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ABSTRACT

Studies show that neural networks are susceptible to adversarial attacks. This
exposes a potential threat to neural network-based artificial intelligence systems.
We observe that the probability of the correct result outputted by the neural net-
work increases by applying small perturbations generated for non-predicted class
labels to adversarial examples. Based on this observation, we propose a method
of counteracting adversarial perturbations to resist adversarial examples. In our
method, we randomly select a number of class labels and generate small perturba-
tions for these selected labels. The generated perturbations are added together and
then clamped onto a specified space. The obtained perturbation is finally added to
the adversarial example to counteract the adversarial perturbation contained in the
example. The proposed method is applied at inference time and does not require
retraining or finetuning the model. We validate the proposed method on CIFAR-10
and CIFAR-100. The experimental results demonstrate that our method effective-
ly improves the defense performance of the baseline methods, especially against
strong adversarial examples generated using more iterations.

1 INTRODUCTION

Deep neural networks (DNNs) have become the dominant approach for various tasks includ-
ing image understanding, natural language processing and speech recognition (He et al., 2016;
Devlin et al., 2018; Park et al., 2018). However, recent studies demonstrate that neural networks are
vulnerable to adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015). That is, these
network models make an incorrect prediction with high confidence for inputs that are only slightly
different from correctly predicted examples. This reveals a potential threat to neural network-based
artificial intelligence systems, many of which have been widely deployed in real-world applications.

The adversarial vulnerability of neural networks reveals fundamental blind spots in the learning
algorithms. Even with advanced learning and regularization techniques, neural networks are not
learning the true underlying distribution of the training data, although they can obtain extraordinary
performance on test sets. This phenomenon is now attracting much research attention. There have
been increasing studies attempting to explain neural networks’ adversarial vulnerability and develop
methods to resist adversarial examples (Madry et al., 2018; Zhang et al., 2020; Pang et al., 2020).
While much progress has been made, most existing studies remain preliminary. Because it is difficult
to construct a theoretical model to explain the adversarial perturbation generating process, defending
against adversarial attacks is still a challenging task.

Existing methods of resisting adversarial perturbations perform defense either at training time or
inference time. Training time defense methods attempt to increase model capacity to improve ad-
versarial robustness. One of the commonly used methods is adversarial training (Szegedy et al.,
2014), in which a mixture of adversarial and clean examples are used to train the neural network.
The adversarial training method can be seen as minimizing the worst case loss when the training
example is perturbed by an adversary (Goodfellow et al., 2015). Adversarial training requires an
adversary to generate adversarial examples in the training procedure. This can significantly in-
crease the training time. Adversarial training also results in reduced performance on clean exam-
ples. Lamb et al. (2019) recently introduced interpolated adversarial training (IAT) that incorporates
interpolation-based training into the adversarial training framework. The IAT method helps to im-
prove performance on clean examples while maintaining adversarial robustness.
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As to inference time defense methods, the main idea is to transfer adversarial perturbations such
that the obtained inputs are no longer adversarial. Tabacof & Valle (2016) studied the use of ran-
dom noise such as Gaussian noise and heavy-tail noise to resist adversarial perturbations. Xie et al.
(2018) introduced to apply two randomization operations, i.e., random resizing and random zero
padding, to inputs to improve adversarial robustness. Guo et al. (2018) investigated the use of ran-
dom cropping and rescaling to transfer adversarial perturbations. More recently, Pang et al. (2020)
proposed the mixup inference method that uses the interpolation between the input and a randomly
selected clean image for inference. This method can shrink adversarial perturbations somewhat by
the interpolation operation. Inference time defense methods can be directly applied to off-the-shelf
network models without retraining or finetuning them. This can be much efficient as compared to
training time defense methods.

Though adversarial perturbations are not readily perceivable by a human observer, it is suggested
that adversarial examples are outside the natural image manifold (Hu et al., 2019). Previous studies
have suggested that adversarial vulnerability is caused by the locally unstable behavior of classifiers
on data manifolds (Fawzi et al., 2016; Pang et al., 2018). Pang et al. (2020) also suggested that
adversarial perturbations have the locality property and could be resisted by breaking the locality.
Existing inference time defense methods mainly use stochastic transformations such as mixup and
random cropping and rescaling to break the locality. In this research, we observe that applying small
perturbations generated for non-predicted class labels to the adversarial example helps to counteract
the adversarial effect. Motivated by this observation, we propose a method that employs the use of
small perturbations to counteract adversarial perturbations. In the proposed method, we generate
small perturbation using local first-order gradient information for a number of randomly selected
class lables. These small perturbations are added together and projected onto a specified space
before finally applying to the adversarial example. Our method can be used as a preliminary step
before applying existing inference time defense methods.

To the best of our knowledge, this is the first research on using local first-order gradient information
to resist adversarial perturbations. Successful attack methods such as projected gradient descent
(PGD) (Madry et al., 2018) usually use local gradient to obtain adversarial perturbations. Compared
to random transformations, it would be more effective to use local gradient to resist adversarial
perturbations. We show through experiments that our method is effective and complementary to
random transformation-based methods to improve defense performance.

The contributions of this paper can be summarized as follows:

e We propose a method that uses small first-order perturbations to defend against adversarial
attacks. We show that our method is effective in counteracting adversarial perturbations
and improving adversarial robustness.

e We evaluate our method on CIFAR-10 and CIFAR-100 against PGD attacks in different
settings. The experimental results demonstrate that our method significantly improves the
defense performance of the baseline methods against both untargeted and targeted attacks
and that it performs well in resisting strong adversarial examples generated using more
iterations.

2 PRELIMINARY

2.1 ADVERSARIAL EXAMPLES

We consider a neural network f(-) with parameters 6 that outputs a vector of probabilities for L =
{1,2,...,1} categories. In supervised learning, empirical risk minimization (ERM) (Vapnik, 1998)
has been commonly used as the principle to optimize the parameters on a training set. Given an
input z, the neural network makes a prediction c(x) = arg max; ¢, f;(z). The prediction is correct

if c() is the same as the actual target ¢*(x).

Unfortunately, ERM trained neural networks are vulnerable to adversarial examples, inputs formed
by applying small but intentionally crafted perturbations (Szegedy et al., 2014; Madry et al., 2018).
That is, an adversarial example z’ is close to a clean example x under a distance metric, e.g., o
distance, but the neural network outputs an incorrect result for the adversarial example &’ with high
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confidence. In most cases, the difference between the adversarial example and clean example is not
readily recognizable to humans.

2.2 ATTACK METHODS

Existing attack methods can be categorized into white-box attacks and black-box attacks. We focus
on defending against white-box attacks, wherein the adversary has full access to the network model
including the architecture and weights. The fast gradient sign (FGSM) method (Goodfellow et al.,
2015) and PGD are two successful optimization-based attack methods.

The FGSM method is a one-step attack method. It generates adversarial perturbations that yield
the highest loss increase in the gradient sign direction. Let x be the input to a network model, y
the label associate with « and L(0, x,y) be the loss function for training the neural network. The
FGSM method generates a max-norm constrained perturbation as follows:

n= SSign(VwL(07wvy))7 (D

where € denotes the max-norm. This method was developed based on the view that the primary
cause of neural networks’ adversarial vulnerability is their linear nature. The required gradient can
be computed efficiently using backpropagation.

The PGD method is a multistep attack method that iteratively applies projected gradient descent on
the negative loss function (Kurakin et al., 2016) as follows:

' =1, s(x' + asign(V L(0, 2, y))), )

where « denotes the step size and II denotes the projection operator that projects the perturbed input
onto  + S. We consider projecting the perturbed input onto a predefined ¢, ball from the original
input. The PGD attack method can be seen as a multistep FGSM method. It is a much strong
adversary that reliably causes a variety of neural networks to misclassify their input.

3 METHODOLOGY

While many studies have been con- s
ducted on defending against adver- _—
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gradient information to counterac-
t adversarial perturbations such that

the resulted p erturbations no longer Figure 1: An illustration that shows applying small perturbations generated for non-

result in the model making an incor-  predicted labels to the adversarial example helps suppress the adversarial effect and

rect prediction. improve the prediction probability for the correct category. +Pertb(i) denotes applying
the small perturbation generated for z-th class label to the adversarial example.

Predicted probabilities outputted by ResNet50. Adversarial examples are
crafted using the untargeted PGD;, method on images from CIFAR-10 .

Adversarial perturbations are smal-

I crafted perturbations that slightly affect the visual quality of inputs but cause the neural network
to misclassify the inputs in favor of an incorrect answer with high probability. We show that this
effect can be counteracted by applying small perturbations generated using local first-order gradi-
ent information for class labels other than the predicted one. An illustration of this phenomenon is
shown in Figure 1. We see that by adding perturbations generated for non-predicted labels to the
input, the prediction probability for the correct category increases and that for the incorrect label is
suppressed.
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Algorithm 1 Counteracting adversarial perturbations using local first-order gradient.

Input: Neural network f; input ; step size o used in PGD to generate perturbations to counteract the adver-
sarial perturbation.

Output: Prediction result for .

1: Randomly select N class labels {l1, 12, ...,In };

: fori=1to N do

1n; = PGD(l;, o, step=1) // generate perturbation 7); for [; using the one-step PGD method.

: end for

cx=x+ (XN, ni(zx)) // Cis a £oo bounded space.

: return f(x).

Based on this phenomenon, we propose a method of counteracting adversarial perturbations to im-
prove adversarial robustness. In the proposed method, we generate small perturbations for a number
of randomly selected class labels and apply these perturbations to the input to resist the adversarial
perturbation. Let & be the input to a model, which can be an adversarial or clean example. We ran-
domly select IV class labels and generate small first-order perturbations for the NV selected labels.
These N small perturbations are added together and then projected onto a /,-bounded space before
applying to the input. This procedure can be formulated as follows:

N
g=x+1c(d m(=), (3)
i=1
where 7;(x) denotes the small perturbation generated for the i-th selected class label, C =
{t|||t — ||, < p}is a u bounded /., space. The one-step PGD method is used to generate s-
mall perturbations. This is the same as using the FGSM method and empirically achieves better
performance than using multiple steps. The perturbations can be generated in an untargeted or
targeted manner. The combined perturbation is projected onto the space C. This ensures that the
obtained example is visually similar to the original one. We detail the procedure for counteracting
adversarial perturbations in Algorithm 1.

Discussion and Analysis Adversarial examples exposes underlying flaws in the training algorithm-
s. While much progress has been made in defending against adversarial attacks, it is difficult to
theoretically understand neural networks’ vulnerability to adversarial examples. Previous work
(Athalye et al., 2018) has suggested that the adversarial perturbation § can be obtained by solving
the following optimization problem:

min |5]],,
st o(@+0) # (@), 9], < &,

where £ is a hyperparameter constraining the size of the perturbation. This problem can be effec-
tively solved by gradient descent-based attack methods such as PGD and FGSM that reliably cause
neural networks to output an incorrect result. These attack methods typically use local first-order
gradient to find the optimal solution. Because state-of-the-art neural networks usually have many
parameters, perturbations obtained with these attack methods may overfit to the inputs. Therefore,
perturbing and transferring these adversarial perturbations could be an effective way to resist the
adversarial effect. Unlike previous random transformation-based methods, we employ the use of
local first-order gradient information to counteract the adversarial effect. We show that the pro-
posed method is effective in improving defense performance, especially against strong adversarial
examples generated using more iterations.

“4)

Let ¢ be a clean example and § be the adversarial perturbation. In our method, the following input
is fed to the neural network:

N
o+ 0 Lo(gg) + HC(Z 1i(20)), where 1. (5,) =

{O, x is not subject to adversarial attack,
i=1

1, x is subject to adversarial attack.
®)

The perturbation n); generated to counteract the adversarial perturbation should be small, otherwise it
would be a new adversarial perturbation. This would essentially have no effect in counteracting the
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Table 1: Classification accuray (%) on adversarial exmples crafted on the test set of CIFAR-10. We report per-
formance of resisting PGD attacks with 10, 50 and 200 iterations. The numbers in parentheses are performance
improvements achieved by applying our method.

Method Untargeted attacks Targeted attacks

PGD; PGDs5¢ PGD2o PGD PGDso PGD2oo
Mixup (Zhang et al., 2018) 3.6 3.2 3.1 <1 <1 <1
Ours + Mixup 26.5 27.2 31.7 55.3 59.7 63.1
Xie et al.’s (2018) + Mixup 23.0 19.6 19.1 38.4 31.1 25.2
Ours + Xie et al.’s + Mixup 35.5(+|2.5) 36.4(4.1(,,8) 41 ,3(+22,2) 60.3(+2|,9) 63,7(+32,6) 66. 1(+4(),9)
Guo et al.’s (2018) + Mixup 31.2 28.8 28.3 57.8 49.1 48.9
Ours + Guo et al.’s + Mixup 50.5(+19_3) 51.8(.,.23,0) 56.2(+27,9) 74-1(+16.3) 78.0(+2s.9) 79.8(+30,9)
MI-OL (Pang et al., 2020) + Mixup 26.1 18.8 18.3 55.6 51.2 50.8
Ours + MI-OL + Mixup 38.8(”2‘7) 38.6(+19A8) 41.5(+23A2) 55.3(.()‘3) 60.0(+3,3) 63.0(”2,2)
IAT (Lamb et al., 2019) 46.7 43.5 42.5 65.6 62.5 61.9
Ours + IAT 60.1 60.8 60.9 68.0 69.1 68.9
Xie et al. (2018) + IAT 59.7 58.4 57.9 71.1 69.7 69.3
Ours + Xie et al.’s + IAT 68.7(4.9,4) 69.2(4.10,8) 69.3(...11,4) 76.7(4.5,6) 76.6(+6,9) 76.6(4.7,3)
Guo et al’s (2018) + IAT 60.9 60.7 60.3 73.2 72.1 71.6
Ours + Guo et al.’s + IAT 67.2(4.643) 68.1(+7,4) 68.2(+7_9) 72.6(,0,6) 72.4(+()_3) 7248(4.1,2)
MI-OL (Pang et al., 2020) + IAT 64.5 63.8 63.3 75.3 74.7 74.5
Ours + MI-OL + [AT 68.6(+4A1) 68.9(+5A1) 68.8(+5_5) 72.4(,29) 72.8(.2‘9) 72.9(.15)

adversarial perturbation. Adversarial training that has been shown to be effective to improve adver-
sarial robustness usually employs a first-order adversarial like PGD to provide adversarial examples
for training. These adversarial examples help to regularize the model to be resistant to adversari-
al perturbations. We show through experiments that our method is complementary to adversarial
training to improve overall defense performance against both untargeted and targeted attacks.

The proposed method is applied at inference time. It can be directly applied to off-the-shelf models
without retraining or finetuning them. The required gradient for generating small perturbations can
be computed efficiently in parallel using backpropagation. This would not increase too much time
for inference.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). ResNet-50
(He et al., 2016) is used as the network model. We validate the proposed method on models trained
using two methods: Mixup (Zhang et al., 2018) and IAT (Lamb et al., 2019). For fair performance
comparison, we follow the same experimental setup as Pang et al. (2020) to train the models. The
training procedure is performed for 200 epochs with a batch size of 64. The learning rate is initial-
ized to 0.1 and divided by a factor of 10 at epoch 100 and 150. The values used for interpolation are
sampled from Beta(1,1) for both Mixup and IAT. The ratio between clean examples and adversarial
examples used in IAT is set to 1:1. The untargeted PGD;( method with a step size of 2/255 and ¢
set to 8/255 is used to generate adversarial examples in IAT.

We experiment against both untargeted and targeted PGD attacks with different iterations. The
values of ¢ and step size for the PGD attacks are set to 8/255 and 2/255, respectively. The one-
step PDG method is used to generate perturbations to resist adversarial perturbations. Unless stated
otherwise, perturbations used for defense purposes are generated in a targeted fashion. The step
size for the one-step PGD and number of randomly selected class labels are set to 4/255 and 9,
respectively. The value of p is set to 8/255. For each experiment, we run our model for three times
and report the mean accuracy. Our method is implemented in Pytorch (Paszke et al., 2017) and all
experiments are conducted on one GPU.

Baselines Three methods that were recently developed for inference time defense are used as base-
lines. These three methods are Xie et al.’s (2018), Guo et al.’s (2018) and MI-OL (mixup inference
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Table 2: Classification accuray (%) on adversarial examples crafted on the test set of CIFAR-100. We report
performance of resisting PGD attacks with 10, 50 and 200 iterations. For targeted attacks on IAT models,
defense perturbations are generated in an untargeted manner. The numbres in parentheses are performance
improvements achieved by applying our method.

Method Untargeted attacks Targeted attcks

PGDqg PGDso PGD2go PGD1o PGDsg PGD2go
Mixup (Zhang et al., 2018) 5.5 5.3 5.2 <1 <1 <1
Ours + Mixup 9.2 12.3 14.3 31.8 324 33.8
Xie et al.’s (2018) + Mixup 9.6 7.6 7.4 30.2 22.5 22.3
Ours + Xie et al.’s + Mixup 19.3(4.9,7) 21 .1(+]3,5) 23.4(+|(,_o) 40‘9(4-](),7) 40.7(+|3_2) 41.2(+|3_9)
Guo et al.’s (2018) + Mixup 13.1 10.8 10.5 333 26.3 26.1
Ours + Guo et al.’s + Mixup 28.3(4.14_55) 30.9(.,.20,1) 32.9(4.22.4) 50.8(.,.17,5) 50.9 (+24.6) 51-7(+25.6)
MI-OL Pang et al. (2020) + Mixup 12.6 9.4 9.1 37.0 29.0 28.7
Ours + MI-OL + Mixup 19.0(4.()‘4) 20. 1(+10,(J) 21.9(4.12,3) 36.5(.0,5) 35.9(4.6‘9) 36.9(4.&2)
IAT (Lamb et al., 2019) 26.6 24.1 24.0 52.0 50.1 49.8
Ours + IAT 326 339 34.6 543 532 532
Xie et al. (2018) + IAT 42.2 41.5 41.3 57.1 56.3 55.8
Ours + Xie et al.’s + IAT 46.8(4.4,6) 48-1(+6.6) 48.4(+7,1) 58.7(.,.1_5) 57.5(+1,2) 57.4(+1,(,)
Guo et al’s (2018) + IAT 36.2 33.7 33.3 53.8 524 52.2
Ours + Guo et al.’s + IAT 40.9(.,.4.7) 42. l(+3.4) 42.2(4.3‘9) 55.0(+1,2) 53-6(+],2) 53.7(+],5)
MI-OL Pang et al. (2020) + IAT 43.8 42.8 42.5 58.1 56.7 56.5
Ours + MI-OL + IAT 45-4(+1.6) 46.3(+3_5) 46.8(+4_3) 57.5(,(),(,) 56.7(+0_()) 57.4(+0_9)

with non-predicted labels) (Pang et al., 2020). We compare the performance our method and the
baselines and present results of the joint use of our method and the baselines to resist adversarial
examples.

4.2 EXPERIMENTAL RESULTS

We validate the proposed method against oblivious-box attacks (Carlini & Wagner, 2017). That is
the adversary does not know about the existence of the defense mechanism, and adversarial examples
are generated only based on targeted network models. We evaluate the performance of defenses on
the entire test set. Table 1 and Table 2 report the quantitative results on CIFAR-10 and CIFAR-
100, respectively, demonstrating the effectiveness of the proposed method in improving defense
performance. We see from Table 1 that the proposed method significantly helps to improve defense
performance of the baseline methods against untageted attacks, achieving at least 12.5% and 4.1%
performance gains for Mixup and IAT trained models, respectively. For defending against targeted
attacks, the proposed method performs well in combination with Xie et al.’s and Guo et al.’s for
Mixup trained models, and it performs well together with Xie et al.’s for IAT trained models. It
can be seen from Table 2 that, as with on CIFAR-10, the proposed method also helps improve
defense performance against untargeted attacks on CIFAR-100, achieving at least 6.4% and 1.6%
performance improvements for Mixup and IAT trained models, respectively. For defending against
targeted attacks, our method consistently helps to improve defense performance when applied on
Xie et al.’s and Guo et al.’s methods. We can also make the following three observations from the
quantitative results.

1. In most cases, the proposed method improves defense performance of the baseline methods.
Especially for resisting untargeted attacks in different settings, our method significantly helps to
improve defense performance. This shows that our method is complementary to the baselines to
resist adversarial perturbations. Among the three baseline methods, the joint use of our method
with Xie et al.’s and Guo et al.’s methods performs well compared to with the MI-OL method. This
could be because the perturbation used to counteract adversarial perturbations is reduced due to the
interpolation operation in MI-OL.

2. The proposed method performs well against strong PGD attacks with more iterations. Previ-
ous studies show that adversarial perturbations generated using more iterations are difficult to resist.
The results of the baselines also show that PGD attacks with more iterations result in reduced perfor-
mance. It is worth noting that the proposed method achieves improved performance for defending
against most strong PDG attacks. And for the remaining attacks, the use of more iterations results in
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Figure 2: Impact of the size of perturbations generated for defense purposes on classification accuracy (%). We
report performance of resisting both untargeted and targeted PGD1¢ attacks.
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Figure 3: Impact of the number of randomly selected class labels in our method on classification accuracy (%).
We report performance of resisting both untargeted and targeted PGD1¢ attacks.

comparable performance as the use of less iterations. The results show that adversarial perturbations
generated using more iterations can be easily counteracted by using first-order perturbations.

3. For defending against targeted PGD5( and PGD4 attacks on CIFAR-10, our method together
with Guo et al.’s on Mixup trained models achieve higher performance than those obtained on IAT
trained models, improving the classification accuracy 1.4% and 3.2%, respectively. Overall, our
method together with Guo et al.’s achieve better or comparable performance than pure IAT trained
models. As far as we know, we are the first to outperform pure adversarial training-obtained models
using only inference time defense methods. This shows that it is promising that adversarial training
could be unnecessary if proper perturbations are applied to adversarial examples.

Next, we analyse the impact of the step size used in the one-step PGD method on defense perfor-
mance. We experiment on CIFAR-10 and CIFAR-100 resisting both untargeted and targeted PGD g
attacks. The experimental results are reported in Figure 2. We see that the step size affects different-
ly for untargeted and targeted attacks. The performance improves as the step size increases from 1
to 8 for untargeted tasks on the two datasets. For targeted attacks, the performance improves as the
step size increases from 1 to 4 but starts to reduce or maintain similar performance as the step size
further increases.

We also analyse the impact of the number of selected class labels in our method on defense per-
formance. Figure 3 demonstrates the results of resisting untargetd and targeted PGD( attacks on
CIFAR-10 and CIFAR-100. We see that the performance improves for both untargeted and targeted
attacks as the number increases from 1 to 9 on CIFAR-10. On CIFAR-100, the performance also
improves as the number increases from 1 to 9 but begins to drop or remain similar as the number
further increases.

Discussion on type of defense perturbations In our experiments, small perturbations used to coun-
teract the adversarial perturbation are generated in a targeted manner other than for targeted attacks
on IAT trained models on CIFAR-100, small perturbations are generated in an untargeted manner.
Overall, untargeted adversarial perturbations can be effectively counteracted using perturbations
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Table 3: Classification accuracy (%) of different method used in combination with Guo et al.’s (2018). We
report performance of resisting targeted attacks on Mixup trained models.

Method CIFAR-10 CIFAR-100
PGDiy PGDsg PGD2go | PGD1g PGDsg PGDago

Guo et al.’s (2018) 57.8 49.1 48.9 333 26.3 26.1
Gaussian noise  + Guo et al.’s 63.9 63.8 63.3 34.0 30.3 29.0
Random rotation + Guo et al’s 63.8 63.6 63.2 40.8 36.4 35.1
Xie et al.’s (2018) + Guo et al.’s 59.1 58.3 58.2 41.1 358 33.7
MI-OL (Pang et al., 2020) + Guo etal’s | 62.9 62.6 65.1 37.6 34.0 35.7
Ours + Guo et al.’s 74.1 78.0 79.8 50.8 50.9 51.7

generated in a targeted manner by our method. The results also suggest that adversarial training has
an unstable behavior for different data distributions.

Discussion on number of steps used

to generate defense perturbations Table 4: Classification accuracy (%) on clean examples.

The perturbations for defense purposes

are generated using the one-step PGD CIFAR-10 CIFAR-100

method. We also experiment using mul- Method Mixup IAT | Mixup IAT

tiple steps to generate perturbations for

defense purposes. However, we find ResNet-50 (w/o defense) 93.8 89.7 74.2 64.7

. . ’ Xie et al.’s (2018) 82.1 82.1 66.3 62.1
Fhaé tlfus é?su}ts mn reduged per_f %rmance Guo et al’s (2018) 83.3 83.9 66.1 61.5
In defending against adversarial exam- o pano et al, 2020) 839 842 | 688 620
ples.  This could be because pertur- Ours (targted perturbations) 61.2 75.3 8.3 474

bations generated using multiple steps
have adversarial effects and they do not
help much to counteract the original ad-
versarial perturbation.

Ours (untargted perturbations) 87.1 88.3 66.0 65.1

To demonstrate the advantage of our method, we further compare the performance of different meth-
ods used together with Guo et al.’s. The results of defending against attacks on Mixup trained models
are reported in Table 3. We see that although these methods, including Xie et al.’s, MI-OL, as well
as random rotation and Gaussian noise, are effective in improving performance, out methods out-
performs these methods by a large margin, especially when resisting adversarial examples generated
using more iterations.

Finally, we evaluate our method on clean examples. Table 4 compares the performance of our
method and the baseline methods. We see that our method performs differently using different types
of perturbations that are generated for defense purposes. Our method mostly performs very well
on clean inputs compared to the baselines when the perturbations used for defense purposes are
generated in an untargeted manner.

5 CONCLUSION

We proposed a method of counteracting adversarial perturbations for defending against adversarial
attacks. In our method, we generate small perturbations for a number of randomly selected class
labels and apply these small perturbations to the input to counteract the adversarial perturbation.
Unlike previous methods, our method employs the use of local first-order gradient for defense pur-
poses and can effectively improve adversarial robustness. Our method is applied at inference time
and complementary to the adversarial training method to improve overall defense performance. We
experimentally validated our method on CIFAR-10 and CIFAR-100 against both untargeted and
targeted PGD attacks. We presented extensive results demonstrating our method significantly im-
proves the defense performance of the baseline methods. We showed that our method performs well
in resisting strong adversarial perturbations generated using more iterations, demonstrating the ad-
vantage of using local first-order gradient to resist adversarial perturbations. Notably, our method
together with Guo et al.’s (2018) achieved better performance than those obtained on IAT trained
models when resisting targeted PGD5¢ and PGD4qg attacks. This shows that it is promising adver-
sarial training could be unnecessary if proper perturbations are applied to inputs.
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A APPENDIX

A.1 TRAINING USING MIXUP

In the Mixup method (Zhang et al., 2018), neural networks are trained by minimizing the following
loss:

L(f) = %Zf(f(@,gm, (6)

where /¢ is a loss function that penalizes the difference between the prediction and its actual target,
and
T; = A\x; + (1 - )\).%‘j,
Ui = Ayi + (1= Ny,

(x;,yi) and (z;,y;) are randomly sampled from the training data, A~Beta(a, @), o € (0, +00).
Training using Mixup empirically improves the generalization performance on clean samples and
slightly improves robustness against adversarial examples.

)

A.2 ADVERSARIAL TRAINING

Adversarial training was introduced by Szegedy et al. (2014). In the adversarial training method,
a mixture of adversarial and clean examples are used train a neural network. Madry et al. (2018)
formulated adversarially robust training of neural networks as the saddle point problem:

min p(0), where p(0) = E(; y)~p (max L0,z +6,y)| , (8)
€

where 6 denotes the parameters of the neural network and S is the allowed set for perturbations. The
inner maximization problem aims to find an adversarial version of a given data point x that achieves
a high loss, while the outer minimization aims to find model parameters such that the adversarial
loss given by the inner attack problem is minimized. PGD as a first-order adversary can reliably
solve the inner maximization problem, even though the inner maximization is non-concave.

Lamb et al. (2019) proposed the interpolated adversarial training (IAT) method that combines Mixup
with adversarial training. In the IAT method, the interpolation of adversarial examples and that of
clean examples are used for training neural networks. Compared to adversarial training, IAT can
achieve high accuracy on clean examples while maintaining adversarial robustness.

A.3 MORE TECHNICAL DETAILS

The hyperparameter settings used in our method on CIFAR-10 and CIFAR-100 are given in Table 5
and Table 6, respectively.
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Table 5: Parameter settings for experiments on CIFAR-10. For each experiment, the number of
executions is set to 50 for Xie et al.’s and Guo et al.’s and to 30 for MI-OL. [T] denotes small
perturbations are generated in a targeted manner and [U] denotes mall perturbations are generated

in an untargeted manner.

Method \ Mixup models \ IAT models
e Def. pertb. type: [T] Def. pertb. type: [T]
Qurs + Xie etal’s (2018) ‘ Random crop size: [22 30] | Random crop size: [26 32]
, - Def. pertb. type: [T] Def. pertb. type: [T]
Qurs + Guoetal.s (2018) ‘ Random crop size: [22 30] | Random crop size: [24 32]

Ours + MI-OL (2020) \ Mor=0.5 \ Xor,=0.6

Table 6: Parameter settings for experiments on CIFAR-100. For each experiment, the number of
executions is set to 50 for Xie et al.’s and Guo et al.’s and to 30 for MI-OL. [T] denotes small
perturbations are generated in a targeted manner and [U] denotes mall perturbations are generated

in an untargeted manner.

Method \ Mixup models \ IAT models

Def. pertb. type: [T] Def. pertb. type: [T]
Random crop size: [26 32] | Random crop size: [26 32] for untgt. att.
and [24 32] for tgt. att.

Ours + Xie et al.’s (2018)

, Def. pertb. type: [T] Def. pertb. type: [U]
Qurs + Guo etal’s (2018) ‘ Random crop size: [24 32] Random crop size: [24 32]
Ours + MIOL (2020) | Aor=0.5 \ Ao1=0.6
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