseline, leading to state-of-the-art SLM
performance on the SQA portion of MULTISPEECH-BENCH.

Comparing the ASR and AST performance of Qwen2.5-Omni and Qwen2.5-Omni finetuned on
MULTISPEECHQA, we find that the average ASR performance remains stable across languages
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(per-language results shown in Table 4 in Appendix A.4). The average WER increases marginally
from 49.7 for the non-finetuned model to 50.4 for the finetuned model. On AST, the performance
of the finetuned model is similarly comparable, as shown by the slightly lower BLEU score of 21.0
compared to 22.7 for the non-finetuned model. Overall, we find that MULTISPEECHQA finetuning
substantially improves spoken SQA, while leaving performance on core ASR and ASR capabilities
effectively unchanged.

6 HOW DO TRAINING DATA MIXTURES AFFECT SPEECH LANGUAGE MODEL
PERFORMANCE?

In Section 5, we show that MULTISPEECHQA improves the SQA performance of Qwen2.5-Omni.
These results motivate a controlled study of data composition for multilingual SLMs. Specifically,
most existing SLMs, including Qwen2.5-Omni, are trained on undisclosed data mixtures, making
it impossible to understand whether performance differences across languages arise from the model
capacity being spread across many languages or from insufficient task diversity. We therefore ask
two questions: (1) Does training with fewer languages lead to better performance?; and (2) Does
adding AST data improve model performance?

To answer these questions, we train models from scratch using the SALMONN (Tang et al., 2024)
architecture, whose training code is publicly available. Specifically, in our setup, we use Whisper
as the speech encoder and Aya Expanse 8B as the language model. The window-level Q-Former
uses an mBERT text encoder. We choose this setup, because the Whisper encoder produces stable
multilingual speech features, and the window-level Q-Former allows us to leverage a pretrained text
encoder to more efficiently learn intermediary representations.

As Whisper is trained to translate speech data of many of the Aya’s languages into English, we
hypothesise that adding AST data increases the task diversity in the training mixture and hence
could lead a better downstream performance. For this ablation, we set a threshold of 20% for the
speech translation data and use mixed batches for more robust multi-task instruction-tuning.

Training details We train our models in two stages: (1) multimodal alignment with ASR data,
followed by (2) multitask training with SQA and AST data. Following the SALMONN training
setup, we train the window-level Q-Former and LoRA adapters and keep the speech encoder and
language model frozen. Although the model architecture allows us to append a text prompt to the
speech input, we train the model without any additional text prompt with our question answering
examples to enable the question-answering capability from the spoken questions alone. Further
details on how we train the models are in Appendix A.6 and hyperparamter details are in Table 5.

In total, we train four models: (1) ALL+AST: a model trained on all of Aya’s 23 languages with
CoVoST-2 AST data; (2) ALL: a model trained on all of Aya’s 23 languages; (3) TEN: a model
trained with ten selected languages (English, French, Dutch, Turkish, German, Arabic, Spanish,
Russian, Indonesian, and Polish); and (4) TEN+AST: a model trained with ten selected languages
with CoVoST-2 AST data.

6.1 RESULTS

Does training with fewer languages lead to better performance? Figure 6 summarises the dif-
ference in SQA performance of the models trained with 10 languages (TEN/TEN+AST) and 23
languages (ALL/ALL+AST). We see that the model trained with 23 languages results in a better
win rate overall, suggesting that we do not experience capacity dilution at 23 languages, and adding
more languages in training leads to better performance across languages. This could be due to the
fact that we start with a pretrained speech encoder and a pretrained language model, meaning that
we already have the question-answering capabilities present in the LM and the SLM training is
primarily learning how to project the speech encoder output into the LM space.

Does adding AST performance improve the models? We evaluate whether including speech
translation data improves performance by testing on CoVoST-2 languages (both X to En and En
to X translation directions) that overlap with the 23 languages in our dataset. We find that models
trained with AST data win 46.8% of the time against those without, indicating that additional AST
data alone does not lead to a consistent improvement. This result is likely due to two factors: (1)
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Figure 6: Win rates on MULTISPEECH-BENCH averaged across languages for the from-scratch
SALMONN models. ALL+AST versus TEN+AST is shown at the top and versus ALL at the bot-
tom. Bars show % wins for each model and % ties (gray).

the AST data comprises 20% of the training mixture, which is potentially too small to produce a
measurable effect; and (2) Whisper already supports speech translation into English, so adding a
small amount of AST instruction-tuning data provides only limited additional supervision.

7 CONCLUSION

In this paper, we address the lack of multilingual instruction-tuning data for SLMs by presenting
MULTISPEECHQA, a synthetic, human-verified dataset of more than 10.8 million instructions and
9200 hours of spoken question-answering data in 23 languages. We also introduce MULTISPEECH-
BENCH, a human-verified, multilingual and multitask benchmark to evaluate SLMs on SQA,
ASR and AST. Using MULTISPEECH-BENCH, we establish the strong performance of Qwen2.5-
Omni among the open-weight models we evaluate, and demonstrate the effectiveness of finetuning
this model on MULTISPEECHQA, leading to state-of-the art performance on the SQA portion of
MULTISPEECH-BENCH. These findings validate that automated, synthetic pipelines provide suffi-
cient instruction-tuning data for effective post-training of SLMs across many languages.

8 LIMITATIONS

We present a synthetically generated dataset, which for several languages suggests the possibility
of errors in the machine translation, which could lead to unnatural or possibly incorrect question
prompts in our dataset. The quality of the generated speech is at the limit of the speech synthesis
models, so we ensured that the content could be understood by native speakers for each language.
Synthetic generation of speech means we have a limited number of voices despite the vast amounts
of data in our dataset.
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A APPENDIX

In these appendices, we provide additional experimental details and results. Appendix A.1 reports
win rates of open-weight SLMs against the baseline. Appendix A.2 then describes the human
evaluation procedure for synthesized questions. We further examine model performance in Ap-
pendix A.3, which presents win rates of Qwen2.5-omni against its fine-tuned variant trained on
MULTISPEECHQA, followed by ASR and AST results for Qwen2.5-omni models in Appendix A.4.
The LLM-as-a-Judge prompt used in our evaluations is provided in Appendix A.5. Finally, Ap-
pendix A.6 contains comprehensive training details.

A.1 WIN RATES OF OPEN-WEIGHT MODELS AGAINST THE WHISPER + AYA BASELINE

We show language-wise win-rate breakdowns for each of the SLMs against the baseline model in
Figures 7, 8 and 9.

Figure 7: Win rates comparison: Whisper + Aya vs. Phi-4-Multimodal. Whisper + Aya outperforms
Phi-4-Multimodal on most languages, with the exception of a subset on which Phi-4-Multimodal is
trained (i.e., English, Italian, and Japanese).
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Figure 8: Win rates comparison: Whisper + Aya vs. Qwen2-Audio. Whisper + Aya outperforms
Qwen2-Audio on most languages, with the exception of a subset on which Qwen2-Audio is trained
(i.e., English, Italian, Korean, Japanese and Chinese).
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Figure 9: Win rates comparison: Whisper + Aya vs. Qwen2.5-Omni. Whisper + Aya outperforms
Qwen2.5-Omni on most languages, with the exception of several Asian languages and English.
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A.2 DETAILS ON HUMAN EVALUATIONS OF SYNTHESISED QUESTIONS

We ask native speakers of the 22 non-English language to assess the naturalness and amount of
content understood of a subset of synthesised questions in the test set. The participants rate the
naturalness and content understood on a scale of 1 to 5.
Naturalness: Listen to this speech sample, then rate the naturalness of the speech.
Content Understood: How much of the content of the speech sample can you understand?

A.3 WIN RATES OF QWEN2.5-OMNI VS QWEN2.5-OMNI FINETUNED

Figure 10: Win rates comparison: Qwen2.5-Omni vs. Qwen2.5-Omni finetuned. Finetuning im-
proves performance across most languages, meaning that our MULTISPEECHQA enables better
SQA capability. Hebrew, and Czech seem to lag behind, with most of the results being a tie.

A.4 MULTISPEECH-BENCH PERFORMANCE ON QWEN2.5-OMNI MODELS
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Table 4: Speech Recognition (ASR) and Speech Translation (AST) performance across models and
languages: Qwen2.5 Omni vs. Qwen2.5 Omni finetuned (FT). We report CER for Chinese (zh) and
Japanese (ja), and report chrF in addition to BLEU for AST performance.

Lang. ASR (WER %) ↓ AST (BLEU) ↑
Q2.5 Omni Q2.5 Omni FT Q2.5 Omni Q2.5 Omni FT

ar 45.7 31.5 30.6 29.7
cs 100.4 101.6 – –
de 7.1 7.5 – –
el 108.0 108.3 – –
en 13.8 16.6 – –
es 4.9 5.1 – –
fa 109.1 107.5 – –
fr 10.9 10.8 – –
he 122.9 113.6 – –
hi 68.9 68.4 – –
id 14.0 13.9 37.0 34.7
it 6.5 6.2 – –
ja 75.9 31.3 17.8 17.2
ko 23.0 24.4 – –
nl 14.0 14.3 – –
pl 94.7 75.1 – –
pt 9.6 11.9 – –
ro 89.3 74.6 – –
ru 9.3 13.7 – –
tr 74.5 66.4 5.5 5.8
uk 82.6 81.3 – –
vi 50.9 169.3 – –
zh 6.2 6.8 22.7 17.7

Average 49.7 50.4 22.7 21.0

A.5 LLM-AS-A-JUDGE PROMPT

We prompt our selected LLM with the prompt below, inserting the language name and completions
for each individual pair. We randomise the answers, ensuring that each model is both Answer A or
B across instances.

You are a helpful following assistant whose goal is to select the preferred
(least wrong) output for a given instruction in {LANGUAGE_NAME}.

Which of the following answers is the best one for given instruction
in {LANGUAGE_NAME}.
A good answer should follow these rules:
1) It should be in {LANGUAGE_NAME}
2) It should answer the request in the instruction
3) It should be factually and semantically comprehensible
4) It should be grammatically correct and fluent.

Instruction: {INSTRUCTION}
Answer (A): {COMPLETION_A}
Answer (B): {COMPLETION_B}
FIRST provide a one-sentence comparison of the two answers, explaining which
you prefer and why.
SECOND, on a new line, state only ‘Answer (A)’ or ‘Answer (B)’
to indicate your choice.
If the both answers are equally good or bad, state ‘TIE’.

Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <‘Answer (A)’ or ‘Answer (B)’ or ‘TIE’>
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A.6 MULTISPEECH MODELS TRAINING DETAILS

We use MULTISPEECHQA to train models from scratch and glean insights on how training data
mixtures affect SLMs performance. We chose the SALMONN architecture to train our models.
The pretrained components are Whisper Large v3 as our speech encoder and Aya Expanse 8B as
our language model. We opt for these two models based on their state-of-the-art performance in
the respective multilingual capabilities. Note that the languages in MULTISPEECHQA are the same
languages on which Aya Expanse 8B is trained. We use the same window length for the window-
level Q-Former as in SALMONN, but replace the BERT base uncased language model encoder with
an mBERT encoder to enable multilingual representations.

We hypothesise that adding speech translation data increases the task diversity in the training mixture
and hence could lead a better downstream performance. For this ablation, we set a threshold of 20%
for the speech translation data and use mixed batches for more robust multi-task instruction-tuning
(Mueller et al., 2024).

During the training, we use parameter-efficient LoRA adapters (Hu et al., 2022) to decrease the un-
derlying compute requirement. However, compared to SALMONN, we increase the LoRA rank and
alpha to 64 for a higher trainable parameter capacity, enabling better optimization for 23 languages.
We employ a multi-stage training process with different types of data for our models.

Stage 1 ASR training Following the SALMONN training setup, we train the window-level Q-
Former and LoRA adapters using ASR data. To do this, we use a uniform amount of ASR data
(20 hours) in all languages. In this stage, we add the text instruction “Transcribe this utterance” to
the speech prompt. The goal of this stage is alignment between speech and text representations and
enabling the model to understand the speech inputs.

We start with CommonVoice data (Ardila et al., 2020) for each language. Some of the languages
have fewer than 20 hours of training data, so we balance the number of hours of data in Vietnamese
with 15 hours of the Bud500 dataset (Pham et al., 2024), 18 hours of Hebrew with the Ivrit.ai dataset
(Marmor et al., 2023), 14 hours Hindi with the monolingual portions of the Multilingual and Code-
Switching ASR Challenges for Low Resource Indian Languages dataset (Diwan et al., 2021) and 19
hours Korean with the Zeroth-Korean corpus (Jo & Lee, 2022).

Stage 2 Question Answering Training For the second stage of training, we use our MULTI-
SPEECHQA dataset for all 23 languages. For the Trivia QA, the QA Assistant, and the Alpaca
GPT-4 datasets, we use all the samples, but given the difference in distribution of Anthrophic-RLHF
data, we only subsample 1000 examples from this data source to ensure a training mixture that is bal-
anced and optimized for general-purpose speech instruction-following tasks. Overall, our training
mixture includes 2,070,000 samples distributed equally between 23 languages.

In addition to MULTISPEECHQA, we also run ablations where we include additional speech trans-
lation (AST) data from the CoVoST-2 (Wang et al., 2021) dataset to the training mixture.

Finally, although the model architecture allows us to append a text prompt to the speech input, we
train the model without any additional text prompt to enable the question answering capability from
the spoken questions alone.

Hyperparameter Stage 1 Stage 2

Learning rate 1e-5 1e-5
Warmup steps 800 400
LoRA Rank 64 64

No. of epochs 10 3
Batch size 128 256

Number of samples per language 20 hours 90 000

Table 5: Hyperparameters used to train Stage 1 and Stage 2 of MULTISPEECH models.
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A.7 HUMAN VALIDATION OF LLM-AS-A-JUDGE

In addition to checking for model calibration, we selected eight typologically diverse languages
(Arabic, German, Hebrew, Hindi, Korean, Portuguese, Turkish and Chinese) to measure whether
human judgements on SLM vs baseline pairs align with Command-A’s judgements. Eight of 23
languages were chosen due to budget constraints. We evaluated an open model (Qwen2.5-Omni)
and a commercial SLM (GPT-Audio) against the baseline and asked native speakers to judge the
responses. Ensuring that we had three annotations for each pair of answers in the benchmark, we
derived a consensus label from the three annotations and measured human–LLM alignment, observ-
ing 75.6% agreement for Qwen2.5-Omni (κ= 0.186) and 52.4% for GPT-Audio (κ = 0.185). For
GPT-Audio, annotators showed high disagreement as the outputs are of similar quality. Overall,
these experiments provide evidence that our LLM-as-a-judge setup captures human preferences to a
reasonable extent, especially for Qwen2.5-Omni.
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