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Abstract

Named Entity Recognition (NER) is an impor-
tant task in Natural Language Processing that
aims to identify text spans belonging to pre-
defined categories. Traditional NER research
ignores nested entities, which are entities con-
tained in other entity mentions. Although sev-
eral methods have been proposed to address
this case, most of them rely on complex task-
specific structures and ignore potentially use-
ful baselines for the task. We argue that this
creates an overly optimistic impression of their
performance. This paper revisits the Multi-
ple LSTM-CRF (MLC) model, a simple, over-
looked, yet powerful approach based on train-
ing independent sequence labeling models for
each entity type. Extensive experiments with
three nested NER corpora show that, regard-
less of the simplicity of this model, its perfor-
mance is better or at least as well as more so-
phisticated methods. Furthermore, we show
that the MLC architecture achieves state-of-
the-art results in the Chilean Waiting List cor-
pus by including pre-trained language models.
In addition, we propose new task-specific met-
rics that adequately measure the ability of mod-
els to detect nestings. The results show that
standard NER metrics do not measure well
the ability of a model to detect nested entities,
while our task-specific metrics provide new ev-
idence on how existing approaches handle the
task.

1 Introduction

Named Entity Recognition (NER) is a widely stud-
ied task in Natural Language Processing (NLP) that
seeks to identify text spans expressing references to
predefined categories such as person names, loca-
tions, and organizations (Chinchor and Robinson,
1997). NER, or in general the task of recognizing
entity mentions', has drawn the attention of the

"Mentions are defined as references to entities that could
be named, nominal or pronominal (Florian et al., 2004).
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2| The patient has colon cancer.

Figure 1: An example of a multi-label entity in the
Chilean Waiting List corpus, followed by a nesting of
different types. The annotation was translated from its
original language.

community due to its relevance in several NLP ap-
plications. Nested Named Entity Recognition is a
particular case of NER where entities are nested
within each other (Finkel and Manning, 2009). Tra-
ditional NER models simplify the nested entities by
keeping the outermost entity and removing the in-
ner ones. This simplified problem is better known
as flat NER and is commonly regarded as a se-
quence labeling problem since each token can be
associated with at most one label. However, re-
moving part of these entities could be a problem
in model performance due to the loss of relevant
information and inner dependencies.

Several methods have been proposed to address
the nesting problem. Traditional approaches have
focused on creating representations of nested enti-
ties through structures such as hypergraphs (Lu and
Roth, 2015; Muis and Lu, 2017; Katiyar and Cardie,
2018; Wang and Lu, 2018). However, they usually
suffer from heavy feature engineering, structural
ambiguity, or complex models. Another category
is region-based, which divides the problem into
two sequential stages. First, the detection of entity
boundaries, and then the assignment of entity types
to these regions (Sohrab and Miwa, 2018; Zheng
etal., 2019; Yu et al., 2020). One of the main draw-
backs of this method is its high time complexity.
There are also approaches that attempt to transform
the nested NER task into a sequence labeling prob-



lem (Alex et al., 2007; Ju et al., 2018; Shibuya and
Hovy, 2020). Although these studies have shown
competitive performance, we realized that most of
them have three critical issues, discussed below.
First, with the incorporation of large pre-trained
language models, the standard LSTM-CRF (Lam-
ple et al., 2016) sequence labeling architecture re-
ceived substantial improvements for flat NER tasks
(Liu et al., 2017). However, little research has been
conducted on adapting this architecture to nested
NER using a single entity approach, i.e., training
independent flat NER models for each entity type.
In this paper, we revisit this architecture, naming
it Multiple LSTM-CRF (MLC). Despite the ap-
parent simplicity, we show that this model yields
very positive results, outperforming several recent
approaches explicitly designed for nested entities.
Second, we note that most of the literature ig-
nores the case in which the same text span is tagged
with more than one entity type, as shown in Fig-
ure 1. This case is very common in the Chilean
Waiting List corpus (Béaez et al., 2020), and it was
first noticed by Alex et al. (2007), but was not ana-
lyzed further. One of the main advantages of our
architecture is that it addresses this problem.
Third, we argue that the way the community is
evaluating this task does not adequately measure
the effectiveness of a model at identifying nested
entities. Specifically, the current metric calculates
the micro F1-score over all entities, which is the
same metric used in flat NER. Consequently, a
model that performs well over flat entities, but not
nested ones, may also obtain good results. To al-
leviate this problem, we first identify the different
types of nesting by formalizing the task and then
proposing new task-specific metrics for these cases.
In summary, the main contributions of our work
are the following:

* Due to the lack of a consensual definition of
nested NER, we introduce a formalization of
the task by identifying the different types of
nesting, and we also propose new task-specific
evaluation metrics to measure performance on
nesting.

* We conduct an empirical study comparing sev-
eral nested NER architectures in three datasets
from different languages, with particular at-
tention to the impact of using pre-trained lan-
guage models and nesting metrics. Experi-
mental results confirm the effectiveness of the

MLC model, achieving state-of-the-art in the
Chilean Waiting List corpus and competitive
performance in the rest of the corpora.

2 Related Work

In recent years there has been a growing interest
from the research community in nested NER. Sev-
eral studies have been conducted to address nested
entities, which can be mainly divided into three
categories:

Region-based: These approaches divide the prob-
lem into two stages: identifying entity boundaries
and then categorizing these regions. Sohrab and
Miwa (2018) designed a model that enumerates all
possible spans within a limited length and then used
boundary and average internal token representation
to predict entity types. Another region-based model
was proposed by Zheng et al. (2019), which uses a
sequence labeling layer to detect entity boundaries,
and then classified selected regions into their cat-
egorical types. Yu et al. (2020) used ideas from a
biaffine model, scoring all possible start-end tokens
in a sentence to predict nested entities. Although
these methods have proven to be effective, they
often suffer from high time complexity and fail to
identify entities tagged with more than one type.
Structure-based: There have also been attempts to
capture the structure of nested entities. Finkel and
Manning (2009) represented each input sentence
as a constituency tree of nested entities and used
a CRF-based approach to predict entity types. Lu
and Roth (2015) proposed a mention hypergraph
representation to extract entity mentions. Next,
Muis and Lu (2017) improved on previous work
by modeling nested NER with mention separators
and handcrafted features. Similarly, Katiyar and
Cardie (2018) designed a directed hypergraph us-
ing LSTM features to learn the nesting structure.
Wang et al. (2020) recursively introduce the em-
bedding of tokens and regions into flat NER layers
simulating the shape of a pyramid. However, these
approaches usually suffer from spurious structures
and structural ambiguities, as explained in Wang
and Lu (2018).

Sequence labeling-based: Some studies report
that sequence labeling methods can also perform
well on this task. Early work mainly exploited the
potential of conditional random fields (CRF). Alex
et al. (2007) proposed three CRF-based methods to
reduce the nested NER as several BIO tagging prob-
lems. Their best approach, called cascaded CRF,
uses one model per entity type using the output of



the previous flat NER model as a feature for the cur-
rent one. Ju et al. (2018) took advantage of inner en-
tity information to encourage outer entity recogni-
tion. They dynamically stacked LSTM-CREF layers
predicting entities in an inside-to-outside way until
no entities were extracted. Strakova et al. (2019)
formulated the nested NER task as a sequence-to-
sequence problem using an LSTM to decode entity
types. Finally, Shibuya and Hovy (2020) recog-
nized entities iteratively from outermost ones to
inner ones using a recursive CRF-based method.
The MLC approach falls into this category by using
a sequence labeling approach capable of handling
both nested entities and entities tagged with more
than one label.

3 Methods
3.1 Problem Definition

One of the main issues in our knowledge of nested
NER is that the task definition has not been ad-
dressed in-depth, and clarification of the different
nesting cases is needed. By analyzing several cor-
pora with nested entities, we have identified the
following nesting cases:

Multi-label entities (ME): This case has been
little explored in the literature. As explained in
Alex et al. (2007), it consists of entities tagged
with more than one entity type. With the release
of the Chilean Waiting List corpus, it is interesting
to study this case since 10.75% of the entities are
involved in this type of nesting. For example, the
entity “HTN", which stands for hypertension, is
tagged as a disease and an abbreviation.

Nested entities of different types (NDT): This
is the most frequent type of nesting in nested NER
datasets. It consists of an entity containing a shorter
entity tagged with a different type. An example
is “colon cancer", where a body part (colon) is
contained in a disease.

Nested entities of the same type (NST): This
case usually occurs when entities are originally
represented by a hierarchy, which is later pruned to
reduce the entity space, resulting in the merging of
entities of different levels of granularity. Although
it appears in most corpora, it is much more frequent
in GENIA (Kim et al., 2003). For example, the
DNA “Drosophila homeodomain" contains another
DNA, “homeodomain”.

To better understand these cases, we formally
define what we mean by nested entities and the
nested NER task.

Definition 1 (Nested entities) Given an input se-
quence X = {x1,x2,...,x,} of words, an entity Q)
is defined by a tuple (Sq, E4, Ty;), where Sy and E,
€ [1,n] represents entity boundaries in X, and T,
in £ (the entity space) corresponds to entity type.
Given two entities Q and R, we say that () is nested
in Rif S, < Sqand E, < E,. The particular case
of Sq = Sy and E, = E, corresponds to an entity
with multiple labels. Note that under this definition
we consider the three types of nesting.

Definition 2 (Nested NER) Given an input se-
quence X = {x1,xa,...,x,}, nested NER aims
to correctly identify the boundaries for every entity
Q in X and assign it the correct entity type from
a predefined list of categories. This identification
must be made for cases where nested entities are
involved and when not.

3.2 Model

In recent years, with advances in deep learning,
sequence labeling architectures have received sub-
stantial improvements in the NER task. Therefore,
we decided to revisit a method that belongs to this
category but, despite its effectiveness, has been
little studied.

Multiple LSTM-CRF (MLC): This approach
consists of training multiple flat NER models, one
for each entity type. The predicted labels of the
input sentences correspond to the union of the out-
puts of each of these models, thus retrieving both
nested entities and entities tagged with multiple
labels. The main advantage of this approach is that
it can easily incorporate all the progress made for
the flat NER task into the nested NER task.

The apparent simplicity of MLC would lead us
to believe that it should be considered as a natural
baseline for any proposed architecture in nested
NER. However, we realized that the few papers
that have incorporated this model had used it as
a baseline (Muis and Lu, 2017; Lin et al., 2019;
Fei et al., 2020), but their reported results are not
competitive. We believe that the problem lies in
the fact that they do not use the potential of re-
cent advances in flat NER architectures, such as
the addition of domain-specific embeddings or pre-
trained language models. These are the elements
that we will incorporate in our work to show the
effectiveness of the model.

Figure 2 shows an overview of the MLC model.
Specifically, to create each flat NER module, we
follow the LSTM-CREF approach proposed by Lam-



Single entity model

Medication

Abbreviation

Disease
Body Part

Family Member

Procedure

s () ()

Classification
layer

Encoder layer | BILSTM BiLsTM | > | BiLsTM | | BiLSTM

Stacked embedding
layer

Input sentence Patient with colon cancer

Disease entity model

(o) (roneme)

—-> —-> —->
CRF F[ CRF ]«[ CRF ]«[ CRF ]

1 ! | !

-«

Figure 2: Overview of the MLC architecture, where each entity type has an associated flat NER model. The right
side of the figure shows, as an example, the flat NER module for the Disease tag in the Chilean Waiting List dataset.

ple et al. (2016), one of the most widely used
architectures for sequence labeling. To encode
sentences, we use different combinations of em-
beddings in the stacked embedding layer. First,
we concatenate domain-specific word embeddings
with character embeddings retrieved from a bidi-
rectional character-level LSTM. Next, we enrich
word representations by adding contextualized em-
beddings from Flair (Akbik et al., 2018) and BERT
(Devlin et al., 2019a), which have proven to be par-
ticularly effective on NER. The output is fed into a
BiLSTM encoding layer to obtain long-contextual
information. Finally, we use a CRF-loss and the
Viterbi algorithm to decode the most likely tag se-
quence using the IOB2 tagging format.

4 Experiments

In this section, we present the datasets, baselines,
and settings used in our experiments.

4.1 Datasets

Since most previous work on nested NER has been
done in English datasets, we conducted our experi-
ments with three corpora containing nested entities
for three different languages and domains. The
statistics for each corpus are shown in Table 1.
GENIA V3.02? (Kim et al., 2003) English
biomedical corpus created from 2,000 MEDLINE
abstracts. It is composed of 36 fine-grained entity
types and 55,740 entity mentions, of which 17.3%
are involved in nesting. We followed the same
setup as the previous work (Finkel and Manning,
2009; Lu and Roth, 2015; Zheng et al., 2019), col-
lapsing sub-types into their five super-types, using

ttp://www.geniaproject.org/
genia-corpus/pos—annotation

the first 90% of the sentences for the training set
and the remaining 10% in the test set.

GermEval 2014° (Benikova et al., 2014) Ger-
man dataset sampled from German Wikipedia and
German online news. It consists of a total of 41,124
entity mentions, where 14.9% of them are involved
in nesting. The corpus contains two levels of nest-
ing and 12 entity types.

Chilean Waiting List* (Baez et al., 2020)
Spanish clinical corpus created from real diagnoses
of the Chilean healthcare system. It is composed
of 43,730 entity mentions and seven entity types.
From a nested NER point of view, it is a good re-
source since 46.7% of the entities are involved in
nesting. In addition, to date, there are no reported
results on nested NER in this dataset.

Studying previous work, we have noticed that
comparisons between models are not entirely fair
since the data partitions used vary between different
papers. Therefore, for a fair comparison, in both
the GENIA and GermEval datasets, we trained the
models using the preprocessed version released in
Zheng et al. (2019). In the case of the Chilean
corpus, we used the public files released by the
authors, which are already tokenized.

4.2 Baselines

We compare our results with several state-of-the-art
models in GENIA and GermEval. Table 2 shows
the different types of nesting that each of these
baselines is capable of addressing. Based on the
released source code, we have reproduced the fol-
lowing models to use as a reference for analyzing
both traditional and task-specific metrics:
Shttps://sites.google.com/site/

germeval20l4ner/data
*https://zenodo.org/record/5591011
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GENIA GermEval Chilean Waiting List
Train Test Dev Train Test Dev Train Test Dev
tokens 454,882 57,021 48,932 | 452,853 96,499 41,653 | 149,574 18,436 16,754
sentences 15,023 1,854 1,669 24,000 5,100 2,200 8,014 990 890
avg sent len 30.3 30.8 29.3 18.9 18.9 18.9 18.7 18.6 18.8
entities 45,929 5,474 4,337 31,545 6,693 2,886 35,480 4,289 3,971
avg entity len 2.9 2.9 3.1 1.4 1.4 1.5 2.6 2.7 2.6
nested entities (%) 17.0 20.6 16.8 15.0 14.7 14.1 46.4 45.9 46.7
nested entities 7,795 1,130 727 4,721 986 407 16,456 1,969 1,856
- different type 3,712 589 369 4,230 892 366 12,635 1,555 1,398
- same type 4,132 547 358 536 93 44 0 0 0
- multi-label entities | 0 0 0 2 2 0 4,241 470 502
Table 1: Statistics of the datasets.
Pyramid is a structure-based architecture that Model ME | NDT | NST
. .. Layered v v v
recognizes entities in a bottom-up manner, from Exhaustive X v v
the shortest to the longest, assimilating the shape Boundary X v v
of a pyramid. It is currently the state-of-the-art 1131?3;33 5 5 i
method without using external supervision (Wang Recu)rlsive_CRF v v v
et al., 2020). MLC v v X

Recursive-CRF is a sequence labeling-based
approach that extracts nested entities iteratively in
an outside-to-inside way using a recursive CRF-
based algorithm (Shibuya and Hovy, 2020).

Layered is a sequence labeling-based model de-
signed to identify nested entities by dynamically
stacking LSTM-CREF layers. It predicts entities in
an inside-to-outside way until no more entities are
extracted. (Ju et al., 2018).

Exhaustive is a region-based model that enu-
merates all possible regions as potential entity men-
tions, and then classifies them into their entity types
(Sohrab and Miwa, 2018).

Boundary is a region-based method that com-
bines ideas from the Layered and Exhaustive mod-
els. It uses a BiLSTM layer to detect boundary-
relevant regions and then uses these representations
to predict categorical entity labels (Zheng et al.,
2019).

Biaffine is a region-based architecture that lever-
ages contextualized paragraph-level embeddings to
create a Biaffine model. This approach scores can-
didate pairs of start and end tokens in a sequence
and then classifies them into predefined categories
using nested entities constraints (Yu et al., 2020).

4.3 Implementation Details

Pre-trained Word Embeddings. To encode sen-
tences, we selected pre-trained word embeddings
in the same domain of each corpus. For the exper-
iments with GENIA, we used biomedical embed-
dings trained on MEDLINE abstracts (Chiu et al.,
2016). In GermEval, we incorporated German Fast-

Table 2: Nesting types identified by the architectures
used in our experiments. Multi-label entities (ME),
nesting of different types (NDT), and nesting of the
same type (NST).

Text embeddings (Grave et al., 2018), and for the
Chilean dataset, we used pre-trained embeddings
from a large clinical corpus, which can be down-
loaded from here’. During the training process, the
embeddings were not left static.
Contextual Word Embeddings. To study the im-
pact of adding pre-trained language models, we
used BERT (Devlin et al., 2019b), and Flair (Ak-
bik et al., 2018), which is a character-level lan-
guage model. In the case of BERT, since it uses
WordPiece tokenization, we computed word em-
beddings using the average of subtoken embed-
dings. A version of these models was available
for all the languages and domains involved in our
study, except for Spanish. Therefore, we added new
language models in the Spanish clinical domain to
the Flair framework. We trained these models on
the same corpus as the word embeddings used for
the Chilean dataset, following the same settings
and assumptions reported in the Flair paper.
Regarding the Biaffine model, the BERT em-
beddings were created using the paragraph-level
context. However, Fu et al. (2020) explains that this
method provides better performance in resolving
correlations, so it is not an entirely fair comparison
with models that use sentence-level context. For

Shttp://doi.org/10.528 1/zenodo.3924799



Parameter Range MLC
max epochs [20, 100] 100
optimizer [SGD, Adam, AdamW] | SGD
batch size [8, 32] 16
learning rate [0.0001, 0.1] 0.1
char emb dim [20, 50] 25
dropout [0.2,0.8] 0.3
BiLSTM depth [1, 3] 3
BiLSTM hidden size | [128, 512] 128

Table 3: Hyperparameter search space and the best val-
ues found for the MLC model.

this reason, we do not make a comprehensive com-
parison with this model in terms of contextualized
embeddings.

Parameters. We used a unified setting for all the
experiments with MLC. The best hyperparameters
were chosen by performing a random search over
the range of values shown in Table 3, selecting the
best configuration based on performance on the
development set. To perform a fair comparison
with baselines, we used the best hyperparameters
reported in their papers.

We trained the MLC architecture using the SGD
optimizer to a maximum of 100 epochs, with mini-
batches of size 16 and a learning rate of 0.1. To
control the overfitting problem, we employed a
learning rate scheduler and an early stopping strat-
egy. We also applied dropout regularization (Sri-
vastava et al., 2014) after the embedding layer and
BiLSTM. The MLC model was implemented using
the Flair framework (Akbik et al., 2019), and the
rest of the baselines were executed with the official
code provided by the authors. All the experiments
were performed using a Tesla V100 GPU.

4.4 Evaluation Metrics

Overall Performance. Performance was evalu-
ated using precision, recall, and micro F1-score,
which is the standard metric used in nested NER.
An entity is considered correct when both entity
types and boundaries are predicted correctly.

Nested Performance. Since flat entities are much
more common than nested entities, the above met-
ric ends up confusing flat and nested results and,
consequently, is not able to reflect well the ability
of a model to detect nesting. To alleviate this is-
sue, we analyze task-specific metrics proposed in
previous work that adequately measure the model’s
ability to detect nested and non-nested entities.
Precisely, we compute scores for the following
cases: non-nested entities (1 f;4¢), nested entities
(Mpested), INner entities (1M nner) and outer entities

(Mmouter). We consider an entity to be nested if it
contains any entity or is contained within another
entity. Thus, the m,¢seq metric considers both
Minner aNd Moyter SCOTES.

However, none of these existing metrics capture
the ability of the models to recognize both inner
and outer entities simultaneously. For this reason,
and to demonstrate whether the choice of a model
in a dataset depends on the types of nesting present,
we compute a score for nesting (Mmyesting) and on
the different types of nesting described in the task
formalization (mysg, mNpT, MNST). A nesting
is considered correct if both inner and outer entities
are recognized correctly.

The above metrics are calculated using precision,
recall, and micro F1-score, but we only report the
last one for brevity. We emphasize that most of
these metrics have not been used before in nested
NER research. Therefore, we believe it is crucial
to incorporate them in future work as it allows us
to measure and differentiate the performance of
models on nested and non-nested entities.

4.5 Main Results

Table 4 shows the overall performance of the pro-
posed model against baselines on three different
datasets. Despite its simplicity, we observe that
the MLC architecture outperforms existing state-
of-the-art models on the Chilean Waiting List by
+1.6% in terms of the F1 measure. By contrast,
although state-of-the-art is not obtained in GENIA
and GermEval, we can see that MLC outperforms
many specialized nested NER architectures, thus
being a competitive approach. One possible rea-
son for the excellent performance is that we use
one model per entity type, which means that the
number of possible labels is only one per model,
avoiding the problem of nested entities and making
the classification step more straightforward com-
pared to other architectures. Compared with the
statistics in Table 1, we can conclude that it is more
challenging to obtain good results when the cor-
pora have entities of a more considerable length.
This can be explained by the strict metric we are
using, where the boundaries and the entity types
are requested to match.

We further analyze the effect of adding pre-
trained language models in our experiments. As
we believed, all models benefit from incorporat-
ing contextual word embeddings, improving their
performance considerably compared to their base



GENIA GermEval Chilean Waiting List

Model P R F1 P R F1 P R F1
Layered 739 68.7 712 | 71.8 641 677 | 750 72.8 739
Exhaustive 741 697 718 | 7186 64.6 709 | 763 717 682
Boundary 76.7 718 742 | 744 655 69.7 | 740 67.6 70.7
Pyramid 78.1 728 753 | 778 669 719|796 754 715
Biaffine 79.1 737 763 | 89.0 774 828 | 81.5 67.1 73.6
Recursive-CRF | 75.8 752 755 | 851 782 815 | 751 772 76.1
MLC 716 742 758 | 86.8 772 817 | 77.7 783 78.0
LM-based

Biaffine [BERT] | 79.9 76.5 78.1 | 883 85.0 86.6 | 787 70.8 745
Recursive-CRF

- Flair 771 78.0 77.6 | 834 829 832 | 780 799 789
- BERT 764 774 769 | 843 83.0 836 | 766 778 772
- Flair + BERT 774 768 77.1 | 848 821 834 | 77.1 779 715
Pyramid

- Flair 778 75.6 767 | 834 80.0 81.7 | 80.1 772 78.6
- BERT 79.1 769 78.0 | 877 858 86.7 | 780 73.6 75.7
- Flair + BERT 804 750 77.6 | 877 844 860 | 785 772 779
MLC

- Flair 80.1 752 776 | 83 824 838 | 806 805 805
- BERT 794 743 768 | 85.1 803 826 | 797 788 793

- Flair + BERT 78.8 752 755 | 8477 80.1 823 | 799 78.1 79.0

Table 4: Overall results on three nested NER datasets.

version. In GermEval, a general-purpose corpus,
the language model that best improves the model’s
performance is BERT, while in the other corpora,
it is Flair. Also, we can see that stacking Flair and
BERT embeddings does not produce better results.
We attribute this to the high dimensionality of these
representations and to the fact that the two language
models were trained on different corpora.

Regarding the Chilean corpus, which contains
the highest percentage of nested entities, we ob-
serve that the MLC model with Flair embeddings
improves by +2.5% compared to its base version
without pre-trained language models. This demon-
strates the effectiveness of using Flair over BERT
in this corpus. We suspect that it is due to the large
number of misspelled and out-of-vocabulary words
found in the unstructured clinical text. As pointed
out in Akbik et al. (2018), handling these types of
words is one of the main advantages when using its
character-level language model.

Despite the promising results, we hypothesize
that benchmarking against the standard nested NER
metric may not be a good indicator of model per-
formance on nesting since most of the entities are
not nested. Therefore, we analyze the results using
nested metrics.

4.6 Nested Results

In most cases, the revisited nested metrics pre-
sented in Table 5 are relatively consistent with re-
sults in Table 4. This means that models which ob-

tain state-of-the-art using the standard metrics also
perform well according to these metrics. For ex-
ample, in the Chilean Waiting List, the best model
(MLC) achieves the best results according to the
M flats Minners Mouters Mnested metrics, which is
a remarkable result considering the large number
of nestings present in this corpus. Another obser-
vation is that, unlike the other datasets, in GENIA
is more complex to recognize inner entities over
the outermost ones. This finding could be helpful
when designing future architectures for this corpus.

As expected, the models with better performance
according to the standard metric are also associated
with good results using the m f;,; metric. This may
not be a good indicator in the nested NER task
since most of the entities in these corpora are not
nested, and the proper performance on nestings is
not reflected. This issue becomes much more evi-
dent when analyzing our proposed nesting metrics,
presented in Table 6. We observe that the results
are significantly lower than those for the previous
metrics of Tables 4 and 5. This reveals the difficulty
of correctly recognizing the nesting cases. One pos-
sible reason for this low performance is that these
metrics are strict, as inner and outer entities must
be correctly predicted.

Although the selected baselines are designed to
deal with nestings of the same type, their myst
results in GENIA and GermEval are poor, while
the results using the m  p7 metric are much higher.
This suggests that NST is the most difficult case to



GENIA GENIA
Model Mflat Mnested Minner Mouter Model Mnesting MME MNDT MNST
Layered 73.2 62.3 429 79.8 Layered 26.2 - 41.7 9.7
Exhaustive 76.6 55.0 42.6 67.9 Exhaustive 25.8 - 41.2 17.7
Boundary 77.4 59.5 42.0 75.6 Boundary 26.6 - 40.5 17.8
Biaffine [BERT] 81.2 65.8 49.3 80.5 Biaffine [BERT] 34.5 - 51.9 229
Pyramid [BERT] 81.1 65.2 46.1 82.4 Pyramid [BERT] 334 - 49.5 20.9
Recursive-CRF [Flair] | 81.5 62.3 46.9 77.4 Recursive-CRF [Flair] | 31.5 - 49.1 194
MLC [Flair] 80.7 63.8 41.7 82.2 MLC [Flair] 27.9 - 47.8 0

GermEval GermEval
Model Mflat | Mnested | Minner | Mouter Model Mnesting | MME | MNDT | MNST
Layered 68.8 60.9 62.0 59.7 Layered 37.3 - 40.4 16.2
Exhaustive 73.4 56.1 65.7 45.7 Exhaustive 27.8 - 38.2 9.7
Boundary 70.9 54.5 54.1 55.0 Boundary 21.2 - 255 7.8
Biaffine [BERT] 88.4 76.6 78.1 75.0 Biaffine [BERT] 55.7 - 64.3 20.8
Pyramid [BERT] 88.5 76.7 71.3 76.1 Pyramid [BERT] 56.5 - 63.8 214
Recursive-CRF [BERT] | 85.5 73.0 74.9 71.0 Recursive-CRF [BERT] | 51.1 - 58.9 23.9
MLC [Flair] 86.0 71.6 74.5 68.4 MLC [Flair] 49.1 - 59.3 0

Chilean Waiting List Chilean Waiting List

Model Myflat | Mnested | Minner | Mouter Model Mnpesting | MME | MNDT | MNST
Layered 73.4 74.5 82.4 64.5 Layered 51.6 71.1 49.5 -
Exhaustive 71.7 63.8 71.5 53.4 Exhaustive 28.4 0 41.7 -
Boundary 734 61.1 65.5 554 Boundary 28.2 0 354 -
Biaffine [BERT] 76.2 72.5 75.2 69.2 Biaffine [BERT] 41.8 0 55.1 -
Pyramid [Flair] 79.0 78.1 84.7 69.3 Pyramid [Flair] 54.9 73.7 579 -
Recursive-CRF [Flair] | 80.3 77.4 82.8 70.4 Recursive-CRF [Flair] | 56.0 71.7 58.8 -
MLC [Flair] 80.9 80.1 86.2 72.5 MLC [Flair] 60.6 72.5 60.0 -

Table 5: Results on nested and non-nested entities.

identify for all models. Therefore, we believe that
a model should not be prematurely discarded based
on its limitation to handle a particular type of nest-
ing. For example, although the MLC architecture
cannot strictly identify the NST case in GENIA and
GermkEval, it obtains excellent results on the NDT
case and the outermost entities involved in the NST.
In contrast, concerning the m ;g metric, we note
that the performance of the four models addressing
this case is quite good, suggesting that it is not a
complex case to recognize but still not taken into
account when building nested NER models.

Finally, we highlight that in the Chilean corpus
where the state-of-the-art is reached, almost half
of the complete nestings (M pesting) are correctly
recognized, which is a reliable indicator of our
model performance on the nested NER task. These
results suggest that the MLC architecture should be
considered in future state-of-the-art comparisons
due to its effectiveness. Besides, we argue that
there is still much work to be done in nested NER,
as most models fail to simultaneously recognize
the inner and outer entities of nestings, which is
one of the main objectives of the task.

5 Conclusions and Future Work

This paper presented an effective but overlooked
neural model for nested NER based on sequence
labeling architectures. Specifically, we revisited the

Table 6: Our task-specific metrics. If columns have no
results, it means that there was not a significant number
of examples.

Multiple LSTM-CRF (MLC) approach, which uses
a single flat NER model per entity type. We argue
that this approach has not been analyzed in-depth
since large pre-trained language models have not
been incorporated. Our experimental results show
that by adding a character-level language model to
the MLC architecture, it achieves state-of-the-art in
the Chilean Waiting List corpus. One of the main
advantages of using this approach is that it can
handle entities tagged with more than one entity
type, barely addressed in previous works.

In addition, to alleviate some gaps found in cur-
rent evaluation metrics, we proposed new task-
specific metrics that adequately measure the per-
formance of models on nested entities. The re-
sults according to these metrics are low, especially
when it comes to recognizing complete nestings,
i.e., inner and outer entities simultaneously. This
finding shows that most models are better at identi-
fying flat entities or part of nested entities, which
is not the primary goal of the task. We hope that
our study will help raise awareness in the research
community that overlooking intuitive models and
using only standard metrics when evaluating a new
complex solution can be misleading and create an
overly optimistic impression of the new solution’s
performance.
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