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Abstract

Named Entity Recognition (NER) is an impor-001
tant task in Natural Language Processing that002
aims to identify text spans belonging to pre-003
defined categories. Traditional NER research004
ignores nested entities, which are entities con-005
tained in other entity mentions. Although sev-006
eral methods have been proposed to address007
this case, most of them rely on complex task-008
specific structures and ignore potentially use-009
ful baselines for the task. We argue that this010
creates an overly optimistic impression of their011
performance. This paper revisits the Multi-012
ple LSTM-CRF (MLC) model, a simple, over-013
looked, yet powerful approach based on train-014
ing independent sequence labeling models for015
each entity type. Extensive experiments with016
three nested NER corpora show that, regard-017
less of the simplicity of this model, its perfor-018
mance is better or at least as well as more so-019
phisticated methods. Furthermore, we show020
that the MLC architecture achieves state-of-021
the-art results in the Chilean Waiting List cor-022
pus by including pre-trained language models.023
In addition, we propose new task-specific met-024
rics that adequately measure the ability of mod-025
els to detect nestings. The results show that026
standard NER metrics do not measure well027
the ability of a model to detect nested entities,028
while our task-specific metrics provide new ev-029
idence on how existing approaches handle the030
task.031

1 Introduction032

Named Entity Recognition (NER) is a widely stud-033

ied task in Natural Language Processing (NLP) that034

seeks to identify text spans expressing references to035

predefined categories such as person names, loca-036

tions, and organizations (Chinchor and Robinson,037

1997). NER, or in general the task of recognizing038

entity mentions1, has drawn the attention of the039

1Mentions are defined as references to entities that could
be named, nominal or pronominal (Florian et al., 2004).

Figure 1: An example of a multi-label entity in the
Chilean Waiting List corpus, followed by a nesting of
different types. The annotation was translated from its
original language.

community due to its relevance in several NLP ap- 040

plications. Nested Named Entity Recognition is a 041

particular case of NER where entities are nested 042

within each other (Finkel and Manning, 2009). Tra- 043

ditional NER models simplify the nested entities by 044

keeping the outermost entity and removing the in- 045

ner ones. This simplified problem is better known 046

as flat NER and is commonly regarded as a se- 047

quence labeling problem since each token can be 048

associated with at most one label. However, re- 049

moving part of these entities could be a problem 050

in model performance due to the loss of relevant 051

information and inner dependencies. 052

Several methods have been proposed to address 053

the nesting problem. Traditional approaches have 054

focused on creating representations of nested enti- 055

ties through structures such as hypergraphs (Lu and 056

Roth, 2015; Muis and Lu, 2017; Katiyar and Cardie, 057

2018; Wang and Lu, 2018). However, they usually 058

suffer from heavy feature engineering, structural 059

ambiguity, or complex models. Another category 060

is region-based, which divides the problem into 061

two sequential stages. First, the detection of entity 062

boundaries, and then the assignment of entity types 063

to these regions (Sohrab and Miwa, 2018; Zheng 064

et al., 2019; Yu et al., 2020). One of the main draw- 065

backs of this method is its high time complexity. 066

There are also approaches that attempt to transform 067

the nested NER task into a sequence labeling prob- 068
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lem (Alex et al., 2007; Ju et al., 2018; Shibuya and069

Hovy, 2020). Although these studies have shown070

competitive performance, we realized that most of071

them have three critical issues, discussed below.072

First, with the incorporation of large pre-trained073

language models, the standard LSTM-CRF (Lam-074

ple et al., 2016) sequence labeling architecture re-075

ceived substantial improvements for flat NER tasks076

(Liu et al., 2017). However, little research has been077

conducted on adapting this architecture to nested078

NER using a single entity approach, i.e., training079

independent flat NER models for each entity type.080

In this paper, we revisit this architecture, naming081

it Multiple LSTM-CRF (MLC). Despite the ap-082

parent simplicity, we show that this model yields083

very positive results, outperforming several recent084

approaches explicitly designed for nested entities.085

Second, we note that most of the literature ig-086

nores the case in which the same text span is tagged087

with more than one entity type, as shown in Fig-088

ure 1. This case is very common in the Chilean089

Waiting List corpus (Báez et al., 2020), and it was090

first noticed by Alex et al. (2007), but was not ana-091

lyzed further. One of the main advantages of our092

architecture is that it addresses this problem.093

Third, we argue that the way the community is094

evaluating this task does not adequately measure095

the effectiveness of a model at identifying nested096

entities. Specifically, the current metric calculates097

the micro F1-score over all entities, which is the098

same metric used in flat NER. Consequently, a099

model that performs well over flat entities, but not100

nested ones, may also obtain good results. To al-101

leviate this problem, we first identify the different102

types of nesting by formalizing the task and then103

proposing new task-specific metrics for these cases.104

In summary, the main contributions of our work105

are the following:106

• Due to the lack of a consensual definition of107

nested NER, we introduce a formalization of108

the task by identifying the different types of109

nesting, and we also propose new task-specific110

evaluation metrics to measure performance on111

nesting.112

• We conduct an empirical study comparing sev-113

eral nested NER architectures in three datasets114

from different languages, with particular at-115

tention to the impact of using pre-trained lan-116

guage models and nesting metrics. Experi-117

mental results confirm the effectiveness of the118

MLC model, achieving state-of-the-art in the 119

Chilean Waiting List corpus and competitive 120

performance in the rest of the corpora. 121

2 Related Work 122

In recent years there has been a growing interest 123

from the research community in nested NER. Sev- 124

eral studies have been conducted to address nested 125

entities, which can be mainly divided into three 126

categories: 127

Region-based: These approaches divide the prob- 128

lem into two stages: identifying entity boundaries 129

and then categorizing these regions. Sohrab and 130

Miwa (2018) designed a model that enumerates all 131

possible spans within a limited length and then used 132

boundary and average internal token representation 133

to predict entity types. Another region-based model 134

was proposed by Zheng et al. (2019), which uses a 135

sequence labeling layer to detect entity boundaries, 136

and then classified selected regions into their cat- 137

egorical types. Yu et al. (2020) used ideas from a 138

biaffine model, scoring all possible start-end tokens 139

in a sentence to predict nested entities. Although 140

these methods have proven to be effective, they 141

often suffer from high time complexity and fail to 142

identify entities tagged with more than one type. 143

Structure-based: There have also been attempts to 144

capture the structure of nested entities. Finkel and 145

Manning (2009) represented each input sentence 146

as a constituency tree of nested entities and used 147

a CRF-based approach to predict entity types. Lu 148

and Roth (2015) proposed a mention hypergraph 149

representation to extract entity mentions. Next, 150

Muis and Lu (2017) improved on previous work 151

by modeling nested NER with mention separators 152

and handcrafted features. Similarly, Katiyar and 153

Cardie (2018) designed a directed hypergraph us- 154

ing LSTM features to learn the nesting structure. 155

Wang et al. (2020) recursively introduce the em- 156

bedding of tokens and regions into flat NER layers 157

simulating the shape of a pyramid. However, these 158

approaches usually suffer from spurious structures 159

and structural ambiguities, as explained in Wang 160

and Lu (2018). 161

Sequence labeling-based: Some studies report 162

that sequence labeling methods can also perform 163

well on this task. Early work mainly exploited the 164

potential of conditional random fields (CRF). Alex 165

et al. (2007) proposed three CRF-based methods to 166

reduce the nested NER as several BIO tagging prob- 167

lems. Their best approach, called cascaded CRF, 168

uses one model per entity type using the output of 169
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the previous flat NER model as a feature for the cur-170

rent one. Ju et al. (2018) took advantage of inner en-171

tity information to encourage outer entity recogni-172

tion. They dynamically stacked LSTM-CRF layers173

predicting entities in an inside-to-outside way until174

no entities were extracted. Straková et al. (2019)175

formulated the nested NER task as a sequence-to-176

sequence problem using an LSTM to decode entity177

types. Finally, Shibuya and Hovy (2020) recog-178

nized entities iteratively from outermost ones to179

inner ones using a recursive CRF-based method.180

The MLC approach falls into this category by using181

a sequence labeling approach capable of handling182

both nested entities and entities tagged with more183

than one label.184

3 Methods185

3.1 Problem Definition186

One of the main issues in our knowledge of nested187

NER is that the task definition has not been ad-188

dressed in-depth, and clarification of the different189

nesting cases is needed. By analyzing several cor-190

pora with nested entities, we have identified the191

following nesting cases:192

Multi-label entities (ME): This case has been193

little explored in the literature. As explained in194

Alex et al. (2007), it consists of entities tagged195

with more than one entity type. With the release196

of the Chilean Waiting List corpus, it is interesting197

to study this case since 10.75% of the entities are198

involved in this type of nesting. For example, the199

entity “HTN", which stands for hypertension, is200

tagged as a disease and an abbreviation.201

Nested entities of different types (NDT): This202

is the most frequent type of nesting in nested NER203

datasets. It consists of an entity containing a shorter204

entity tagged with a different type. An example205

is “colon cancer", where a body part (colon) is206

contained in a disease.207

Nested entities of the same type (NST): This208

case usually occurs when entities are originally209

represented by a hierarchy, which is later pruned to210

reduce the entity space, resulting in the merging of211

entities of different levels of granularity. Although212

it appears in most corpora, it is much more frequent213

in GENIA (Kim et al., 2003). For example, the214

DNA “Drosophila homeodomain" contains another215

DNA, “homeodomain".216

To better understand these cases, we formally217

define what we mean by nested entities and the218

nested NER task.219

Definition 1 (Nested entities) Given an input se- 220

quence X = {x1, x2, ..., xn} of words, an entity Q 221

is defined by a tuple (Sq, Eq, Tq), where Sq and Eq 222

∈ [1, n] represents entity boundaries in X , and Tq 223

in E (the entity space) corresponds to entity type. 224

Given two entities Q and R, we say that Q is nested 225

in R if Sr ≤ Sq and Eq ≤ Er. The particular case 226

of Sq = Sr and Eq = Er corresponds to an entity 227

with multiple labels. Note that under this definition 228

we consider the three types of nesting. 229

Definition 2 (Nested NER) Given an input se- 230

quence X = {x1, x2, ..., xn}, nested NER aims 231

to correctly identify the boundaries for every entity 232

Q in X and assign it the correct entity type from 233

a predefined list of categories. This identification 234

must be made for cases where nested entities are 235

involved and when not. 236

3.2 Model 237

In recent years, with advances in deep learning, 238

sequence labeling architectures have received sub- 239

stantial improvements in the NER task. Therefore, 240

we decided to revisit a method that belongs to this 241

category but, despite its effectiveness, has been 242

little studied. 243

Multiple LSTM-CRF (MLC): This approach 244

consists of training multiple flat NER models, one 245

for each entity type. The predicted labels of the 246

input sentences correspond to the union of the out- 247

puts of each of these models, thus retrieving both 248

nested entities and entities tagged with multiple 249

labels. The main advantage of this approach is that 250

it can easily incorporate all the progress made for 251

the flat NER task into the nested NER task. 252

The apparent simplicity of MLC would lead us 253

to believe that it should be considered as a natural 254

baseline for any proposed architecture in nested 255

NER. However, we realized that the few papers 256

that have incorporated this model had used it as 257

a baseline (Muis and Lu, 2017; Lin et al., 2019; 258

Fei et al., 2020), but their reported results are not 259

competitive. We believe that the problem lies in 260

the fact that they do not use the potential of re- 261

cent advances in flat NER architectures, such as 262

the addition of domain-specific embeddings or pre- 263

trained language models. These are the elements 264

that we will incorporate in our work to show the 265

effectiveness of the model. 266

Figure 2 shows an overview of the MLC model. 267

Specifically, to create each flat NER module, we 268

follow the LSTM-CRF approach proposed by Lam- 269
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Figure 2: Overview of the MLC architecture, where each entity type has an associated flat NER model. The right
side of the figure shows, as an example, the flat NER module for the Disease tag in the Chilean Waiting List dataset.

ple et al. (2016), one of the most widely used270

architectures for sequence labeling. To encode271

sentences, we use different combinations of em-272

beddings in the stacked embedding layer. First,273

we concatenate domain-specific word embeddings274

with character embeddings retrieved from a bidi-275

rectional character-level LSTM. Next, we enrich276

word representations by adding contextualized em-277

beddings from Flair (Akbik et al., 2018) and BERT278

(Devlin et al., 2019a), which have proven to be par-279

ticularly effective on NER. The output is fed into a280

BiLSTM encoding layer to obtain long-contextual281

information. Finally, we use a CRF-loss and the282

Viterbi algorithm to decode the most likely tag se-283

quence using the IOB2 tagging format.284

4 Experiments285

In this section, we present the datasets, baselines,286

and settings used in our experiments.287

4.1 Datasets288

Since most previous work on nested NER has been289

done in English datasets, we conducted our experi-290

ments with three corpora containing nested entities291

for three different languages and domains. The292

statistics for each corpus are shown in Table 1.293

GENIA V3.022 (Kim et al., 2003) English294

biomedical corpus created from 2,000 MEDLINE295

abstracts. It is composed of 36 fine-grained entity296

types and 55,740 entity mentions, of which 17.3%297

are involved in nesting. We followed the same298

setup as the previous work (Finkel and Manning,299

2009; Lu and Roth, 2015; Zheng et al., 2019), col-300

lapsing sub-types into their five super-types, using301

2http://www.geniaproject.org/
genia-corpus/pos-annotation

the first 90% of the sentences for the training set 302

and the remaining 10% in the test set. 303

GermEval 20143 (Benikova et al., 2014) Ger- 304

man dataset sampled from German Wikipedia and 305

German online news. It consists of a total of 41,124 306

entity mentions, where 14.9% of them are involved 307

in nesting. The corpus contains two levels of nest- 308

ing and 12 entity types. 309

Chilean Waiting List4 (Báez et al., 2020) 310

Spanish clinical corpus created from real diagnoses 311

of the Chilean healthcare system. It is composed 312

of 43,730 entity mentions and seven entity types. 313

From a nested NER point of view, it is a good re- 314

source since 46.7% of the entities are involved in 315

nesting. In addition, to date, there are no reported 316

results on nested NER in this dataset. 317

Studying previous work, we have noticed that 318

comparisons between models are not entirely fair 319

since the data partitions used vary between different 320

papers. Therefore, for a fair comparison, in both 321

the GENIA and GermEval datasets, we trained the 322

models using the preprocessed version released in 323

Zheng et al. (2019). In the case of the Chilean 324

corpus, we used the public files released by the 325

authors, which are already tokenized. 326

4.2 Baselines 327

We compare our results with several state-of-the-art 328

models in GENIA and GermEval. Table 2 shows 329

the different types of nesting that each of these 330

baselines is capable of addressing. Based on the 331

released source code, we have reproduced the fol- 332

lowing models to use as a reference for analyzing 333

both traditional and task-specific metrics: 334

3https://sites.google.com/site/
germeval2014ner/data

4https://zenodo.org/record/5591011
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GENIA GermEval Chilean Waiting List
Train Test Dev Train Test Dev Train Test Dev

tokens 454,882 57,021 48,932 452,853 96,499 41,653 149,574 18,436 16,754
sentences 15,023 1,854 1,669 24,000 5,100 2,200 8,014 990 890
avg sent len 30.3 30.8 29.3 18.9 18.9 18.9 18.7 18.6 18.8
entities 45,929 5,474 4,337 31,545 6,693 2,886 35,480 4,289 3,971
avg entity len 2.9 2.9 3.1 1.4 1.4 1.5 2.6 2.7 2.6
nested entities (%) 17.0 20.6 16.8 15.0 14.7 14.1 46.4 45.9 46.7
nested entities 7,795 1,130 727 4,721 986 407 16,456 1,969 1,856
- different type 3,712 589 369 4,230 892 366 12,635 1,555 1,398
- same type 4,132 547 358 536 93 44 0 0 0
- multi-label entities 0 0 0 2 2 0 4,241 470 502

Table 1: Statistics of the datasets.

Pyramid is a structure-based architecture that335

recognizes entities in a bottom-up manner, from336

the shortest to the longest, assimilating the shape337

of a pyramid. It is currently the state-of-the-art338

method without using external supervision (Wang339

et al., 2020).340

Recursive-CRF is a sequence labeling-based341

approach that extracts nested entities iteratively in342

an outside-to-inside way using a recursive CRF-343

based algorithm (Shibuya and Hovy, 2020).344

Layered is a sequence labeling-based model de-345

signed to identify nested entities by dynamically346

stacking LSTM-CRF layers. It predicts entities in347

an inside-to-outside way until no more entities are348

extracted. (Ju et al., 2018).349

Exhaustive is a region-based model that enu-350

merates all possible regions as potential entity men-351

tions, and then classifies them into their entity types352

(Sohrab and Miwa, 2018).353

Boundary is a region-based method that com-354

bines ideas from the Layered and Exhaustive mod-355

els. It uses a BiLSTM layer to detect boundary-356

relevant regions and then uses these representations357

to predict categorical entity labels (Zheng et al.,358

2019).359

Biaffine is a region-based architecture that lever-360

ages contextualized paragraph-level embeddings to361

create a Biaffine model. This approach scores can-362

didate pairs of start and end tokens in a sequence363

and then classifies them into predefined categories364

using nested entities constraints (Yu et al., 2020).365

4.3 Implementation Details366

Pre-trained Word Embeddings. To encode sen-367

tences, we selected pre-trained word embeddings368

in the same domain of each corpus. For the exper-369

iments with GENIA, we used biomedical embed-370

dings trained on MEDLINE abstracts (Chiu et al.,371

2016). In GermEval, we incorporated German Fast-372

Model ME NDT NST
Layered X X X

Exhaustive 7 X X
Boundary 7 X X
Biaffine 7 X X
Pyramid X X X

Recursive-CRF X X X
MLC X X 7

Table 2: Nesting types identified by the architectures
used in our experiments. Multi-label entities (ME),
nesting of different types (NDT), and nesting of the
same type (NST).

Text embeddings (Grave et al., 2018), and for the 373

Chilean dataset, we used pre-trained embeddings 374

from a large clinical corpus, which can be down- 375

loaded from here5. During the training process, the 376

embeddings were not left static. 377

Contextual Word Embeddings. To study the im- 378

pact of adding pre-trained language models, we 379

used BERT (Devlin et al., 2019b), and Flair (Ak- 380

bik et al., 2018), which is a character-level lan- 381

guage model. In the case of BERT, since it uses 382

WordPiece tokenization, we computed word em- 383

beddings using the average of subtoken embed- 384

dings. A version of these models was available 385

for all the languages and domains involved in our 386

study, except for Spanish. Therefore, we added new 387

language models in the Spanish clinical domain to 388

the Flair framework. We trained these models on 389

the same corpus as the word embeddings used for 390

the Chilean dataset, following the same settings 391

and assumptions reported in the Flair paper. 392

Regarding the Biaffine model, the BERT em- 393

beddings were created using the paragraph-level 394

context. However, Fu et al. (2020) explains that this 395

method provides better performance in resolving 396

correlations, so it is not an entirely fair comparison 397

with models that use sentence-level context. For 398

5http://doi.org/10.5281/zenodo.3924799
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Parameter Range MLC
max epochs [20, 100] 100
optimizer [SGD, Adam, AdamW] SGD
batch size [8, 32] 16
learning rate [0.0001, 0.1] 0.1
char emb dim [20, 50] 25
dropout [0.2, 0.8] 0.3
BiLSTM depth [1, 3] 3
BiLSTM hidden size [128, 512] 128

Table 3: Hyperparameter search space and the best val-
ues found for the MLC model.

this reason, we do not make a comprehensive com-399

parison with this model in terms of contextualized400

embeddings.401

Parameters. We used a unified setting for all the402

experiments with MLC. The best hyperparameters403

were chosen by performing a random search over404

the range of values shown in Table 3, selecting the405

best configuration based on performance on the406

development set. To perform a fair comparison407

with baselines, we used the best hyperparameters408

reported in their papers.409

We trained the MLC architecture using the SGD410

optimizer to a maximum of 100 epochs, with mini-411

batches of size 16 and a learning rate of 0.1. To412

control the overfitting problem, we employed a413

learning rate scheduler and an early stopping strat-414

egy. We also applied dropout regularization (Sri-415

vastava et al., 2014) after the embedding layer and416

BiLSTM. The MLC model was implemented using417

the Flair framework (Akbik et al., 2019), and the418

rest of the baselines were executed with the official419

code provided by the authors. All the experiments420

were performed using a Tesla V100 GPU.421

4.4 Evaluation Metrics422

Overall Performance. Performance was evalu-423

ated using precision, recall, and micro F1-score,424

which is the standard metric used in nested NER.425

An entity is considered correct when both entity426

types and boundaries are predicted correctly.427

Nested Performance. Since flat entities are much428

more common than nested entities, the above met-429

ric ends up confusing flat and nested results and,430

consequently, is not able to reflect well the ability431

of a model to detect nesting. To alleviate this is-432

sue, we analyze task-specific metrics proposed in433

previous work that adequately measure the model’s434

ability to detect nested and non-nested entities.435

Precisely, we compute scores for the following436

cases: non-nested entities (mflat), nested entities437

(mnested), inner entities (minner) and outer entities438

(mouter). We consider an entity to be nested if it 439

contains any entity or is contained within another 440

entity. Thus, the mnested metric considers both 441

minner and mouter scores. 442

However, none of these existing metrics capture 443

the ability of the models to recognize both inner 444

and outer entities simultaneously. For this reason, 445

and to demonstrate whether the choice of a model 446

in a dataset depends on the types of nesting present, 447

we compute a score for nesting (mnesting) and on 448

the different types of nesting described in the task 449

formalization (mME , mNDT , mNST ). A nesting 450

is considered correct if both inner and outer entities 451

are recognized correctly. 452

The above metrics are calculated using precision, 453

recall, and micro F1-score, but we only report the 454

last one for brevity. We emphasize that most of 455

these metrics have not been used before in nested 456

NER research. Therefore, we believe it is crucial 457

to incorporate them in future work as it allows us 458

to measure and differentiate the performance of 459

models on nested and non-nested entities. 460

4.5 Main Results 461

Table 4 shows the overall performance of the pro- 462

posed model against baselines on three different 463

datasets. Despite its simplicity, we observe that 464

the MLC architecture outperforms existing state- 465

of-the-art models on the Chilean Waiting List by 466

+1.6% in terms of the F1 measure. By contrast, 467

although state-of-the-art is not obtained in GENIA 468

and GermEval, we can see that MLC outperforms 469

many specialized nested NER architectures, thus 470

being a competitive approach. One possible rea- 471

son for the excellent performance is that we use 472

one model per entity type, which means that the 473

number of possible labels is only one per model, 474

avoiding the problem of nested entities and making 475

the classification step more straightforward com- 476

pared to other architectures. Compared with the 477

statistics in Table 1, we can conclude that it is more 478

challenging to obtain good results when the cor- 479

pora have entities of a more considerable length. 480

This can be explained by the strict metric we are 481

using, where the boundaries and the entity types 482

are requested to match. 483

We further analyze the effect of adding pre- 484

trained language models in our experiments. As 485

we believed, all models benefit from incorporat- 486

ing contextual word embeddings, improving their 487

performance considerably compared to their base 488
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GENIA GermEval Chilean Waiting List
Model P R F1 P R F1 P R F1
Layered 73.9 68.7 71.2 71.8 64.1 67.7 75.0 72.8 73.9
Exhaustive 74.1 69.7 71.8 78.6 64.6 70.9 76.3 71.7 68.2
Boundary 76.7 71.8 74.2 74.4 65.5 69.7 74.0 67.6 70.7
Pyramid 78.1 72.8 75.3 77.8 66.9 71.9 79.6 75.4 77.5
Biaffine 79.1 73.7 76.3 89.0 77.4 82.8 81.5 67.1 73.6
Recursive-CRF 75.8 75.2 75.5 85.1 78.2 81.5 75.1 77.2 76.1
MLC 77.6 74.2 75.8 86.8 77.2 81.7 77.7 78.3 78.0
LM-based
Biaffine [BERT] 79.9 76.5 78.1 88.3 85.0 86.6 78.7 70.8 74.5
Recursive-CRF
- Flair 77.1 78.0 77.6 83.4 82.9 83.2 78.0 79.9 78.9
- BERT 76.4 77.4 76.9 84.3 83.0 83.6 76.6 77.8 77.2
- Flair + BERT 77.4 76.8 77.1 84.8 82.1 83.4 77.1 77.9 77.5
Pyramid
- Flair 77.8 75.6 76.7 83.4 80.0 81.7 80.1 77.2 78.6
- BERT 79.1 76.9 78.0 87.7 85.8 86.7 78.0 73.6 75.7
- Flair + BERT 80.4 75.0 77.6 87.7 84.4 86.0 78.5 77.2 77.9
MLC
- Flair 80.1 75.2 77.6 85.3 82.4 83.8 80.6 80.5 80.5
- BERT 79.4 74.3 76.8 85.1 80.3 82.6 79.7 78.8 79.3
- Flair + BERT 78.8 75.2 75.5 84.7 80.1 82.3 79.9 78.1 79.0

Table 4: Overall results on three nested NER datasets.

version. In GermEval, a general-purpose corpus,489

the language model that best improves the model’s490

performance is BERT, while in the other corpora,491

it is Flair. Also, we can see that stacking Flair and492

BERT embeddings does not produce better results.493

We attribute this to the high dimensionality of these494

representations and to the fact that the two language495

models were trained on different corpora.496

Regarding the Chilean corpus, which contains497

the highest percentage of nested entities, we ob-498

serve that the MLC model with Flair embeddings499

improves by +2.5% compared to its base version500

without pre-trained language models. This demon-501

strates the effectiveness of using Flair over BERT502

in this corpus. We suspect that it is due to the large503

number of misspelled and out-of-vocabulary words504

found in the unstructured clinical text. As pointed505

out in Akbik et al. (2018), handling these types of506

words is one of the main advantages when using its507

character-level language model.508

Despite the promising results, we hypothesize509

that benchmarking against the standard nested NER510

metric may not be a good indicator of model per-511

formance on nesting since most of the entities are512

not nested. Therefore, we analyze the results using513

nested metrics.514

4.6 Nested Results515

In most cases, the revisited nested metrics pre-516

sented in Table 5 are relatively consistent with re-517

sults in Table 4. This means that models which ob-518

tain state-of-the-art using the standard metrics also 519

perform well according to these metrics. For ex- 520

ample, in the Chilean Waiting List, the best model 521

(MLC) achieves the best results according to the 522

mflat, minner, mouter, mnested metrics, which is 523

a remarkable result considering the large number 524

of nestings present in this corpus. Another obser- 525

vation is that, unlike the other datasets, in GENIA 526

is more complex to recognize inner entities over 527

the outermost ones. This finding could be helpful 528

when designing future architectures for this corpus. 529

As expected, the models with better performance 530

according to the standard metric are also associated 531

with good results using the mflat metric. This may 532

not be a good indicator in the nested NER task 533

since most of the entities in these corpora are not 534

nested, and the proper performance on nestings is 535

not reflected. This issue becomes much more evi- 536

dent when analyzing our proposed nesting metrics, 537

presented in Table 6. We observe that the results 538

are significantly lower than those for the previous 539

metrics of Tables 4 and 5. This reveals the difficulty 540

of correctly recognizing the nesting cases. One pos- 541

sible reason for this low performance is that these 542

metrics are strict, as inner and outer entities must 543

be correctly predicted. 544

Although the selected baselines are designed to 545

deal with nestings of the same type, their mNST 546

results in GENIA and GermEval are poor, while 547

the results using the mNDT metric are much higher. 548

This suggests that NST is the most difficult case to 549
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GENIA
Model mflat mnested minner mouter

Layered 73.2 62.3 42.9 79.8
Exhaustive 76.6 55.0 42.6 67.9
Boundary 77.4 59.5 42.0 75.6
Biaffine [BERT] 81.2 65.8 49.3 80.5
Pyramid [BERT] 81.1 65.2 46.1 82.4
Recursive-CRF [Flair] 81.5 62.3 46.9 77.4
MLC [Flair] 80.7 63.8 41.7 82.2

GermEval
Model mflat mnested minner mouter

Layered 68.8 60.9 62.0 59.7
Exhaustive 73.4 56.1 65.7 45.7
Boundary 70.9 54.5 54.1 55.0
Biaffine [BERT] 88.4 76.6 78.1 75.0
Pyramid [BERT] 88.5 76.7 77.3 76.1
Recursive-CRF [BERT] 85.5 73.0 74.9 71.0
MLC [Flair] 86.0 71.6 74.5 68.4

Chilean Waiting List
Model mflat mnested minner mouter

Layered 73.4 74.5 82.4 64.5
Exhaustive 71.7 63.8 71.5 53.4
Boundary 73.4 61.1 65.5 55.4
Biaffine [BERT] 76.2 72.5 75.2 69.2
Pyramid [Flair] 79.0 78.1 84.7 69.3
Recursive-CRF [Flair] 80.3 77.4 82.8 70.4
MLC [Flair] 80.9 80.1 86.2 72.5

Table 5: Results on nested and non-nested entities.

identify for all models. Therefore, we believe that550

a model should not be prematurely discarded based551

on its limitation to handle a particular type of nest-552

ing. For example, although the MLC architecture553

cannot strictly identify the NST case in GENIA and554

GermEval, it obtains excellent results on the NDT555

case and the outermost entities involved in the NST.556

In contrast, concerning the mME metric, we note557

that the performance of the four models addressing558

this case is quite good, suggesting that it is not a559

complex case to recognize but still not taken into560

account when building nested NER models.561

Finally, we highlight that in the Chilean corpus562

where the state-of-the-art is reached, almost half563

of the complete nestings (mnesting) are correctly564

recognized, which is a reliable indicator of our565

model performance on the nested NER task. These566

results suggest that the MLC architecture should be567

considered in future state-of-the-art comparisons568

due to its effectiveness. Besides, we argue that569

there is still much work to be done in nested NER,570

as most models fail to simultaneously recognize571

the inner and outer entities of nestings, which is572

one of the main objectives of the task.573

5 Conclusions and Future Work574

This paper presented an effective but overlooked575

neural model for nested NER based on sequence576

labeling architectures. Specifically, we revisited the577

GENIA
Model mnesting mME mNDT mNST

Layered 26.2 - 41.7 9.7
Exhaustive 25.8 - 41.2 17.7
Boundary 26.6 - 40.5 17.8
Biaffine [BERT] 34.5 - 51.9 22.9
Pyramid [BERT] 33.4 - 49.5 20.9
Recursive-CRF [Flair] 31.5 - 49.1 19.4
MLC [Flair] 27.9 - 47.8 0

GermEval
Model mnesting mME mNDT mNST

Layered 37.3 - 40.4 16.2
Exhaustive 27.8 - 38.2 9.7
Boundary 21.2 - 25.5 7.8
Biaffine [BERT] 55.7 - 64.3 20.8
Pyramid [BERT] 56.5 - 63.8 21.4
Recursive-CRF [BERT] 51.1 - 58.9 23.9
MLC [Flair] 49.1 - 59.3 0

Chilean Waiting List
Model mnesting mME mNDT mNST

Layered 51.6 71.1 49.5 -
Exhaustive 28.4 0 41.7 -
Boundary 28.2 0 35.4 -
Biaffine [BERT] 41.8 0 55.1 -
Pyramid [Flair] 54.9 73.7 57.9 -
Recursive-CRF [Flair] 56.0 71.7 58.8 -
MLC [Flair] 60.6 72.5 60.0 -

Table 6: Our task-specific metrics. If columns have no
results, it means that there was not a significant number
of examples.

Multiple LSTM-CRF (MLC) approach, which uses 578

a single flat NER model per entity type. We argue 579

that this approach has not been analyzed in-depth 580

since large pre-trained language models have not 581

been incorporated. Our experimental results show 582

that by adding a character-level language model to 583

the MLC architecture, it achieves state-of-the-art in 584

the Chilean Waiting List corpus. One of the main 585

advantages of using this approach is that it can 586

handle entities tagged with more than one entity 587

type, barely addressed in previous works. 588

In addition, to alleviate some gaps found in cur- 589

rent evaluation metrics, we proposed new task- 590

specific metrics that adequately measure the per- 591

formance of models on nested entities. The re- 592

sults according to these metrics are low, especially 593

when it comes to recognizing complete nestings, 594

i.e., inner and outer entities simultaneously. This 595

finding shows that most models are better at identi- 596

fying flat entities or part of nested entities, which 597

is not the primary goal of the task. We hope that 598

our study will help raise awareness in the research 599

community that overlooking intuitive models and 600

using only standard metrics when evaluating a new 601

complex solution can be misleading and create an 602

overly optimistic impression of the new solution’s 603

performance. 604
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