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Abstract

Underwater Object Tracking (UOT) is essential for identifying and tracking sub-
merged objects in underwater videos, but existing datasets are limited in scale,
diversity of target categories and scenarios covered, impeding the development of
advanced tracking algorithms. To bridge this gap, we take the first step and intro-
duce WebUOT-1M, i.e., the largest public UOT benchmark to date, sourced from
complex and realistic underwater environments. It comprises 1.1 million frames
across 1,500 video clips filtered from 408 target categories, largely surpassing
previous UOT datasets, e.g., UVOT400. Through meticulous manual annotation
and verification, we provide high-quality bounding boxes for underwater targets.
Additionally, WebUOT-1M includes language prompts for video sequences, ex-
panding its application areas, e.g., underwater vision-language tracking. Given that
most existing trackers are designed for open-air conditions and perform poorly in
underwater environments due to domain gaps, we propose a novel framework that
uses omni-knowledge distillation to train a student Transformer model effectively.
To the best of our knowledge, this framework is the first to effectively transfer
open-air domain knowledge to the UOT model through knowledge distillation, as
demonstrated by results on both existing UOT datasets and the newly proposed
WebUOT-1M. We have thoroughly tested WebUOT-1M with 30 deep trackers,
showcasing its potential as a benchmark for future UOT research. The complete
dataset, along with codes and tracking results, are publicly accessible at herel

1 Introduction

Underwater object tracking (UOT) refers to the task of sequen-
tially locating a submerged instance in an underwater video,
given its initial position in the first frame [36, 51,15 [1]. As a
fundamental task in computer vision, it has a wide range of ap-
plications, such as marine animal conservation [5], underwater
search and rescue [[1]], underwater photography [41], and home-
land and maritime security [25]. The underwater environment RN

usually exhibits uneven lighting conditions, low visibility, low

contrast, watercolor variations, similar distractors, camouflage, Flgu.re 1: The proposed Web.U(.)T—
and target blurring, posing distinct challenges for UOT com- IM is much larger than existing
pared to traditional open-air tracking tasks [[75][19] 31} 61} 49]]. UOT benchmarks [36, 511 2} [1].
Despite its significance, UOT has not been thoroughly explored due to the absence of large-scale
datasets, benchmarks, and challenges in gathering abundant underwater videos [} 15]].
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Figure 2: A glance of some video sequences and annotations from the WebUOT-1M dataset. All
sequences are divided into 12 superclasses, including amphibian, arthropod, bird, chordate, coelen-
terate, crustacean, fish, mollusc, person, mammal (except humans), reptile, and inanimate object.

Recently, some efforts have been made to build UOT datasets to promote research in this field.
Early works focus on specific underwater tasks (e.g., tracking marine plastic waste [38]]), underwater
environments (e.g., coral reef [20]), and specific marine species (e.g., zebrafish [53]] and ocean
mammal [37])). These datasets do help advance research on enhancing the tracking and monitoring
of relevant marine species. Due to the huge appearance variation and behavioral differences
among various marine animals, models trained on these early datasets struggle with unseen
species, leading to poor generalization performance. To further facilitate research on UOT, datasets
covering multiple species are proposed, e.g., UTB180 [2] and UVOT400 [1]]. However, these datasets
are still limited in terms of their dataset volume, diversity in animal species and scenarios covered
due to severe challenges in underwater video collection and annotation.

To fill this gap, we propose WebUOT-1M, the first million-scale dataset for UOT. As shown in Figs. [T]
and 2] the WebUOT-1M is much larger than existing datasets and comprises abundant categories,
diverse underwater scenarios, and rich annotations. WebUOT-1M comprises 1.1 million frames with
precise bounding box annotations across 1,500 underwater videos and 408 highly diverse target
categories (see Tab. [T] Fig.3). These targets are further classed into 12 superclasses with reference to
WordNet to facilitate the evaluation of the cross-superclass generalization ability of tracking
models. Most of the video clips are collected from YouTube' and BiliBili> with carefully filtering.
These video websites contain massive underwater video resources. The videos are captured using
different cameras, at various shooting perspectives and distances, and with different camera motion
patterns. We assembled a professional labeling team to conduct data annotation. To establish a
comprehensive benchmark, we offer 23 tracking attributes, e.g., low resolution, fast motion, similar
distractors, underwater visibility, and watercolor variations. To explore the complementary advantages
of visual and linguistic modalities, we provide a language prompt for each underwater video, which
can facilitate the research of multi-modal UOT. To provide a baseline method for other researchers to
compare, we propose a simple yet powerful omni-knowledge distillation tracking algorithm based on
knowledge distillation (KD) [29] and contrastive learning (CL) [50].

The main contribution of this work is three-fold. 1) We introduce WebUOT-1M, the first million-scale
benchmark dataset featuring diverse underwater video sequences, essential for offering a dedicated
platform for the development and evaluation of UOT algorithms. 2) We propose a simple yet strong
Omni-Knowledge distillion Tracking approach, termed OKTrack, for UOT. It is the first work to
explore knowledge transfer from a teacher Transformer using underwater and enhanced frames to a
student Transformer in the UOT area. 3) We comprehensively benchmark the proposed approach,

"https://www.youtube.com/  https://www.bilibili.com/



Table 1: Comparison of WebUOT-1M with popular UOT benchmarks.

Min Mean Max Total Annotated Total Absent Language Data Open

Dataset Year Videos Classes Attributes f . N N . s

rame frame frame frames boxes  duration label prompt partition  source
UOT32 [36] 2019 32 - - 283 758 1,573 24K 24 K 16 min X X Test  Proprietary
UOT100 [S1] 2022 104 - 3 264 702 1,764 74K 74 K 41 min X X Test Fully
UTB180 [2] 2022 180 - 10 40 338 1,226 58K 58K 32 min X X Train/Test  Fully
VMAT [5] 2023 33 17 13 438 2242 5550 74K 74K 41 min X X Test Fully
UVOT400 [1] 2023 400 50 17 40 688 3273 275K 275K 2.6hours X X Train/Test Partially
WebUOT-IM 2024 1,500 408 23 49 733 9985 1.IM 1.1M 10.5hours Vv v Train/Test  Fully

along with representative tracking algorithms based on CNN, CNN-Transformer, and Transformer on
both the newly proposed WebUOT-1M and existing UOT datasets, obtaining some valuable insights.

2 Related Work

Open-air Object Tracking. Open-air object tracking is an active research field in computer vision,
aiming to learn a class-agnostic appearance model to estimate the state of an arbitrary object in
open-air videos (e.g., ground [19} 149} 161]], UAV (75,130,148, [74], and indoor scenes [[66, 65]) given an
initial bounding box. In the past decade, significant progress has been made in open-air tracking by
embracing deep neural networks. Early deep tracking paradigms include deep discriminative correla-
tion filters [[14, 113} 124} 23] [73]] and Siamese networks [3 38} |11} 27]. They usually require carefully
designed online learning strategies or complex post-processing. Recently, with the development of
foundation models [55, [16} [72], many advanced tracking techniques have emerged, such as unified
architectures [70} 167]], autoregressive models [64} 9], prompt learning [87]], and diffusion [68]]. All
these modern deep tracking models benefit from public large-scale datasets [42} (19} 31} 149].

Underwater Object Tracking. UOT [36} |51} 15 [1} 2] aims to predict the location of objects
submerged in various underwater environments. Recently, it has attracted increasing attention from
the research community due to the underwater vision understanding and marine animal conservation
demands. Yoerger et al. [71] propose a Mesobot platform to track slow-moving marine animals.
This platform tracks jellyfish and larvaceans by building color segmentation and blob-tracking [4]]
methods. However, these methods can only be used for simple underwater scenarios and a few
species. Katija et al. [35]] further propose using tracking-by-detection and deep neural networks to
improve tracking robustness and adaptability in more complex underwater environments. Li et al. [41]
introduce underwater images and open-air sequence hybrid training and motion-based post-processing
to address the sample imbalance and model drift problems, respectively. To promote the research of
UOT, many datasets are established, e.g., UOT32 [36], UOT100 [51]], UTB180 [2]], VMAT [5], and
UVOT400 [1]. However, these datasets either lack training sets [36} 51} 15] (see Tab. E]) or are difficult
to train models with good generalization capabilities due to limited size and scenarios covered [2} [1].
To the best of our knowledge, there is still no public million-scale benchmark specifically dedicated
to the UOT task. We believe that our benchmark can greatly facilitate the research of UOT.

Knowledge Distillation. KD [29] 26| 52| [80], i.e., efficiently learning a small student network from
a large teacher network, is a widely studied area. Its core idea is that the student network imitates
the teacher network to obtain competitive or even better performance [26]. In recent years, there are
many KD-based deep trackers, which include but do not limit to channel distillation [23]], training-set
distillation [39]], cross-modality distillation [81}62]], correlation filter distillation [8], and Siamese
network distillation [57} 184]. Inspired by recent RGB-event distillation method [62]], we propose
a novel omni-knowledge distillation approach in the UOT area by combining token contrastive
representation, similarity matrix, feature embeddings, and response maps distillation losses.

3 Dataset

3.1 Data Collection and Annotation

The goal of WebUOT-1M is to provide a large-scale benchmark for UOT in various real-world
underwater scenarios. To this end, we mainly resort to online video platforms, e.g., YouTube and
BiliBili, and carefully collect and filter 1,500 video sequences covering 408 different categories from
abundant underwater scenarios, e.g., sea, river, lake, pool, aquarium, fish tank, bowl, and cup. The
video platforms contain massive real-world videos captured from different devices/platforms (e.g.,
diver-based cameras, human-occupied vehicles, underwater robots, and mobile phones), with different
shooting angles, distances, and camera movement patterns, greatly reducing the cost of collecting
large-scale UOT datasets. Then, we perform data cleaning to discard videos that are not suitable
for tracking, e.g., repeated scenes, long-term static targets, and incomplete trajectories. The number
of videos in each class group forms a long-tail distribution (see Fig. [3), which meets real-world
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Figure 3: We propose a challenging benchmark containing diverse object classes shown in word
clouds, and the number of videos in each class group forms a long-tail distribution.
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Figure 4: Statistics of WebUOT-1M. (a) Abundant underwater scenarios. (b) Distribution of normal-
ized target center position. (c) Distribution of video length.

situations, making WebUOT-1M more challenging and encouraging the learning of more general
UOT algorithms. Moreover, this brings a significant advantage to our dataset, since WebUOT contains
a wide range of categories, especially many rare species (e.g., flame squid, salamander, and Chinese
sturgeon), which can facilitate the visual observations and tracking of these rare species. All videos
according to the target are divided into 12 superclasses with reference to WordNet [47]], i.e., amphibian,
arthropod, bird, chordate, coelenterate, crustacean, fish, mollusc, person, mammal (except humans),
reptile, and inanimate object (see Fig. |Z[) Unlike most previous UOT datasets [36} 51} 5] 2] that only
contain marine animals, WebUOT-1M incorporates inanimate objects (e.g., unmanned underwater
vehicle, and amphibious drone), resulting in a more comprehensive and versatile benchmark.

After the video cleaning, we randomly select moving targets in the videos to ensure the diversity of
the dataset (see Fig.[2). Then, a professional data labeling team conducts multiple rounds of manual
annotation and correction. However, directly annotating some underwater videos with severe color
deviation and blurring is extremely difficult or even impossible. To address this issue, we provide the
annotators with enhanced videos using a semi-supervised method [32]. The author team performs
the last data verification to ensure the high quality of the annotations. Specifically, the bounding
box [z,y, w, h] is used as the ground-truth of the target in each frame of the video, where (z,y), w,
and h represent the target’s top-left corner, width, and height, respectively. Following [[75, 161} [18]], a
sentence of language prompt describing the color, behavior, attributes, and surroundings of the target
is given for each video sequence to encourage the exploration of multi-modal UOT. The absent label
for each frame is also annotated to provide rich information for accurate tracking (see Tab. [T)).

3.2 Attributes

To enable comprehensive and in-depth evaluation of trackers [1,[75], we label each video sequence
with rich attributes. Specifically, we provide 23 attributes, including low resolution (LR), fast motion
(FM), scale variations (SV), aspect ratio variations (ARV), camera motion (CM), viewpoint changes
(VC), partial occlusion (PO), full occlusion (FO), out-of-view (OV), rotation (ROT), deformation
(DEF), similar distractors (SD), illumination variations (IV), motion blur (MB), partial target infor-
mation (PTI), natural or artificial object (NAO), camouflage (CAM), underwater visibility (UV),
watercolor variations (WCV), underwater scenarios (US), shooting perspective (SP), size (SIZ), and
length (LEN) of video. The detailed definition and statistics of attributes are shown in Appendices.

4
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Figure 5: OKTrack overview. During training phase, we adopt four distillation losses (see Sec. .
A training-free MATP module (see Sec. @) is used to enhance the tracking robustness of inference.

3.3 Statistical Analysis

As shown in Fig.f{a), WebUOT-1M contains abundant underwater scenarios, including sea, river,
lake, pool, fish tank, water tank, basin, bowl, cup, aquarium, pond, and puddle. The normalized
target center position distribution presents a center mean Gaussian (see Fig. (b)), indicating the high
quality and diversity of the dataset. The distribution of video length is demonstrated in Fig. fc). We
can see that WebUOT-1M contains 985, 263, 106, and 146 videos with segments containing 1-600,
600-1200, 1200-1800, and more than 1800 frames, respectively. The various video lengths make our
dataset suitable for benchmarking both short-term and long-term tracking algorithms.

4 Methodology

In this section, we present an omni-knowledge distillation framework (see Fig.[3). The core insight is
to leverage a teacher model pre-trained on the massive open-air data to enhance tracking performance
on UOT. KD [29] 26] has been proven to efficiently learn a student model from a teacher model.
Inspired by recent RGB-event tracking [62], we propose to distill the knowledge from enhanced and
underwater frames with the supervision of a pre-trained teacher tracker to a student tracker devoted
to handling underwater frames. Due to the limited space, more details are provided in Appendices.

4.1 Problem Formulation

Given underwater frames Z = {I;} ¥, € RE*WXC "we first adopt an off-the-shelf semi-supervised
method [32] to obtain corresponding enhanced frames € = {e;}}¥., € REXWXC where (H, W)
denotes the resolution of video frames, C' and IV represent the number of channels and video frames,
respectively. Like Transformer-based trackers [[70, 9], we can crop a pair of images patches, i.e.,
the template patch z € R=*W=%C and the search region patch 2 € R+ *WxC from underwater
frames. Then, the image patches are divided into multiple non-overlapping patches, which will be
further transformed into 1D tokens using a projection layer [70]. To preserve position information,
learnable positional embeddings [17]] are added to these tokens. Given an underwater video with
a pair of template and search region patches X, = {z, z}, and an initial target box By, the UOT
problem can be formulated as S : {X,.., By} — B, where S is the student tracker, B is the predicted
target box in subsequent frames. Adding enhanced template and search region patches X, = {%, 2}
and a pre-trained teacher tracker 7, the learning of the student tracker can be expressed as optimizing
Lokp : {Xez, Xuzy, T,So} — S, where Lok p represents the omni-knowledge distillation loss (see
Sec. @), Sy is an initial student model based on the plain ViT backnone [17].

4.2 Network Architecture

Multi-view Teacher Network. We adopt a modified version of unified backbone [[79] as the teacher
Transformer, which consists of multiple Transformer layers. The teacher network can use multi-
view modalities simultaneously, i.e., underwater and enhanced frames. Specifically, tokens from
underwater and enhanced frames are concatenated and fed into the teacher Transformer. Then, the
extracted feature embeddings are used for target prediction by a tracking head.



Unimodal Student Network. To realize efficient and low-latency UOT, the student network [70]
only uses underwater video streams. As shown in Fig. [5] the student Transformer is a plain ViT
architecture [[17]. We argue that through the omni-knowledge distillation, an accomplished teacher
can effectively transfer the knowledge obtained from handling underwater and enhanced frames to
the student network, significantly enhancing the tracking performance of the student network.

Motion-aware Target Prediction. The underwater targets (e.g., fish and sharks) are often surrounded
by similar distractors, leading to model drift [41]]. To tackle this issue, we design a training-free
motion-aware target prediction (MATP) (see Fig.[5) based on Kalman filtering [33]). It involves two
primary stages: prediction, which estimates the current state using the previous state, and correction,
which combines the estimated state with current observations to determine the optimal state.

4.3 Omni-Knowledge Distillation

Token-based Contrastive Distillation (CKD). The CKD is employed to explicitly align underwater
and enhanced tokens by CL [50]], aiming to mitigate the distribution discrepancies between multi-view
modalities (i.e., underwater and enhanced frames). We define underwater tokens for student network

as t5 € R320 underwater and enhanced tokens for teacher network as t* € R320 and t¥ € R320,
respectively. Formally, the CKD losses between teacher and student networks are defined as:

exp(sim(t5,t1) /7 exp(sim(ti, t3) /7
'u,25 Kzl p ( (R S)/t) e = Zl p ( 7 t)/s) ] (1)
i exp(sim(t;, ) /7 ) S2jo exp(sim(t], t5)/7)
where K is the batch size, 7 is a temperature parameter, szm(~) denotes cosine similarity function.

The CKD losses, i.e., L],,, and L., , with the teacher network can be calculated similarly. The total
CKD IOSS 1S »CCKD - »CuZe + ['821/. + 'Cu2e + ‘CeQu

Similarity-based Distillation (SKD). The similarity matrix (i.e., dot product of query and key) in the
multi-head attention can capture rich long-range dependencies and cross-modal information 62, [17]].
Given the similarity matrices (i.e., S! and S¢) of the i'” layer of teacher and student Transformers.

We define the SKD loss as Lgxp = Zle (St — S#)2, where L is the number of Transformer layers.

Feature-based Distillation (FKD). The advanced feature embeddings contain rich semantic informa-
tion. The FKD loss between teacher and student networks can be formalized as Lrrcp =||F* — F*||?,
where F'* and F'* are feature representations of them, respectively.

Response-based Distillation (RKD). In general, directly mimicking the response map R! of the
teacher network used for target localization enables the student network to achieve better tracking
accuracy [37]. Following [62], we adopt the Gaussian weighted focal loss function Loy r(-) to
define the RKD loss as Lrixp=Lew r(R"/1, R® /1), where p is a scale factor.

Therefore, the omni-knowledge distillation loss is formulated as Loxp=Loxp+Lskp+Lrxp~+
Lrxp- We also borrow the tracking loss function used in [70,40] (i.e., GIoU loss Lgj,u, focal loss
L focal, and Ly loss L) to enhance the convergence of training. Finally, the total loss can be written
as Liotal = LoxkD+MLGrou + A2Lfocat + A3Lr1, Where A1, Ao, Az are balance factors.

5 Experiments

5.1 Implementation Details

We adopt the unified tracking model [[79] as the teacher network. The student network [70] is based
on a plain ViT-base backbone, stacked by L (i.e., 12) transformer encoder layers. We use an AdamW
optimizer [43] with initial learning rate 4 x 10~%. The weight decay factor is 1 x 10~* after 240
epochs. The batch size and total epoch are 32 and 300. The temperature parameter 7 is 0.5, and the
scale factor p is empirically set to 2. Following [62], the balance factors A1, A2, A3 are set to 1, 1,
and 14, respectively. For proper and fast verification, models are trained for 50 epochs in ablation
experiments. Our experiment platform is an Ubuntu server with 8 NVIDIA A6000 GPUs.

5.2 Metrics and Protocols

Following [75, [18], we perform the one-pass evaluation (OPE) and measure trackers using five
evaluation metrics (i.e., percision (Pre), normalized precision (nPre), success rate (AUC), complete
success rate (cAUC), and mean accuracy (mACC)) under two protocols.

Protocol 1. In this protocol, we conduct a cross-domain evaluation of existing tracking models trained
on open-air tracking datasets. We report the results of different trackers on the WebUOT-1M test
set. Cross-domain evaluation helps ascertain how well a tracker can adapt to new and unseen data
distributions, providing insights into its robustness.



Protocol I1. In this protocol, we perform within-domain
evaluation of open-resoure trackers on the WebUOT-
IM dataset. Concretely, we retrain different trackers

Table 2: Summary of open-air and under-
water tracking algorithms. “Trans.” denotes
Transformer. “B” represents base model.

on the training set and evaluate them on the test set. Tracker Source Backbone __FPS _UOT
. : SiamFC [3 ECCVWI6  AlexNet 8% X
Protocol II aims Fo provide be.nchmark. results for the e CVPRIT Voo s x
underwater tracking community to train and evaluate  VITAL [59 CVPRIS VGG-M 15 X
3 . ATOM [13 CVPR19 ResNet-18 30 X
trackers using a large number of underwater videos. SiamRPN++ [38 CVPRI9 ReNeLs0 35 X
SiamBAN [11 CVPR20 ResNet-50 40 X
SiamCAR [27 CVPR20 ResNet-50 52 X
5.3 Evaluated ’I‘rackers Ocean [83 ECCV20 ResNet-50 58 X
PrDiMP [15] CVPR20 ResNet-50 30 X
To provide baseline results for future research, we ex- ga‘)n‘ﬁ"nlg" gzgggi E:g:;g ggg: §8 ;
tensively evaluate 30 deep trackers, including CNN-  STARK-STS0[69] ~ ICCV2l ResNet-50, Trans. 40 X
based (eg. SiamFC (], ECO [}, VITAL [39], Sy v iy o 2
ATOM [13], SiamRPN++ [38]], Ocean [83]), CNN- TCTrack [6] CVPR22 AlexNet 126 X
. ToMP-101 [43] CVPR22 ResNet-101, Trans. 25 X
Transformer-based (e.g., TIDiMP [60], TransT [10],  ajatvack 21 ECCV22  ResNet-50, Trans. 38 X
STARK-ST50 [69]], ToMP-101 [45]), Transformer- SimTrack-B32(T ECCV22 ViT-B 30 X
. OSTrack 70 ECCV22 ViT-B 105 X
based methods (e.g., OSTrack [70], SimTrack- MixFormerva-B (2] NeurlPs23 ViT-B 165 X
B32 [[7], MixFormerV2-B [[12], SeqTrack-B256 [9]), g;l‘TArﬁlf_—st 60 gggg; xg:g 3(5) ;

vision-language (VL) trackers (e.g., VLTpr [28], VITscan 28] ~  NeurlPS22 ResNet:30, BertB 43~ X
: : _ i VLT (28] NeurlPS22 ResNet-50, Bert-B 35 X
JointNLT [86]], CiteTracker-256 [40], All-in-One [79]), JomNLY {5 CVPRY3  Swinb. BB 30 X
and UOT trackers (UOSTrack [41]], OKTrack), as CiteTracker-256 [#0] ICCV23  ViT-B,CLIP 24 X
All-in-One [79 ACM MM23  ViT-B, Bert-B 60 X

shown on Tab. 21 UVLTrack (4] AAAR4 _ VITB.BertB_ 57 X
UOSTrack” [41] arXiv23 VITB 110V
OKTrack Ours ViT-B 115 v

5.4 [Evaluation Results

! For a fair comparison, we fine-tune this tracker on WebUOT-1M.

Overall Performance. Figs.[6and[7]demonstrate the

cross-domain evaluation results of 30 deep trackers on WebUOT-1M. We have the following obser-
vations. 1) The top-5 trackers (i.e., OKTrack, UOSTrack, All-in-One, GRM, OSTrack) are based
on Transformer [[17]], indicating that exploring advanced architectures is still a promising direction
for tracking [54]. 2) The UOT trackers (i.e., OKTrack, UOSTrack) using the plain ViT backbone
surpasses state-of-the-art (SOTA) trackers [40, 9] for open-air tracking. The possible reason is that
there is a huge domain gap between underwater and open-air environments. 3) The VL tracker (i.e.,
All-in-One) achieves the best results among open-air trackers, demonstrating that using the additional
language modality can enhance tracking performance.

Attribute-based Performance. To comprehensively analyze the trackers facing different tracking
attributes, we conduct an attribute-based evaluation using 23 attributes. The results show that the
SOTA trackers still have significant room for improvement in various challenging attributes, e.g., IV,
SD, CAM, and PTI (see Fig.[8). More attribute-based results are shown in Appendices.

Retraining Experiments. In Tab. [3| we retrain four representative deep trackers (i.e., SiamFC,
ATOM, OSTrack, CiteTracker-256) on the WebUOT-1M. The results indicate that compared with the
original models, the retraining models can effectively reduce the domain gap between underwater
and open-air environments. This reveals the great value of the proposed WebUOT-1M dataset for
developing more powerful deep UOT algorithms.

Underwater Vision-Language Tracking. Previous UOT datasets lack language prompt annota-
tions [36} 51, 2 [1]]. In this work, we perform a pioneering exploration of underwater VL tracking
through carefully annotated language prompts. From Tab. ] we make the following observations. 1)
The usage of more cues (e.g., language prompt and bounding box) can significantly boost tracking
performance. 2) The language prompt-only methods [44] [86] achieve poor results on WebUOT-1M,
similar to existing multi-modal open-air tracking datasets [61} 75} [78]], indicating that multi-modal
tracking is far from being explored. We expect that the proposed WebUOT-1M dataset can inspire the
community to develop multi-modal underwater tracking algorithms.

5.5 Ablation Study

Component Analysis. The impact of four distillation strategies (i.e., CKD, SKD, FKD, and RKD)
is shown in Tab. [5] Each distillation strategy brings performance improvements compared to the
baseline model on WebUOT-1M and UTB180. We can observe that the RKD strategy offers a greater
improvement compared to the other three distillation strategies because it directly allows the student
model to mimic the response map of the teacher model for target localization.
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Figure 6: Overall performance on WebUOT-1M using mACC score. Best viewed by zooming in.
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Figure 8: Evaluation results of four tracking attributes on WebUOT-1M using AUC score.

Analysis on Motion-aware Target Prediction. The MATP module was introduced to mitigate
model drift, as underwater targets (such as fish) are often surrounded by similar distractors. We
conduct experiments shown in Tab.[3} It can be observed that MATP brought gains on UTB180 and
WebUOT-1M, verifying the effectiveness of MATP.

Architecture of Student Transformer. The main architecture of the student model is the ViT
network. We conduct experiments, shown in Tab. [] to explore the impact of different Transformer
layers. We can find that increasing the number of Transformer layers (from 4 to 12) significantly
improves performance, but it also increases the number of parameters, model complexity, and reduces
speed. To balance performance and cost, we use a student model with 12 Transformer layers.

5.6 Further Discussions

Retraining vs. Fine-tuning vs. Omni-Knowledge Distillation. In Fig.[9] we compare three different
training settings: retraining the student tracker using WebUOT-1M and open-air tracking datasets,
fine-tuning the student tracker, and adopting omni-knowledge distillation for the student tracker on
WebUOT-1M. The omni-knowledge distillation achieves the best performance. Fine-tuning the model
is preferable to retraining it, as the former can mitigate the issue of insufficient data to some extent,
while the latter is limited by the sample imbalance between underwater and open-air objects.

Comparison to Other UOT Benchmarks. We experimentally compare WebUOT-1M with three
open-source UOT datasets [51} 2, 3]]. From Figs.[7]and [0} we obtain some valuable insights. 1)
OKTrack achieves the best results on UTB180 and VMAT, and a comparable result on UOT100.
The possible reason, as noted in [2]], is that UOT100 contains a large amount of annotation errors.
2) Compared with existing UOT datasets, WebUOT-1M is a more challenging and comprehensive
benchmark suitable for both short-term tracking [51} 2] and long-term tracking [5]]. 3) The relatively
poor result on the long-term tracking dataset VMAT (see Fig. indicates that long-term tracking is
still challenging. One solution is to utilize the rich temporal information in video sequences.



Table 3: Retraining with WebUOT-1M. Pre/  Table 4: Vision-language tracking. SOTA VL

AUC scores are reported. trackers are compared on WebUOT-1M.
UTB180 WebUOT-1M Method Pre nPre AUC cAUC mACC

Method Original Retraining Original Retraining Language prompt
ATOM [13] 19.3/31.4 25.7/36.5 18.9/27.0 21.4/32.6 g’\lfggﬁﬂj gg:g ggé i:; gg? i:i
SiamFC [3] 22.3/35.1 27.5/39.1 22.5/31.6 25.8/38.2 Tanguage prompt + bounding box
OSTrack [70] 57.0/62.9 60.8/63.2 52.9/56.5 55.1/57.0 TomNIT ] s 30335 515 7%
CiteTracker-256 [40] 54.5/61.7 61.6/66.3 49.3/54.6 54.2/57.7 : : : : :
OKTrack (Ours) J- 6730697 - 57.5/60.0 VITscar [28] 334 440 378 364 380

=07 ki VLT [28] 417 521 483 473 4838

CiteTracker-256 [40] 493 584 546 537 552

Table 5: Component analysis. Pre/AUC scores UVLTrack B2 5 t00 358 50 s

are reported on UTB180 and WebUOT-1M. All-in-One [79] 531 6L5 571 564 580
Base CKD SKD FKD RKD MATP UTBI80 WebUOT-TM

v/ 623/666 52.0/56.5  Table 6: Architecture of student Transformer.
VS 63.6/67.9  53.9/57.8

v v 632/674 3535570  Pre/AUC scores are reported.

v 63.2/66.9  53.2/57.2 #Layers #Params FLOPs FPS UTBI180 WebUOT-1M

v v 65.0/68.1  54.8/57.9 ZTayers 354M 106G 229 47.2/574 393/48.0

A A 65.4/68.3  55.2/58.3 Slayers 63.8M 168G 154 562/632  47.9/54.0
SO/ /S /6600685  56.1/58.9 121ayers 92.1M 215G 115 66.0/68.5 56.1/58.9
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Figure 9: Comparison of Figure 10: Evaluation on existing UOT benchmarks. Pre scores are
three training settings. reported on three open-source datasets, i.e., UOT100, UTB180, and VMAT.

Stability Against Frame Rate Reduction. In practical applications of UOT, especially in platforms
of underwater unmanned robots, the need to save energy or reduce computational load often results
in low frame rates [85], significantly exacerbating the challenges posed by watercolor deviation,
blurring, and dynamic targets. To simulate frame rate reduction, we randomly discard some video
frames and evaluate the tracking performance of different trackers on the remaining video frames.
Fig[TT]demonstrates the tracking performance on WebUOT-1M of five deep trackers (i.e., OSTrack,
CiteTracker-256, SeqTrack-B256, UOSTrack, OKTrack) with reduced frame rates, from the default
frame rate (30 FPS) to the extreme thirtieth (1 FPS). We can observe that the proposed OKTrack
exhibits better tracking stability in the face of video frame rate degradation.

Tracking in Complex Underwater Scenarios. As mentioned earlier, compared with open-air
tracking, UOT presents many distinct challenges, especially watercolor variations, low underwater
visibility, dense similar distractors, and camouflage that often appear simultaneously in underwater
scenarios. Fig.[12|shows that the proposed OKTrack can achieve more accurate tracking in complex
underwater scenarios, e.g., partial target information and low underwater visibility in shark-1, similar
distractors and occlusion in fish-1, compared to the other five SOTA methods [86, 40} 141,128, 9]]. This
is thanks to OKTrack gaining the ability to address multi-view modalities from the teacher model,
so it can achieve better performance in underwater scenarios. In addition, the MATP module makes
OKTrack more robust to similar distractors, appearance changes, efc.

Integrating Language Modality. We further expand the proposed OKTrack to enable it to process
both visual and language modalities, to verify that it is a flexible and scalable baseline tracker that is
not only suitable for pure visual-based UOT but can also be seamlessly extended to underwater VL
tracking, a new multi-modal tracking task. Specifically, we utilize the Bert-B [[16]] as the language
encoder and employ the modal mixup [28] as the multi-modal fusion manner. The fused features
are then fed into the ViT backbone for feature integration and learning. We use the weights of
OKTrack, pre-trained on the visual modality, as initialization, and then fine-tune the language encoder
and tracking head with both visual and language modalities to obtain the final OKTrack++. The
reason we adopt a two-step training strategy (“pretraining then fine-tuning”) is that our WebUOT-1M
is still small compared to existing open-air tracking datasets (e.g., TrackingNet [49], LaSOT [19],
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Table 7: Comparison of our two baseline trackers (OKTrack and OKTrack++) using visual and VL.
modalities, respectively. AUC /Pre/cAUC/nPre/mACC scores are reported on WebUOT-1M.

Method Type #Params FLOPs FPS WebUOT-1M
OKTrack  Visual-based 92.1M 215G 115 60.0/57.5/59.3/63.8/61.0
OKTrack++ VL-based 1509M 579G 66 63.4/58.4/62.9/68.5/64.4

GOT-10k [31]], and TNL2K [61]]). Simultaneously training a visual ViT backbone (ViT-B) and a
language encoder (Bert-B) is challenging to converge. Therefore, we adopted a two-step training
strategy for our VL-based tracker OKTrack++. The results of our two baseline trackers (OKTrack
and OKTrack++) are presented in Tab. [7] We find that incorporating the language modality brings a
modest improvement in performance (potentially because of inadequate language annotations), but
it significantly increases the model parameters and GPU memory usage, and reduces the inference
speed. One solution is to explore more efficient network architectures for underwater VL tracking.

6 Conclusion and Future Research

Conclusion. In this paper, we establish WebUOT-1M, i.e., the first million-scale UOT dataset to
facilitate the development of more powerful and versatile tracking systems. It is substantially larger
and more diverse than existing UOT datasets, encompassing 1,500 video sequences across 408 object
categories. The dataset covers various underwater scenarios and provides rich attributes and language
prompts for comprehensive evaluation. Furthermore, a simple yet strong omni-knowledge distillation
approach called OKTrack is proposed to boost the research of UOT. Evaluation of 30 deep trackers on
WebUOT-1M reveals that Transformer-based and UOT-specific methods perform well. By providing
a large-scale dataset, WebUOT-1M not only facilitates the evaluation and comparison of existing
tracking algorithms but also paves the way for the development of new methodologies.

Future Research. Although WebUOT-1M significantly surpasses existing UOT datasets in terms
of video sequences, target categories and underwater scenarios covered, our data size is still small
compared to the latest multi-modal datasets, e.g., LAION-5B [56] and InternVid [63]. In the future, we
consider collecting more underwater videos, and building underwater datasets with more modalities,
e.g., depth and audio. By releasing the large-scale WebUOT-1M dataset, we hope it can inspire the
community to develop large foundation models [[76] for universal object tracking and broader fields,
and broaden their application prospects [[77]].
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