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Abstract
Learned graph neural networks (GNNs) have re-
cently been established as fast and accurate alter-
natives for principled solvers in simulating the dy-
namics of physical systems. In many application
domains across science and engineering, however,
we are not only interested in a forward simulation
but also in solving inverse problems with con-
straints defined by a partial differential equation
(PDE). Here we explore GNNs to solve such PDE-
constrained inverse problems. We demonstrate
that GNNs combined with autodecoder-style pri-
ors are well-suited for these tasks, achieving more
accurate estimates of initial conditions or physical
parameters than other learned approaches when
applied to the wave equation or Navier–Stokes
equations. We also demonstrate computational
speedups of up to 90× using GNNs compared to
principled solvers.

1. Introduction
Understanding and modeling the dynamics of physical sys-
tems is crucial across science and engineering. Among
the most popular approaches to solving partial differential
equations (PDEs) are mesh-based finite element simulations,
which are widely used in electromagnetism (Pardo et al.,
2007), aerodynamics (Economon et al., 2016; Ramamurti
& Sandberg, 2001), weather prediction (Bauer et al., 2015),
and geophysics (Schwarzbach et al., 2011). Learning-based
methods for mesh-based simulations have recently made
much progress (Pfaff et al., 2021), offering faster runtimes
than principled solvers, better adaptivity to the simulation
domain compared to grid-based convolutional neural net-
work (CNNs) (Thürey et al., 2020; Wandel et al., 2021), and
generalization across simulations. State-of-the-art learning-
based mesh simulators operate on adaptive meshes using
graph networks (Pfaff et al., 2021). While this approach
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Figure 1. (a) Pipeline for our approach: we first pre-train the prior
and a Graph Neural Network (GNN) for a given class of problems
in a supervised manner using a dataset generated from classical
FEM solvers. Here, the GNN is a fully-differentiable forward
simulator and the prior is a generative model learned over the
space of physics parameters of interest. At test time, the generative
model maps the latent code to the estimated physics parameter that
is passed to the GNN to obtained the predicted dynamics. The
latent code is then optimized to minimize the difference between
predicted and observed dynamics on the graph. (b) We demon-
strate the proposed method for solving inverse problems governed
by the wave equation or Navier–Stokes equations. From sparse
observations, the method recovers the complete evolution of the
dynamics.

has been successful in simulating the dynamics of physical
systems, it remains unclear how to leverage these network
architectures to efficiently solve PDE-constrained inverse
problems of the form in Eq. (1).

minimize
{u0,θ}

L (H (ut=1...T ) , yt=1...T ) ,

s.t. ut+1 = Mθ (ut) ,
(1)

where ut ∈ CN is the state of the simulation modeled at
N nodes of the mesh at time t = 1 . . . T ; the operator H :
CN → CM models the measurement process of the real or



complex-valued state using a set ofM sensors, giving rise to
the observations yt ∈ CM ; Mθ : CN → CN is an operator
representing the PDE constraints that govern the temporal
dynamics of the system with θ ∈ RP parameterizing M
at time t. In the context of inverse problems, we seek the
initial state u0 or the parameters θ given a set of observations
yt=1...T . These problem are often ill-posed and considerably
more difficult than learning the forward simulation.

Here we explore efficient approaches that leverage recently
proposed graph networks to solve PDE-constrained inverse
problems. For this purpose, we consider learning-based
approaches to the simulation, where M is modeled by a
graph network GNN : CN → CN . Moreover, we formulate
priors for both initial state u0 = Gu (zu) and the parameters
θ = Gθ (zθ) that constrain these quantities to be fully
defined in a lower-dimensional subspace by the latent codes
zu ∈ RLu , Lu < N , and zθ ∈ RLθ , Lθ < P . The fact
that the graph network GNN, and finite element methods in
general, operate on irregular meshes motivates us to explore
emerging coordinate network architectures (Park et al.,
2019; Tancik et al., 2020; Sitzmann et al., 2020) as suitable
priors. Coordinate networks operate on the continuous
simulation domain and map coordinates to a quantity of
interest, such as the initial condition or the parameters of a
specific problem.

To our knowledge, this is the first approach to com-
bining continuous coordinate networks with graph networks
for learning to solve PDE-constrained inverse problems.
The summary of the proposed approach is shown in
Figure 1. We demonstrate that this architecture affords
faster runtimes and better quality for fewer observations
than the principled solvers we tested, while offering the
same benefits of improved accuracy over grid-based CNNs
to inverse problems that graph networks offer for forward
simulations (Figure 1).

2. Related Work
Machine learning methods have emerged as a powerful
tool for modeling the dynamics of physical systems. Com-
pared to conventional methods (see e.g., Quarteroni & Valli
(2008)), physics-based machine learning techniques may
offer improved computational performance, ease of imple-
mentation, and learning priors from data to solve ill-posed
physics-based inverse problems. Previous techniques span
a spectrum of being entirely data-driven (i.e., modeling dy-
namics with a feedforward pass through a network) (Bhat-
nagar et al., 2019; Li et al., 2021; Tompson et al., 2017; Lu
et al., 2021; Lino et al., 2021; Pfaff et al., 2021; Sanchez-
Gonzalez et al., 2020; Seo et al., 2020) to hybrid approaches
that either directly incorporate conventional solvers (Um
et al., 2020; Belbute-Peres et al., 2020; Bar-Sinai et al.,

2019; Kochkov et al., 2021) or adapt similar optimization
schemes or constraints (Karniadakis et al., 2021; Wang &
Perdikaris, 2021; Sirignano & Spiliopoulos, 2018; Raissi
et al., 2019; Wang et al., 2021; Wandel et al., 2021).

Many of the aforementioned methods operate on regular
grids, for example using convolutional neural networks
(CNNs). A major disadvantage of this approach is its
inability to allocate resolution adaptively throughout the
simulation domain. Learning-based finite element meth-
ods (FEMs) (Xue et al., 2020) and graph neural networks
(GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017;
Veličković et al., 2018; Wu et al., 2020; Scarselli et al.,
2008) have been shown to be a powerful method for sim-
ulation on irregular grids with adaptive resolution. GNNs
process data structured into a graph of nodes and edges, and
have been demonstrated for modeling complex physical dy-
namics with particle- or mesh-based simulation (Lino et al.,
2021; Seo et al., 2020; Li et al., 2020b;a). Our approach
is inspired by recent GNN architectures for modeling time-
resolved dynamics (Pfaff et al., 2021; Sanchez-Gonzalez
et al., 2020) that generalize to unseen initial conditions and
solution domains. Whereas these approaches focus on learn-
ing the forward simulation given a set of initial or boundary
conditions, ours aims at solving ill-posed PDE-constrained
inverse problems that require a learned simulation model as
part of the framework.

Machine learning techniques have recently also been
adapted for solving ill-posed physics-based inverse prob-
lems. These problems often involve recovering solutions
to PDEs (Raissi et al., 2020) or physical quantities, such as
the density, viscosity, or other material parameters (Mosser
et al., 2020; He & Wang, 2021; Fan et al., 2020), from
a sparse set of measurements. Other methods can super-
resolve PDE solutions from estimated solutions at coarse
resolution (Esmaeilzadeh et al., 2020) or recover initial con-
ditions from PDE solutions observed at coarse resolution
later in time (Li et al., 2020b; Frerix et al., 2021). Yet an-
other class of techniques are tailored to the inverse design
problem, which aims to optimize material properties such
that the PDE solution satisfies certain useful properties, e.g.,
for the design of nanophotonic elements (Molesky et al.,
2018). Our approach is most similar to other methods that
infer material properties or initial conditions from sparse
measurements of the PDE solution over time. Similar to
some of these methods (Mosser et al., 2020; Jiang & Fan,
2019; Hand et al., 2018), we use a generative model to learn
a prior over the solution space of material parameters or
initial conditions; however, our framework is the first to
learn to map a latent code to material parameters or initial
conditions compatible with a GNN forward model. This al-
lows our model to solve physics-based inverse problems on
irregular grids with adaptive resolution, leading to improved
computational efficiency and accuracy.
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Figure 2. Pipeline for solving inverse problems (illustrated for the 2D wave equation). The forward simulator GNN (the blue boxes) and
the prior networks (green boxes) are pre-trained with a dataset of wave trajectories generated using classical FEM solvers. We aim to
recover the initial wavefield or the velocity distribution. At test time, the generative model first maps a latent code to the estimated physics
parameters (step 1) that is passed to the GNN to obtain the predicted dynamics (step 2). The latent code is optimized to minimize the
difference between the predicted and the observed dynamics on the graph (steps 3 and 4).

3. Method
We approach the task of solving physics-constrained in-
verse problems by first pre-training a GNN as a fast forward
model that outputs solutions to partial differential equa-
tions given the initial states and boundary conditions. The
physics-constrained inverse problems we aim to solve in-
volve recovering initial conditions or other parameters that
govern the evolution of the PDE. Since recovering these
quantities is an ill-posed problem, we also learn a prior over
the space of solutions using a deep generative model. Here,
a network maps latent codes to a space of material parame-
ters or initial conditions on the graph that comprise plausible
solutions to the inverse problems. At test time, the GNN is
a fully-differentiable forward simulator, and the latent code
of the generative model is optimized to minimize the differ-
ence between the predicted and the observed dynamics on
the graph. A detailed pipeline of our approach for solving
inverse problem for the wave equation (Section 4) is shown
in Figure 2.

3.1. GNN-based Simulator

GNNs have previously been found to perform well in sim-
ulating PDE models (Pfaff et al., 2021; Sanchez-Gonzalez
et al., 2020). The excellent performance can be attributed to
their adaptive resolution and ability to generalize by mod-
eling complicated local interactions. Here, we leverage the
state-of-art GNN (Pfaff et al., 2021) to learn a fast forward
model that outputs solutions to partial differential equations
given the initial states and boundary conditions.

The state of the system at time t is described as ut = (V,E)
with nodes V and mesh edges E that define the mesh. We
adopt the approach of (Pfaff et al., 2021) to model the tem-
poral dynamics of the system, i.e., Mθ, using a GNN with
Encoder-Processor-Decoder architecture followed by an in-
tegrator.

We encode the relative displacement vector (i.e., the vec-
tor that points from one node to another) and its norm as
edge features, ei. The node features comprise dynamics
quantities that describe the state of the PDE and a one-hot
vector, vi, indicating the type of the nodes (domain bound-
aries, inlet, outlet, etc.). In the forward pass, the encoding
step uses an edge encoder multilayer perceptron (MLP) and
node encoder MLP to encode edge features and node fea-
tures into latent vectors. The processing step consists of
several message passing layers with residual connections.
This step takes as input the set of node embeddings vi, and
edge embeddings eij , and outputs an updated embedding vi
and eij . The equations that define the layers of the message
passing steps are given by the following.

e′ij = MLPe(eij , vi, vj), (2)

v′i = MLPv(vi,
∑
j

e′ij). (3)

In the final decoding step, an MLP is used to transform the
latent node features vi to the output pi, which we integrate
at each time step to update the dynamic quantities ut+1 =
ut + pt.



3.2. Learning Inverse Problems and Priors

The inverse problems we wish to solve are of the form out-
lined in Equation 1 with the dynamics being learned by the
GNN described above. Solving for the initial condition or
parameters may be ill-posed, so we restrict the solutions to
lie in a lower-dimensional subspace of the autodecoder-type
priors Gu or Gθ. When working on regular grids, these pri-
ors could easily be implemented as CNN-based generative
model, but it is not clear how to model such priors for ir-
regular meshes. To this end, we leverage recently proposed
coordinate networks with ReLU activation functions, which
use a conditioning-by-concatenation approach to generalize
across signals:

Gu/θ = Wn (ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ0)
([

x
zu/θ

])
+ bn

ϕi (xi) = ReLU (Wixi + bi) ,

(4)

where ϕi : RMi 7→ RNi is the ith layer of the MLP con-
sisting of the affine transform defined by the weight matrix
Wi ∈ RNi×Mi and the biases bi ∈ RNi . The input to
the first layer concatenates the coordinate x with a scene-
specific latent code vector zu/θ. This coordinate network,
implemented by an MLP, maps continuous coordinates on
the simulation domain to a quantity of interest. Thus, it can
be evaluated on a regular grid or, more importantly, on the
irregular locations of the graph nodes our GNN operates on.

We learn Gu/θ in a pre-processing step, using training data
relevant for a specific physical problem. We optimize the
network parameter, denoted by ψG , and the latent code, z,
with respect to the individual training sample, indexed by i,
to maximize the joint log posterior of all training samples:

argmin
ψG ,z

N∑
i=1

 K∑
j=1

L
(
G
(
zi, xj

)
, uij

)
+

1

σ2
∥zi∥22

 (5)

At test time, the pre-trained GNN modeling the dynamics
and the pre-trained coordinate networks as the prior are
fixed, and the latent code vectors zu/θ are optimized for a
given set of sparse observations using a standard Adam
solver (Kingma & Ba, 2014).

4. Experiments
We demonstrate our approach on the wave equation and
the Navier–Stokes equations for modeling acoustics or fluid
dynamics. Our method leverages a learned simulator us-
ing a Graph Neural Network and a learned prior for fast
and accurate recovery of the unknown parameters. The
U-Net (CNN) solver baseline is comparable to existing ap-
proaches in the literature for forward simulation (Thürey

Timestep
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CNN 25x25
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Figure 3. Accumulated relative error of the U-Net (CNN) (on both
coarse and fine grids) and GNN-based forward simulators for
varying number of time steps.

et al., 2020; Wandel et al., 2021; Holl et al., 2019; Bhatna-
gar et al., 2019; Tompson et al., 2017); since we focus on
solving physics-constrained inverse problems, we extend
this approach accordingly and incorporate our learned prior.
We also evaluate the effect of the learned prior. We find that
our approach gives a favorable tradeoff between accuracy
and speed, enabling accurate recovery of the unknown pa-
rameters while being up to nearly two orders of magnitude
faster than the classical FEM solver.

4.1. Two-Dimensional Scalar Wave Equation

The wave equation, Eq. (6), is a second-order partial differ-
ential equation that describes the dynamics of acoustic or
electromagnetic wave propagation.

∂2u

∂t2
− c2

∂2u

∂x2
= 0

u′0 =
∂u

∂t
|t=0 = 0

u0 = uinit

(6)

Here, u is the field amplitude and c is the velocity parameter
that spatially characterizes the speed of the wave propaga-
tion inside the medium. The wave equation can be solved
given initial conditions, u′0 and uinit, and the boundary con-
ditions. In our experiments, the domain is chosen to be
Ω ∈ [0, 1]2 with an obstacle at the center. The Dirichlet
boundary conditions are used at all boundaries, u|∂Ω = 0.
The initial field velocity is set to be 0, and the initial field
distribution is denoted by uinit.

The PDE-constrained inverse problem we are aiming to
solve is to recover unknown parameters uinit or c from sparse
measurements of u in space and time. Formally, it can be



Figure 4. Qualitative results for the initial state recovery problem with the 2D wave equation. Here “C.” refers to the coarse meshes
(25 × 25 nodes for U-Net (CNN) or ≈ 600 nodes for GNN), and “F.” refers to the fine meshes (64 × 64 nodes for U-Net (CNN) or
≈ 2800 nodes for the FEM solver). Without the learned prior, G, all methods fail due to the ill-posed nature of the problem. Using the
prior, we find the GNN yields a result that is closer to the ground truth compared to both U-Net (CNN) models. While the FEM solver on
the fine grid outperforms the GNN, it is also ≈8× slower. Thus the GNN with the prior gives a favorable tradeoff between speed and
accuracy.

described as

minimize
{z}

∑
t∈Titer

∥H(ugt
t (x))−H(upred

t (x))∥22

s.t. ut+1 = ut +Mc (ut, u
′
t)︸ ︷︷ ︸

u0(x)=Guinit (z,x) or c(x)=Gc(z,x)

(7)

Here, we minimize the mean squared error (MSE) between
the predicted field (upred

t ) and the ground truth observed
field (ugt

t ), summed over different observation time steps,
t. We address two different tasks, (1) recovering the initial
condition, uinit, and (2) full-waveform inversion (Virieux &
Operto, 2009) in which we recover the velocity parameter,
c. These optimized quantities are parameterized by the
prior network Guinit/c. Finally, the measurement sampling
operator is given by H, and Mc is the forward model that
solves the wave equation, Eq. (6), to produce the field at the
next time step.

Learned Forward Simulation In our approach, Mc is
given by a GNN, which learns the wave equation forward
model on irregular meshes.

As a baseline, we train a U-Net (CNN) forward model based
on (Thürey et al., 2020). Similar to (Pfaff et al., 2021),
we train the GNN and U-Net (CNN) by directly supervis-
ing on a dataset of “ground truth” wave equation solutions
generated with an open source FEM solver (FEniCS (Logg
et al., 2012)). The FEM solver uses a fine irregular mesh
with many more nodes (≈2800) than the GNN (≈600) on
average across the dataset. The training dataset is composed
of 1100 simulated time-series trajectories using 37 separate

meshes. We evaluate on 40 held-out trajectories across 3
different meshes. We find that the FEM solver requires a
timestep that is 5× smaller than the GNN solver to achieve
stable results. At this setting, the FEM solver simulated on a
fine irregular mesh is roughly 8× slower than the GNN; run-
ning the FEM solver on the same grid as the GNN is 2.5×
slower than the GNN with accuracy roughly 80× worse in
terms of MSE.

To compare the accuracy of different learned forward simu-
lators, we plot the accumulated relative error, unrolled for
50 time steps and averaged over 96 trajectories in Fig. 3.
The GNN-based simulator provides a robust solution. We
evaluate two different cases for the U-Net (CNN). In one
case, we restrict the number of grid nodes to be roughly the
same as the GNN (25 × 25). Since the small number of
nodes must be regularly and coarsely spaced, this provides
poor performance. Second, we set the grid resolution of
the U-Net (CNN) such that the spacing between grid points
matches the minimum spacing in the GNN mesh. This re-
quires 7× more nodes than the GNN (64 × 64), but the
performance is still relatively worse than the GNN.

Initial State Recovery For the initial state recover task,
we solve Eq. (7) where uinit(x) = Guinit(z, x) is the unknown
parameter and initial velocity is given to be 0. For both
this problem and full-waveform inversion, the prior is pre-
trained on a dataset of 10,000 values of uinit (or c), generated
by sampling a Gaussian random field and tapering the so-
lution to zero near the boundaries to satisfy the Dirichlet
boundary condition.



Forward Model # nodes Initial State Recovery FWI Runtimes
MSE MSE (with G) MSE MSE (with G) (s)

FEM (Irr. F.) 2827 1.55e-3 7.82e-4 3.91e-1 1.19e-1 1.25e1
FEM (Irr. C.) 611 1.72e-1 4.18e-3 3.88e-1 1.64e-1 6.03e0
U-Net (Reg. C.) 625 1.32e-2 3.52e-3 4.19e-1 1.54e-1 1.71e-1
U-Net (Reg. F.) 4096 3.16e-2 1.49e-3 5.14e-1 1.08-1 1.91e-1
GNN (Irr. C.) 611 1.05e-2 8.87e-4 3.68e-1 1.05e-1 1.44e0

Table 1. Quantitative results for the initial state recovery and full-waveform inversion (FWI) problems for the 2D wave equation. All
metrics are averaged over 40 test samples and evaluated on coarse irregular grids. Observation setup: we use measurements every 2
GNN time steps from 2 to 30 GNN time steps with 20 sensors randomly sampled from the grid. Runtime measures the time taken per
optimization iteration. We observe that the GNN outperforms the U-Net (CNN) with a similar number of nodes and provides comparable
results with the U-Net (CNN) using 7× more nodes. The classical FEM solver using a fine irregular mesh gives the lowest MSE, however
it is at least 8× slower than the learned simulator approaches.

We solve the inverse problems by optimizing the value of
z using the ADAM optimizer (Kingma & Ba, 2014) for
all experiments until convergence, or a maximum of 2000
iterations. In the case where we optimize without the prior,
we directly optimize the unknown parameters, uinit or c.

Table (1) reports a quantitative comparison of different
solvers with and without the prior, and a qualitative com-
parison is shown in Fig. 4. Here we unroll the GNN for
30 GNN time steps and take measurements every 2 GNN
steps from 2 to 30 time steps. At every measurement, we
have sensors placed at 20 randomly sampled nodes from the
coarse irregular mesh. For baseline comparisons with other
form of meshes (regular for U-Net (CNN) and fine irregular
mesh for FEM solver), we use nearest neighbor sampling
to find the corresponding sensor location. From the table
we observe that with or without the prior, our approach pro-
vides a favorable trade-off between the accuracy and the
speed. While the U-Net (CNN) is the fastest forward simu-
lator, the GNN solver outperforms the U-Net (CNN) solver
in terms of accuracy at resolution 25 × 25 and performs
slightly better than the U-Net (CNN) at resolution 64× 64.
We attribute this to the stronger performance of the GNN
forward model, as shown in Fig. 3. Given that the FEM
solver operating on the finest mesh gives the most accurate
forward model, it gives the best MSE in the inverse problem.
However, it is at least 8× slower than the learned simulator
approaches. For all cases, using a learned prior significantly
improves the final accuracy. By optimizing the latent code,
we constrain the solution space to the manifold learned by
Guinit/c and avoid bad local optima that lie far outside the
dataset distribution.

Full Waveform Inversion Full-waveform inversion
(FWI) is a common problem in seismology (Virieux et al.,
2017) and involves recovering the density of structures in
the propagation medium. We are motivated by recent work
that uses variants of a CNN as a prior (Mosser et al., 2020;
Wu & McMechan, 2019) or forward operator (Yang et al.,

2021) for seismic inversion. As we are primarily interested
in a comparison between learned methods on regular and
irregular meshes, we adopt the U-Net (CNN) baseline as a
representative method that can be unrolled per timestep and
integrated into our framework. Since the prior is agnostic
to the particular grid setup, we use the same prior across all
models.

For the FWI problem, we minimize Eq. (7) where c(x) =
Gc(z, x) is the unknown parameter. FWI is a highly non-
linear inverse problem, and the final optimization result
depends heavily on the initial state and may easily fall into
local minima. In order to improve the optimization, differ-
ent forms of progressive training schemes have been used.
For example, one can progressively fit the data in time by
introducing a damping function as in (Chen et al., 2015).
In frequency-domain full-waveform inversion, one can first
optimize low-frequencies to avoid local minima (Aghamiry
et al., 2019; Brenders & Pratt, 2007). In our approach, we
adopt a progressive training scheme in time where we grad-
ually increase the total number of observed time steps as
the optimization proceeds. For the FWI task, we unroll the
GNN for 30 GNN time steps and take measurements every
2 GNN steps. At the beginning of the optimization, we only
have observations at time step T = {2∆t}, and we include
one extra time step’s measurement every 120 optimization
iterations until T = {2∆t, 4∆t, · · · , 30∆t}.

Table (1) reports a quantitative comparison of the perfor-
mance of different solvers used with or without the prior.
We observe similar trends as in the initial state recovery
task, where using a learned prior significantly improves the
final accuracy. For this task, the proposed GNN solver gives
the lowest MSE compared to the baselines. Figure 5 shows
qualitative comparisons between the different learned sim-
ulators and demonstrates that the proposed approach with
the GNN forward model leads to a better recovery of the
density distribution.



Figure 5. Qualitative results for full-waveform inversion experi-
ments. Here “C.” refers to the coarse meshes and “F.” refers to the
fine meshes, consistent with the notation used in Fig. 4. We observe
that the GNN outperforms the U-Net (CNN) both quantitatively
and qualitatively.

4.2. Two-Dimensional Incompressible Navier–Stokes
Equation

The two-dimensional incompressible Navier–Stokes Equa-
tions are non-linear partial differential equations modeling
the dynamics of fluids. Taking a fluid density of ρ = 1.0,
the fluid is characterized by

∂u
∂t

+ u∇u − ν∇2u +∇p = 0 (8)

∇ · u = 0 (9)

Here, ν = 0.001 is the kinematic viscosity, u represents the
velocity of the fluid in the x and y directions, and p rep-
resents the pressure. These incompressible Navier–Stokes
equations can be solved given the initial condition u and
boundary conditions for the given domain. For our exper-
iments, we use an irregular domain Ω ∈ [0, 1.6] × [0, 0.4]
with a cylinder of random radius at a random position near
the flow inlet. No-slip boundary conditions are defined at
the lower and upper edge, as well as at the boundary of
the cylinder as shown in Eq. (10). On the left edge, a con-
stant inflow profile is prescribed, Eq. (11); on the right edge,
do-nothing boundary condition is used, Eq. (12).

u(x) = [0, 0] ∀x ∈ ∂Ωup, bottom, cylinder (10)
u(x) = [1, 0] ∀x ∈ ∂Ωin (11)

ν∂ηu − pη = 0 ∀x ∈ ∂Ωout (12)

We carry out flow assimilation on the velocity field u given
sparse velocity measurements in space and time. Formally,
we have

minimize
{z}

∑
t∈Titer

∥H(ugt
t (x))−H(upred

t (x))∥1

s.t. ut+1 = ut +M (ut)
u0(x) = Guinit(z, x).

(13)

where H is the measurement sampling operator, and M is
the forward model that solves the incompressible Navier–
Stokes Equations.

Our assimilation trajectories are random flow clips of length
T = 10 time intervals from the test dataset. We take mea-
surements every 2 time intervals for a total of 5 measure-
ment snapshots where each time intervals are equivalent to
1 learned solver timesteps, or 12.5 FEM solver timesteps.
At every measurements, we have 50 sensors measuring the
velocity field, [ux, uy], as shown in Fig. 6.

Forward Model # nodes MSE Runtime (s)
FEM (Irr. C.) 2732 3.92e-4 3.87e1

U-Net (Reg. C.) 2916 5.78e-3 1.11e-1
U-Net (Reg. F.) 16384 2.55e-3 1.65e-1
GNN (Irr. C.) 2732 9.73e-4 1.10e0

Table 2. Errors of different forward models for 50-steps rollout
averaged over 50 test trajectories. The proposed method with
the GNN provides better accuracy than the U-Net (CNN) at both
coarse and fine resolution and is 35× faster than the classical FEM
solver.

Learned Forward Simulation As described in Sec. 3,
our method uses a GNN as a fast and accurate learned simu-
lator operating on irregular meshes. Similar to the 2D scalar
wave equation experiment, we train as baselines a U-Net
(CNN) for an input resolution of 54 × 54, which matches
the average number of nodes of the irregular grid used by
the GNN (≈2732 nodes). We also train a U-Net (CNN)
at 128× 128 resolution, which contains roughly 6× more
nodes compared to the coarse irregular grid (Irr. C.) used by
the GNN. All learned simulators are trained in a supervised
manner on a dataset obtained using an open source FEM
solver (Logg et al., 2012). Our dataset consists of 850
training trajectories on 55 meshes, and 50 test trajectories
on 5 meshes. The unrolled MSE is shown in Table (2). We
observe a similar trend as in the wave equation example: the
GNN gives the best accuracy among learned solvers and is
approximately 35× faster than the FEM solver.

Fluid Data Assimilation We train our prior Gu on
34000 fluid snapshots from the training trajectories, where
Gu(z, x) = u(x) = [ux(x), uy(x)]. Similarly to the wave
equation experiment, we solve the optimization problem
given in Eq. (13) using the ADAM optimizer (Kingma &
Ba, 2014). Different from the wave equation experiments
we add a fine-tuning stage to the optimization where we up-
date the parameters of the generative prior Gu, which helps
to improve the generalization performance in this problem.
Similar techniques have been widely used in GAN inversion
problems (Daras et al., 2020; Roich et al., 2021). Figure 7
shows the averaged observation objective with optimiza-
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Figure 6. Fluid data assimilation results using different forward models with the prior. Left: we have 50 sensors measuring the velocity
field and we take measurements every 2 time steps over a flow clip of total 10 time steps. Right: qualitative comparison of recovered flows
using different methods at t = 0 (beginning of assimilation window) and t = 10 (end of the assimilation window). We visualize the
magnitude of the velocity (∥u∥22) for comparison (see supplement for additional comparisons). The reported MSE are the average mean
square error over the entire flow assimilation window. While the FEM solver yields the best results, it is roughly 90× slower than the
GNN.

Forward Model Fluid Data Assimilation
MSE (ux) MSE (uy) Runtime (s)

FEM (Irr. C.) 4.46e-3 1.94e-3 6.39e1
U-Net (Reg. C.) 1.02e-2 5.40e-3 1.27e-1
U-Net (Reg. F.) 7.97e-3 3.31e-3 3.25e-1
GNN (Irr. C.) 6.55e-3 1.86e-3 6.94e-1

Table 3. Fluid assimilation results averaged over 50 test samples
on 5 unseen meshes. Here, we simulate for 10 time steps taking
measurement of 50 sampled sensors every 2 time steps. Runtime
is the per-iteration optimization time. We observe that the GNN
(Irr. C.) performs much better than the U-Net (Reg. C.) using a
similar number of nodes (listed in Table (2)). U-Net (Irr. F.) uses
5× more nodes than the GNN but has slightly worse performance.
The FEM solver gives the best performance but is 90× slower than
the GNN.

tion steps for different forward model and with or without
fine-tuning procedure. After beginning the fine-tuning pro-
cedure we notice a spike in the objective function, but the
optimization ultimately converges to much lower residuals
than without the fine-tuning procedure. In Table (3), we
qualitatively compare the data assimilation performance for
different forward models with the learned prior, and qual-
itative comparisons can be found in Fig. 6. We report the
average MSE over all time steps of ux and uy as our eval-
uation metric. We observe similar trends as in the wave
equation experiment: the learned GNN forward model with
the learned prior achieves better accuracy compared to the
coarse U-Net (CNN) model, which has a similar number
of nodes. While the FEM solver gives the best fluid recon-
struction, it is 50× slower than the GNN. U-Net (Reg. F.)
uses 5× more nodes than the GNN, but achieves similar
performance.

Optimize 
!

Optimize !, $
GNN

U-Net (F.)
FEM

U-Net (C.)

Optimize ! GNN

U-Net (F.)
FEM

U-Net (C.)

Optimization Steps

Observation Objective
Without 
Fine-tuning

With 
Fine-tuning

Figure 7. Observation objective during the optimization. Solid
lines: during the first 200 iterations, we only optimize the latent
code z and the prior, G, parameterized by ψ is fixed. From 200
- 600 iterations, we start to fine tune the prior, i.e optimizing ψ,
to increase the expressiveness of the prior to better match the
observations. After fine-tuning, we observe a significant decrease
in the objective function. Dashed lines: we only optimize the
latent code z throughout the optimization. We observe that the
final observation objective without fine-tuning is much higher than
the cases with fine-tuning.

5. Discussions
In this paper we present a general framework for solving
PDE-constrained inverse problems with a GNN-based for-
ward solver and an autodecoder-style learned prior. Both the
GNN-based learned simulator and the learned prior operate
on irregular meshes with adaptive resolution, enabling repre-
senting and processing signals with fewer nodes compared
to the regular grids used by convolutional networks. Our
experiments on the wave equation and Navier–Stokes equa-
tions demonstrate that the proposed framework achieves
improved performance compared to a conventional U-Net
(CNN) operating on grids with the same number of nodes
as the GNN. Moreover, our approach is up to 90× faster
compared to conventional FEM solvers.



We also mention a few limitations of the proposed approach.
The current implementation is limited in the number of time-
steps that can be modeled in the inverse problem due to mem-
ory required to unroll the solvers. Also, the method requires
the forward model to be trained from scratch for changes
to the underlying equations (e.g., significant changes to the
boundary conditions or dynamics). Still, techniques like
gradient checkpointing (Griewank, 1992) may be helpful
to mitigate the memory constraints of the unrolled opti-
mization, and generalizing learned physics solvers across
problem settings is an promising direction for future work.

Overall, our approach works to integrate GNNs and learned
priors for solving physics-constrained inverse problems.
Our approach may be useful for solving ill-posed problems
across a range of tasks related to physics-based simulation
and modeling. GNNs are an attractive architecture for ef-
ficient modeling across multi-resolution domains and may
yield even greater improvements compared to conventional
CNNs, especially for larger domains or in 3D problem set-
tings.
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