
Neural Story Planning

Anbang Ye, Christopher Cui, Taiwei Shi, and Mark O. Riedl
Georgia Institute of Technology

{aye42, ccui46, maksimstw, riedl}@gatech.edu

Abstract
Automated plot generation is the challenge of generating a
sequence of events that will be perceived by readers as the
plot of a coherent story. Traditional symbolic planners plan a
story from a goal state and guarantee logical causal plot co-
herence but rely on a library of hand-crafted actions with their
preconditions and effects. This closed world setting limits the
length and diversity of what symbolic planners can generate.
On the other hand, pre-trained neural language models can
generate stories with great diversity, while being generally
incapable of ending a story in a specified manner and can
have trouble maintaining coherence. In this paper, we present
an approach to story plot generation that unifies causal plan-
ning with neural language models. We propose to use com-
monsense knowledge extracted from large language models
to recursively expand a story plot in a backward chaining
fashion. Specifically, our system infers the preconditions for
events in the story and then events that will cause those con-
ditions to become true. We performed automatic evaluation to
measure narrative coherence as indicated by the ability to an-
swer questions about whether different events in the story are
causally related to other events. Results indicate that our pro-
posed method produces more coherent plotlines than several
strong baselines.1

Introduction
Automated plot generation is the challenge of generating a
sequence of events that will be perceived by readers as the
plot of a coherent story. Early solutions to story generation
included symbolic planning (Meehan 1977; Lebowitz 1985;
Porteous and Cavazza 2009; Riedl and Young 2010; Ware
and Young 2011), and case-based reasoning (Pérez y Pérez
and Sharples 2001; Gervás et al. 2005). These techniques
explicitly represent and reason about the causal relationship
between events. In particular, symbolic planners infer causal
relations between events and through these causal relations,
the logical soundness of a plan could be guaranteed. Story
planners extended generic symbolic planners in a number
of ways to create character believability (Riedl and Young
2010), character conflict (Ware and Young 2011), theory of
mind (Ware and Siler 2021), etc. In story generators, logi-
cal soundness corresponds with the concept of plot coher-
ence where each event—and the goal state—is justified by

1Our source code will be made available at: https://github.com/
YeAnbang/Neural-Planner

preceding events or the initial world state. Narrative psy-
chologists note the importance of plot coherence in reader
comprehension, avoiding confusion, acceptance of stories,
and memory of stories (Trabasso and van den Broek 1985;
Graesser, Lang, and Roberts 1991).

Unfortunately provable plot coherence comes at a cost.
Symbolic planners require libraries of hand-crafted schemas
that describe what actions (called events when planning sto-
ries) are available. Among other things, action schemas de-
fine preconditions—logical statements that must be true for
an event to be executable—and effects—logical statements
that describe how the state of the world is changed if an ac-
tion succeeds in execution. While planned stories are highly
causally coherent, the reliance on hand-crafted libraries of
action schemas and pre-existing symbols for characters, ob-
jects, and locations, limits the length and diversity of plots.

Neural language model based approaches to story gen-
eration, on the other hand, can generate more diverse sto-
ries about any number of topics included in the training
data (Martin et al. 2017; Roemmele and Gordon 2018; Fan,
Lewis, and Dauphin 2018; Yao et al. 2019; Goldfarb-Tarrant,
Feng, and Peng 2019; Rashkin et al. 2020). This is espe-
cially true for large, pre-trained neural language models that
have been trained on, amongst other things, large corpora of
stories. Neural story generators create stories by sampling
from the probability distribution P (wn|w1, w2, ..., wn−1; θ)
where θ are the parameters of the language model. Sam-
pling from this learned distribution emulates human patterns
of language, including that found in stories. However, when
addressing novel combinations of topics and circumstances
sampling is not guaranteed to provide causal coherence.
Other limitations of neural text generation, such as repetition
and generic responses, have also been documented (Holtz-
man et al. 2019).

In this paper, we seek to unify the strengths of symbolic
planning and neural text generation to achieve causally co-
herent, ending-guided, story plotlines. To this end, we have
developed a story planner based on partial-order causal link
planning (POCL) (Penberthy and Weld 1992) to generate
story plotlines. However, instead of using a library of hand-
crafted action schemas and world state symbols, our planner
uses a large pre-trained language model (specifically GPT-
J-6B) to infer events and their preconditions. In this way,
the story planner is able to operate without pre-specifiying



actions, characters, world locations, or objects in the world.
Yet the planner can still identify causal relations between
events and ensure causal coherence of stories.

Our planner works via ends-means chaining—working
backward from a given story ending. Given a text description
of the ending of the story as well as an optional set of initial-
state conditions that describe elements of the story world
that can be assumed true, the system queries the language
model to generate preconditions that must be satisfied for
the given ending to occur. For example (see Figure 1), the
event, “Sally buys a gun from the gun store” will produce
preconditions that include “Sally is at the story” and “Sally
has money”. Each of these preconditions describe a partial
world state that must come into existence through the effects
of preceding events. Next, the system queries the language
model for an event that would bring about each precondition.
Continuing the example, “Sally is at the store” produces
a new event: “Sally walked to get to the store”. The pro-
cess repeats, resulting in a graph—a partially-ordered plan
of events—that can be topologically flattened into the plot
line of a story.

Our system outperforms other strong baselines in gen-
erating coherent plotlines as determined by ability to an-
swer questions about the causal relations between events.
The ability to answer questions about stories is an indicator
of support for reader comprehension (Graesser, Lang, and
Roberts 1991).

Background and Related Work
Formally, a planner finds a sequence of actions that trans-
forms the initial world state into one in which a goal situa-
tions holds. Story and plot generation using symbolic plan-
ning (Meehan 1977; Lebowitz 1985; Porteous and Cavazza
2009; Riedl and Young 2010; Ware and Young 2011; Ware
and Siler 2021) is known to result in causally coherent plot-
lines but at the expense of story diversity and length due to
reliance on hand-crafted action schemas and symbols.

Partial Order Causal Link Planning
Several story planners (Riedl and Young 2010; Ware and
Young 2011) use a form of symbolic planning called par-
tial order causal link planning (POCL) (Penberthy and Weld
1992). POCL planners search plan-space where every node
in the space constitutes an unique partially-ordered plan and
the planner transitions from one plan to the next by adding
an action or resolving a logical causal flaw due to partial or-
dering. A plan is represented as a tuple P = ⟨A,C,O⟩. A is
a set of actions instantiated from a library of action schema
templates that specify preconditions effects. C is a set of
causal links of the form a1

c−→ a2 where a1, a2 ∈ A and c
is a predicate condition that unifies with an effect of a1 and
a precondition of a2. O is a set of temporal ordering con-
straints a1 → a2 that indicates that a1 must be temporally
ordered before a2.

At every iteration, the planner selects a plan on the fringe
of the plan-space and an action in that plan with an unsat-
isfied precondition (or the goal state). An unsatisfied pre-
condition is one in which there does not exist a causal link

that points to the action that has a matching the condition. A
new successor plan is generated for each way of satisfying
the action precondition—either by adding a new action and
causal link, or by identifying an existing, preceding action
with a matching effect (or the initial state)—and extending a
causal link between them. Other operations not summarized
here ensure logical soundness. Planning terminates when a
plan is found with no actions with unsatisfied preconditions.

While there are newer, more computationally efficient
symbolic planners, we start with POCL planners for three
reasons. First, they explicitly identify preconditions that
must be satisfied and explicitly identify actions that satisfy
preconditions, making plans explainable. Second, the ex-
plicit representation of actions and preconditions makes it
amenable to adaptation to the use of LM inferences. Extend-
ing our proposed approach to more modern planning algo-
rithms is left for future extensions of this work. Third, POCL
planners are cognitively plausible ends-means planning pro-
cesses for humans (Young 1999).

Neural Story Generators

Early attempts at neural story generation used language
models trained on story corpora to generate stories (Roem-
mele and Gordon 2018) or plots (Martin et al. 2017). How-
ever, such vanilla use of language models were found to have
trouble maintaining coherent context. Guan et al. (2020) fur-
ther fine-tunes a pre-trained language model on common-
sense datasets to help increase the coherence of stories. At-
tempts to control the coherence of stories and plots include
conditioning (e.g., Rashkin et al. (2020)) or hierarchical gen-
eration (Fan, Lewis, and Dauphin 2018; Yao et al. 2019;
Fan, Lewis, and Dauphin 2019). Hierarchical generation is
similar to greedy planning by first generating a “sketch” or
“skeleton” at a higher level of abstraction.

Language models are not generally aware of, or able to
drive toward, a given story ending. Tambwekar et al. (2018)
fine-tuned language models to be goal-aware. The EDGAR
system (Castricato et al. 2021) generates stories backward
using language model based question-answering to itera-
tively ask how the story state came to be. This is similar to
our approach, but does not explicitly reason about causality.

C2PO (Ammanabrolu et al. 2021) conducts a bi-
directional search, querying story events that can possibly
follow or possibly precede events using the COMET (Bosse-
lut et al. 2019) model of commonsense inference. C2PO is
the closest to our approach in terms of conducting a search
through event space. C2PO relations between events are re-
ferred to as soft causal links because the capture inferred
(probabilistic) event relationships, whereas our system uses
hard causal links that capture explicit conditional relations
between events as in POCL planning.

The TattleTale system (Simon and Muise 2022) uses a
classical symbolic planner to generate a totally ordered se-
quence of actions and then uses this sequence to condition
a language model to generate natural language stories. The
symbolic planner uses hand-crafted action schemas.



"Sally shot John."

"The gun needs to be loaded"

"Sally had an argument with
John at Sally's house"

"John drove to get to Sally's
house""John was at John's home""John drove to get to John's

home""John has a car"

"Sally loaded the gun at
Sally's house

"Sally drove to get to Sally's
house""Sally has a car"

"Sally had an argument with
John at Sally's house"

"Sally buys a gun from the
gun store"

"Sally has money"

"There is a gun for sale at the
store"

"Sally walked to get to the
store"

"John is at Sally's house"

"Sally is at the store"

"Sally is at Sally's house"

"Sally has a gun"

Figure 1: Visualization of a partial order plan for a plotline. The final event, which is given as input, is green. Events are blue.
Preconditions are white and red; red preconditions are those that matched against given initial conditions. Arcs from events to
preconditions are causal links, indicating that the event makes the condition true. Arcs from precondition to event indicate that
the former is a necessary condition of the event. The plan is generated from right to left, starting with the final event. The plan
can be totally-ordered, as shown in Table 1.

Ending: Sally shot John
Sally walked to get to store.
Sally buy a gun from the store.
Sally drove to get to Sally’s house.
Sally loaded the gun.
John drove to get to John’s home.
John drove to get to Sally’s house.
Sally had an argument with John at Sally’s house.
Sally shoot John.

Table 1: An example of ending-guided planning using neu-
ral planner. Events from the plan in Figure 1 are shown in
chronological order.

Neural Story Planner
Our proposed technique generates causally coherent story
plans using the concepts of causal links from POCL plan-
ning. However, unlike POCL planning, events and their pre-
conditions are inferred by a large language model (LM) and
represented as text descriptions. An example plan generated
by our system is shown in Figure 1 with corresponding total-
ordered plot in Table 1.

Action preconditions can be thought of as common-
sense rules for action applicability. Commonsense knowl-
edge refers to commonly held beliefs about our physical
world. Because our planner works in an open world setting
we must infer what preconditions need to be satisfied to en-
able an action, and what actions can be taken to satisfy those
preconditions. Language models above 1B parameters have
been demonstrated to capably answer commonsense ques-
tions (Bisk et al. 2020) and we use the GPT-J-6B2 language
model to infer both events and preconditions.

Our planner starts with an input sentence s that specifies
the ending of a story. The planner is also provided with a set
of initial conditions I , which are sentences describing facts
known to be true about the world before the story begins.
The system then recursively uses the LM to infer precondi-
tions of any event in the plot, beginning with s and, for each
precondition, uses the LM again to infer an event that would
cause that condition to become true. See Algorithm 1.

The algorithm is a variation on POCL planning, with a

2https://github.com/kingoflolz/mesh-transformer-jax

few modifications. For any given precondition, we semi-
greedily accept the first event inferred by the LM. The open-
world setting is such that the logical impossibility that hap-
pens in closed worlds with fixed symbols rarely happens and
we find the exhaustic plan-space expansion to be unneces-
sary. However, some inferences result in cycles of repeated
events, in which case the planner backtracks and selects al-
ternative inferences.

Precondition Generation
We use the few-shot capabilities of large language models
to infer the preconditions of events. We designed prompts
based on psychological theories of reading comprehension
that indicate that readers actively track different types of re-
lations between events (Trabasso and van den Broek 1985;
Graesser, Lang, and Roberts 1991). Consequence relations
are equivalent to causal links and indicate that the latter
event cannot occur unless the former occurs. Thus conse-
quence relations also capture whether one event enables an-
other to be possible. Reason relations capture the goals of
characters that explain why they are doing something. Out-
come relations capture which events satisfy which goals. Ini-
tiate relations capture when an event causes a character to
form a goal.

We break preconditions into six different classes and have
developed a prompt for each. The first four classes capture
consequence relations:

• Item Need. What item(s) must the character possess for
an action to execute? E.g., in order for one character to
drive somewhere they must have a car.

What item must [Person] possess to [Action]?
Answer: [Person] must have [Answer]

• Location. Where must the character be in order to carry
out an action? E.g., for one character to buy something
from a store the character must be in the store.

[Context]
[Event].
[Optional Hint]
Where is [Person]? : [Answer]

The context consists of all events that are ancestors of
the current event; even though they will come later in
the story, they bias the LM toward reusing locations. The



hint, which is optional, is filled with any location infor-
mation that is heuristically extracted from the event.

• Item state. What must be true about an item for an action
to be performed? E.g., in order to shoot someone, the gun
must be loaded.
[Event]
What can we tell about the [item] other than how
[Person] obtained it? [Answer]

• How. What needed to have happened for something to
be achievable now? E.g., “John became a pro wrestler”
would have a how-precondition that could be satisfied by
another event such as “John trained for one year”.
[Context]
[Event]
How does [Event]? [Answer]

The next precondition class aligns with initiates relations.
Our version focuses on character-character interactions.
• Interactions with others. What must have happened be-

tween two characters for an action to be peformed? For
example, a character might perform a violent action to-
ward another character if first there was an argument.
[Context]
[Event]
Prior to [Event], [Answer]

The final class of precondition is the reason, which can be
satisfied by an event that causes a character to have a goal:
• Reason. What serves as the reason for an event? E.g.,

the event “John was arrested” would have a reason-
precondition that could be satisfied by an event such as
“John stole a car”.
[Context] [Event] because [Answer]

Each prompt consists of at least five few-shot examples and
the last leaves the answer blank to be completed by the LM.

When the inference is a short phrase, as is the case in
all of our precondition classes, but especially true for Item
Need preconditions, querying a LM suffers from surface
form competition (Holtzman et al. 2021) in which very com-
mon responses can be favored over those that are more re-
sponsive to the prompt. For example, to the question “What
does John need to clean the table?” a LM would prefer the
answer “nothing” over the correct answer “cleaning cloth”
because GPT-J has seen the former more often than the lat-
ter in its training corpus. We adapt the Domain Conditional
Pointwise Mutual Information (PMIDC) rescoring method of
Holtzman et al. (2021) to address the surface form compe-
tition issue. We use PMIDC = P (y|x,domain)

P (y|domain) , where y is
the candidate and x is the input sentence. We observe that
PMIDC rescoring only work robustly when all options are
reasonable to some extent. We filter out low frequency can-
didate before calculating PMIDC scores. An exception to the
above is the location precondition class, where the answer is
biased by context and hints. In this case, we do rescore with
PMIDC and simply take the most frequent candidate.

As the LM can sometimes produce outputs that are se-
mantically identical but are only slight lexical variations of

each other, we also apply a basic cosine similarity check to
filter out these duplicates. We use different thresholds de-
pending on the precondition type. For Item Need and Loca-
tion we use a threshold of 0.75 due to their shorter genera-
tions. For everything else, the default threshold is 0.8.

Not every event requires all six classes of precondition;
forcing the LM to generate preconditions when they are not
needed and will not make sense can result in unpredictable
responses. We apply heuristics to determine when a precon-
dition type is unnecessary. First, an interaction with others
precondition is only necessary when an event has two peo-
ples’ names. Second, reason and how preconditions are nec-
essary only when an event can be expanded syntactically by
adding “because [X]” or “through [X]”, respectively, where
X is some sentence continuation. For example, “John was
arrested because John stole a car” or “John became a pro
wrestler through training hard”. We include few-shot exam-
ples that contain both positive examples (completion exam-
ples that contain keywords), negative examples (completion
examples that do not contain keywords) and detect the ap-
pearance of keywords in text completion results.

We do not require reason preconditions that contain the
terms “want” or “need”. Reason preconditions that contain
those two keywords usually show the intention of the char-
acter, e.g., “John wants to buy a gun” as a precondition for
the action “John walked to the store”. Unlike reason precon-
ditions that help to develop the plot by introducing a new
event, e.g., “John’s old glass broke” in response to the ac-
tion “John bought the new glasses”, intentions are generated
by looking into the existing part of the story and therefore
do not help with expanding the story plot. Want and need
reason-preconditions are deleted automatically.

We require every action to have a location precondition.
Our few-shot examples give examples of responses of “noth-
ing”, which we treat as a keyword to indicate that an event
shouldn’t be considered as having a location. When we de-
tect the nothing response, we delete the precondition. we use
the same strategy with the item state precondition.

Event Generation
In POCL-style planning, preconditions are satisfied by the
effects of events. We directly infer events such that they sat-
isfy a precondition. For how, interaction with others, and
reason preconditions, we directly copy the sentence from
the precondition to make a new event because the nature
of those precondition inferences produce sentences that are
also events. These suggest pairs and chains of events that go
together naturally, similar to scripts (Schank and Abelson
2008). For item need, location and item state preconditions
we use specialized prompts for each precondition type:

• To satisfy item need precondition: What event occurred
so that the character obtained the required item? E.g., the
item need precondition “John has gun” could be satisfied
by “John bought a gun from the store”.

Context: [Sentence]
How did [Person] get [item]
Answer: [Answer]



• To satisfy item state precondition: What event need to
happen to change the state of an item to its desired state?
E.g., the item state precondition “gun is loaded” would
be true after “John loaded the gun”.

Sentence: [Sentence]
[item state] [Answer]

• To satisfy location precondition: What event need to
happen for the character to arrive at the desired location?
E.g., “John drove to get to John’s house” causes “John at
John’s home” to be true.

Context: [Sentence].
How did [Person] get to [location]?
Answer: [Answer]

As with precondition generation, each prompt has seven
examples and the eighth has the answer blank. When an
event is generated to satisfy a precondition on another event,
we create a causal link, which is a directed arc from the new
event to the precondition, indicating that (a) the precondition
is satisfied, and (b) the new event is a temporal predecessor.
The plot is thus represented as a directed acyclic graph, as
shown in Figure 1.

We make a greedy assumption that if more than one event
has the same precondition then the same event will satisfy
both preconditions. We define two preconditions to be the
same if (1) they are associated with the same character, and
(2) the cosine similarity of the two preconditions surpass
certain threshold (0.75 for item need and location and 0.8
for other categories). Thus, before generating a new event,
we check to see if an existing event can be used and a causal
link extended from the already existing event to the precon-
dition. This corresponds to the concept of action re-use in
POCL planning. The exception to this rule is when the new
causal link causes a cycle in the graph.

When duplicate events are generated, as determined by
cosine similarity, we record an event has having multiple
possible phrasings. The phrasing with the highest count is
presented as part of the plan. Ties are broken by taking the
phrase with the lowest perplexity. Additionally, we also dis-
card the generated precondition if it is identical to its parent
event. Note, we do not do this for the reverse, where the
generated event is identical to the precondition, as shown in
Figure 1 in the “Sally had an argument with John in Sally’s
house” precondition and event.

Preconditions that match the initial state conditions I are
never used to generate events since these are conditions
given by the user.

We do not model negative effects of events. In POCL
planning, it is possible for an action to have an effect that
negates a precondition. In that regard, our system is simi-
lar to the graph expansion stage of graph plan (Blum and
Furst 1997) without the forward-checking phase. We do this
for two reasons. First, our planner operates in an open-world
and, because preconditions are inferred by a LM, we cannot
guarantee we have the complete set of preconditions needed
to ensure true logical soundness like in a POCL planner. Sec-
ond, stories are relatively permissive of missing events when
readers can themselves infer missing details and events. For

Algorithm 1: Neural Plot Planner
1: Input: ending event sentence g; Initial conditions I .
2: Initialize a plan P ← ∅; Initialize queue← {g}.
3: while queue ̸= ∅ do
4: Let event← pop(queue)
5: Let context ← sequence of events collected by running a breadth-first

search from event to g.
6: Let Λ← all satisfied preconditions
7: Let Γ← generate preconds(event) for each character in event

8: if adding any precondition in Γ creates a cycle then
9: remove event from P .
10: Γ←unsatisfied preconditions due to removing event.

11: for each c ∈ Γ do
12: if c ∈ I or c meets conditions for not being expanded then
13: P ← P ∪ {nil c−→ event} ▷ Dangling precondition
14: else if there exists a precondition c′ ∈ Λ that is similar to c then
15: event′ ← event that satisfies c′

16: P ← P ∪ {event′ c′−→ event} ▷ Reuse precondition
17: else
18: event′ ← generate event(c, context)

19: P ← P ∪ {event′ c−→ event} ▷ Satisfy with new event
20: queue← queue ∪ {event′}

example, if John has an item and then Sam has the item later,
the reader doesn’t need to be told that John no longer has the
item, even though our planner doesn’t explicitly represent it.

The open world setting combined with surface form com-
petition introduces the possibility of cycles where event e1
results in precondition p1 is semantically equivalent to an-
other precondition p2 that is an ancestor (p2 is on a causal
path from the goal to to p1). When this happens, we remove
e1 from the plan and backtrack to re-generate that event.

The planner terminates when there are no unsatisfied pre-
conditions. The algorithm is shown in Algorithm 1.

Final Total Ordering

When there are no further preconditions to satisfy, the fi-
nal step is to produce a total ordering of the events in the
plot graph. In POCL planning, any two events that are not
ancestors or descendant of each other are considered par-
tially ordered and any topological sort that doesn’t violate
any temporal ordering constraints is valid. Because of our
open-world assumptions, we implement a topological sort
that prefers certain orderings over others. Whenever there
are two events ei, ej that are neither descendants nor ances-
tors, we order them ei > ej when type(ei) > type(ej)
and type(·) is a function that maps an event to the type of
precondition it satisfies and reason > how > item needed
> item state > location > interaction with other person
> current action. The greater-than symbol means earlier
in the totally ordered sequence. Following cognitive sci-
ence (Graesser, Lang, and Roberts 1991), events that initiate
character intentions should precede other actions that might
relate to the pursuit of those intentions. How things came
to be, should also precede events that make use of those es-
tablishing events. Character interactions, especially conflict,
are often the culmination of many establishing events.



Evaluation
We evaluate the extent to which our planning technique gen-
erates coherent plots. Psychological studies of human reader
comprehension (Graesser, Lang, and Roberts 1991) mea-
sure reader comprehension by reader ability to answer ques-
tions about a story. In our setting, we prompt GPT-3 (Brown
et al. 2020) to answer enablement questions about generated
plots.3

We use GPT-3 (text-davinci-002) as an estimate of the
ease by which questions can be answered about generated
stories, and thereby an estimate of the extent to which gen-
erated stories support question-answering for reader com-
prehension.

We evaluated our system and all baselines by generat-
ing plotlines that were seeded from randomly chosen sto-
ries from the test split of ROCStories dataset (Mostafazadeh
et al. 2016). The ROCStories dataset contains plot-like com-
mon everyday stories with titles for each story. We randomly
sampled 50 story titles from the test split of ROCStories to
seed our system and the baselines. We generate a story plot-
line for each title and then assess whether the plotline is co-
herent. Systems are scored by the percentage of the time that
GPT-3, appropriately prompted, can determine that a given
event in a story is enabled by any prior events in the story.

We do not evaluate systems using perplexity or variants of
BLEU score. Perplexity and BLEU compare system outputs
to expected outputs in a supervised dataset. Sentences in a
story can be generated that are considered good even if they
do not match—or have overlapping tokens—with a ground-
truth story. Further, our method does not sample from the
language model in the conventional way.

Coherence Measure
To measure whether the generated stories support enable-
ment comprehension, we pose questions to GPT-3 in the
form “What’s the action, if any, enabled ACTION?” along
with the sentences from the earlier parts of the story plan for
GPT-3 to choose from. Since the first sentence of a story is
not enabled by default, we excluded the first sentence in our
evaluation. We set temperature = 0.7.

We consider an enablement question answerable if the an-
swer is found in the earlier part of the story and is different
from (percentage of overlapped 1-gram ≤ 0.7 ) the queried
event. If the question yields no answer, GPT-3 will respond
with “none”. We include negative few-shot examples in the
prompt that are answered with “none” so that GPT-3 knows
it is a valid response.

score =
#answerable enablement questions

#questions
(1)

To validate our measure, we apply the measure to 100 sto-
ries randomly sampled from the test split of the ROCStories
dataset. Stories in the dataset are assumed to be coherent.
In half of the stories, we force incoherence by randomly re-
placing the queried event with a random even taken from
a different story in the dataset. That is, half of the stories

3GPT-3 has been used to evaluate other systems such as sum-
marization (Goyal, Li, and Durrett 2022).

System Before filtering After filtering
Ours 4.16 4.08

C2PO 5.62 5.42
plan write revise 5.00 4.22

comGen 4.98 4.35
GPT-J 3.86 3.63
ROC 5.00 4.56

Table 2: Average number of sentences for each system be-
fore and after pre-processing to remove non-event sentences.
This shows that systems are comparable in length when pre-
pared for evaluation.

should be answerable and half of the stories should produce
“none” when prompted with our above enablement prompt.
Our measure yields an 85.39% response rate on unaltered
stories and correctly predicts “none” 71% of the time when
presented with an incoherent story. Thus our measure has an
overall accuracy of 78.20%. ROCStories do not always con-
tain explicitly enabling events. It is also sometimes possible
for a randomly inserted event to appear to have an enabling
predecessor action. Thus some degree of error is expected,
and we deem our measure to be sufficient to produce a rel-
ative assessment between plot generation systems that pro-
duce story plotlines with similar styles.

Models and Baselines
We evaluated the performance of our neural planner against
four baselines:

• GPT-J-6B, which is the same model we use to infer pre-
conditions and events, but allowed to generate an entire
story. To induce it to generate plots at a comparable level
of abstraction to our system, we prompt it with few-shot
examples pulled randomly from the ROCStories dataset.
The prompt used in this baseline can be found in Ap-
pendix A.2. We set the temperature to 1.2.

• C2PO (Ammanabrolu et al. 2021), which uses bidi-
rectional interpolation using commonsense inference of
events. We use the first and last sentence of GPT-J-6B
generated stories (see above) in our evaluation set.

• comGen (Guan et al. 2020), a transformer based language
model fine-tuned on ROCStories and two commonsense
knowledge bases. We sampled from the provided stories
used in their evaluation to use as a baseline.

• plan-write-revise (Goldfarb-Tarrant, Feng, and Peng
2019) fine-tuned on ROCStories with titles as the topic.

To ensure we evaluate on only plot, which are events that
change the world state (Prince 2003), we parse the outputs
of the baselines to remove non-action sentences that give
declarative statements about fact about the story world and
characters, e.g., “Sam was a high school wrestler.” We also
filtered outputs that consisted of only one sentence, as we
cannot fairly compare the logical coherence of a single-event
plot against plot lines consisting of multiple events. We pro-
vide average generation lengths for each baseline, before
and after filtering in Table 2.



System enablement(%)

Ours 85.71
C2PO 75.11

plan write revise 67.70
comGen 76.65
GPT-J 71.43

ROCStories 85.39

Table 3: The Neural Planner achieves the highest percentage
in terms of answerable enablement questions compares to
other baselines.

Note that none of the baselines we compare to are ending-
guided like our system. C2PO, the closest, uses bidirectional
interpolation. Other baselines are conditioned on leading
context. However, our evaluation indicates that the gener-
ated plot line’s length does not appear to have any significant
effects on our evaluation metrics.

For our system, we require an ending event sentence. We
first prompt GPT-J-6B to generate an ending based on the
provided title. Then, we use the ending to generate a story
plot. Our model is capable of generating more than one ob-
ject precondition for a given event. To make our system more
comparable to baselines, which are more linear in generation
process, we constrain the item-precondition generation to a
single precondition.

This is roughly in line with what we observed with the
ROCStory dataset, as the majority of events in that dataset
tend to involve only one interact-able object.

We didn’t evaluate against other story generators such as
Goldfarb-Tarrant et al. (2020) or Castricato et al. (2021) be-
cause these models tend to generate stories with a lot of di-
alogue and many descriptive scenes. This creates difficulty
when evaluating the logical coherency of those systems’ out-
puts as well as extracting the distinct plot lines to use as
a baseline. For consistency of evaluation, we only include
methods with outputs that have a similar style and structure
as our story plots.

Results and discussion
The results are shown in in Table 3. Our planner achieves
the highest percentage of answerable enablement questions
by a considerable margin. This can be partially explained by
the fact that our planner is intentionally introducing events
to the story that enable future events. The preconditions and
linkages between events are not present in the final rendering
of a plotlines and any enablement relations are still implicit.
Our evaluation metric is likely sensitive to this type of struc-
ture. In that sense, the metric can be seen as a measure of
the ease with which enablement questions can be answered
about a story.

C2PO and comGen use commonense inferences from
COMET (Bosselut et al. 2019) that have the potential to cre-
ate explicit enablement relations. C2PO in particular gen-
erates commonense inteferences about “wants”, what is ex-
pected to come after an event, and “needs”, what is expected
to precede each event in a story. As noted by Ammanabrolu
et al. (2021) these commonsense relations between events

are very similar to causal links though the exact nature of
the relation is implicit.

We repeat the ROCStories response rate of 85.39% in
Table 3 for completeness. The stories in the ROCStories
dataset are coherent but not necessarily written to make an-
swering enablement questions easy to answer—events may
be omitted because they are considered obvious. Therefore,
this comparison is not on a level playing field, and our re-
sults do not necessarily imply that our planner is performing
above human level.

Conclusions
In this paper, we present a novel use of neural language
models for generating story plotlines by unifying language
models with partial order, causal link planning. Our system
chains backward from a given ending of a story, and rea-
sons about the conditions that are necessary for each event
to occur. It generates events that causally enable subsequent
events while backward chaining. In order to operate in an
open world domain and be able to generate stories without
predetermined actions schemas or characters, our story plan-
ner uses the large, pre-trained language model to infer the
conditions and events.

This work suggests that pre-trained language models pro-
vide affordances for generating coherent narrative content
other than generating continuations from a single prompt.
Specifically, a large pre-trained language model can oper-
ate as a commonsense knowledge base about event pre-
conditions and ways to bring about world conditions when
prompted to do so. While our technique makes heavy use
of hand-crafted prompts, all generation is coming from the
same model guided by a search algorithm inspired by clas-
sical planning. The ability to construct a search space pro-
vides a number of benefits including causal relations be-
tween events that correlation with improved coherence and
reader comprehension. It also provides a principled means of
reasoning about what sentences should occur in a plot-like
story beyond reliance on statistical sampling.

POCL plans are interpretable. One can look at any
action in a plan and, through causal links, know why
the action is present in the plan. Causal links indicate
which actions are necessary for other actions to execute,
and, more importantly, how each action contributes to the
achievement of the goal. Our technique also inherits a
degree of interpretability—despite the use of neural lan-
guage models—because our plan data structures also con-
tain causal links. We cannot guarantee that conditions, and
thus links, are missing. However, the plan structure gener-
ated by our technique provides insights into the decisions
that the planner was making during generation.

Our results indicate that story plotlines generated by our
planner are coherent as measured by the ability to answer
questions about causal enablement relations in generated
stories. Like POCL planning, generated stories focus on
physically grounded action. One can consider generated
plotlines as the “skeletons” (Simon and Muise 2022) for
fully fleshed out natural language stories that can include de-
tails and dialogue generated later. This work presents a step
forward toward the open research challenge of generating



stories in open-world that are also guaranteed to be coherent
and comprehensible.

References
Ammanabrolu, P.; Cheung, W.; Broniec, W.; and Riedl,
M. O. 2021. Automated Storytelling via Causal, Common-
sense Plot Ordering. In AAAI.
Bisk, Y.; Zellers, R.; Bras, R. L.; Gao, J.; and Choi, Y. 2020.
PIQA: Reasoning about Physical Commonsense in Natural
Language. In AAAI Conference on Artificial Intelligence.
Blum, A. L.; and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1).
Bosselut, A.; Rashkin, H.; Sap, M.; Malaviya, C.; Celikyil-
maz, A.; and Choi, Y. 2019. COMET: Commonsense Trans-
formers for Automatic Knowledge Graph Construction. In
ACL.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems.
Castricato, L.; Frazier, S.; Balloch, J.; and Riedl, M. 2021.
Tell Me A Story Like I’m Five: Story Generation via Ques-
tion Answering. Proceedings of the 3rd Workshop on Nar-
rative Understanding.
Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hierarchical
Neural Story Generation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics.
Fan, A.; Lewis, M.; and Dauphin, Y. N. 2019. Strategies for
Structuring Story Generation. CoRR, abs/1902.01109.
Gervás, P.; Dı́az-Agudo, B.; Peinado, F.; and Hervás, R.
2005. Story Plot Generation Based on CBR. Know.-Based
Syst., 18(4–5).
Goldfarb-Tarrant, S.; Chakrabarty, T.; Weischedel, R. M.;
and Peng, N. 2020. Content Planning for Neural Story Gen-
eration with Aristotelian Rescoring. CoRR, abs/2009.09870.
Goldfarb-Tarrant, S.; Feng, H.; and Peng, N. 2019. Plan,
Write, and Revise: an Interactive System for Open-Domain
Story Generation. CoRR, abs/1904.02357.
Goyal, T.; Li, J. J.; and Durrett, G. 2022. News Summariza-
tion and Evaluation in the Era of GPT-3.
Graesser, A. C.; Lang, K. L.; and Roberts, R. M. 1991. Ques-
tion answering in the context of stories. Journal of Experi-
mental Psychology: General, 120.
Guan, J.; Huang, F.; Zhao, Z.; Zhu, X.; and Huang, M. 2020.
A Knowledge-Enhanced Pretraining Model for Common-
sense Story Generation. CoRR, abs/2001.05139.
Holtzman, A.; Buys, J.; Forbes, M.; and Choi, Y. 2019.
The Curious Case of Neural Text Degeneration. CoRR,
abs/1904.09751.
Holtzman, A.; West, P.; Shwartz, V.; Choi, Y.; and Zettle-
moyer, L. 2021. Surface Form Competition: Why the High-
est Probability Answer Isn’t Always Right. In Proceedings
of EMNLP 2021.
Lebowitz, M. 1985. Story-telling as planning and learning.
Poetics, 14.

Martin, L. J.; Ammanabrolu, P.; Hancock, W.; Singh, S.;
Harrison, B.; and Riedl, M. O. 2017. Event Representations
for Automated Story Generation with Deep Neural Nets.
CoRR, abs/1706.01331.
Meehan, J. R. 1977. TALE-SPIN, An Interactive Program
that Writes Stories. In IJCAI.
Mostafazadeh, N.; Chambers, N.; He, X.; Parikh, D.; Batra,
D.; Vanderwende, L.; Kohli, P.; and Allen, J. F. 2016. A Cor-
pus and Evaluation Framework for Deeper Understanding of
Commonsense Stories. CoRR, abs/1604.01696.
Penberthy, J. S.; and Weld, D. S. 1992. UCPOP: A Sound,
Complete, Partial Order Planner for ADL. In KR.
Porteous, J.; and Cavazza, M. 2009. Controlling Narrative
Generation with Planning Trajectories: The Role of Con-
straints. In ICIDS.
Prince, G. 2003. A Dictionary of Narratology. Lincoln,
Nebraska: University of Nebraska Press. Hey Babe, Take a
Walk on the Wild Side–Creative Writing in Universities.
Pérez y Pérez, R.; and Sharples, M. 2001. MEXICA: A com-
puter model of a cognitive account of creative writing. J.
Exp. Theor. Artif. Intell., 13.
Rashkin, H.; Celikyilmaz, A.; Choi, Y.; and Gao, J. 2020.
PlotMachines: Outline-Conditioned Generation with Dy-
namic Plot State Tracking. CoRR, abs/2004.14967.
Riedl, M. O.; and Young, R. M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial Intelli-
gence Research, 39.
Roemmele, M.; and Gordon, A. 2018. An Encoder-decoder
Approach to Predicting Causal Relations in Stories. In Pro-
ceedings of the First Workshop on Storytelling.
Schank, R. C.; and Abelson, R. P. 2008. Scripts, plans, goals
and understanding: An inquiry into human knowledge struc-
tures. Psychology Press, Taylor et Francis Group.
Simon, N.; and Muise, C. 2022. TattleTale: Storytelling with
Planning and Large Language Models. In ICAPS Workshop
on Scheduling and Planning Applications.
Tambwekar, P.; Dhuliawala, M.; Mehta, A.; Martin, L. J.;
Harrison, B.; and Riedl, M. O. 2018. Controllable Neural
Story Plot Generation via Reinforcement Learning. arXiv:
Computation and Language.
Trabasso, T.; and van den Broek, P. 1985. Causal thinking
and the representation of narrative events. Journal of Mem-
ory and Language, 24(5).
Ware, S.; and Young, R. M. 2011. CPOCL: A narrative plan-
ner supporting conflict. In Proceedings of the 7th AAAI Con-
ference on AI and Interactive Digital Entertainment.
Ware, S. G.; and Siler, C. 2021. Sabre: A Narrative Planner
Supporting Intention and Deep Theory of Mind. Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 17(1): 99–106.
Yao, L.; Peng, N.; Weischedel, R.; Knight, K.; Zhao, D.; and
Yan, R. 2019. Plan-and-Write: Towards Better Automatic
Storytelling. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 33(01).



Young, R. M. 1999. Notes on the use of plan structures in
the creation of interactive plot. In Mateas, M.; and Sengers,
P., eds., Narrative Intelligence: Papers from the AAAIFall
Symposium (Technical Report FS-99-01).

Appendix A
A.1 Story Samples

The stories are generated backwards from the last sentence,
which is provided by prompting GPT-J on ROCStory titles.

John took a train to get to home.
John connects internet to network cable at home
John used the internet to get to internet.
John bought lot of computer game to the internet at internet

John filled the car with gas on the way to the garage.
John drove to get to garage.
John took home his brown car for a treat at garage

John walked to get to park.
John buys bird watching lens from shop.
John loves to watch birds at park
John took a taxi to get to bank.
John exchanged the money at the bank.
John went to get to park.
John bought a bird from the pet shop.
John found a lost bird in the park at park

John took a bus to get to school.
John buys a pen and paper from school.
John wrote a school paper at school

John walked to get to office.
John attends a staff meeting at the office.
John attended a staff meeting at office

John took a bus to get to school.
John hires party at school
John hold a party in the class at school

John walked to get to shop.
John buys food at shop.
John managed to consume two more glasses of water at shop

John drove to get to police station.
John takes delivery case from the delivery van.
John delivered the case to the police at police station

John walked to get to computer shop.
John bought a new computer at computer shop

John took a taxi to get to school.
John played a prank on his student at school

John walked to get to shop.
John used his money to buy stuff at shop



John he got a phone call.
John took a taxi to get to home.
John gets a phone from the table.
Chris took a taxi to get to home.
John he had a call from Chris.
John went to get to department store.
John search for the stolen gifts at department store

John walked to get to store.
John buys a banjo from a store.
John walked home to get to home.
John played a song on his banjo at home

John drove to get to traffic jam.
John drive safely through the traffic jam at traffic jam

John his patient has heart pain.
John was taken to get to hospital.
John got stethoscope from medical kit.
John diagnosed heart pain in his patient at hospital

John walked to get to nursery.
John got baby from mother.
John pat the baby in the mother at nursery

John took a walk to get to bedroom.
John caught bugs in his bed at bedroom

John gets the car keys from the car.
John drove to get to car.
John fixes car light by car light at car
John check the airbag light in his car at car

John drove to get to park.
John played a game with friends at park

John walked to get to sword shop.
John buys a sword from a sword shop.
John drove to get to park.
John beat his neighbor in a duel at park

John took a bus to get to home.
John makes party plan at home
John and his friends plan a party at home

Liseh walked to get to store.
Liseh gets a phone from a store.
John took a bus to get to office.
Liseh took a bus to get to home.
Liseh gets help from John.

John loaded the money on the bus.
John took a bus to get to cinema.
John never met his dream girl at cinema

John took a bus to get to garden.
John got bitten by a squirrel in his garden at garden

John climbed down the ladder to get to home.
John gets ladder from the closet.
John took a ladder to get to tower.
John climb to the top of the tower at tower

John took a bus to get to restaurant.
John ate some pizza for breakfast at restaurant

John took a bus to get to school.
John asked for pencil from teacher.
John asked when he could have the next turn at school

John get business card from the card board.
John walked to get to board room.
John he has to discuss about important business at board
room
John has booking from hotel service.
John took a taxi to get to hotel.
John has meeting room booked from hotel service.
John went to get to board room.
John has to have the meeting at board room
John took a taxi to get to office.
John had a meeting with the boss at office
John went to get to board room.
John gets appointment letter from secretary.
John get board room by appointment at board room
John walked to get to cleaning closet.
John gets cleaning cloth from the cleaning closet.
John went to get to board room.
John cleaned the board room at board room
John discuss the important matter in the board room at
board room

John he lost his glasses.
John went to get to optician.
John his old glasses broke at optician
John bought the new glasses at optician

John drove to get to office.
John he has to work late at office
John he has to work overtime at office
John has to work late at office
John walked home to get to home.
John cannot get a mosquito net at home
John mosquitos chased him at night.
John gets mosquito net from the basket.



John ran to get to forest.
John escaped from the mosquitos.

John drove to get to car.
John drove his car at car

John walked to get to beach.
John saw the sunset and the rainbow at beach

John drove home to get to home.
John pulled the son out of the fire at home

John walked to get to playground.
John skipped rope for a long time at playground

John drove to get to garage.
Jack garage wasn’t in his neighborhood.
Jack took a cab to get to garage.
John gave jack a check at garage
John gave jack his car service at garage

John walked to get to kitchen.
John gets a kitchen knife from the kitchen.
John cooks food at kitchen
John walked home to get to home.
John he can feed the pugsy at home
John loved pets at home
John fed the pugsy at home

John drove to get to team building.
John bought a ticket for team building event at team building
John participate in team building at team building

John drove to get to post office.
John didn’t feel good about it at post office
John he it didn’t like the post at post office
John it made him feel good and enjoy at post office
John enjoyed with the post of amusing mail at post office

John got flu shot from nurse.
John took a taxi to get to hospital.
John’s she has the flu at hospital
John John’s girlfriend don’t feel well.
John walked to get to library.
John lost his girlfriend at library
John bought a book from the library.
John searched for the reason of his broken heart at library

John walked to get to cinema.
John he didn’t like the film at cinema
John watched nothing at cinema

John walked to get to social media.
John posted rude comments about his friend at social media
John had too much trouble in social media at social media

John walked to get to cinema.
John buys a movie ticket from ticket office.
John watched the movie at cinema

John walked to get to ticket office.
John puts the money in the ticket at ticket office
John walked to get to cinema.
John buys a ticket from the ticket office.
John walked to get to concert.
John became bored at the concert.

John his colleagues didn’t like him.
John rode a taxi to get to taxi.
John counted the money in a taxi at taxi
John took a taxi to get to office.
John didn’t get any raise at office
John doesn’t like his colleagues at office
John ordered and finished the slow work day at office

John took a bus to get to kitchen.
John gets a spoon from the kitchen.
John swallow the sugar at kitchen

John walked to get to store.
John buys skates from the store.
John walked to get to kitchen.
John sharpened his skates at the kitchen.
John walked to get to lake.
John ice skated on the frozen lake at lake

John took a taxi to get to party.
Julie drove to get to party.
John and Julie met at a party.

John walked to get to phone booth.
John buys a phone from the phone booth.
John took a taxi to get to home.
John used the phone to call his friend at home

John his smoke alarm went off.
John took a car to get to home.
John he feared for his life at home
John fled the smoke alarm at home

John walked to get to near the river.
John had never had a pet at near the river
John walked to get to neighbour.
John bought a puppy from the next door neighbour.



A.2. Few-shot Prompt for The GPT-J-6B Baseline
Here is an story on the topic ”Drained Battery”.
Tom let his friend borrow his phone. The friend kept using
it. The friend kept draining the battery. Tom got it back way
later. The phone died shortly after.

Here is an story on the topic ”Matthew Makes Good And
Does Good”.
Matthew would spend hours working on his pitching skills.
By high school, Matthew was being scouted by the big
leagues. Matthew became a famous pitcher and had a
long career. Matthew’s only regret was never having kids.
Matthew started a charity to buy sports equipment for poor
kids.

Here is an story on the topic ”Race”.
Ray was the slowest on the team. Ray needed a 6 minute
mile in order to qualify for the race. Ray decided to train
an extra hour everyday. Ray eventually got a 6 minute mile.
Ray was able to join the race and he did very well.

Here is an story on the topic ”A Constant Struggle”.
Jeff had always wanted to be a pilot. Jeff would spend hours
on flight sims in his garage. Jeff found a school that would
teach him how to fly. Jeff signed up to learn to fly a plane
that day. Jeff eventually became a pilot for a major airline.
Here is an story on the topic ”[title]”.

aaai23


