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Abstract

Continual learning (CL) has spurred the
development of several methods aimed at
consolidating previous knowledge across
sequential learning. Yet, the evaluations
of these methods have primarily focused
on the final output, such as changes in the
accuracy of predicted classes, overlooking
the issue of representational forgetting within
the model. In this paper, we propose a novel
representation-based evaluation framework for
CL models. This approach involves gathering
internal representations from throughout the
continual learning process and formulating
three-dimensional tensors. The tensors are
formed by stacking representations, such as
layer activations, generated from several inputs
and model ‘snapshots’, throughout the learning
process. By conducting tensor component
analysis (TCA), we aim to uncover meaningful
patterns about how the internal representations
evolve, expecting to highlight the merits or
shortcomings of examined CL strategies. We
plan to conduct our analyses across different
model architectures and importance-based
continual learning strategies, with a curated
task selection, allowing us to gain insight into
whether any observed patterns are consistently
replicable.

1 INTRODUCTION

Learning is a core capability for all intelligent agents.
While biological agents acquire new knowledge and adapt
by building upon their prior learning experiences, artificial
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agents follow a more static and meticulously curated
learning process. When challenged to encounter new
concepts, a setting familiar to biological agents, machine
learning models suffer from catastrophic forgetting,
demonstrating poor performance when attempting to
recall old patterns (Schlimmer and Fisher, 1986; Ring,
1997). As continual learning (CL) research matures in
tackling this challenge, solutions will look increasingly
composite, likely layering multiple mechanisms to mitigate
forgetting and achieve additional goals (Kudithipudi et al.,
2022). The growing complexity underscores the need
for an architecture and strategy agnostic explainability
tool designed to shed light on how CL methods enable
models to acquire new tasks while preventing the forgetting
of previously learned ones. The insights gained from
studying how representations change when experiencing
catastrophic forgetting has previously facilitated the
advancement of new methods. Thus, better understanding
how existing methods update model parameters over time
holds the potential to inspire the development of even more
effective learning strategies.

To execute our study, we propose a novel framework that
allows us to explore internal state changes during the
continual learning process. Our framework centers on
creating a data representation that captures the model’s
internal representations across different tasks over time. By
leveraging Tensor Component Analysis (TCA) (Williams
et al., 2018), a technique for three-dimensional tensor
decomposition, we expect to uncover patterns concerning
internal representations across time. The proposed
methodology, as depicted in Figure 1, provides an overview
of our study in understanding how representations evolve
during CL.

In summary, the contributions and the key insights that
can be derived from this analysis are:

• We leverage TCA, an unsupervised method for
analyzing three-dimensional tensors, to extract
patterns about how model representations evolve in
a continual learning setting. TCA results in a data
representation that potentially captures the model’s
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Figure 1: Overview of the proposed methodology. (A) We train a model with a CL method with curated tasks. (B) We
assume access to ‘snapshots’ of the model taken throughout training on all tasks. At inference time, for a given dataset
class, we feed its corresponding representative inputs into each of the snapshots and, for a layer of choice, gather the
resulting activation tensors. We flatten the activations into a vector and stack them for all snapshots to obtain a matrix.
We repeat this process for all inputs and stack the matrices to obtain a tensor. (C) We conduct tensor component analysis
(TCA) with rank n to obtain n components. (D) We plot n components, each of which consists of three factors: factors
selecting for certain activations (green), factors selecting for certain inputs (blue), and factors describing a temporal activity
(red). (E) We conduct model masking experiments to verify our observations.

dynamics for multiple inputs over time. To the best
of our knowledge, we are the first to leverage TCA in
continual learning interpretability.

• We systematically compare the performance, and
analyze the internal representations of several
parameter-based methods (and their combinations
with replay) across convolutional neural networks
(CNNs), vision transformers, and a CNN-transformer
hybrid architecture. In addition, we conduct these
experiments with a curated set of tasks to study how
internal representations change based on the feature
similarities of tasks.

• We investigate neuron tracking and filter evolution
which can shed light on the neural plasticity that
occurs during continual learning. We plan to gain
insights on which neurons or filters are more flexible
and likely to change their responses over time, and
which ones remain stable.

Summary of Hypotheses:

Hypothesis Set 1. Do importance-based regularization
methods lead to the emergence of ‘specialized’ neurons

for specific tasks? Does adding replay reinforce this
specialization? Is there a consistent behavior across several
model architectures? By tracking activations throughout
training with various CL strategies, we will study the
temporal patterns of these activations.

Hypothesis Set 2. Do CNN filters or transformer features
within the same layer exhibit different update patterns
throughout training? How do these update patterns
compare by CL strategy and model architecture? By
tracking what CNN filters and transformer features select,
we will examine how filters/features evolve throughout the
task-incremental learning.

2 BACKGROUND & RELATED WORK

2.1 Techniques for Examining Representation
Quality

By examining representations, one may assess how well
a model’s learned features generalize across tasks and the
degree to which they preserve task-specific information.
Strong representations may enable better knowledge
transfer and improved adaptation to new tasks. In this
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section, we explore several works studying representations
in the context of CL. These studies employ various metrics
and experimental scenarios to evaluate the quality of
learned representations during training.

Ramasesh et al. (2020) studied the impact of catastrophic
forgetting on hidden representations by quantitatively
comparing the layer representations before and after
sequentially training on a second task. To measure the
similarity between representations across multiple layers
of the model, they utilized the centered kernel alignment
(CKA) technique. They also investigated how the semantic
similarity between tasks affected forgetting, obtaining
nuanced results suggesting that forgetting is maximized
when sequential tasks have intermediate rather than low or
high similarity.

Davari et al. (2022a) evaluated the quality of
representations using Linear Probes (LP), which involves
training a linear classifier on the fixed representations for
each task. The accuracy of this linear classifier on the
task’s test set served as a metric to assess the representation
quality for that particular task. To measure forgetting,
the authors measured the difference in linear probe
performance before and after introducing a new task.

Zhang et al. (2022) created a synthetic dataset in which
alternating (odd and even) tasks shared the same low-level
features while each task simultaneously contained unique,
high-level features. By having access to the ‘ground-truth’
features, the authors examined whether the model was
making progress towards learning the features encoded in
the inputs. Their findings revealed that when the shared
feature was consistently encountered in all even-numbered
tasks, it prevented the model from fully learning the shared
feature present in the odd-numbered tasks. The same held
true for learning the shared feature in even-numbered tasks.

Hess et al. (2023) introduced a task exclusion comparison,
hypothesizing that if a model has trained on a task and
retained knowledge related to that task, then it should
exhibit a more robust representation of that task compared
to a model that has never encountered the task. To test
this, they compared the linear probe accuracy of models
that have encountered a task with those that have had the
same task deliberately excluded. Their results indicate that
continually trained models typically forget task specific
knowledge quickly, contrary to what was presented by
Davari et al. (2022a).

Across most works studying layer representations in the
context of continual learning, CKA and linear probes make
a recurring appearance as tools to measure the similarity
of hidden layer activation patterns in neural networks.
Although these metrics offer a broad understanding of
representation comparisons, the occasional conflicting
results among existing literature using similar experimental
setups highlights the need for a different approach to

studying CL dynamics. Recent representation similarity
work has even highlighted the sensitivity of CKA to
outliers (Davari et al., 2022b), urging researchers to
ensemble similarity measurement using several techniques.

Nevertheless, most analyses of network representations
in the context of CL limit themselves to similarity
measurements of network representations pre and post-task
training. We believe there is an opportunity to move away
from drawing conclusions about network representations
from ambiguous similarity measures when attempting to
understand catastrophic forgetting. Instead, we suggest
that it is possible to take advantage of unsupervised tensor
decomposition to study how internal representations evolve
across time for several inputs.

2.2 Tensor Component Anlysis (TCA) for Exploring
Learning Dynamics

Tensor component analysis (TCA), also known as
canonical polyadic (CP) decomposition, is a tensor
decomposition technique to identify variability across the
three axes of a tensor (Carroll and Chang, 1970; Harshman
et al., 1970). While it is a dimensionality reduction
technique similar to Principal Component Analysis (PCA),
TCA differs by extending the decomposition to an
additional axis. Further, unlike PCA, the factors obtained
by TCA are not necessarily orthogonal, allowing for an
expression of more natural patterns. For PCA, unless the
features present in the data are naturally orthogonal to each
other, the components recovered cannot be interpreted as
those underlying features. In addition, PCA yields multiple
solutions that can be employed to reconstruct the original
data, known as the rotation problem (Williams et al., 2018).
In practice, TCA does not face this limitation. While TCA
is not entirely immune to alternative solutions, the number
of potential solutions is more constrained, and in the
case of non-negative TCA, the solution is typically unique
(Kruskal, 1977; Adali et al., 2022). In various contexts
within neural statistics, Williams et al. (2018) demonstrated
that TCA serves as an unsupervised technique capable of
demixing neural data and providing interpretable results
corresponding to agent behavior and learning patterns.

While Williams et al. (2018) discussed TCA as a method
to improve neural data analysis, such that it describes
trial-to-trial variability and avoids a trial-averaging step,
McGuire et al. (2022) took advantage of TCA in a slightly
different fashion. Studying the behavior of neurons in the
postrhinal cortex (POR) of mice, the authors attempted to
identify neuron population clusters, as well as the clusters’
responses over time to various cues displayed to the mice as
they sequentially learned two tasks. Rather than focusing
on trial-to-trial variability, the study focused on identifying
within-stage and across-stage dynamics for multiple cues.
In this context, ‘stage’ refers to the learning stages across
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two tasks. Through TCA, the researchers observed a
‘division of labor’ in the neural populations, showing that
certain clusters of neurons are specialized to activate in
response to particular cues. Moreover, they were able to
capture how these clusters vary their response across time.

Dyballa et al. (2023) used TCA as part of their analyses
to organize neurons into a ‘manifold’ to study how the
neurons they measured lie with respect to each other in
a lower dimensional space. Generating these manifolds
for biological and artificial neurons allowed the authors
to compare the primary visual cortex (V1) to a CNN
by studying the differences in how neurons are encoded
within their manifolds. To accomplish this, the authors
first employed TCA to obtain components which formed
a lower dimensional space. Then, this component space
was transformed into a manifold using the IAN similarity
kernel and diffusion maps. The authors claimed that their
analyses allowed them to organize neurons accounting for
both stimulus features and temporal response, rather than
the conventional approach of solely focusing on stimulus
selectivity. In essence, the authors highlighted the ability of
TCA to unlock an additional dimension, as well as provide
outputs that can be fed into further analyses for network
comparisons.

3 PROPOSED METHODOLOGY

Through tensor component analysis (TCA), we plan to
investigate how the internal representations of CL models
evolve as the models train on incoming tasks. As suggested
earlier, TCA unlocks an opportunity to ask questions
about learning patterns that might emerge in the temporal
dimension while looking at several inputs. The main
questions that we will explore in this investigation are:

• Are continual learning strategies able to elicit neuron
specialization as they encounter new tasks?

• How do convolutional filters and transformer features
shift over time when encountering new data in the
continual learning setting?

For this exploration, we plan to use combinations of several
CL strategies and model architectures. We look towards
insights provided by simple explainability techniques to
construct an understanding of continual learning dynamics.

3.1 Overview

Our proposed framework (see Figure 1) involves
sequentially training a model on a stream of curated
tasks (see Section 4) and analyzing its representations. To
achieve this, we adopt the following steps:

Saving Model Snapshots During the continual training
process, we periodically save snapshots of the model at

defined intervals. For all tasks, we save multiple snapshots
of the model while it is still learning the task, in order to
conduct within-task and across-task analyses.

Probing Model Snapshots Then, we probe each model
snapshot. This process involves feeding data to the
model and recording, for example, the activations from a
designated layer within the model. Activations represent
the outputs of a layer in response to the given inputs.
The neural activations collected during this process are
structured into a three-dimensional tensor. As we will later
elaborate, our analysis extends beyond neural activations.

Tensor Component Analysis Through tensor
decomposition, we hypothesize deriving interpretable
components. These components can, for instance, provide
descriptions of how specific neural activations evolve
throughout the learning process. Such analysis holds the
potential to offer valuable insights into how changes in
activations over time might correspond to the model’s
performance.

3.2 Problem Setup

We begin with the standard setup of a CL problem,
as described by Hess et al. (2023), where we assume
an incoming stream of classification tasks T =
{T1, T2, ..., Ti, ..., Tt}. Each task consists of a set of images
Xi with their corresponding class labels Yi. In the case
of a multi-head classifier, the model also has access to the
unique task identifier i. Section 4 discusses how we curate
our tasks to aid the analysis. For a chosen CL strategy,
we train a model fθ sequentially on these tasks. For the
purposes of a temporal analysis, we save a snapshot of
the model parameters θi,e at defined intervals, where i, e
refers to the parameters of a model learning a task Ti after
having completed training epoch e. For instance, if we
train a model for 50 epochs on each of 3 tasks and take
snapshots at a frequency of 10 epochs, we would obtain a
set of snapshots θ = {θ1,10, θ1,20, ..., θ3,40, θ3,50}.

3.3 Tensor Formulation Details

One way to probe a model snapshot θi,e is with an
input m to obtain network activations Ami,e from a
desired model layer. We can repeatedly probe that layer
with n different inputs, to obtain n different activations
Ai,e = {A1

i,e, A
2
i,e, ..., A

n
i,e}. If we flatten the neural

activations, we will obtain a two-dimensional matrix of
neural activations for multiple inputs. As shown in
Figure 1, by repeating this procedure for all available
model snapshots, we can build a three-dimensional tensor
containing the neural activations across time for several
inputs. Along one dimension of the tensor, one would
vary the model snapshot {i, e}, and along another one
would vary the input m. To gather neural activations for
this analysis, it is essential to feed meaningful input into
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Table 1: A Selection of Strategies Based on Parameter Importance

Approach Strategy + ER? Ref.

Baselines
Naive 7

Cumulative 7

Replay Experience Replay (ER) 7

Importance-Based
Regularization

Memory Aware Synapses (MAS) 3 Aljundi et al. (2018)
Elastic Weight Consolidation (EWC) 3 Kirkpatrick et al. (2017)
Synaptic Intelligence (SI) 3 Zenke et al. (2017)
Adaptive Group Sparse Regularization
(AGS-CL)

3 Jung et al. (2020)

Importance-Based
Subnetworking

Relevance Mapping Networks (RMN) 3 Kaushik et al. (2021)
Winning Subnetworks (WS) 3 Kang et al. (2022)

the model. Future sections discuss potential strategies for
selecting inputs. However, we emphasize that our analysis
extends beyond neural activations.

3.4 Tensor Component Analysis

TCA approximates a three-way tensorX as a sum of rank-1
tensors, where each rank-1 tensor is an outer product of
vectors. The three-way tensor can be expressed as follows
(Williams et al., 2018):

X̂ ≈
R∑
r=1

(ur ⊗ vr ⊗wr) (1)

In the formulation above, the vector ur might represent
patterns in neural activations, vr represents the inputs
corresponding to this activity, and wr represents the stages
of task learning where this activity is present. The rank
R, a hyperparameter for this technique, determines the
total number of components that approximate the original
tensor.

The optimization objective for TCA aims to minimize the
reconstruction error between the original tensor X and its
approximation X̂ , defined by the Frobenius norm:

minimize ||X − X̂||2F (2)

Additionally, the objective may be subject to
non-negativity constraints on the component vectors
ur, vr, and wr, i.e., all elements in these vectors are
non-negative.

We will select a low rank R with reasonable reconstruction
error, as described in Section 4.

3.5 Activation Tracking

Hypothesis 1: Does tracking neural activations throughout
a continual learning setting, which constrains parameter
changes based on an importance measure, reveal
specialized classes of neurons?

Importance-based methods for CL, such as Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017), measure
the importance of each parameter for a particular task
and discourage certain parameters from significant changes
throughout training or find meaningful masks for specific
tasks. In our experiments, we investigate whether these
strategies ultimately result in the emergence of sets of
neurons that exhibit specialization for particular tasks. To
explore this, we build a tensor with dimensions: [flattened
neural activations] x [representative input(s) corresponding
to dataset classes] x [model snapshot (time)]. We propose
to conduct TCA on this tensor, thus expecting to capture
patterns in neural activation of all the selected classes in a
dataset across time.

In order to select the representative input(s) per class
for which we will capture neural activations, we will
experiment with the following approaches:

Random Sampling We will randomly select 20 images per
class from the test dataset as the class representative inputs.

Maximally Activating Example We will search the test
dataset for an image that maximally activates the desired
class in the final model snapshot associated with the task
that includes the class. For instance, if class 8 is a part of
task Tt trained over e epochs, we would seek the test image
that maximally activates the probability of class 8 in the
model snapshot θt,e.

Class Optimized Image We will optimize an image for
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a fixed number of iterations, such that the resulting image
maximizes the probability of a particular class, as described
by Olah et al. (2017) for convolutional neural networks
(CNNs).

When examining a TCA component, we hypothesize that
specialization would be identified as a cluster of neurons
characterized by greater activations. These activations
would be associated with a segment of the temporal factors
and one or few distinct inputs. This would indicate
that certain neurons exhibited heightened activity during
particular learning stages when the model was exposed to
specific inputs.

3.6 Filter Evolution

Hypothesis 2: Do CNN filters or transformer features
within the same layer demonstrate equal levels of activity in
their evolution throughout the continual learning process?

In this experiment, we wish to understand how individual
CNN filters and transformer features for a chosen
layer evolve across the training regime. We ask
if certain filters/features update earlier in the training
regime and others update later or if filters/features are
constantly changing. Specifically, do importance-based
methods induce a markedly distinct updating pattern when
compared to a purely replay-based approach or a baseline
approach? Here, we build our tensor using dimensions:
[flattened optimized image] x [filters/features] x [model
snapshot (time)].

In contrast to the previous tensor formulation, this analysis
will not be conducted for any specific class. Instead of
examining multiple classes, we will focus on studying all
the filters or features within a selected layer of the model.
Additionally, rather than relying on neural activations, our
approach involves utilizing optimized images specifically
designed for each filter (in the case of CNNs) or feature
(in the case of transformers) within a given layer. This
optimization process is akin to the method of generating
images that maximally activate a target class. In our
case, we optimize images to achieve maximum activation
for a chosen filter or feature within a model layer. This
optimization procedure is inspired by the work of Olah
et al. (2017) for CNN architectures and Ghiasi et al. (2022)
for transformer architectures.

In this experiment, we may observe a scenario where a
specific component exhibits the following characteristics:
it selects one particular filter in the filter factors,
corresponds to a particular segment in the temporal factors,
and encompasses a subset of pixels within the ’flattened
image’ factors. Such a result could imply that this specific
filter became actively engaged after learning a certain task.
The temporal factors would indicate when it became active,
the filter factors would specify which filter was active, and

the flattened image factors would reveal which region was
active during this process.

4 EXPERIMENTAL PROTOCOL

Datasets We propose to run our experiments on the
following classification datasets: (i) SplitMNIST, (ii)
SplitCIFAR10, (iii) SplitCIFAR100, and (iv) twenty
CIFAR100 superclasses (Ramasesh et al., 2020). The
proposed settings cover a variety of task complexities.
Across all comparable experiments, the dataset splits and
task orders will be consistent to ensure a fair comparison.

Task Generation and Order Influenced by the approach
of Ramasesh et al. (2020) and Zhang et al. (2022), we wish
to apply our framework in a controlled setting by curating
the order of tasks. Since we are interested in studying how
learned features evolve, we propose that the initial task
be large enough to learn rich features. We hypothesize
that smaller initial tasks lead to poor initial model
representations, making it difficult to draw meaningful
conclusions. For instance, using Split-CIFAR10, the
initial task may consist of the following four classes:
airplane, automobile, cat, and horse, allowing the model
to ‘generalize.’ We can then curate the next task to either
be a two-way classification between deer/dog (animal)
or truck/ship (vehicle). We can conduct a similar task
curation for SplitMNIST and SplitCIFAR. In order to
meaningfully curate these tasks, we propose generating
t-SNE embeddings of the datasets, providing us with a
coarse understanding of which classes might share features.
Then, for instance, we can select dissimilar classes to
consist the initial task and experiment with the remaining
classes for the next tasks.

Strategies To study how various CL strategies affect
model weights, this work will focus on the strategies
outlined in Table 1. The selected strategies all exploit
parameter importance to improve incremental learning,
likely being an interesting class of strategies to study for
our hypotheses. The final column describes whether there
will be an additional variant of the strategy where it is
combined with experience replay. We expect to finalize
precise hyperparameters through a rigorous grid search.

Model Architectures We aim to study three
architectures, selecting variants with a similar number
of parameters: (i) ResNet-50 (23M parameters) (He
et al., 2016), (ii) ViT-S/16 (22M parameters) (Dosovitskiy
et al., 2020), and (iii) Convolutional vision Transformer
(CvT)-13 (20M parameters) (Wu et al., 2021). For
the experiments outlined in Sections 3.5 and 3.6, we
will use multi-head models and provide task identities
during the inference phase. We will train all models with
the Adam optimizer using a batch size of 128 images
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and a fixed learning rate, which will be determined for
each architecture by tracking the most accurate model
on the validation sets of the scenarios. We expect to
train models for a varying number of epochs depending
on the architecture and the dataset (e.g. 30 epochs
for SplitMNIST, 100 epochs for SplitCIFAR-100 with
ResNet-50). However, we will ensure model training
parameters (e.g. learning rate, number of epochs) are
constant across strategies when comparing experimental
results. Hyperparameters will be chosen such that the
average task accuracies are within a comparable range
(e.g. within 3%). We will equivalently seed models to
ensure they are initialized with the same weights.

Hyperparameter Selection Experiments We plan
to conduct extensive grid search experiments for
hyperparameter selection, similar to those conducted
by van de Ven et al. (2022), to ensure that the selected
hyperparameters for the main experiments result in models
with comparable performance across tasks. The primary
focus of this work is to explore how internal representations
are affected by the choice of continual learning strategy.
Therefore, we will minimize explorations on the effects
of various hyperparameters, instead aiming to pick a fair
set of hyperparameters that will ensure reasonable and
comparable model performance for a given architecture
and dataset across continual learning strategies.

TCA Model Optimization We will explore fitting our
TCA models with the nonnegative hierarchical alternating
least squares (HALS) (Cichocki et al., 2007) and
nonnegative block coordinate descent (BCD) algorithms
(Lee and Seung, 2000), with the expectation to select
the optimization algorithm that obtains the lowest minima
solution for each experiment. We will remain consistent
on our selection for a given architecture and dataset. We
expect the nonnegative variant of TCA to provide the most
interpretable results.

TCA Rank Selection Adopting from how McGuire et al.
(2022) utilized TCA, for each experiment, we plan to fit
TCA models across a range of ranks (e.g., 1-20) and plot
the errors. We will empirically determine a narrower range
of ranks where the “elbow” in the plot lies, essentially
looking for the lowest number of ranks that provide
reasonable error. For each rank within the determined
“elbow-range”, we will fit 10 TCA models and compare
the similarities between the components returned. For the
final results, we will select the lowest rank that consistently
returns a high similarity (above 0.8) (Williams et al., 2018).

Evaluation and Metrics For all experiments, we plan
to report the average of the final classification accuracy
and backward transfer, as defined by Kang et al. (2022).
We recognize that our framework is skewed towards an

empirical analysis, as we expect to extract activation
and filter update patterns from plotting the resulting
components after a tensor decomposition. Given that
our hypotheses seek some level of specialization within
the model, we propose to run masking experiments and
measure the change in final accuracy to validate our
findings from the TCA models. To elaborate, we can
randomly mask certain filters in a CNN layer and measure
the change in output accuracy. If our analysis reveals
that specific filters hold significance for a particular class,
the subsequent masking experiment could quantify the
practical usefulness of our observation.

To compare the components from two TCA models, we
will utilize the similarity score proposed in (Williams et al.,
2018), which first solves an assignment problem to match
components between two models and finds the ‘optimal’
permutation of components. Then, it computes the dot
product between the matched components and returns the
mean as a similarity score.

5 CONCLUSION

Our deliberate choice to work with importance-based
strategies stems from their explicit goal to encourage
specialization, such that certain model parameters establish
greater importance for certain tasks. Our analysis is
centered on the determining whether we are able to track
this type of specialization to mechanistically understand
if importance-based methods operate in the intended way.
We believe specialization in CL is crucial because it
encourages an efficient use of predefined resources as the
model learns to allocate parameters to accommodate new
tasks. By identifying meaningful behavior of existing
methods through this analysis, we wish to pave the way to
improve importance-based methods or discover the need to
seek a different angle of attack to elicit specialization. Our
work aims to find effective strategies for CL and resource
allocation in machine learning models.
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