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Abstract

ImageNet-1K linear-probe transfer accuracy remains the default proxy for visual
representation quality, yet it no longer predicts performance on scientific imagery.
Across 46 modern vision transformer checkpoints, ImageNet top-1 accuracy ex-
plains only 34% of variance on ecology tasks and mis-ranks 30% of models above
75% accuracy. We present BioBench, an open ecology vision benchmark that
captures what ImageNet misses. BioBench unifies 9 publicly released, application-
driven tasks, 4 taxonomic kingdoms, and 6 acquisition modalities (drone RGB,
web video, micrographs, in-situ and specimen photos, camera-trap frames), totaling
3.1M images. A single Python API downloads data, fits lightweight classifiers to
frozen backbones, and reports class-balanced macro-F1 (plus domain metrics for
FishNet and FungiCLEF); ViT-L models evaluate in 6 hours on an A6000 GPU.
BioBench provides new signal for computer vision in ecology and a template recipe
for building reliable Al-for-science benchmarks in any domain. Code and predic-
tions are available at |github.com/samuelstevens/biobench|and a results website is
at'samuelstevens.me/biobench .

1 Introduction

Machine learning now drives everything from protein structure prediction to planetary-scale bio-
diversity surveys, yet progress depends on benchmarks that tell us which models to trust. Vision
research still orients around ImageNet-1K, MS COCO, and ADE20K [8, [18, 35]], and state-of-the-art
claims like vision transformers [9], self-supervised pre-training [[19] or image-text pre-training [20]
are routinely justified by gains on those leaderboards.

Scientific images, however, are not web photographs. Radiographs and histopathology slides em-
phasize internal or cellular structure [32]; microbiology depends on high-magnification micrographs
of microorganisms [21]]; and ecology relies on camera-trap or specimen imagery in uncontrolled
environments [25, 28]]. These sources differ in content, scale, and acquisition method from the
datasets that govern general computer vision progress.

The mismatch is not merely cosmetic. Across three publicly released ecology tasks (long-tail
species ID [12], drone-video behaviour recognition [16], and specimen trait inference [14]]) we
measure Spearman’s rank correlation coefficient p between ImageNet-1K top-1 accuracy and task
accuracy for 46 modern computer vision checkpoints spanning supervised [29], self-supervised [19],
and image—text [[11}, 20} [34] pre-training objectives. Once models surpass the now-common 75%
ImageNet threshold, Spearman’s rank correlation p falls below 0.25 (see Fig. [T). Generic benchmark
accuracy, long used as a barometer of visual understanding, stops predicting performance on the
scientific tasks we measure once models clear the 75% ImageNet top-1 threshold. Other work hints
that the same “ranking cliff”” afflicts other real-world tasks such as [10} 27]. Because ecological
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Figure 1: Predictive validity of ImageNet-1K accuracy across (a) species classification of plants
[Herbarium19, 23]], (b) species classification of animals in camera trap images [iWildcam, |3} [17]]
and (c) individual identification of beluga whales [Beluga, |1} 5] measured with Spearman’s rank
correlation coefficient p between ImageNet-1K and task rankings, computed across all checkpoints
with ImageNet Top-1 accuracy > T'% (x-axis). Shaded region shows 95% bootstrapped confidence
intervals. ImageNet-1K fails to predict model rankings on specific tasks as models improve.

domains offer both scientific diversity and abundant open data, they provide an ideal testbed to
systematically investigate how benchmark predictivity fails under realistic distributional shift.

ImageNet fails for two intertwined reasons. First, distribution mismatch: its RGB web photos share
neither spectrum nor noise with camera-trap infrared, multi-spectral drone passes, or microscope
slides, so models optimized for ImageNet seldom work for scientific imagery. Second, scientific
tasks are fine-grained and long-tailed: ecologists distinguish thousands of insect species, pathologists
dozens of rare tumor sub-types; ImageNet’s 1,000 classes contain few such subtle distinctions and
are heavily skewed toward frequent objects. Together these gaps explain why increasing ImageNet
accuracy ceases to improve performance once models venture into application-driven tasks [22].

The obvious remedy is to benchmark models on the applications themselves. When tasks are drawn
directly from practice, their image distributions align by construction, their labels inherit the domain’s
natural granularity, and their objectives mirror the questions scientists actually ask. Many fields
still lack shared datasets of this sort, but ecology is an exception: years of CV4Ecology challenges
have produced public tasks for species identification, behavior recognition, and trait inference. By
consolidating these efforts into a single suite we can test whether application-driven benchmarks
restore predictive power and provide a template for other scientific domains.

Why, then, has no unified benchmark appeared? Because three hurdles discouraged even the most
committed researchers. First, fragmentation: every ecology dataset shipped in its own repository
with idiosyncratic file trees, splits, and metric scripts. Second, perceived sufficiency: most vision
researchers assumed that strong ImageNet accuracy, averaged over scattered per-task leaderboards, al-
ready served as an adequate proxy, so consolidating tasks seemed low-yield. Finally, non-overlapping
waves of progress: benchmarks surfaced one at a time; every release compared against the “best”
backbone of that moment and the authors’ favorite tricks. Because checkpoints, hyper-parameters,
and evaluation scripts kept changing, nobody could tell whether any single model genuinely excelled
across camera traps, drone footage, and specimen photographs simultaneously.

We therefore introduce BioBench, a domain-grounded vision benchmark of 9 application-driven
tasks that span 4 taxonomic kingdoms (animals, plants, fungi, and protozoa) captured from 6 distinct
image distributions: drone footage, curated web video, microscope micrographs, in-situ RGB photos,
RGB specimen images, and camera-trap frames (see Section [2]and Table [I] for more details). The
corpus contains 3.1M images (337 GB). Evaluation reports macro-F1 for every task, with two tasks
(FungiCLEF and FishNet) scored by their domain-standard metrics. Each dataset downloads via a
single-file Python script (fully documented). Evaluation parallelizes across SLURM clusters or runs
on a single GPU; ViT-B/16 and ViT-L/14 checkpoints finish in about one hour on an NVIDIA A6000,
with larger models scaling predictably.

A linear fit over 46 pre-trained vision checkpoints underscores the need for new benchmarks. Across
all checkpoints, ImageNet explains only one-third of BioBench variance (R? = 0.34) and agrees in
rank just p = 0.55, meaning the ImageNet-preferred model is actually worse on BioBench roughly
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Figure 2: Left (a-c): Random example images from ImageNet-1K, MSCOCO and ADE20K, three
popular general-domain vision benchmarks [8, [18,[35]. Right (d-1): Random example images from
each of the nine tasks in BioBench. Tasks in BioBench have radically different image distributions
compared to general-domain vision benchmarks.

22% of the timeﬂ The mismatch widens at the frontier: among models above 75% on ImageNet, rank
concordance drops to p = 0.42, so the supposed “best” model is mis-ranked 30% of the timeEl These
numbers make one conclusion unavoidable: web-photo leaderboards have ceased to be a trustworthy
proxy for progress in scientific AIl. BioBench stands as a proof-of-concept, showing how domain
workflows, long-tail metrics, and modality stress tests can be distilled into a single, open benchmark,
and points the way toward equally realistic suites for medicine, manufacturing, and every other
data-rich science.

2 Benchmark Suite & Protocol

An effective ecological vision benchmark must address fundamental limitations in existing evaluation
frameworks. First, it requires diversity across multiple dimensions: taxonomic breadth spanning
microorganisms to mammals; varied image regimes from microscopy to camera traps; task diversity
beyond simple classification; and natural class imbalances reflecting real-world species distributions.
Second, it must balance proxy-driven tasks (measuring general capability) with mission-driven tasks
(assessing operational utility for conservation applications). Third, it must provide rigorous statistical
tools (confidence intervals, significance testing, and rank stability analysis) to distinguish genuine
performance differences from benchmark lottery effects.

Neither ImageNet-1K [[8]] nor iNat2021 [26] satisfies these requirements.

ImageNet lacks ecological diversity, while iNat2021 offers taxonomic breadth but limited task variety
and no mission-driven evaluation. Most critically, our analysis reveals that once models exceed
75% accuracy on ImageNet, the benchmark loses predictive power for ecological performance
(p drops from 0.82 to 0.55), rendering it insufficient as a proxy for ecological vision capability.
BioBench addresses these limitations through a minimal embedding interface that dramatically
reduces integration overhead while providing comprehensive coverage across the ecological axes that
matter most.

Tasks. BioBench consolidates 9 public, application-driven tasks spanning 4 kingdoms (animals,
plants, fungi, protists) and 6 image regimes (camera-trap RGB/IR, drone video frames, museum

' R? has a 95% confidence interval of [0.20, 0.58]; p has a 95% confidence interval of [0.45, 0.64]; both are
significant with p < 0.0005 via 5,000-perm randomization. Mis-ranking probability is %( 1—p).

2p for > 75% has a 95% confidence interval of [0.15, 0.65] and is significant with p < 0.01 via 5,000-perm
randomization.



Table 1: Datasets across key dimensions that distinguish general computer vision benchmarks
from ecological vision tasks. *Mission tasks serve a specific ecological application (v') rather
than a general benchmark purpose (X). TContext indicates whether images show organisms in
their natural environment (in-situ) or as preserved specimens. “Target” indicates the classification
target. Takeaway: ImageNet-1K fundamentally differs from other ecological tasks because it is
taxonomically unrestricted and web-scraped rather than scientifically curated.

Name Mission?* Taxon Source Context' Target
ImageNet-1K X - Web-scraped - Object
iNat2021 X Diverse Citizen science In-situ Species
NeWT X Diverse Citizen science In-situ Varied
BelugalD v D. leucas Citizen science In-situ Individuals
FishNet X Fish Natural collections  Specimen  Functional Traits
FungiCLEF X Fungi Citizen science In-situ Species
Herbarium19 v Plants Natural collections  Specimen Species
iWildCam21 v Mammals  Research studies In-situ Species
KABR v Mammals Research study In-situ Behaviors
MammalNet X Mammals Web-scraped In-situ Behaviors
Plankton v Protists Research study In-situ Species
Pl@ntNet X Plants Citizen science In-situ Species

specimens, in-situ macro, web video, micrographs), totaling 3.1M images. Tasks cover species ID,
individual re-ID, behavior classification, and functional trait prediction. Example images are in Fig. 2]
and task summaries are in Table[Il

Implementation. Models implement one contract f : image — R? (frozen embeddings). We fit linear
or logistic probes per task, report macro-F1 by default (FishNet and FungiCLEF use task-specific
metrics), and bootstrap confidence intervals.

Design Goals. Embrace distributional diversity, evaluate long-tail class balance explicitly, and isolate
representation quality from task-specific engineering via a uniform probing protocol.

3 Benchmark Results

We evaluate 46 pre-trained vision models across 11 model families on BioBench. We use a single
Nvidia A6000 GPUs to evaluate all models; we will release both the individual model predictions
and the aggregate statistics upon acceptance. The results for each model family’s top checkpoint are
in Table 2} results for all checkpoints are publicly available at samstevens.me/biobench. Our analysis
throughout this work considers all checkpoints.

Across 46 checkpoints, ImageNet-1K top-1 accuracy explains only R? = 0.34 of BioBench variance;
rank concordance is p = 0.55 overall and drops further above 75% ImageNet (Fig. [I). Thus, the
ImageNet-preferred model is worse on BioBench roughly 30% of the time at the frontier.

We measure progress over BioBench over time in Fig. [3} despite general performance claims from
many released generalist models, only CLIP [20], SigLIP [34] and SigLIP 2 [24] set new state-of-the-
art scores on BioBench.

4 Related Work

General-domain benchmarks (ImageNet, COCO, ADE20K) catalyzed vision progress but are fragile
under distribution shift and long-tail structure. Transfer suites such as VTAB and Taskonomy assess
representation reuse but contain little ecological content. Transfer suites such as VTAB [spans 19
tasks across diverse domains 33]] or Taskonomy [26 visual tasks [31]] assess representation reuse
across domains. However, these benchmarks include minimal ecological content and fail to capture
the specific challenges of biodiversity monitoring: fine-grained taxonomic distinctions, extreme
environmental variability, and long-tailed species distributions.
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Table 2: An overview of each model family’s top-performing model on ImageNet-1K, NeWT and all
tasks in BioBench. State-of-the-art results for each task, along with their source, are reported at the
bottom. “-” indicates no published state-of-the-art result. Mean is across all tasks in BioBench (not
ImageNet-1K or NeWT). "Micro-accuracy (SOTA), not macro-F1 (ours). *Macro-accuracy (SOTA),
not macro-F1 (ours).
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CLIP ViT-L/14 336 839 83.6 2.8 644 27.7 53.6 232 522 62.8 3.7 404 36.7
SigLIP SO400M/14 384 87.8 86.0 4.0 69.0 38.6 63.7 257 593 66.3 4.0 474 420
SigLIP2  ViT-1B/16 384 889 86.7 3.6 70.7 39.0 652 29.3 584 739 4.0 47.9 43.5
DINOv2  ViT-g/14 224 86.7 82.8 4.5 752 342 643 30.5 537 57.1 42 515 41.7

AIMv2 ViT-3B/14 448 86.7 84.0 1.7 59.2 344 483 20.5 589 68.8 4.0 36.7 36.9
SAM 2 Hiera Large 1024 339 642 3.1 458 16.1 127 54 385 337 32 95 187
V-JEPA ViT-H/16 224 49.0 68.0 9.2 50.7 20.8 134 6.0 474 382 32 17.5 229
BioCLIP  ViT-B/16 224 585 827 4.6 62.6 40.6 52.6 17.2 46.1 357 3.8 454 343
BioCLIP 2 ViT-L/14 224 80.0 89.1 3.0 71.8 51.0 73.1 24.7 48.0 464 3.9 53.8 41.7
BioTrove  ViT-B/16 224 453 829 3.7 59.7 41.6 470 11.1 373 30.0 3.8 48.1 31.4
MegaDesc. Swin-L/4 384 499 713 8.0 502 22.1 14.0 6.9 323 31.1 2.1 17.6 205

Random Prediction 0.1 50.0 0.1 479 139 0.1 05 125 83 21 0.1 95
Task-Specific State-of-the-Art 91.0 80.6 66.5 81.7 - T899 66.7 658 ¥37.8 - -
[Source] [30] [26] [4] [14] 23 @ (31 el

iNaturalist [26] provides fine-grained species classification but doesn’t incorporate temporal
behavior or ecological trait prediction. Pl@ntNet [12] focuses exclusively on plant identifi-
cation. WILDS [17] includes iWildCam [3] for camera trap imagery but treats ecological
monitoring as just one of many domains rather than exploring its multi-faceted challenges.
These isolated efforts highlight the critical need
for BioBench: conservation practitioners cur-
rently lack systematic guidance on which vision
architectures best transfer to the complex, inter- 0.40 -

connected tasks comprising ecological monitor- g
ing workflows. 8
= 0.357
Methodological work [7, [13] highlights the ¢
importance of consistent protocols—an ethos @ ]
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While we argue that BioBench meaningfully
Model Release

improves the state of ecological benchmarking
and offers lessons applicable to other scientific Figure 3: BioBench scores over time. The majority
domains, we have not explored every aspect. of new models fail to improve on BioBench.
Limited Scope. We focus on ecology; medicine

and manufacturing may emphasize different tasks (e.g., detection/segmentation, calibration). Frozen
features. Probing isolates representation quality but underestimates task-specific fine-tuning gains.
Metrics. Macro-F1 rewards tail performance; some applications prefer operating-point metrics (e.g.,
precision@recall).

BioBench shows that ImageNet-driven model choice is unreliable for scientific imagery and offers a
minimal, reproducible recipe to evaluate models where it matters. We hope BioBench serves both as a
practical guide for ecological workflows and as a template for building equally grounded benchmarks
in other sciences.
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