
Axial Neural Networks for Dimension-Free
Foundation Models

Hyunsu Kim†, Jonggeon Park†, Joan Bruna‡, Hongseok Yang†, Juho Lee†

†KAIST, ‡New York University,
{kim.hyunsu,parkjonggeon,hongseok.yang,juholee}@kaist.ac.kr

bruna@cims.nyu.edu

Abstract

The advent of foundation models in AI has significantly advanced general-purpose
learning, enabling remarkable capabilities in zero-shot inference and in-context
learning. However, training such models on physics data, including solutions to
partial differential equations (PDEs), poses a unique challenge due to varying di-
mensionalities across different systems. Traditional approaches either fix a max-
imum dimension or employ separate encoders for different dimensionalities, re-
sulting in inefficiencies. To address this, we propose a dimension-agnostic neural
network architecture, the Axial Neural Network (XNN), inspired by parameter-
sharing structures such as Deep Sets and Graph Neural Networks. XNN general-
izes across varying tensor dimensions while maintaining computational efficiency.
We convert existing PDE foundation models into axial neural networks and eval-
uate their performance across three training scenarios: training from scratch, pre-
training on multiple PDEs, and fine-tuning on a single PDE. Our experiments
show that XNNs perform competitively with original models and exhibit superior
generalization to unseen dimensions, highlighting the importance of multidimen-
sional pretraining for foundation models.

1 Introduction

The growing scale of deep learning models has led to the emergence of general-purpose AI systems,
often called foundation models. Trained over a large amount of unlabeled data with self supervi-
sion, these models have shown impressive generalization performance, enabling effective zero-shot
inference and in-context learning on a wide range of tasks. In practice, these models are further fine-
tuned or post-trained for particular target tasks, achieving performance superior to models trained
from scratch. A key requirement for developing highly-performing foundation models is the use of
vast and diverse training data. In fact, the relationship between a model’s performance and the scale
of data (and models) is known to follow a version of power law, called scaling law [22, 18, 4].

This paper is concerned with developing key techniques for building successful foundation mod-
els for physics data, such as climate time-series data and solutions of partial differential equa-
tions (PDEs). When training such a model, we often have to combine datasets from multiple sys-
tems or differential equations that operate on different dimensionalities. For instance, the Burgers
equation describing dissipative fluid flow is usually studied in one spatial dimension, whereas the
Navier–Stokes equations are studied in two or three dimensions. Since the solutions of these equa-
tions are typically represented as tensors whose elements are points in spatial and temporal grids,
different dimensionalities mean that those tensors storing solutions have different numbers of axes.

A straightforward way to address such mixed-dimensional scenarios is to fix a maximum dimen-
sion and either pad lower-dimensional inputs with zeros or build separate encoders for different
dimensions that share the same output space. However, both approaches are inefficient for low-

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

dimensional data and incapable of handling inputs whose dimension exceeds the fixed maximum.
Consequently, most of the prior works on PDEs have developed models tailored to a specific di-
mension (typically 2D) [17, 28, 35, 21]. Extending these models to other dimensions is nontriv-
ial. For instance, the commonly-used patchify operation, which applies 2D convolution to extract
16×16 patches for Transformer models [12], is inherently limited to 2D inputs. Although a patchify
operation can be designed for any specific dimension, a 2D patchifier is only applicable to 2D in-
puts; processing 1D or 3D data requires an entirely different set of parameters, as these models
lack an intrinsic parameter-sharing mechanism across dimensions. While recent work has proposed
dimension-agnostic methods based on neural processes [24] and multilayer perceptrons [25], these
methods still incur large computational costs: they either flatten high-dimensional data and pro-
cess long sequences, leading to expensive attention layers, or pre-compute dimension-equivariant
weights via singular-value decomposition, which becomes infeasible in high dimensions.

We propose an efficient, dimension-agnostic, and dimension-generalizable neural network by adopt-
ing the core principle of parameter-sharing from permutation-equivariant architectures such as Deep
Sets [38] and Graph Neural Networks [32, 15, 30], closely related to De Finetti’s theorem [11, 38, 3].
Our architecture achieves permutation equivariance over tensor axes. Concretely, we treat the axes
of a tensor as elements of a set and introduce a permutation-equivariant architecture which we refer
to as the Axial Neural Network (XNN). Although such set-based XNN is simple and computation-
ally efficient, we find it inherently less expressive, and thus further propose an advanced version
termed graph-based XNN, which captures relationships among axes by treating the axes of a tensor
as vertices of a graph. Finally, we introduce a dimension-agnostic PDE foundational model trained
and evaluated on PDEs of varying dimensionality within a single model. Crucially, and in contrast to
traditional patchify operations, an XNN-based patchify operation leverages this parameter sharing
to make it applicable to inputs of any dimension without modification.

To demonstrate the expressivity and benefits of multidimensional pretraining, we convert existing
PDE foundation models [28, 35] to the variants based on our XNNs. We evaluate the resulting mod-
els in three different settings: training a single PDE from scratch, pretraining with multiple PDEs,
and fine-tuning on a single PDE. We show that our variants perform competitively with their origi-
nal counterparts. We also conduct experiments to demonstrate the unseen-dimension generalization
ability of XNNs, which plays an important role in such a dimension-agnostic strategy. Our XNN
architecture shows better performance in unseen dimension fine-tuning, which underscores the ne-
cessity of multidimensional pretraining for foundation models. The implemented architectures are
summarized in https://github.com/kim-hyunsu/XNN.

2 Backgrounds

2.1 Graph Neural Networks and Deep Sets

A Graph Neural Network (GNN) is a deep neural network designed to process and make pre-
dictions on data represented as a graph [30, 41]. GNNs are characterized by a message-passing
mechanism, in which information is exchanged between nodes through their connections, called
edges. Formally, given the feature vector xa of node a, its hidden representation ha is computed as

ha = ϕ

(
xa,

⊕
b∈ngbr(a)

ψ(xa,xb, eab)

)
, (1)

where ϕ and ψ are neural networks with parameters shared across all nodes,
⊕

denotes a
permutation-invariant aggregation operation, ngbr(a) is the set of neighbors of node a, and eab
is the edge feature between nodes a and b. The critical architectural feature of a GNN is that the
parameters of ϕ and ψ are shared across all nodes in the graph. This means the exact same functions
are used to update each node’s representation based on its local neighborhood.

This parameter-sharing structure is the fundamental reason GNNs are permutation-equivariant: per-
muting the input nodes simply changes the order of identical operations, leading to a corresponding
permutation in the output. This symmetry is therefore structurally embedded in the model design,
allowing the GNN to generalize across graphs of different sizes and structures.

A Deep Set is a neural network for set-structured data [38] and can be viewed as a special case
of GNNs in which every node is equally connected to every other node. They can therefore be

2

https://github.com/kim-hyunsu/XNN

expressed by the following simplification of Eq. 1:

h = ϕ

(K∑
i=1

ψ(xi)

)
, (2)

where K is the number of elements in the set. Similar to GNNs, the design relies on parameter
sharing: the same function ψ is applied to every element xi before a permutation-invariant aggre-
gation (summation or maximum) is performed. This shared application of ψ ensures the model is
permutation-invariant by construction.

2.2 Transpose and Axis-Permutation Equivariance

The transpose of a matrix flips the matrix over its diagonal, and the transpose of a tensor swaps two
axis indices. Exchanging axes i, j ∈ [1,K] of a rank-K tensor x = (xd1···dK

)d1,...,dk
yields

x
⊤ij

d1···di···dj ···dK
:= xd1···dj ···di···dK

, (3)

where ⊤ij denotes the transpose between axes i and j. An axis permutation is obtained by cumula-
tive transposes, corresponding to reordering the axes. For a rank-4 tensor x, for example,

Π(x)d1d2d3d4
= x dπ(1) dπ(2) dπ(3) dπ(4)

= xd3d2d4d1
, (4)

where π is the permutation associated with Π.

Equivariance is the property that a function commutes with the action of a symmetry group G. If X
and Y are acted on by ρX (g) and ρY(g) for each group element g ∈ G, respectively, then ϕ : X →Y
is G-equivariant when

ϕ
(
ρX (g)x

)
= ρY(g)ϕ(x), ∀g ∈ G. (5)

Let Π be the group of all axis permutations of a rank-K tensor. A mapping ϕ is axis-permutation
equivariant if

ϕ
(
Π(x)

)
= Π

(
ϕ(x)

)
, ∀Π ∈ Π, (6)

i.e., permuting the input axes and then applying ϕ produces the same result as applying ϕ first and
then permuting the output.

2.3 Cycle Notation for Axes Permutation

To express the reordering of axes throughout this paper, we require a precise notation for permuta-
tions. A permutation is formally defined as a bijection (a one-to-one mapping) from a set onto itself.
In our context, the set consists of axis indices, such as {H,W,D} for x ∈ RH×W×D.

First, we review the standard cycle notation common in algebra. This notation uses parentheses () to
group elements into disjoint cycles that show the path each element follows under the permutation.
An element within a cycle is mapped to the element immediately following it. The last element in a
cycle is mapped back to the first, completing the loop.

For example, consider permutations on the set of three axis indices {1, 2, 3}:

• A permutation that maps 1 → 3, 3 → 2, and 2 → 1 is written as the single cycle (1 3 2).

• A permutation that maps 1 → 3, 3 → 1, and leaves 2 unchanged, 2 → 2, is written as
(1 3). The element 2 is a fixed point.

Adopting this cycle notation, we define the transformation Ti1i2...in as the permutation that maps
the original ordered set of axes d1×d2×· · ·×dn to the new ordered arrangement di1×di2×· · ·×din .
For example,

y = T132(x), y ∈ RW×D×H , x ∈ RH×W×D,

y′ = T13(x), y′ ∈ RD×W×H , x ∈ RH×W×D.
(7)

3

3 Axial Neural Networks

We draw inspiration from permutation-equivariant architectures such as Deep Sets [38] and GNNs,
which process set or graph data with a variable number of elements. A key advantage of these
models is their ability to handle inputs of varying sizes by sharing the same parameters across all
elements. We apply this core idea to the axes of a tensor, proposing a neural network that can process
input tensors of varying dimensions using a single set of parameters.

To this end, we introduce a new type of neural network, the Axial Neural Network (XNN), which is
equivariant to permutations of a tensor’s axes. It achieves this by applying an identical transforma-
tion with a shared set of parameters to each axis, thereby treating them as interchangeable elements,
similar to the elements of a set or the vertices of a graph. We propose two variants: the set-based
XNN and the graph-based XNN.

3.1 Set-Based Axial Neural Networks

Set-based Axial Neural Networks (SXNNs) are inspired by Deep Sets [38]. They treat the input as
the set of all possible axis permutations of a given tensor. Specifically,

Rank 1 : {x}, Rank 3 : {Π0(x),Π1(x),Π2(x),Π3(x),Π4(x),Π5(x)},
Rank 2 : {Π0(x),Π1(x)}, Rank K : {Π0(x),Π1(x), . . . ,ΠK!−1(x)},

(8)

where Π0(x) = x. A Deep-Set style aggregation as in Eq. 2 is then applied:

y = ϕ

(⊕
Π∈Π

Π−1
(
ψ(Π(x))

))
, (9)

with neural networks ϕ, ψ, permutation-invariant aggregation
⊕

(e.g. sum, mean, or max), and
inverse permutation Π−1.
Theorem 3.1. Let ϕ be an axis-permutation equivariant function (e.g., another SXNN or point-
wise operation). The SXNN in Eq. 9 is axis-permutation equivariant for any rank-K tensor
x ∈ Rd1×d2×...×dK . (§ B.1 for proof)

Linear. For instance, a simple SXNN may use ϕ as the identity and ψ as a linear layer applied along
the last axis, followed by max-pooling over the remaining axes for matching the output size. For a
rank-3 tensor x ∈ RH×W×D, it is formalized by

y =

2∑
i=0

Π−1
i (Pool1,2 (Linear3 (Πi(x)))) , (10)

where Linear3 applies a linear layer along the third axis (D), Pool1,2 pools over the other two
axes (H and W), and they treat the remaining axis as batch dimensions. Note that only three
out of six permutations are required, since pooling is invariant to permutations across the pooled
dimensions, i.e. Pool(RH×W×D) = Pool(RW×H×D), which omits the redundant permutations. Note
also that pooling is equivalent to the approach commonly used in 3D inflation of 2D convolutional
layers [6, 28]. The transformation flow of the feature sizes in Eq. 10 is summarized as

H×W×D


Π0−−→ H×W×D

Linear3−−−−→ H×W×d Pool1,2−−−−→ h×w×d
Π−1

0−−−→
Π1−−→ D×H×W

Linear3−−−−→ D×H×d Pool1,2−−−−→ d×h×w
Π−1

1−−−→
Π2−−→W×D×H

Linear3−−−−→ W×D×h Pool1,2−−−−→ w×d×h
Π−1

2−−−→


⊕
−→ h×w×d,

where the bold letters indicate the axes that the operation is applied. This construction generalizes
to any rank-K tensor with (K − 1)-dimensional pooling as

(Linear) y =

K−1∑
i=0

Π−1
i (Pool1,...,K−1 (LinearK(Πi(x)))) . (11)

Instead of downsampling like pooling, we may use upsampling operations (e.g., resize) to expand
the tensor size if LinearK raises the output size.

4

H
H W

H

W D

H

W D

L

Figure 1: Axis Graphs.

(a) Lifting Layer (b) Subsequent Layers

Figure 2: Illustration of GXNN in 3D.

Convolution and Attention. For the convolutional layers, we assume the input tensor has an extra
channel dimension C, i.e., x ∈ RH×W×D×C . The axial convolution is still applied along the spatial
axesH,W,D. As in the linear case, we can construct the axial convolution using a 1D convolutional
layer and the axial self-attention layer applied over one axis. In attention layers, the output sequence
length matches the input, so it is unnecessary to apply a pooling or resizing to align output sizes.

(Conv)
K−1∑
i=0

Π−1
i (Pool1,...,K−1 (Conv1DK(Πi(x)))) , (Attn)

K−1∑
i=0

Π−1
i (SelfAttnK(Πi(x))) . (12)

Interestingly, the set-based axial attention is already used in a recent PDE foundation model [28]
for reducing the computational complexity of the Transformer. Splitting the operation across axes
reduces the attention overhead. For instance, self-attention over RH×W×D requires O((HWD)2)
complexity, whereas axial self-attention reduces this to O(H2 +W 2 +D2).

Non-linearity. ϕ and ψ in Eq. 9 can be arbitrary neural networks, including those with a single non-
linearity such as ReLU or Sigmoid. Therefore, using any type of pointwise operation (including
non-linearities) does not violate the axis-permutation equivariance of XNN.

Expressivity. Although SXNNs provide strong expressibility for the dimension-agnostic architec-
ture, their expressivity is inefficient due to their symmetric structure; i.e., they can universally ap-
proximate any dimension-agnostic function but require a relatively large width to achieve this. For
instance, consider a patch embedding for the Vision Transformer (ViT) [12] and we assume the
patch embedding uses a convolution layer with kernel size 2, stride size 2, and both input and output
channels are scalar-valued. In a conventional convolution, the operation on a 2×2 pixel patch (2D)
can be described as

Conv2D(x) :

[
a b
c d

]
∗
[
x1 x2
x3 x4

]
= ax1 + bx2 + cx3 + dx4, (13)

where ∗ denotes convolution, the first matrix is the kernel, and the second is a 2×2 patch from the
input image. On the other hand, the axial convolution in Eq. 12 with average pooling results in:

Conv1D(Π0(x)) :

[
a b
a b

]
∗
[
x1 x2
x3 x4

]
=

[
ax1 + bx2
ax3 + bx4

]
AvgPool−−−−−→ ax1+bx2+ax3+bx4

2

Conv1D(Π1(x)) :

[
a b
a b

]
∗
[
x1 x3
x2 x4

]
=

[
ax1 + bx3
ax2 + bx4

]
AvgPool−−−−−→ ax1+ax2+bx3+bx4

2


Σ−→ ax1 +

a+b
2 x2 +

a+b
2 x3 + bx4 =

[
a a+b

2
a+b
2

b

]
∗
[
x1 x2

x3 x4

]
, (14)

which shows that the axial convolution behaves like a convolution with a symmetric kernel. This
symmetric kernel structure limits expressivity efficiency, so increasing the number of output chan-
nels is often necessary to mitigate this limitation. To address this issue, we also introduce a different
type of XNN called the graph-based XNN, which avoids the constraint entirely.

3.2 Graph-Based Axial Neural Networks

SXNN produces outputs that are inefficient in terms of expressivity compared to the standard neural
networks, due to the simple aggregation

⊕
. To overcome this limitation, we can lift the input into

an axes-permutation equivariant space, a strategy widely used in the equivariant neural network
literature [8, 9, 36, 13], and aggregate them in the intermediate layers as in GNN.

Lifting Layer. We imagine an undirected graph over the axes such as Fig. 1. We now apply the
message-passing logic of GNNs as described in Eq. 1. Since the neighbors of d1 are d2, . . . , dK and

5

likewise for the other axes, we can informally express the update rule as

hdi
= ϕ

(
di,

K⊕
j=1

ψ(di, dj)

)
(15)

where ⊕ denotes an arithmetic form of the permutation-invariant operator
⊕

and d1, d2, . . . , dK
are used as a conceptual feature representing each axis. The functions ϕ and ψ can be chosen based
on the architecture or task. Although Eq. 15 follows parameter-sharing principles and permutation
equivariance, in practice, we have to modify it to match the axes order after the aggregation ⊕.

For example, in the case of convolutional layers, let x ∈ RH×W×D×C , where C is the number of
channels. We can define ϕ as the identity function that returns the second argument (i.e. ϕ(A,B) =
B) and ψ(H,W) as a Conv2D applied over axes H and W with the pooling layer at the end for
matching the tensor sizes. We omit ψ(H,H) as it is nontrivial, and the absence of it does not violate
the axis permutation equivariance. When the indices of {H,W,D} are {1, 2, 3}, Eq. 15 becomes

hH = T13T−1
13 Pool1 Conv2D2,3 T13(x) + T13T−1

132 Pool1 Conv2D2,3 T132(x),

hW = T23T−1
23 Pool1 Conv2D2,3 T23(x) + T23T−1

123 Pool1 Conv2D2,3 T123(x),

hD = T33 Pool1 Conv2D2,3(x) + T33T−1
12 Pool1 Conv2D2,3 T12(x),

(16)

where Tijk denotes reordering axes 1, 2, 3 to i, j, k as explained in § 2.3. Of course, ϕ and ψ need
not be linear, and it can be a multilayer perceptron. The transformation flow of the feature sizes of
hH in Eq. 16 would be:

H×W×D

 T13−−→ D×W×H
Conv2D2,3−−−−−−→ D×w×h Pool1−−−→ d×w×h

T13T−1
13−−−−→

T132−−−→W×D×H
Conv2D2,3−−−−−−→ W×d×h Pool1−−−→ w×d×h

T13T−1
132−−−−−→

 +−→ d×w×h = hH .

Here the channel axis C is omitted for simplicity. A CNN example is also illustrated in Fig. 2a.

For 1D and 2D cases, Eq. 15 reduces to generating the corresponding number of outputs.

(1D) hH = ϕ (H,ψ(H,H)) , (2D) hH = ϕ (H,ψ(H,H)⊕ ψ(H,W)) ,

hW = ϕ (W,ψ(W,W)⊕ ψ(W,H)) .
(17)

The 1D case does not consider interaction with the other nodes and ψ(H,H) is still nontrivial.
Thus, instead of determining ψ(H,H), we omit the self-edge term ψ(H,H) or ψ(W,W) but rather
augment a 1D tensor to a 2D tensor to fully utilize Conv2D. Possible augmentations include the
outer product, repetition, and the diagonal matrix. We adopt repetition, which repeats the 1D tensor
along a new axis to match the kernel size of Conv2D, and then averages it after lifting to recover the
original 1D tensor.

Generalization of the Lifting layers, Eq. 16, to rank-K tensor is described as

hdi
= ϕ

(
T(i)(K)(x),

K⊕
j ̸=i

T(i)(K)T
−1
(j)(K−1)(i)(K)ψ

(
T(j)(K−1)(i)(K)(x)

))
, K > 1, (18)

where T(a)(b)(c)(d) = Tabcd.
Theorem 3.2. Under some assumptions, the lifting layer of GXNN, Eq. 18, is axis-permutation
equivariant for any rank-K (except K = 1) tensor x ∈ Rd1×d2×...×dK . (§ B.2 for assumptions and
proof)

Subsequent Layers. Unlike SXNN, which produces a single feature, we obtain three updated
features hH , hW , and hD in GXNN. Due to the lifting construction, these features are equivariant
with respect to permutations of the input axes. In other words, the permutation of input axes results
in the permutation of output features with rank 3. Therefore, the subsequent layers will be a GNN
whose input is a graph with nodes hH , hW , and hD as the third graph in Fig. 1:

h′
di

= ϕ

(
hdi

,

K⊕
j=1

ψ(hdi
,hdj

)

)
. (19)

6

(a) SXCNN (b) GXCNN

Figure 3: An example of SXNN and GXNN for CNN.

Therefore, the subsequent layers should also be dimension-agnostic message-passing architectures,
with the lifted features hH , hW , and hD as graph nodes. Eq. 19 also needs to be modified to match
the indices order in the aggregation.

For example, in the case of self-attention layers, we can define ϕ as a residual path, i.e.
ϕ(A,B(A)) = A + B(A), and ψ as a self-attention applied over the last axis of the second ten-
sor, i.e. ψ(A,B) = SelfAttnK(B). Then, as also described in Fig. 2b, the GNN in Eq. 19 becomes

h′
H = hH + T13T−1

13 SelfAttn3(hH) + T13T−1
23 SelfAttn3(hW) + T13T−1

33 SelfAttn3(hD),

h′
W = hW + T23T−1

13 SelfAttn3(hH) + T23T−1
23 SelfAttn3(hW) + T23T−1

33 SelfAttn3(hD),

h′
D = hD + T33T−1

13 SelfAttn3(hH) + T33T−1
23 SelfAttn3(hW) + T33T−1

33 SelfAttn3(hD), (20)

equivalent to

m = T−1
13 SelfAttn3(hH) + T−1

23 SelfAttn3(hW) + T−1
33 SelfAttn3(hD),

h′
H = hH + T13(m), h′

W = hW + T23(m), h′
D = hD + T33(m),

(21)

where Ts are used for aligning the axis order to match the axes in the aggregation. Similarly, the
Subsequent layers in Eq. 20 for a rank-K tensor can be written as

h′
di

= ϕ

(
hdi

,T(i)(K)

K⊕
j=1

T−1
(j)(K)ψ(hdj

)

)
. (22)

Theorem 3.3. Under some assumptions, the subsequent layers of GXNN in Eq. 22 are axis-
permutation equivariant for any rank-K tensor hdi ∈ Rd1×d2×...×dK . (§ B.3 for assumptions and
proof)

Pooling Layer. In typical CNNs such as ResNet [19], before computing the output logit values
using the linear head, global average pooling or global max pooling is applied over the height and
width of the features to aggregate spatial information. Likewise, in GXNN, we obtain K feature
tensors through the lifting layer and subsequent layers, and we need to aggregate these features to
merge information across axis permutations. Here is an example and its generalized form:

(rank 3) h′ = T−1
13 (h

′
H)⊕ T−1

23 (h
′
W)⊕ T−1

33 (h
′
D), (rank K) h′ =

K⊕
i=1

T−1
(i)(K)h

′
di
. (23)

The difference between SXNN and GXNN in a simple CNN architecture can be seen in Fig. 3.
SXCNN naturally satisfies the permutation equivariant structure by repeatedly stacking the same
layer. On the other hand, GXCNN requires a lifting layer at the beginning of the network and a
pooling layer at the end. In the middle, subsequent layers can be stacked repeatedly. Those XCNNs
with added nonlinearity and normalization layers are used in § 5.1.

7

3.3 Example: Dimension-Agnostic PDE Solver

One of the important applications is to solve PDEs. Solving PDEs with AI for reducing the cost
of numerical PDE solvers, which often requires supercomputers, is a rapidly rising field in modern
machine learning [1, 40, 31, 27]. Each PDE has different spatial dimensionality, and its solutions are
represented as a tensor whose elements are points in spatial and temporal grids. Although the neural
operator [23] has a crucial benefit in solving PDEs, ViT is still commonly used in PDE foundation
models due to its strong generalization. The model for Multiple Physics Pretraining (MPP) [28] is
one such model that serves powerful performance in multiple 2D PDE training.

We provide an example of a dimension-agnostic PDE solver by merging GXNN and MPP. MPP con-
sists of patch embedding, multiple attention layers, and patch de-embedding. The patch embedding
and patch de-embedding are CNNs. Thus, in the axial implementation, we use the patch embedding
as the lifting layer and the rest as the subsequent layers. The attention layers are the same as the
SelfAttn example described in Eq. 20, and the patch de-embedding is a convolution variant of it.
The details and illustrations of the example can be referred to in § A.

4 Related Work

Several studies have explored dimension-agnostic architectures. Levin and Díaz [25] proposed any-
dimensional equivariant neural networks that leverage representation stability from algebraic topol-
ogy, enabling models trained on fixed input dimensions to generalize to arbitrary sizes. Similarly,
Lee et al. [24] introduced dimension-agnostic neural processes, which incorporate a dimension ag-
gregator block to unify inputs of varying dimensions into a shared latent space. These approaches of-
fer strong potential for constructing flexible operators that scale beyond conventional grid-dependent
solvers. From a practical standpoint, multi-modal training, particularly joint training on images and
videos, has also been widely explored [10, 37, 14, 26, 7]. However, these methods typically treat
images as individual video frames and either introduce temporal attention layers or use separate
embedders for video, without adopting a truly dimension-agnostic approach.

5 Experiments

5.1 Toy Dataset: Gaussian Process Kernel Prediction

2D 3D 4D 5D
Dimensions

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

97.78

67.35 65.93 66.39

95.83

81.09

72.94

68.37

CNN 3D
XCNN

Figure 4: Accuracy on GP kernel
prediction.

To demonstrate the dimension-free training and inference ca-
pabilities of XNN, we construct a toy dataset of synthetic
Gaussian process (GP) data. The task is binary classification
between two kernels: radial basis function (RBF) and periodic,
given multi-dimensional data (2D, 3D, 4D, and 5D) randomly
sampled from the synthetic GP. We build two model to train it:
a CNN with 3D convolutions and an XCNN with graph-based
axial convolutions composed of 2D convolutions. Although
our architecture naturally supports multi-dimensional data, the
3D CNN is restricted to only 3D spatial inputs. Therefore, for
2D data, we pad with zeros to construct 3D-like inputs, and for
4D and 5D data, we flatten the last axes to obtain 3D shapes
(e.g., 5D: 16×16×16×16×16×C → 16×16×4096×C, where

C is the channel dimension). Further experimental details are provided in § D. As shown in Fig. 4,
XCNN built with 2D convolutions exhibits superior test accuracy across all dimensions. Notably,
despite using 3D convolutions, CNN-3D performs poorly on higher-dimensional data, including 3D,
highlighting the robustness of XNN’s dimension-agnostic design.

Comparison Between SXNN and GXNN. SXNN exhibits a trade-off between computational effi-
ciency and expressivity inefficiency as described in Eq. 13. To examine this and verify the necessity
of GXNN, we build a set-based axial CNN (SXCNN) composed of Conv1Ds and a graph-based
axial CNN (GXCNN) from the previous experiment. We then compare their number of parameters
(#Params), wall clock time (W. Clock) of forward computation, and inference performance (Acc.)
using the GP toy dataset. Table 1 shows the comparisons, where SXCNN-L is an enlarged version
of SXCNN for fair comparison with GXCNN. Note that SXCNN with the same depth and width as

8

Table 1: SXCNN vs. GXCNN.

SXCNN SXCNN-L GXCNN

Depth 4 5 4
Width 128 256 128

#Params 150K 791K 899K
W. Clock 80ms 98ms 101ms
2D Acc. 95.94 92.60 95.45
3D Acc. 63.68 85.72 79.85
4D Acc. 42.54 55.18 70.86
5D Acc. 62.09 62.64 70.48

Table 2: Test NRMSE of PDE solvers on 2D PDEs.

Model Pretrain FineTune DR NS SWE CFD M0.1 CFD M1.0

CViT × × 0.0389 0.1078† 0.1876† - -
X-CViT × × 0.0382 0.1148† 0.1948† - -

MPP × × 0.0157 - 0.0015 0.0132 0.0181
X-MPP × × 0.0118 - 0.0012 0.0118 0.0163

MPP 2D × 0.0447 0.0087 0.0404∗ 0.0499∗

MPP 1D,2D × 0.2183 - 0.0265 0.1881∗ 0.2199∗
X-MPP 1D,2D,3D × 0.0430 - 0.0086 0.0428∗ 0.0517∗

MPP 2D ✓ 0.0516 - 0.0022 0.0319∗ 0.0422∗
X-MPP 1D,2D,3D ✓ 0.0058 - 0.0011 0.0209∗ 0.0294∗

GXCNN has 6× fewer parameters and 80% reduced wall clock time, but its performance degrades
in high dimensions. After increasing the depth and width, it performs fairly well in high dimensions,
but GXCNN still exhibits superior performance, indicating the necessity of GXNN.

5.2 PDE Solver Foundation Models

In this experiment, we evaluate the effectiveness of XNN as an architecture for multi-dimensional
training. A compelling use case would be multi-PDE solution training, which involves different
PDEs with varying dimensionalities. We train PDE solver foundation models on the solutions of
time-homogeneous PDEs drawn from a variety of physical systems. The data are sourced from
widely used PDE solution benchmark datasets: PDEBench [33] and PDEArena [16]. The list of
PDEs and their details are provided in § E.

We implemented our architecture in two state-of-the-art PDE foundation model baselines: CViT [35]
and MPP [28]. Both are based on ViT [12], incorporating patch embedding and multiple attention
layers with some revisions optimized for PDE learning. Note that these baselines are designed only
for 2D data, as the 2D convolutional layer for patch embedding is dimension-dependent, though the
attention layers are not. We build their XNN variants, termed X-CViT and X-MPP, which include
axial linears, axial convolutions, and axial attentions. The specifications are detailed in § C.

Throughout the experiments, we followed the basic training procedures of baselines such as CViT
and MPP, which take a few timesteps as input and predict the next timestep of a PDE solution. We
set CViT, X-CViT to take s = 2 timesteps as input, and MPP, X-MPP to take s = 4, in contrast
to the original MPP paper, which used s = 16. We also replace InstanceNorm [34] of MPP by
LayerNorm [2] due to training instability observed on 1D and 3D data. The evaluation metric is the
Normalized Root Mean Squared Error (NRMSE), defined in § D.

The handling of domain-specific features such as boundary conditions, geometry, and time is deter-
mined by the baseline methods we modified for XNN; i.e., X-MPP follows the handling method of
MPP. Additionally, the baseline methods target PDE solutions defined only on regular grids. Ac-
cording to MPP, the boundary conditions, geometry, and time are not separately input to the model.
Instead, MPP is pretrained on multiple PDE solutions with varying boundary conditions and equa-
tions, allowing it to learn general patterns of PDE solutions. Since we eventually finetune the model
on a specific PDE with known boundary conditions and geometry, it is not necessary to encode
them separately as inputs. The only thing MPP handles separately is the periodicity of the boundary
condition. Depending on the periodicity of the boundary condition, MPP determines whether to use
sequential position bias or periodic position bias in the attention layer.

To isolate the effect of our architectural modifications, we use the smallest versions of CViT and
MPP as backbones: CViT-S and MPP-Ti, with 12M and 7M parameters, respectively. Unlike Mc-
Cabe et al. [28], we exclude incompressible fluid dynamics from training due to its large data size
relative to model capacity. The model size is smaller than the pretraining dataset (∼40M), so pre-
training offers limited benefit over training from scratch, but it is sufficient to highlight the advantage
of multidimensional training.

Expressivity of XNN. We evaluated the architectural expressivity of XNN by measuring how well
it performs compared to dimension-specific models in three different settings: single PDE training,
multiple PDE training, and single PDE finetuning. Since the baselines are designed for 2D PDEs, we
evaluate performance only on 2D PDEs: Diffusion-Reaction (DR), Incompressible Navier-Stokes
(NS), Shallow Water Equation (SWE), and Compressible Fluid Dynamics (CFD) with Mach num-
bers M = 0.1 and 1.0. We measure NRMSE for each PDE. Notably, for 1D-2D joint training in
MPP, we convert 1D PDE solutions to 2D by padding with zero values.

9

500 1000 1500
#Data

0.5

1.0
1.5

NR
M

SE

×10 2
BG 1D

MPP
X-MPP

500 1000
#Data

5.0

×10 2
ADV 1D

200 400 600
#Data

0.5

1.0

1.5 ×10 2
CFD 1D

0 200
#Data

0.5

1.0
1.5 ×10 2

DS 1D

0 500 1000
#Data

0.45

0.50

0.55

0.60 CFD 3D

Figure 5: Test NRMSE of finetuning on unseen dimensions (1D and 3D).

The results are shown in Table 2. The notation (†) in the table denotes evaluation on PDEArena,
meaning the rest are on PDEBench. (∗) indicates results trained with both CFD M0.1 and CFD
M1.0, meaning more challenging setup compared to training respectively. The underscores denote
the best result compared to the competitors. Since we report based on the baseline codebase, the
empty slots denote PDEs that the codebase does not support. In every scenario, the axial variants
exhibit competitive results compared to the non-axial baselines. In particular, due to the benefit of
multidimensional pretraining, the finetuned X-MPP (trained with 1D, 2D, and 3D data) outperforms
MPP trained only with 2D. Note that pretraining MPP with both 1D and 2D leads to significant
degradation, as it fails to learn a unified representation space across dimensions.

Unseen Dimension Generalization. In this experiment, we demonstrate the dimension-
generalization (few-shot learning) ability of XNN on data from unseen dimensions. To do so, we
pretrain both MPP and X-MPP on 2D PDE data and compare their finetuning performance on un-
seen 1D and 3D PDEs, demonstrating the benefit of multi-dimensional pretraining in XNN-based
foundation models. We use three 1D PDEs and one 3D PDE: Diffusion Sorption (DS), Burgers’
equation (BG), 1D Compressible Fluid Dynamics (CFD 1D), and 3D Compressible Fluid Dynamics
(CFD 3D). We evaluate using the same metric, NRMSE, and compare how finetuning performance
improves as the size of the given dataset increases.

For 3D finetuning of MPP, we use the inflation technique described in McCabe et al. [28]. It repeats
a P × P kernel of the 2D convolution layers P times and divides by P . The weights of the linear
projection for the additional variable in the 3D PDE are initialized with the average of the trained
weights corresponding to the existing variables. For 1D finetuning of MPP, we augment the input
tensor from 1D to 2D only in the patch embedding at the beginning and the patch de-embedding at
the end, so that the attention layers in the middle operate on purely 1D PDEs. In contrast, our model
naturally extends to 3D and reduces to 1D. For X-MPP, we use a shared linear projection across
different PDEs for unified representation learning. This contrasts with MPP, where a different linear
projection learns each PDE during fine-tuning.

As shown in Fig. 5, except for BG 1D, X-MPP (orange) accelerates the finetuning performance with
only a small amount of data. In particular for 3D, the redundancy of the inflated layers in MPP
(blue) limits 3D generalization, whereas the dimension-agnostic architecture is free from this issue,
thereby efficiently utilizing the representation trained from 2D PDEs.

6 Conclusion

In this work, we introduce XNNs, a family of efficient and expressive architectures designed to be
agnostic to input dimensionality. Motivated by the limitations of prior PDE models constrained
to fixed dimensions, XNNs leverage axis permutation equivariance over tensor axes to naturally
generalize across 1D, 2D, and 3D domains, which can be applied to develop a dimension-agnostic
PDE solver foundation model.

In the PDE solving problem, our empirical results highlight the benefits of multidimensional pre-
training and the superior finetuning ability of XNNs compared to the dimension-specific models
such as MPP. These findings underscore the importance of designing foundation models capable of
operating across varying spatial dimensions, which is a critical step toward scalable and adaptable
scientific machine learning systems.

Limitations and Future Work. An axial version of the cross attention between two tensors of
different dimensions is not yet fully explored. Addressing this issue as a natural extension of this
work is a valuable future direction that would further widen the usability of XNNs. Additionally,
improving the computational efficiency of GXNN, especially for high-dimensional data, is also a
promising direction towards the practical deployment of XNNs in large-scale scientific simulations.

10

Acknowledgement

We thank Heejun Lee for his thoughtful technical support, Jules Berman for his insightful con-
cerns, and Kyunghyun Cho for facilitating our wonderful collaborative research. This work was
partly supported by Institute of Information & communications Technology Planning & Evalua-
tion(IITP) grant funded by the Korea government(MSIT) (No.RS-2019-II190075, Artificial Intelli-
gence Graduate School Program(KAIST); No.RS-2024-00509279, Global AI Frontier Lab; No.RS-
2022-II220713, Meta-learning Applicable to Real-world Problems) and Artificial intelligence in-
dustrial convergence cluster development project funded by the Ministry of Science and ICT(MSIT,
Korea) & Gwangju Metropolitan City. H. Yang was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korean Government(MSIT) (No. RS-2023-00279680).

References
[1] Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Jo-

hannes Brandstetter. Universal physics transformers: A framework for efficiently scaling neu-
ral operators. In Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
cember 10 - 15, 2024, 2024.

[2] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

[3] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural net-
works. J. Mach. Learn. Res., 21:90:1–90:61, 2020. URL https://jmlr.org/papers/
v21/19-322.html.

[4] Blake Bordelon, Alexander B. Atanasov, and Cengiz Pehlevan. A dynamical model of neu-
ral scaling laws. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

[5] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

[6] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the
kinetics dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 4724–4733. IEEE Computer Society, 2017.

[7] Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha,
Ping Luo, Tao Xiang, and Juan-Manuel Pérez-Rúa. Gentron: Diffusion transformers for image
and video generation. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pages 6441–6451. IEEE, 2024. doi:
10.1109/CVPR52733.2024.00616. URL https://doi.org/10.1109/CVPR52733.
2024.00616.

[8] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Proceedings of
The 33rd International Conference on Machine Learning (ICML 2016), 2016.

[9] Taco S. Cohen and Max Welling. Steerable cnns. In International Conference on Learning
Representations (ICLR), 2017.

[10] Yatin Dandi, Aniket Das, Soumye Singhal, Vinay P. Namboodiri, and Piyush Rai. Jointly
trained image and video generation using residual vectors. In IEEE Winter Conference on
Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020,
pages 3017–3031. IEEE, 2020. doi: 10.1109/WACV45572.2020.9093308. URL https:
//doi.org/10.1109/WACV45572.2020.9093308.

[11] de Finetti and B. Funzione caratteristica di un fenomeno aleatorio. Attidella R. Academia
Nazionale dei Lincei, Serie, 6.(4):251299., 1931.

11

http://arxiv.org/abs/1607.06450
https://jmlr.org/papers/v21/19-322.html
https://jmlr.org/papers/v21/19-322.html
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://doi.org/10.1109/CVPR52733.2024.00616
https://doi.org/10.1109/CVPR52733.2024.00616
https://doi.org/10.1109/WACV45572.2020.9093308
https://doi.org/10.1109/WACV45572.2020.9093308

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[13] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing con-
volutional neural networks for equivariance to lie groups on arbitrary continuous data. In
Proceedings of The 37th International Conference on Machine Learning (ICML 2020), 2020.

[14] Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der Maaten, Armand Joulin, and
Ishan Misra. Omnivore: A single model for many visual modalities. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-
24, 2022, pages 16081–16091. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01563. URL
https://doi.org/10.1109/CVPR52688.2022.01563.

[15] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In IEEE International Joint Conference on Neural Networks, IJCNN 2005, Montreal,
QC, Canada, July 31 - August 4, 2005, pages 729–734. IEEE, 2005.

[16] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling. arXiv preprint arXiv:2209.15616, 2022.

[17] Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima
Anandkumar, Jian Song, and Jun Zhu. DPOT: auto-regressive denoising operator transformer
for large-scale PDE pre-training. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

[18] Alexander Havrilla and Wenjing Liao. Understanding scaling laws with statistical and ap-
proximation theory for transformer neural networks on intrinsically low-dimensional data. In
Advances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[20] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, An-
dreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX,
2024. URL http://github.com/google/flax.

[21] Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Em-
manuel de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes.
In Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024.

[22] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models, 2020. URL https://arxiv.org/abs/2001.08361.

[23] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps be-
tween function spaces with applications to pdes. J. Mach. Learn. Res., 24:89:1–89:97, 2023.
URL https://jmlr.org/papers/v24/21-1524.html.

[24] Hyungi Lee, Chaeyun Jang, Dongbok Lee, and Juho Lee. Dimension agnostic neural pro-
cesses, 2025. URL https://arxiv.org/abs/2502.20661.

[25] Eitan Levin and Mateo Díaz. Any-dimensional equivariant neural networks. In Sanjoy
Dasgupta, Stephan Mandt, and Yingzhen Li, editors, International Conference on Artificial
Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain, volume

12

https://doi.org/10.1109/CVPR52688.2022.01563
http://github.com/google/flax
https://arxiv.org/abs/2001.08361
https://jmlr.org/papers/v24/21-1524.html
https://arxiv.org/abs/2502.20661

238 of Proceedings of Machine Learning Research, pages 2773–2781. PMLR, 2024. URL
https://proceedings.mlr.press/v238/levin24a.html.

[26] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Limin Wang, and Yu Qiao. Uni-
formerv2: Unlocking the potential of image vits for video understanding. In IEEE/CVF In-
ternational Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023,
pages 1632–1643. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00157. URL https:
//doi.org/10.1109/ICCV51070.2023.00157.

[27] Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, and Hayden Schaeffer.
Prose-fd: A multimodal pde foundation model for learning multiple operators for forecasting
fluid dynamics, 2024. URL https://arxiv.org/abs/2409.09811.

[28] Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana,
Miles D. Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Géraud Krawezik,
François Lanusse, Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple
physics pretraining for spatiotemporal surrogate models. In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.
01703.

[30] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80,
2009. doi: 10.1109/TNN.2008.2005605. URL https://doi.org/10.1109/TNN.
2008.2005605.

[31] Zezheng Song, Jiaxin Yuan, and Haizhao Yang. Fmint: Bridging human designed and data
pretrained models for differential equation foundation model, 2024. URL https://arxiv.
org/abs/2404.14688.

[32] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Trans. Neural Networks, 8(3):714–735, 1997. doi: 10.1109/72.572108. URL
https://doi.org/10.1109/72.572108.

[33] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Ale-
siani, Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific
machine learning. In Advances in Neural Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

[34] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The miss-
ing ingredient for fast stylization. CoRR, abs/1607.08022, 2016. URL http://arxiv.
org/abs/1607.08022.

[35] Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, and George J Pappas Paris.
Cvit: Continuous vision transformer for op-erator learning. arXiv preprint arXiv:2405.13998,
3, 2024.

[36] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In Advances in
Neural Information Processing Systems 32 (NeurIPS 2019), 2019.

[37] Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin
Bi, Qi Qian, Wei Wang, Guohai Xu, Ji Zhang, Songfang Huang, Fei Huang, and Jingren
Zhou. mplug-2: A modularized multi-modal foundation model across text, image and video.
In International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 38728–38748.
PMLR, 2023.

13

https://proceedings.mlr.press/v238/levin24a.html
https://doi.org/10.1109/ICCV51070.2023.00157
https://doi.org/10.1109/ICCV51070.2023.00157
https://arxiv.org/abs/2409.09811
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://arxiv.org/abs/2404.14688
https://arxiv.org/abs/2404.14688
https://doi.org/10.1109/72.572108
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022

[38] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov,
and Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 2017.

[39] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvolutional net-
works. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 2528–2535, 2010. doi: 10.1109/CVPR.2010.5539957.

[40] Hang Zhou, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver: Pde-
conditional transformers are universal pde solvers, 2024. URL https://arxiv.org/
abs/2405.17527.

[41] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020. doi: 10.1016/J.AIOPEN.2021.01.001. URL https:
//doi.org/10.1016/j.aiopen.2021.01.001.

14

https://arxiv.org/abs/2405.17527
https://arxiv.org/abs/2405.17527
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction reflects our main contribution: novel architec-
ture for dimension-free training and inference.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discuss the limitations in the last paragraph of the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: The paper provides the assumptions and proofs in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides experimental details in the experiment section and the
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We share the source code with configuration files in the submission and the
data is publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides the experiemental details including hyperparameters in
the appendix section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because the pretraining is too computationally
expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide such information in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper only targets mathematical data, which does not involve any harmful
aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper only targets mathematical data, which does not involve any societal
impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

18

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper trains with only PDEs.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper clarifies the source of baseline codes and data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

19

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: The paper will release the code with the documentation after accept.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing and human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing and human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

20

paperswithcode.com/datasets
paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

(a) MPP (b) Dimension-Agnostic MPP

Figure 6: Comparison between MPP and its dimension-agnostic version.

A Dimension-Agnostic PDE Solver

In this section, we present an example of the dimension-agnostic PDE solver using the ViT-based
model MPP as a backbone. MPP processes a PDE solution from timestep 1 to T (e.g., x1:T ∈
RT×H×W×C) and outputs the next timestep T+1 (e.g., xT+1 ∈ RH×W×C). MPP consists of patch
embedding, multiple self-attention layers, and patch de-embedding. In the self-attention layers, MPP
separates the attention along the time axis (temporal self-attention) in a depthwise manner. We also
follow this separate temporal self-attention, but make the spatial self-attention dimension-agnostic.
The comparison between MPP and its dimension-agnostic version is illustrated in Fig. 6.

Patch Embedding. The patch embedding is a three-layer CNN, used as the lifting layer. The
original patch embedding in MPP is as follows:

EmbBlock(x) = GeLU(Norm(Conv2D(x))),

Embedder(x) = Conv2D(EmbBlock(EmbBlock(x))),

h = Norm(Embedder(x)),

(24)

22

where Norm indicates InstanceNorm [34]. On the other hand, in the axial version, we use
Embedder for ψ in Eq. 18 with max aggregation as follows:

h̃di
= max

j ̸=i, j∈[1,K]
T(K−1)(j)

(
AvgPool1,...,K−2

(
EmbedderK−1,K

(
T(j)(K−1)(i)(K)(x)

)))
,

hdi
= Norm(h̃di

),
(25)

where T(m)(n)(x) denotes the transpose between the m-th and n-th axes. Through
T(j)(K−1)T(i)(K), the j-th and i-th axes are located at the (K − 1)-th and K-th positions, respec-
tively. Then, EmbedderK−1,K applies a 2D CNN along the K − 1 and K axes, and the remain-
ing axes 1, . . . ,K − 2 are reduced via average pooling to match the output tensor size. Since the
final Norm is a pointwise operation, it preserves axis-permutation equivariance. We replace Instan-
ceNorm with LayerNorm [2] to avoid training instability in multidimensional training.

Self-Attentions. MPP already employs set-based axial self-attention, which outputs a single feature
as follows:

h̃
′
=

1

K

K∑
i=1

T(K)(i)(SelfAttnK(T(i)(K)(h))), h′ = h+ h̃
′
. (26)

In contrast, in the graph-based axial case, we obtain K features due to the lifting layer in the patch
embedding. Therefore, we also use a set-based structure but apply the same attention to each feature
independently, which differs from the graph-based attention example in Eq. 21. The self-attention
used is:

h̃
′
di

=
1

K

K∑
i=1

T(K)(i)(SelfAttnK(T(i)(K)(hdi
))), h′

di
= hdi

+ h̃
′
di
, ∀i ∈ [1,K]. (27)

Additional operations such as layer normalization and drop residual paths are included, but omitted
here for simplicity. These operations follow MPP exactly.

Patch De-Embedding. In this block, we recover the input tensor’s width and height using a CNN
consisting of ConvTranspose layers (also known as deconvolutions) [39]. In the original imple-
mentation, this CNN is defined as:

DeembBlock(h′) = GeLU(Norm(ConvT2D(h′))),

Deembedder(h′) = ConvT2D(DeembBlock(DeembBlock(h′))),

h′′ = Deembedder(h′).

(28)

In the axial version, we define two Deembedder blocks: one for updating the node feature and
the other for updating the neighborhood feature (nhbr). We aggregate them using a max operation.
Then, Eq. 22 becomes:

h′′(node)
di

= Deembedder(node)
K−1,K(h′

di
),

h′′(nhbr)
di

= max
j ̸=i, j∈[1,K]

T(i)(K)T(K)(j) Deembedder(nhbr)
K−1,K(h′

dj
),

h′′
di = max

{
h′′(node)

di
,h′′(nhbr)

di

}
, ∀i ∈ [1,K],

(29)

where T(i)(K)T(K)(j) aligns the axis order of h′
dj

to match that of h′
di

.

Unfortunately, this dimension-agnostic PDE solver is not axis-permutation equivariant because the
positional encoding (not mentioned in this section but present in the actual implementation) and
the patch de-embedding layer break axis-permutation equivariance, even though the solver anyway
works for every dimensionality.

B Proofs of Theorems

B.1 Theorem 3.1

Let ϕ be an axis-permutation equivariant function (e.g., another SXNN or pointwise operation).
The SXNN in Eq. 9 is axis-permutation equivariant for any rank-K tensor x ∈ Rd1×d2×...×dK .

23

Proof. We prove the axis-permutation equivariance property defined in Eq. 6. For any axis permu-
tation Π′ ∈ Π, the permutation of the input in Eq. 9 before applying ϕ becomes

K!−1⊕
i=1

Π−1
i

(
ψ(Πi(Π

′(x)))
)
. (30)

Now, by substituting Πj = ΠiΠ
′ (equivalently, Πi = ΠjΠ

′−1), we get
K!−1⊕
i=1

Π−1
i

(
ψ(Πi(Π

′(x)))
)
=

K!−1⊕
j=1

Π′Π−1
j

(
ψ(Πj(x))

)
= Π′

K!−1⊕
j=1

Π−1
j

(
ψ(Πj(x))

)
= Π′

K!−1⊕
i=1

Π−1
i

(
ψ(Πi(x))

)
.

(31)

The last equality holds due to the permutation-invariant nature of the operation
⊕

.

By the assumption that ϕ is axis-permutation equivariant, it follows that

ϕ

(K!−1⊕
i=1

Π−1
i

(
ψ(Πi(Π

′(x)))
))

= ϕ

(
Π′

K!−1⊕
i=1

Π−1
i

(
ψ(Πi(x))

))

= Π′ϕ

(K!−1⊕
i=1

Π−1
i

(
ψ(Πi(x))

))
,

(32)

which proves that Eq. 9 is axis-permutation equivariant for all Π′ ∈ Π.

B.2 Theorem 3.2

Assumption 1. All layers follow the same axis order. For example, if the lifting generates hH and
hW with shapes H×W×C and W×H×C, respectively, then every layer should produce h′

H and
h′
W with the same shapes.

Assumption 2. In the lifting layer, ϕmust be axis-permutation equivariant along axes 1, 2, . . . ,K−1,
and ψ along axes 1, 2, . . . ,K − 2. For instance, if x ∈ RH×W×D×C for K = 3, then T12(ϕ(x)) =
ϕ(T12(x)) must hold, but T13(ϕ(x)) = ϕ(T13(x)) is not required.

Under assumptions Assumption 1 and Assumption 2, the lifting layer of GXNN, Eq. 18, is axis-
permutation equivariant for any rank-K (except K = 1) tensor x ∈ Rd1×d2×...×dK .

Proof. The lifting layer Lifting described in Eq. 18 can be equivalently written as

hdi = ϕ

(
T(i)(K)(x),

K⊕
j ̸=i

T(i)(K)T
−1
(i)(K)(j)(K−1)ψ

(
T(i)(K)(j)(K−1)(x)

))
(33)

where T(a)(b)(c)(d) = Tabcd denotes the axes permutation from indices {1, 2, 3, 4} to {a, b, c, d} as
explained in § 2.3. Applying an axis permutation Π(x) to the input gives

ϕ

(
T(i)(K)(Π(x)),

K⊕
j ̸=i

T(i)(K)T
−1
(i)(K)(j)(K−1)ψ

(
T(i)(K)(j)(K−1)(Π(x))

))
(34)

Substituting Π′T(k)(K) = T(i)(K)Π for i = π(k) and Π′′T(i)(K)(j)(K−1) = T(k)(K)(l)(K−1)Π for
i = π(k), j = π′(l), where Π′ permutes only axes 1 through K − 1 and Π′′ permutes only axes 1
through K − 2, we get

= ϕ

(
Π′T(k)(K)(x),

K⊕
π′(l)̸=π(k)

Π′T(k)(K)T
−1
(k)(K)(l)(K−1)Π

′′−1
ψ
(
Π′′T(k)(K)(l)(K−1)(x)

))
.

(35)

24

Let π, π′ be the element-wise permutation across axes induced by Π. Since the aggregation is
permutation-invariant and π′(l) ̸= π(k) is equivalent to l ̸= k (as π′ does not act on the K-th axis
and k-th axis is transposed to K by T(k)(K)), and using Assumption 2 (permutation equivariance of
ψ under Π′′), we have

= ϕ

(
Π′T(k)(K)(x),

K⊕
l ̸=k

Π′T(k)(K)T
−1
(k)(K)(l)(K−1)Π

′′−1
Π′′ψ

(
T(k)(K)(l)(K−1)(x)

))
. (36)

Applying Assumption 2 again for ϕ under Π′ yields

= Π′ϕ

(
T(k)(K)(x),

K⊕
l ̸=k

T(k)(K)T
−1
(k)(K)(l)(K−1)ψ

(
T(k)(K)(l)(K−1)(x)

))
, (37)

which follows the definition of axes-permutation equivariance as in Eq. 6.

B.3 Theorem 3.3

Assumption 3. In the subsequent layers, both ϕ and ψ must be axis-permutation equivariant along
axes 1, 2, . . . ,K − 1.

Under assumptions Assumption 1 and Assumption 3, the subsequent layers of GXNN in Eq. 22 are
axis-permutation equivariant for any rank-K tensor hdi

∈ Rd1×d2×...×dK .

Proof. The subsequent layers Subsequent described in Eq. 22 can be equivalently written as

h′
di

= ϕ

hdi
,T(i)(K)

K∑
j=1

T−1
(j)(K)ψ(hdj

)

 . (38)

Using Eq. 37, permutation of input leads to permutation of output of the lifting layer, which is the
permutation of input of subsequent layers,

ϕ

Π′hdk
,T(π′(k))(K)

K∑
π′(l)=1

T−1
(π′(l))(K)ψ(Π

′hdl
)

 . (39)

Because the index exchanges in T must adjust to the input permutation Π′, and both ϕ and ψ are
Π′-equivariant by Assumption 3, and the sum is permutation-invariant:

= Π′ϕ

(
hdk

,T(k)(K)

K∑
l=1

T−1
(l)(K)ψ(hdl

)

)
= Π′h′

dk
. (40)

B.4 Axes-Permutation Equivariance of Pooling Layer

Finally, the pooling layer aggregates the axis-wise features into a single feature, which remains
equivariant to axis permutations Π. As described in the example in Eq. 23, it is equivalently written
as

h′′ =

K∑
j=1

T−1
(j)(K)h

′
dj
. (41)

By definition,
Π′T(k)(K) = T(π(k))(K)Π ⇔ Π′T(K)(k) = T(K)(π(k))Π. (42)

Using this identity and Eq. 40, permutation of the input yields
K∑

π′(l)=1

T−1
(π′(l))(K)Π

′h′
dl

=

K∑
π′(l)=1

Π′T−1
(l)(K)h

′
dl

=

K∑
π′(l)=1

T−1
(π(l))(K)Πh′

dl

=

K∑
π′(l)=1

ΠT−1
(l)(K)h

′
dl

= Π

K∑
l=1

T−1
(l)(K)h

′
dl

= Πh′′,

(43)

which concludes that the axis-permutation of the input yields the axis-permutation of the output.

25

C X-CViT and X-MPP

For X-MPP, we exactly followed the example of the dimension-agnostic PDE solver introduced
in § A.

For X-CViT, we mostly followed the structure of CViT but modified the dimension-dependent com-
ponents, including patch embedding, spatial self-attention, coordinate query embedding, and de-
coder cross-attention. For the remaining components, we refer the reader to [35].

Patch Embedding. X-CViT also uses patch embedding as a lifting layer. In the original CViT, the
patch embedding is defined as

h = Conv2D(x). (44)

In contrast, in X-CViT, the patch embedding is defined as

hdi
=

1

K

K∑
j ̸=i

(
T(K−1)(j)(K)(i)

(
MaxPool1,...,K−2

(
Conv2DK−1,K

(
T(i)(K)(j)(K−1)(x)

))))
,

(45)
where T(i)(K)(j)(K−1) is used to apply Conv2DK−1,K along the i-th and j-th axes, and
T(K−1)(j)(K)(i) reorders the axes back to enable aligned feature aggregation through the summa-
tion.

Spatial Self-Attentions. CViT separates temporal and spatial attention and X-CViT also follows the
separated structure. In X-CViT, we use set-based axial self-attention for each feature. The original
self-attention in CViT is defined as

h′ = SelfAttn(Flatten(x)), (46)

which flattens the spatial axes of the input into a single sequence before applying self-attention
(e.g., H×W → HW). In contrast, X-CViT does not perform flattening but instead aggregates
self-attention outputs along each axis:

h′
di

= hdi
+

K∑
j=1

T(K)(j)

(
SelfAttn(T(j)(K)(hdi

))
)
, (47)

where T(j)(K) is used to apply SelfAttn along the j-th axis, and T(K)(j) reorders the axes back for
aggregation.

Pooling Axial Features. Right after computing the encoder, we still have K axial features lifted by
the patch embedding. Thus, before applying the decoder, we aggregate them by averaging to obtain
a single feature.

Coordinate Query Embedding. While MPP always predicts the entire spatial grid points at the
next timestep, CViT selects where to predict by providing spatial coordinates, assuming the PDE
solutions lie on a [0, 1]2 grid. To achieve this, CViT calculates the distance between N query coor-
dinates and all grid points in GK , resulting in a tensor of shape N × GK , which is then encoded
into a N ×Q tensor, where Q is the feature size of the coordinate embedding. CViT uses two linear
layers to embed GK into RQ for the distance tensor q ∈ RN×GK

(with K = 2 in 2D), treating N
as a batch dimension:

q′ = Norm(Linear(Linear(q))). (48)

On the other hand, X-CViT utilizes a set-based axial linear layer with max aggregation as follows:

q′ = max
i∈[1:K]

T(K)(i)

(
NormK

(
LinearK

(
GlobalMaxPool1,...,K−1

(
LinearK(T(i)(K)(Unflatten(q)))

))))
,

(49)
where Unflatten reshapes GK → G × G × · · · × G, and T(i)(K) is used to apply LinearK along
the i-th axis. Note that GlobalMaxPool1,...,K−1 reduces the size of axes 1 through K − 1 to one,
converting RQ×···×Q to RQ. This illustrates that XNN can be applied even when the number of
input axes differs from the number of output axes.

Decoder Cross-Attention. In the decoder cross-attention, we perform attention by treating the
coordinate embedding q as the query and the features produced by the CViT encoder as the key and

26

value. Since this operation involves a rank-1 vector and a rank-K tensor, we must carefully design
the XNN architecture to handle such multi-dimensional cross-attention. In CViT, the cross-attention
is formulated as

h′′ = q′ +Attn(q′,Flatten(h′),Flatten(h′)). (50)
In contrast, X-CViT uses SXNN with a Repeat function to align dimensions and tensor sizes:

h′′ = q′ +

K∑
i=1

GlobalMaxPool1,...,K−1

(
Attn(Repeat1,...,K−1(q

′),T(i)(K)(h
′),T(i)(K)(h

′))
)
,

(51)
where Repeat1,...,K−1(q

′) expands and repeats the vector q′ ∈ RQ along axes 1, . . . ,K−1, result-
ing in Repeat1,...,K−1(q

′) ∈ RQ×Q×···×Q.

D Experimental Details

D.1 GP Kernel Prediction

Synthetic Dataset Construction. To construct the synthetic dataset, samples were generated from
zero-mean Gaussian processes using either the radial basis function kernel or the periodic kernel.
For each kernel, data were generated in dimensions ranging from 2 to 5. In each dimension d ∈
{2, 3, 4, 5}, a structured grid that equally divides the hypercube [−2, 2]d was created over the input
space, with grid sizes tailored to 27−d. This results in output shapes as specified in Table 3, where
the last channel of length 1 was appended for convenience.

Table 3: Shape of tensors in the synthetic dataset
Dimensions Shape Dimensions Shape

2D (32, 32, 1) 4D (8, 8, 8, 8, 1)

3D (16, 16, 16, 1) 5D (4, 4, 4, 4, 4, 1)

Each grid point represents an input to the GP kernel, from which the full covariance matrix was
computed for a batch of samples. Kernel parameters were randomly sampled, i.e., length within
[0.1, 0.6], scale within [0.1, 1], and period within [0.1, 0.5] for the periodic kernel, to introduce vari-
ation. The resulting covariance matrices were corrected via eigenvalue clipping to ensure positive
semidefiniteness. Each generated sample from the periodic kernel was labeled 0, while those from
the RBF kernel were labeled 1. An equal number of samples from each kernel type was used to
ensure balanced classes. All data were normalized to have zero mean and unit variance before being
fed into the models. The dataset was then divided into training and validation subsets with an 80/20
split.

3D CNN. As 3D convolution operations are only compatible with 5D inputs, we forced the dimen-
sions of the tensor to 5; for lower-dimensional samples, we zero-padded along missing axes; for
higher-dimensional samples, we reshaped the tensor to be 5D by aggregating all the dimensions
after the third dimension. We adopted a conventional 3D convolutional neural network operating on
tensors of shape (B,H,W,D,C), where B is the batch size. The network consists of three stacked
3D convolutional layers, each with 32 filters and kernel sizes of 3× 3× 3, followed by LayerNorm
and ReLU activations. After the convolutional layers, global max pooling is applied across all spa-
tial dimensions, and a final dense layer maps the resulting features to a single output for binary
classification.

SXCNN. Set-based XCNN generalizes convolution to multidimensional inputs using directional
convolutions along each axis. At its core is the SXConv module, which applies 1D convolutions
separately along each axis and merges the resulting features using an element-wise maximum. Each
SXConv operation is followed by LayerNorm and a ReLU activation. The network consists of
five SXConv layers, with each layer operating at 64 hidden features, effectively doubling the base
hidden dimensionality. The final feature maps are globally pooled across all spatial dimensions, and
classification is performed using a fully connected output layer.

GXCNN. Graph-based XCNN introduces a more complex interaction between spatial axes through
the use of cross-axial convolutions. The architecture begins with a lifting layer, which performs

27

2D convolutions across each pair of axes to produce a set of intermediate representations. This
is followed by a series of XConv layers, where each layer simultaneously considers pairs of axes
using separate node and neighbor convolutions. The feature maps from each interaction are merged
using max operations after appropriate axis permutation. Each convolution operation is followed by
LayerNorm and ReLU activation. The network consists of one XLift layer and four XConv layers,
each with 32 hidden features. Axial max pooling was applied across each dimension, followed by
global max pooling, and the pooled output was passed to a dense layer for binary classification.

Hyperparameters. All models were trained using the Adam optimizer, with a fixed learning rate of
0.001 and a batch size of 64. Training was conducted for 10 epochs for each model. The loss func-
tion used was binary cross-entropy computed from the sigmoid of the output logits. Training and
evaluation were implemented in JAX 0.4.30 [5] and Flax 0.8.5 [20], with PyTorch 2.7.0+cu118 [29]
used primarily for data preprocessing and batching. To ensure that performance comparisons were
valid, the same hyperparameters and preprocessing procedures were applied across all models. The
table below summarizes the hyperparameter settings used for training each of the three neural net-
work models.

Table 4: Hyperparameters for each model architecture
Model Architecture Hidden Dim Learning Rate Batch Size Epochs
CNN 3 Conv layers 32 1e-3 64 10
SXCNN 5 SXConv layers 64 1e-3 64 10
XCNN 1 XLift + 4 XConv layers 32 1e-3 64 10

D.2 PDE Foundation Model

Hardware and Software. We implemented CViT and X-CViT using JAX 0.4.30 [5] and FLAX
0.8.5 [20], while MPP and X-MPP were implemented using PyTorch 2.1.0+cu121 [29]. All exper-
iments were conducted on NVIDIA GPUs: RTX 3090, RTX A6000, and RTX 5090. For the RTX
5090 machine, we used PyTorch 2.8.0+cu128 due to CUDA driver compatibility.

Training Loss. In CViT training, the objective function is the l2 loss between the predicted next-
timestep solution and the ground truth:

LCViT =
1

|B|
∑
x∈X

∥∥x̂t+1 − f(x(t−s):t)
∥∥2
2
, (52)

where B is the mini-batch, x̂t+1 is the ground-truth solution at the next timestep, f is the neural
PDE solver being trained, t is the timestep, and s is the number of input timesteps.

However, different PDEs exhibit varying magnitudes in their state variables, which can lead to im-
balanced training that overemphasizes PDEs with larger magnitudes. To address this, McCabe et al.
[28] used the normalized mean squared error (NMSE), which scales each output to unit magnitude.
We adopted the same loss function for X-MPP training:

LMPP =
1

|B|
∑
x∈X

∥∥x̂t+1 − f(x(t−s):t)
∥∥2
2

∥x̂t+1∥22 + ϵ
. (53)

Since each PDE may produce tensors of different sizes, composing multiple PDEs in a single mini-
batch is not feasible. Instead, we accumulate gradients across multiple mini-batches by summing
them before performing a parameter update.

Evaluation Metric. For evaluation, we use the normalized root mean squared error (NRMSE),
which is the square root of the normalized mean squared error (NMSE), to compare with baseline
methods. The metric is defined as

1

|B|
∑
x∈X

∥∥x̂t+1 − f(x(t−s):t)
∥∥
2

∥x̂t+1∥2
. (54)

28

Table 5: Hyperparameters in the CViT training.
DR NS SWE

Hyperparam. CViT X-CViT CViT X-CViT CViT X-CViT

Patch Size (8,8) (8,8) (8,8) (8,8) (8,8) (8,8)
Grid Size (128,128) (128,128) (128,128) (128,128) (96,192) (96,192)
Latent Dim, Embed Dim,

Depth, Attn Heads 512,384,5,6 512,384,6,6 512,384,5,6 512,384,5,6 512,384,5,6 512,384,5,6
Decoder Embed Dim,

Decoder Attn Heads,
Decoder Depth 512,16,1 512,16,1 512,16,1 512,16,1 512,16,1 512,16,1

Out Dim 2 2 3 3 2 2
Input Timesteps 2 2 10 10 2 2
Train/Val/Test Splits 900/0/50 900/0/50 6500/0/10 6500/0/10 5600/0/10 5600/0/10
Minibatch 16 32 16 16 32 32
Optim AdamW AdamW AdamW AdamW AdamW AdamW
LR Schedule Warm. Exp. Decay Warm. Exp. Decay Warm. Exp. Decay Warm. Exp. Decay Warm. Exp. Decay Warm. Exp. Decay
LR init, end, peak 0, 1E-6, 5E-4 0, 1E-6, 1E-3 0, 1E-6, 1E-3 0, 1E-6, 1E-3 0, 1E-6, 1E-3 0, 1E-6, 1E-3
LR decay, transit, warmup 0.9, 5000, 5000 0.9, 5000, 5000 0.9, 5000, 5000 0.9, 5000, 5000 0.9, 5000, 5000 0.9, 5000, 5000
Weight Decay 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5
Grad. Clip 1.0 1.0 1.0 1.0 1.0 1.0
Iterations 3E+5 3E+5 2E+5 2E+5 2E+5 2E+5

Table 6: Hyperparameters in the MPP from-scratch training and pretraining.
From-Scratch Pretraining

MPP X-MPP MPP X-MPP

Hyperparam. DR SWE CFD DR SWE CFD 2D 1,2D 2D 1,2,3D

Batch Size 64 128 8 64 64 8 4 4 16 16
Input Timesteps 16 16 16 16 16 16 4 4 4 4
Accumulation Steps 5 5 5 5 5 5 5 5 6 5
Epochs 120 120 120 120 120 120 120 120 120 110

Table 7: Hyperparameters in the MPP finetuning.
MPP X-MPP

Hyperparam. DR2D SWE2D CFD2D DS1D CFD1D BG1D ADV1D CFD3D DR2D SWE2D CFD2D DS1D CFD1D BG1D ADV1D CFD3D

Batch Size 16 16 16 16 16 16 16 16 64 16 64 16 16 16 16 16
Input Timesteps 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Accumulation Steps 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Epochs 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

Hyperparameters. We report the hyperparameters used for training CViT, X-CViT, MPP, and X-
MPP. The hyperparameters include the number of training epochs, train/val/test split, minibatch size,
gradient accumulation steps, optimizer, weight decay, drop path probability, learning rate, learning
rate scheduling, gradient clipping, and others.

For CViT training, the hyperparameters are listed in Table 5. For MPP training, most hyperparame-
ters are shared across different settings, though some differ. The base values of the hyperparameters
are:

• Epochs: 120

• Train/Val/Test Splits: X%/10%/10% split on each dataset at the trajectory level, whereX
denotes a subsample from 80% of the total dataset

• Minibatch Size: 16

• Accumulation Steps: 5

• Optimizer: Adan

• Weight Decay: 1E-3

• Drop Path Probability: 0.1

• Learning Rate: DAdaptation

• Learning Rate Scheduling: Cosine Decay

• Gradient Norm Clipping: 1.0

These choices mostly follow the settings of McCabe et al. [28]. The varying hyperparameters for
from-scratch training, pretraining, and finetuning are described in Table 6 and Table 7.

29

E Partial Differential Equations

The PDE solution benchmarks are employed from PDEBench [33] and PDEArena [16]. Here are
the specifications of the equations and their boundary conditions.

E.1 2D Shallow Water Equations.

The shallow water equations, derived from the general Navier–Stokes equations, provide a reduced-
order model for free-surface flows such as waves and dam breaks. In the PDEBench benchmark,
they are used to simulate a 2D radial dam break scenario. The governing equations are given by:

∂th+ ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x

(
u2h+

1

2
grh

2

)
+ ∂y(uvh) = −grh∂xb,

∂t(hv) + ∂y

(
v2h+

1

2
grh

2

)
+ ∂x(uvh) = −grh∂yb,

(55)

where h denotes the water depth, (u, v) are the horizontal velocity components, gr is the gravita-
tional acceleration, and b(x, y) represents the bathymetry.

The initial condition corresponds to a circular bump in the center of the domain Ω = [−2.5, 2.5]2:

h(t = 0, x, y) =

{
2.0, if

√
x2 + y2 < r,

1.0, otherwise,
(56)

where the radius r is randomly sampled from the uniform distribution U(0.3, 0.7).

The simulation is performed using the PyClaw finite volume solver. This PDE setup introduces
realistic dynamics including shock propagation and wave reflections.

E.2 2D Compressible Fluid Dynamics.

The 2D compressible Navier–Stokes equations describe the dynamics of a compressible fluid, ac-
counting for variations in mass, momentum, and energy over time. These equations are fundamental
for modeling gas flows where density changes are significant. The system consists of the conserva-
tion laws for mass, momentum, and energy:

∂tρ+∇ · (ρv) = 0,

ρ(∂tv + v · ∇v) = −∇p+ η∆v +
(
ζ +

η

3

)
∇(∇ · v),

∂t

(
ϵ+

1

2
ρ|v|2

)
+∇ ·

[(
ϵ+ p+

1

2
ρ|v|2

)
v − v · σ′

]
= 0,

(57)

where ρ is the fluid density, v is the velocity vector, p is the pressure, ϵ = p/(Γ− 1) is the internal
energy (with Γ = 5/3), and σ′ is the viscous stress tensor. The parameters η and ζ denote the shear
and bulk viscosities, respectively.

To generate the data, the simulations employ a second-order accurate HLLC finite volume solver for
the inviscid terms, coupled with central differencing for the viscous contributions. This setup en-
ables the benchmark to test model fidelity across a wide range of physically realistic fluid dynamics
problems.

E.3 2D Diffusion-Reaction Equation.

This equation models the interaction between two spatially distributed quantities (commonly an
activator and an inhibitor) across a two-dimensional domain. It captures complex spatiotemporal
behaviors such as wave propagation and pattern formation, often seen in biological or chemical
systems.

30

The system is described by:

∂tu = Du (∂xxu+ ∂yyu) +Ru(u, v),

∂tv = Dv (∂xxv + ∂yyv) +Rv(u, v),
(58)

where u(t, x, y) and v(t, x, y) denote the concentrations of the activator and inhibitor, respec-
tively. Du and Dv are their diffusion coefficients. The reaction dynamics are governed by the
FitzHugh–Nagumo model:

Ru(u, v) = u− u3 − k − v, Rv(u, v) = u− v, (59)

with k = 5× 10−3.

In the benchmark setup, the simulation domain is x, y ∈ (−1, 1) and t ∈ (0, 5]. The initial condi-
tions are generated using Gaussian noise, and Neumann boundary conditions (zero flux) are applied
to ensure no flow across domain boundaries. Numerical solutions are computed using the finite
volume method with fourth-order Runge–Kutta time integration.

E.4 2D Incompressible Navier-Stokes Equations (PDEArena).

The Navier-Stokes equations are a cornerstone of fluid dynamics, describing the motion of fluid
substances under the influence of internal and external forces. In PDEArena, the two-dimensional
incompressible Navier-Stokes equations are employed to investigate complex multi-scale flow phe-
nomena. These equations govern the evolution of the velocity field v(t,x) ∈ R2 in a domain
x ∈ R2, and are formulated in the velocity-pressure form as:

∂v

∂t
+ (v · ∇)v = −∇p+ µ∇2v + f , ∇ · v = 0, (60)

where p is the pressure, µ is the kinematic viscosity (diffusion coefficient), and f represents external
force, such as buoyancy.

For simulation in PDEArena, an additional scalar field is introduced, representing a passive scalar
(e.g., particle concentration) that is advected by the velocity field and interacts with it through an
external buoyancy force f = (0, f)⊤.

The initial conditions include both the velocity and scalar fields, defined over a 128× 128 grid with
a resolution of ∆x = ∆y = 0.25. The simulation time-step is ∆t = 1.5 seconds, and the domain is
closed with Dirichlet boundary conditions v = 0 and Neumann conditions ∂s/∂x = 0 for the scalar
field.

The simulations are numerically solved using the ΦFlow framework and serve as a rich testbed for
evaluating neural PDE surrogates in capturing advection-diffusion dynamics, vortex interactions,
and response to varying force parameters.

E.5 Shallow Water Equations (PDEArena).

The shallow water equations are a set of hyperbolic partial differential equations that describe the
flow of a thin layer of incompressible fluid under the influence of gravity. They are derived from
the incompressible Navier–Stokes equations by assuming that the horizontal length scales are much
larger than the vertical ones, leading to a vertically averaged flow model. In PDEArena, the shallow
water equations are used to model both local and global geophysical flow phenomena, such as waves
and large-scale atmospheric dynamics.

The equations govern the evolution of the fluid height h(t,x) and the horizontal velocity field
v(t,x) = (u, v) over a 2D domain x ∈ R2, and take the following form:

∂h

∂t
+∇ · (hv) = 0,

∂v

∂t
+ (v · ∇)v + g∇h = µ∇2v + f ,

(61)

where g is the gravitational acceleration, µ is the viscosity, and f represents external forces such as
wind stress or Coriolis effects.

31

The simulations are initialized with spatial fields of velocity and pressure, and are performed on
a global grid with resolution 192 × 96, corresponding to a spatial discretization of ∆x = 1.875◦,
∆y = 3.75◦, and a temporal resolution of ∆t = 48 hours. Periodic boundary conditions are applied
in the longitudinal direction, while appropriate boundary conditions (e.g., reflective or free-slip) are
used in the latitudinal direction.

These simulations are generated using a modified version of the SpeedyWeather.jl framework.
The setup allows for evaluating the performance of neural PDE surrogates on both velocity-pressure
and vorticity-stream function formulations, capturing a wide range of scales and flow features rele-
vant to climate and weather modeling.

E.6 1D Diffusion-Sorption Equation.

The diffusion-sorption equation models a diffusion process in porous media that is retarded by a
non-linear sorption mechanism. This type of process is relevant in real-world applications such
as groundwater contaminant transport. In the PDEBench benchmark, it is used to simulate the 1D
transport of a solute under the influence of sorption based on the Freundlich isotherm. The governing
equation is given by:

∂tu(t, x) =
D

R(u)
∂xxu(t, x), (62)

where u(t, x) denotes the concentration of the solute, D = 5 × 10−4 is the effective diffusion
coefficient, and R(u) is the retardation factor that accounts for the sorption effect. The retardation
factor is defined as:

R(u) = 1 +
1− ϕ

ϕ
ρsknfu

nf−1, (63)

with ϕ = 0.29 the porosity, ρs = 2880 the bulk density, knf = 3.5×10−4 the Freundlich coefficient,
and nf = 0.874 the Freundlich exponent.

The initial condition is sampled from a uniform distribution:

u(t = 0, x) ∼ U(0, 0.2), for x ∈ (0, 1). (64)

The boundary conditions are given by:

u(t, 0) = 1.0, u(t, 1) = D∂xu(t, 1), (65)

where the second condition is a Cauchy-type boundary involving a spatial derivative, introducing
numerical challenges.

The simulation is performed using a finite volume method for spatial discretization and a fourth-
order Runge–Kutta method for time integration. This PDE setup captures realistic nonlinear diffu-
sion behaviors with singularities and complex boundary dynamics.

E.7 1D Burgers’ Equation.

The Burgers’ equation is a fundamental nonlinear partial differential equation that models the in-
terplay between convection and diffusion in fluid dynamics. It serves as a simplified prototype for
the Navier–Stokes equations and is used to study shock formation and dissipative processes. In
the PDEBench benchmark, the 1D viscous Burgers’ equation is used to simulate such nonlinear
dynamics. The governing equation is given by:

∂tu(t, x) + ∂x

(
1

2
u2(t, x)

)
=
ν

π
∂xxu(t, x), (66)

where u(t, x) is the velocity field and ν is the diffusion coefficient, representing the kinematic vis-
cosity.

The initial condition is constructed as a superposition of sinusoidal modes:

u(t = 0, x) =

N∑
i=1

Ai sin(kix+ ϕi), (67)

32

where the wave numbers ki = 2πni/Lx are randomly selected integers ni ∈ [1, nmax],Ai ∼ U(0, 1)
are amplitudes, ϕi ∼ U(0, 2π) are phases, and Lx = 1 is the domain length. Additional operations
such as applying the absolute value or a window function are applied with small probability to
introduce further variability.

The domain is defined as x ∈ (0, 1), and periodic boundary conditions are imposed:

u(t, 0) = u(t, 1), ∂xu(t, 0) = ∂xu(t, 1). (68)

The simulation is performed using a second-order upwind finite difference scheme for the convective
term and a central difference scheme for the diffusive term. This PDE setup is particularly suited
for studying shock dynamics, nonlinear wave interactions, and the effect of viscosity on solution
smoothness.

E.8 1D Advection Equation.

The advection equation is a linear hyperbolic partial differential equation that models the transport
of a conserved quantity without diffusion or reaction. It serves as a canonical example for study-
ing wave propagation and translation phenomena in physics and engineering. In the PDEBench
benchmark, the 1D advection equation is used to simulate pure transport dynamics. The governing
equation is given by:

∂tu(t, x) + β ∂xu(t, x) = 0, (69)
where u(t, x) represents the advected scalar quantity and β is the constant advection speed.

The initial condition is defined as a superposition of sinusoidal waves:

u(t = 0, x) =

N∑
i=1

Ai sin(kix+ ϕi), (70)

with ki = 2πni/Lx representing the wave numbers for randomly selected integers ni ∈ [1, nmax],
amplitudes Ai ∼ U(0, 1), phases ϕi ∼ U(0, 2π), and Lx = 1 denoting the domain length. With
small probability, transformations such as taking the absolute value or applying a window function
are applied to the initial field to increase diversity.

The spatial domain is x ∈ (0, 1), and periodic boundary conditions are employed:

u(t, 0) = u(t, 1), ∂xu(t, 0) = ∂xu(t, 1). (71)

The numerical solution is obtained using a second-order upwind finite difference scheme in both
space and time. This PDE setup serves as a benchmark for evaluating models’ ability to learn and
reproduce translational dynamics with minimal distortion or dispersion.

E.9 1D Compressible Fluid Dynamics.

The 1D compressible fluid dynamics (CFD) equations model the conservation of mass, momentum,
and energy in a compressible fluid. Derived from the general compressible Navier–Stokes equations,
they are used to simulate phenomena such as shock waves, rarefaction, and contact discontinuities.
In the PDEBench benchmark, this setup includes various configurations such as inviscid flow, vis-
cous flow, and shock-tube initial conditions. The governing equations are given by:

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x
(
ρu2 + p

)
= ∂xσ,

∂tE + ∂x [(E + p)u] = ∂x(uσ),

(72)

where ρ is the density, u is the velocity, p is the pressure, E = ϵ + 1
2ρu

2 is the total energy with
internal energy ϵ = p

Γ−1 , and σ is the viscous stress term defined as σ = η∂xu for shear viscosity η.
The ratio of specific heats is set to Γ = 5/3.

The benchmark includes multiple initial condition types:

• Random field: Initial ρ, u, and p fields generated as smooth random perturbations using a
superposition of sine waves.

33

• Shock tube: A Riemann problem where left and right states (ρ, u, p) are sampled from
uniform distributions with a sharp discontinuity at a random position.

The spatial domain is x ∈ (0, 1) with two boundary condition types:

• Periodic: Fields wrap around the domain,
• Out-going: Ghost cells copy the nearest interior value to allow waves to exit.

The simulations are performed using a second-order HLLC Riemann solver with MUSCL recon-
struction for inviscid cases, and central differencing for viscous terms. This PDE setup is challeng-
ing due to strong nonlinearity, shock formation, and sensitivity to initial and boundary conditions.

E.10 3D Compressible Fluid Dynamics.

The 3D compressible Navier–Stokes equations govern the motion of gases where density, pressure,
and velocity fields evolve in space and time. This system models conservation of mass, momen-
tum, and energy in three dimensions, making it essential for simulating realistic high-speed flows,
turbulence, and shock dynamics. The equations are same as Eq. 57, but their variables are three
dimensional, e.g. v ∈ R3.

Numerical solutions are generated using a second-order HLLC scheme for the inviscid part and
central differencing for viscosity. This 3D setting significantly increases the complexity of the
benchmark, introducing challenges in both computational cost and physical realism for surrogate
models.

34

	Introduction
	Backgrounds
	Graph Neural Networks and Deep Sets
	Transpose and Axis-Permutation Equivariance
	Cycle Notation for Axes Permutation

	Axial Neural Networks
	Set-Based Axial Neural Networks
	Graph-Based Axial Neural Networks
	Example: Dimension-Agnostic PDE Solver

	Related Work
	Experiments
	Toy Dataset: Gaussian Process Kernel Prediction
	PDE Solver Foundation Models

	Conclusion
	Dimension-Agnostic PDE Solver
	Proofs of Theorems
	thm:sxnn
	thm:lifting
	thm:subsequent
	Axes-Permutation Equivariance of Pooling Layer

	X-CViT and X-MPP
	Experimental Details
	GP Kernel Prediction
	PDE Foundation Model

	Partial Differential Equations
	2D Shallow Water Equations.
	2D Compressible Fluid Dynamics.
	2D Diffusion-Reaction Equation.
	2D Incompressible Navier-Stokes Equations (PDEArena).
	Shallow Water Equations (PDEArena).
	1D Diffusion-Sorption Equation.
	1D Burgers' Equation.
	1D Advection Equation.
	1D Compressible Fluid Dynamics.
	3D Compressible Fluid Dynamics.

