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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) technologies enable a better under-
standing of previously unexplored biological diversity. Oftentimes, researchers
are specifically interested in modeling the latent structures and variations enriched
in one target scRNA-seq dataset as compared to another background dataset gen-
erated from sources of variation irrelevant to the task at hand. For example, we
may wish to isolate factors of variation only present in measurements from pa-
tients with a given disease as opposed to those shared with data from healthy con-
trol subjects. Here we introduce Contrastive Variational Inference (contrastiveVI;
https://github.com/suinleelab/contrastiveVI), a framework
for end-to-end analysis of target scRNA-seq datasets that decomposes the vari-
ations into shared and target-specific factors of variation. On four target-
background dataset pairs, we apply contrastiveVI to perform a number of standard
analysis tasks, including visualization, clustering, and differential expression test-
ing, and we consistently achieve results that agree with known biological ground
truths.

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful tools for under-
standing previously unexplored biological diversity. Such technologies have enabled advances in our
understanding of biological processes such as those underlying cancer (Wu et al., 2021), Alzheimer’s
disease (Grubman et al., 2019; Mathys et al., 2019), and COVID-19 (Wilk et al., 2020). In many
settings, scRNA-seq data analysts are specifically interested in patterns enriched in one dataset, re-
ferred to as the target, as compared to a second related dataset, referred to as the background. Target
and background dataset pairs arise naturally in many biological research contexts. For example,
data from healthy controls versus a diseased population or from pre- versus post-intervention groups
form intuitive background and target pairs. Moreover, with the development of new technologies
for measuring cellular responses to large numbers of perturbations in parallel, such as Perturb-Seq
(Dixit et al., 2016) and MIX-Seq (McFarland et al., 2020), tools for better understanding variations
unique to such perturbed cell lines compared to control populations will be critical.

Isolating salient variations present only in a target dataset is the subject of contrastive analysis (CA)
(Zou et al., 2013; Abid et al., 2018; Jones et al., 2021; Li et al., 2020; Severson et al., 2019; Abid &
Zou, 2019). While many recent studies have modeled scRNA-seq data by fitting probabilistic mod-
els and representing the data in a lower dimension (Lopez et al., 2018; Risso et al., 2018; Hao et al.,
2021; Lotfollahi et al., 2021; 2019), few of these models are designed for CA. Such methods are
thus unlikely to capture the enriched variations in a target dataset, which are often subtle compared
to the overall variations in the data (Abid et al., 2018). One recent study (Jones et al., 2021) de-
signed a probabilistic model for analyzing scRNA-seq data in the CA setting. However, this method
assumes that a linear model is sufficiently expressive to model the variations in scRNA-seq data,
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even though previous work has demonstrated substantial improvements by using more expressive
nonlinear methods (Lopez et al., 2018).

To address these limitations, we developed contrastiveVI, a deep generative model that enables anal-
ysis of scRNA-seq data in the CA setting. contrastiveVI models the variations underlying scRNA-
seq data using two sets of latent variables: the first, called the background variables, are shared
across background and target cells while the second, called the salient variables, are used to model
variations specific to target data. Moreover, similar to previous work (Lopez et al., 2018), the full
contrastiveVI probabilistic model accounts for the specific technical biases and noise characteristics
of scRNA-seq data. contrastiveVI can be used for a number of analysis tasks, including dimension-
ality reduction, clustering, and differential gene expression testing. To highlight this functionality,
we applied contrastiveVI to four publicly available background and target scRNA-seq dataset pairs
and demonstrated strong performance on all of them compared to previously proposed methods.

2 THE CONTRASTIVEVI MODEL

contrastiveVI uses a probabilistic latent variable model to represent the uncertainty in observed RNA
counts as a combination of biological and technical factors. The input to the contrastiveVI model
consists of an RNA unique molecular identifier (UMI) count matrix along with labels denoting
whether each cell belongs to the background or target dataset (Fig. 1a). Additional categorical
covariates such as anonymized donor ID or experimental batch are optional inputs to the model that
can be used to integrate datasets.

Figure 1: Overview of contrastiveVI. Given a reference background dataset and a second target
dataset of interest, contrastiveVI separates the variations shared between the two datasets and the
variations enriched in the target dataset. a, Example background and target data pairs. Samples
from both conditions produce an RNA count matrix with each cell labeled as background or target.
b, Schematic of the contrastiveVI model. A shared encoder network qφz transforms a cell into the
parameters of the posterior distribution for z, a low-dimensional set of latent factors shared across
target and background data. For target data points only, a second encoder qφt encodes target data
points into the parameters of the posterior distribution for t, a second set of latent factors encoding
variations enriched in the target dataset and not present in the background.
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contrastiveVI encodes each cell as the parameters of a distribution in a low-dimensional latent space.
This latent space is divided into two parts, each with its own encoding function. The first set of latent
variables, called the background variables, capture factors of variation shared among background
and target data. The second set of variables, denoted as the salient variables, capture variations
unique to the target dataset. Only target data points are assigned salient latent variable values; back-
ground data points are instead assigned a zero vector for the salient variables to represent their ab-
sence. contrastiveVI also provides a way to estimate the parameters of the distributions underlying
the observed RNA measurements given a cell’s latent representation. Such distributions explic-
itly account for technical factors in the observed data such as sequencing depth and batch effects
(Supplementary Fig. 1). All distributions are parameterized by neural networks.

The contrastiveVI model is based on the variational autoencoder (VAE) framework (Kingma &
Welling, 2013). As such, its parameters can be learned using efficient stochastic optimization tech-
niques, easily scaling to large scRNA-seq datasets consisting of measurements from tens or hundreds
of thousands of cells. Following optimization, we can make use of the different components of the
contrastiveVI model for downstream analyses. For example, the salient latent representations of
target samples can be used as inputs to clustering or visualization algorithms to discover subgroups
of target points. Moreover, the distributional parameters can be used for additional tasks such as im-
putation or differential gene expression analysis. A more detailed description of the contrastiveVI
model can be found in Appendix A.

3 RESULTS

To evaluate contrastiveVI’s performance, we rely on datasets with known ground truth variations
in the target condition that are not present in the background condition. We benchmarked con-
trastiveVI’s performance against that of three previously proposed methods for analyzing raw
scRNA-seq count data. First, to demonstrate that our contrastive approach is necessary for iso-
lating enriched variations in target datasets, we compared against scVI (Lopez et al., 2018). scVI
has achieved state-of-the-art results on many tasks; however, it was not specifically designed for the
CA setting and thus may struggle to capture salient variations in target samples. We also compared
against two contrastive methods designed for analyzing scRNA-seq count data: contrastive Pois-
son latent variable model (CPLVM) and contrastive generalized latent variable model (CGLVM)
(Jones et al., 2021). While these methods are designed for the contrastive setting, they both make
the strong assumption that linear models can accurately capture the complex variations in scRNA-
seq data. To our knowledge, CPLVM and CGLVM are the only existing contrastive methods for
analyzing scRNA-seq count data.

3.1 CANCER TREATMENT RESPONSE

We first evaluated contrastiveVI on expression data from bone marrow mononuclear cells (BMMCs)
from two patients with acute myeloid leukemia (AML). The two patients underwent allogenic stem-
cell transplants, and BMMC samples were collected before and after the transplant. It is known that
gene expression profiles of BMMCs differ pre- and post-transplant (Zheng et al., 2017). Therefore,
the known biological variations in this target dataset (AML patient BMMCs) correspond to pre- vs.
post-transplant cellular states. A performant model should learn a salient latent space separating pre-
vs. post-transplant status, while the latent space from a non-performant model does not make this
distinction. For background data we used measurements from two healthy control patients collected
as part of the same study.

Qualitatively, pre- and post-transplant cells are well separated in the salient latent space learned by
contrastiveVI (Fig. 2a). We also quantified how well contrastiveVI’s salient latent space separates
the two groups of target cells using three metrics—the average silhouette width, adjusted Rand
Index (ARI), and normalized mutual information (NMI; Appendix F). We find that contrastiveVI
performs well on all of these metrics (Fig. 2b), indicating that it successfully recovers the variations
enriched in the target dataset. On the other hand, we find qualitatively that none of the baseline
models separate pre- and post-transplant cells as well as contrastiveVI. This finding is confirmed by
our quantitative results (Fig. 2b). Across all three metrics, we find that contrastiveVI significantly
outperforms baseline models, with especially large gains in the ARI and NMI. These results indicate
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that contrastiveVI recovered the variations enriched in the AML patient data far better than baseline
models.

We also used this dataset to demonstrate a workflow for using contrastiveVI for end-to-end biologi-
cal discovery. After embedding the AML patient samples into the contrastiveVI salient latent space,
we used k-means clustering to divide the samples into two groups (Fig. 2c). As demonstrated by our
quantitative results, the resulting two clusters exhibit strong agreement with the two ground-truth
groups (ARI: 0.77 ± 0.01). To better understand the underlying biological phenomena associated
with this separation, we obtained differentially expressed genes across the two clusters using Monte
Carlo sampling of denoised, library size-normalized expressions from the contrastiveVI decoder
(Appendix A.3). Pathway enrichment analysis (Appendix B) was then performed with these dif-
ferentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database (Kanehisa & Goto, 2000). We find that the pathways enriched with the differentially ex-
pressed genes are related to immune response and graft rejection, aligning with known cellular state
transitions of BMMCs before and after a transplant. We provide a full list of enriched pathways in
Supplementary Table 1. These results illustrate how contrastiveVI can facilitate better understand-
ing of variations specific to scRNA-seq target datasets.

Figure 2: contrastiveVI successfully captures enriched variations in scRNA-seq data. a, Princi-
pal component (PC) plots of contrastiveVI and baseline models’ latent representations. For scVI, the
first two PCs of the model’s single latent representations are plotted, while for contrastive methods
the PCs from their salient latent representations are plotted. b, Quantitative measures of separation
between pre- and post-transplant cells. Silhouette is the average silhouette width of pre- vs. post-
transplant cells, ARI is the adjusted Rand index, and NMI is the normalized mutual information.
Higher values indicate better performance for all metrics. For each method, the mean and standard
error across five random trials are plotted. c, contrastiveVI’s salient latent representations of the
target dataset were clustered into two groups, and pathway enrichment analysis was then performed
on the differentially expressed genes between the two clusters.
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3.2 INFECTION RESPONSE

We also applied contrastiveVI to data collected in Haber et al. (2017). This dataset consists of gene
expression measurements of intestinal epithelial cells from mice infected with either Salmonella
enterica (Salmonella) or Heligmosomoides polygyrus (H. poly). As a background dataset we used
measurements collected from healthy cells released by the same authors. Here our goal is to sep-
arate cells by infection type in the salient latent space. On the other hand, any separations in the
background latent space should reflect variations shared between healthy and infected cells, such as
those due to differences between cell types. We present our results in Figure 3.

Figure 3: contrastiveVI isolates responses to different infections in mouse intestinal epithelial
cells. a,b, UMAP plots of contrastiveVI’s salient and background representations colored by infec-
tion type. Cells are correctly separated by infection type in the salient space, while they mix across
infection types in the background space. c, Clustering metrics quantify how well cells separate by
infection type for scVI’s single latent space and contrastive models’ salient latent spaces, with means
and standard errors across five random trials plotted. d,e, UMAP plots of contrastiveVI’s salient and
background representations colored by cell type. Cells separate well by cell type in the background
space, while they mix across cell types in the salient space. f, Quantifying how well cells separate
by cell type in scVI’s single latent space and contrastive models’ background latent spaces, with
means and standard errors across five random trials for each method.

We find that contrastiveVI successfully separates cells by infection type in its salient latent space
(Fig. 3a). Moreover, we find that cells mix across infection types in the contrastiveVI background
latent space as expected (Fig. 3b). These results indicate that enriched variations due to infection
response are correctly being relegated to the salient latent space. Once again we find that previously
proposed methods fail to stratify the two classes of target samples in their salient latent spaces as
demonstrated by a set of quantitative metrics (Fig. 3c).

Similar to our analysis for the BMMC dataset collected by Zheng et al. (2017), we applied k-means
clustering to split the infected mouse epithelial cells into two groups based on their contrastiveVI
salient latent embeddings and then used contrastiveVI to identify differentially expressed genes.
We identified enriched KEGG pathways related to fat, cholesterol, and vitamin metabolism with
the list of differentially expressed genes (Supplementary Table 2). These enriched pathways are
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consistent with previous findings that lipids and lipoproteins partake in innate immunity (Sviridov
& Bukrinsky, 2014; Khovidhunkit et al., 2004) and that vitamins can alleviate or prevent infections
(White, 2008; Hemilä, 2017). Particularly, it has been shown that active vitamin D may enhance
the clearance of Salmonella via autophagy (Huang, 2016). Furthermore, six of the ten differentially
expressed genes in the enriched pathways were found to have pathogen-specific expression in Haber
et al. (2017) (e.g. Apoc2 and Fabp1), while the other four genes belong to the same families as
differentially expressed genes specific to Salmonella or H. polygyrus (e.g. Apoc3 and Fabp2). These
results show that contrastiveVI can be used to identify and interpret biologically relevant subgroups
in target data.

For this dataset we further validated contrastiveVI’s ability to disentangle target and background
variations using ground truth cell type labels provided by Haber et al. (2017). In particular, we
found strong mixing across cell types in contrastiveVI’s salient latent space (Fig. 3d). This result
agrees with the analysis in Haber et al. (2017), which found that responses to the two pathogens were
mostly cell-type agnostic. On the other hand, cell types separated clearly in the background latent
space (Fig. 3e). This result also agrees with prior biological knowledge, as we would expect the
underlying factors of variation that distinguish cell types to be shared across healthy and infected
cells. We quantified the degree of this cell-type separation in contrastiveVI’s background latent
space using our set of clustering metrics (Fig. 3f). We find that contrastiveVI’s background latent
space is far better at capturing differences between cell types than previously proposed contrastive
methods’ background latent spaces. Moreover, we find that contrastiveVI’s background latent space
separates cell types to a similar degree as the non-contrastive scVI’s latent space.

Taken together, these results demonstrate that contrastiveVI successfully disentangles variations en-
riched in target data from shared variations, even when other methods struggle.

3.3 SMALL-MOLECULE THERAPY RESPONSE

We next applied contrastiveVI to a dataset collected using the recently developed MIX-Seq (McFar-
land et al., 2020) platform. MIX-Seq measures the transcriptional responses of up to hundreds of
cancer cell lines in parallel after being treated with one or more small molecule compounds. Here
our target dataset contains measurements from 24 cell lines treated with idasanutlin collected by Mc-
Farland et al. (2020). The small molecule idasanutlin is an antagonist of MDM2, a negative regulator
of the tumor suppresor protein p53, hence offering cancer therapeutic opportunities (Vassilev et al.,
2004). Based on the mechanism of action of idasanutlin, activation of the p53 pathway is observed in
cell lines with wild type TP53 and not in transcriptionally inactive mutant TP53 cell lines (Vassilev
et al., 2004). Our goal is thus to separate target cells by TP53 mutation status. As the background
dataset, we use measurements from the same cell lines treated with the control compound dimethyl
sulfoxide (DMSO).

Qualitatively, contrastiveVI’s salient latent space stratifies cells based on TP53 mutation status (Fig.
4a). Our quantitative metrics also indicate that contrastiveVI separates the two classes of target
cells more clearly than baseline methods (Fig. 4b). Moreover, we find that the clusters identified by
applying k-means clustering to the contrastiveVI salient latent space have differentially expressed
genes enriched in the p53 signaling pathway (Fig. 4c). It is worth noting that the p53 signaling
pathway is the only statistically significant (under 0.05 false discovery rate) pathway identified by
contrastiveVI. These results demonstrate that contrastiveVI captures salient variations in the target
samples treated with idasanutlin that specifically relate to the ground truth mechanism of idasanutlin
perturbation.

We further evaluated contrastiveVI’s performance on this dataset by embedding all cells, whether
treated with DMSO or idasanutlin, into the model’s background latent space. Ideally, contrastiveVI’s
background latent space would only capture variations that distinguish cell lines and not those re-
lated to treatment response. In particular, we would expect strong mixing between DMSO- and
idasanutlin-treated cells even for cell lines with wild type TP53. We find that wild type TP53 cell
lines clearly separate by treatment type in the original data (Supplementary Fig. 3), whereas cells
mix more strongly across treatment types (Fig. 4d) regardless of TP53 mutation status (Fig. 4e)
and instead separate primarily by cell line in the contrastiveVI background latent space (Fig. 4f).
These results futher illustrate contrastiveVI’s ability to disentangle shared and target-data-specific
variations.
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Figure 4: contrastiveVI stratifies cancer cell lines by response to idasanutlin. a, PC plot of con-
trastiveVI’s salient latent representations for idasanutlin-treated cells from McFarland et al. (2020).
b, The average silhouette width (silhouette), adjusted Rand Index (ARI) and normalized mutual in-
formation (NMI), with mean and standard error across five random trials plotted for each method.
c, Two clusters identified by k-means clustering on contrastiveVI’s salient latent representations of
the idasanutlin-treated cells. Highly differentially expressed genes were identified from the two
clusters, and these genes were used to perform pathway enrichment analysis. d,e,f, UMAP plots of
contrastiveVI’s background latent space colored by treatment type (d) TP53 mutation status (e), and
cell line (f).

3.4 CRISPR PERTURBATION RESPONSE

Finally, we applied contrastiveVI to data collected using the Perturb-Seq (Dixit et al., 2016; Adam-
son et al., 2016) platform. Perturb-Seq combines high-throughput scRNA-seq methods with bar-
coding of CRISPR-induced genomic perturbations, enabling the evaluation of such perturbations at
single-cell resolution. Previous studies have successfully leveraged Perturb-Seq to better understand
regulatory circuits related to innate immunity (Jaitin et al., 2016), the unfolded protein response
pathway (Adamson et al., 2016), and the T cell receptor signaling pathway (Datlinger et al., 2017),
among other applications. Despite these successes, recent work (Jones et al., 2021) has suggested
that naive approaches for analyzing Perturb-Seq data may fail to capture subtle perturbation-induced
transcriptomic changes due to the presence of intercellular variations unrelated to the perturbations.
Thus, methods for isolating variations unique to the perturbed cells may unlock new biological in-
sights missed by previous approaches.

In this experiment we applied contrastiveVI to a Perturb-Seq dataset from Norman et al. (2019). In
this study, the authors assessed the effects of 284 different CRISPR-mediated perturbations on the
growth of K562 cells, where each perturbation induced the overexpression of a single gene or a pair
of genes. Here we focus on a subset of these perturbations for which the authors provided labels
indicating a known gene program induced by the perturbation. We would expect cells to separate by
these gene programs; however, in the latent space of an scVI model we observed significant mixing
between cells with different gene program labels (Fig. 5a).

On the other hand, using cells treated with control guides as a background dataset, we find qualita-
tively that contrastiveVI better separates cells by gene program in its salient latent space (Fig. 5b).
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Figure 5: contrastiveVI isolates CRISPR-perturbation-induced variations in a large-scale
Perturb-Seq experiment. a,b, UMAP plot of scVI’s latent space (a) and contrastiveVI’s salient
latent space (b) colored by gene program. c, Clustering metrics quantifying how well cells separate
by gene program label, with means and standard errors across five trials plotted.

Furthermore, we find that the relative positions of the different gene programs in the contrastiveVI
salient latent space align with prior biological knowledge. For example, the group of cells labeled
as overexpressing a pioneer-factor-related gene program abuts the groups of cells labelled as ex-
pressing erythroid and megakaryocyte gene programs. This positioning agrees with prior biological
knowledge, as pioneer factors are known to play a role in cell type differentiation for these two cell
types (Zaret & Carroll, 2011; Visvader et al., 1992; Kulessa et al., 1995). Similarly, pioneer factors
have also been implicated in G1 cell cycle arrest (Zaret & Carroll, 2011; Zhang et al., 2011), the
only other gene program that neighbors pioneer factors in the contrastiveVI salient latent space.

With our suite of metrics, we find that contrastiveVI again outperforms baseline methods (Fig. 5c).
However, we note that our clustering metric values for this dataset are lower than those for previous
datasets, potentially indicating that expression differences induced by the single- or double-gene
CRISPR perturbations are more subtle than the clear separations found in previous datasets.

4 DISCUSSION

In this work we introduce contrastiveVI, a deep generative model that explicitly disentangles en-
riched variations in a target scRNA-seq dataset from those shared with a related background dataset.
contrastiveVI is the first method designed to analyze scRNA-seq count data in the contrastive anal-
ysis setting that both directly models the technical factors of variation in scRNA-seq data and takes
advantage of the expressive power of deep generative modeling. Moreover, contrastiveVI includes
a number of other capabilities relevant to scRNA-seq analysis out of the box, such as differential
expression testing.

In four different contexts—response to cancer treatment, infection by different pathogens, expo-
sure to small-molecule drug perturbations, and genomic perturbation via CRISPR guides—we find
that contrastiveVI successfully isolates enriched variations in target cells while previously proposed
methods struggle. With the recent development of new sequencing technologies for efficiently mea-
suring transcriptomic responses to many perturbations in parallel, such as Perturb-Seq and MIX-Seq,
we expect contrastiveVI to be of immediate interest to the scRNA-seq research community. More-
over, contrastiveVI was implemented using the scvi-tools (Gayoso et al., 2021a) Python library,
thereby enabling seamless interoperability with the Scanpy (Wolf et al., 2018) and Seurat (Stuart
et al., 2019) software ecosystems.

The ideas behind contrastiveVI admit multiple potential directions for future work. Similar con-
trastive disentanglement techniques could be used to extend models that make use of multimodal
data, such as totalVI (Gayoso et al., 2021b), to better understand variations enriched in target datasets
across different modalities of single-cell data. Moreover, recent work (Fortelny & Bock, 2020; Gut
et al., 2021; Rybakov et al., 2020; Mao et al., 2019; Svensson et al., 2020) in learning more in-

8



Published at the MLDD workshop, ICLR 2022

terpretable representations of gene expression data could be incorporated to better understand the
different sources of variation learned by the model. For example, using a constrained architecture
such that latent variables correspond to gene pathways could shed more light on the biological phe-
nomena captured in the model’s salient and background latent spaces.
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A FURTHER DETAILS ON THE CONTRASTIVEVI PROBABILISTIC MODEL

Here we present the contrastiveVI model in more detail. We begin by describing the model’s gener-
ative process and then the model’s inference procedure.

A.1 THE CONTRASTIVEVI GENERATIVE PROCESS

For a target data point xn we assume that each expression value xng for sample n and gene g is
generated through the following process:

zn ∼ Normal(0, I)

tn ∼ Normal(0, I)

`n ∼ log normal(`Tµ sn, (`
2
σ)T sn)

ρn = fw(zn, tn, sn)

wng ∼ Gamma(ρng, θg)

yng ∼ Poisson(`nwng)

hng ∼ Bernoulli
(
fgh(zn, tn, sn)

)
xng =

{
yng if hng = 0

0 otherwise

In this process zn and tn refer to sets of latent variables underlying variations in scRNA-seq expres-
sion data. Here zn represents variables that are shared across background and target cells, while
tn represents variations unique to target cells. We place a standard multivariate Gaussian prior on
both sets of latent factors, as such a specification is computationally convenient for inference in the
VAE framework (Kingma & Welling, 2013). To encourage the disentanglement of latent factors,
for background data points bn we assume the same generative process but instead set tn = 0 to
represent the absence of salient latent factors in the generative process. Categorical covariates such
as experimental batches are represented by sn.

`µ and `2σ ∈ RB+, where B denotes the cardinality of the categorical covariate, parameterize the
prior for latent RNA library size scaling factor on a log scale, and sn is a B-dimensional one-hot
vector encoding categorical covariate index. For each category (e.g. experimental batch), `µ and
`2σ are set to the empirical mean and variance of the log library size. The gamma distribution is
parameterized by the mean ρng ∈ R+ and shape θg ∈ R+. Furthermore, following the generative
process, θg is equivalent to a gene-specific inverse dispersion parameter for a negative binomial
distribution, and θ ∈ RG+ is estimated via variational Bayesian inference. fw and fg in the generative
process are neural networks that transform the latent space and batch annotations to the original gene
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space, i.e.: Rd × {0, 1}B → RG, where d is the size of the concatenated salient and background
latent spaces. The network fw is constrained during inference to encode the mean proportion of
transcripts expressed across all genes by using a softmax activation function in the last layer. That
is, letting fgw(zn, tn, sn) denote the entry in the output of fw corresponding to gene g, we have∑
g f

g
w(zn, tn, sn) = 1. The neural network fh encodes whether a particular gene’s expression has

dropped out in a cell due to technical factors.

Our generative process closely follows that of scVI (Lopez et al., 2018), with the addition of the
salient latent factors tn. While scVI’s modeling approach has been shown to excel at many scRNA-
seq analysis tasks, our empirical results demonstrate that it is not suited for contrastive analysis (CA).
By dividing the RNA latent factors into shared factors zn and target-specific factors tn, contrastiveVI
successfully isolates variations enriched in target datasets missed by previous methods. We depict
the full contrastiveVI generative process as a graphical model in Supplementary Fig. 1.

A.2 INFERENCE WITH CONTRASTIVEVI

We cannot compute the contrastiveVI posterior distribution using Bayes’ rule as the integrals re-
quired to compute the model evidence p(xn|sn) are analytically intractable. As such, we instead
approximate our posterior distribution using variational inference (Blei et al., 2017). For target data
points we approximate our posterior with a distribution factorized as follows:

qφx(zn, tn, `n|xn, sn) = qφz (zn|xn, sn)qφt(tn|xn, sn)qφ`(`n|xn, sn). (1)

Here φx denotes a set of learned weights used to infer the parameters of our approximate posterior.
Based on our factorization, we can divide φx into three disjoint sets φz , φt and φ` for inferring the
parameters of the distributions of z, t and ` respectively. Following the VAE framework (Kingma
& Welling, 2013), we then approximate the posterior for each factor as a deep neural network that
takes in expression levels as input and outputs the parameters of its corresponding approximate pos-
terior distribution (e.g. mean and variance). Moreover, we note that each factor in the posterior
approximation shares the same family as its respective prior distribution (e.g. q(zn|xn, sn) fol-
lows a normal distribution). We can simplify our likelihood by integrating out wng , hng , and yng ,
yielding pν(xng|zn, tn, sn, `n), which follows a zero-inflated negative binomial (ZINB) distribution
(Appendix G) and where ν denotes the parameters of our generative model. As with our approxi-
mate posteriors, we realize our generative model with deep neural networks. For Equation 1 we can
derive (Appendix H) a corresponding variational lower bound:

p(x|s) ≥Eq(z,t,`|x,s) log p(x|z, t, `, s)−DKL(q(z|x, s)||p(z))
−DKL(q(t|x, s)||p(t))−DKL(q(`|x, s)||p(`|s)).

(2)

Next, for background data points we approximate the posterior using the factorization:

qφb(zn, `n|bn, sn) = qφz (zn|bn, sn)qφ`(`n|bn, sn), (3)

where φb denotes a set of learned parameters use to infer the values of zn and `n for background
samples. Following our factorization, we divide φb into the disjoint sets φz and φ`. We note that φz
and φ` are shared across target and background samples; this encourages the posterior distributions
qφz and qφ` to capture variations shared across the target and background cells, while qφt captures
variations unique to the target data. Once again we can simplify our likelihood by integrating out
wng , hng , and yng to obtain pν(xng|zn,0, sn, `n), which follows a ZINB distribution. We similarly
note that the parameters of our generative model ν are shared across target and background points
to encourage z to capture shared variations across target and background points while t captures
target-specific variations. We then have the following variational lower bound for our background
data points:

p(b|s) ≥Eq(z,`|b,s) log p(b|z, `, s)−DKL(q(z|b, s)||p(z))−DKL(q(`|b, s)||p(`|s)). (4)
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We then jointly optimize the parameters of our generative model and inference networks using
stochastic gradient descent to maximize the sum of these two bounds over our background and tar-
get data points. All neural networks used to implement the variational and generative distributions
were feedforward and used standard activation functions. We used the same network architecture
and hyperparameter values for all experiments, and we refer the reader to Supplementary Note I
for more details.

A.3 DIFFERENTIAL GENE EXPRESSION ANALYSIS WITH CONTRASTIVEVI

For two cell groups A = (a1, a2, ..., an) and B = (b1, b2, ..., bm) in the target dataset, the posterior
probability of gene g being differentially expressed in the two groups can be obtained as proposed
by Boyeau et al. (Boyeau et al., 2019). For any arbitrary cell pair ai, bj , we have two mutually
exclusive models

Mg
1 : |rgai,bj | > δ andMg

0 : |rgai,bj | ≤ δ

where rgai,bj := log2(ρgai)− log2(ρgbj ) is the log fold change of the denoised, library size-normalized
expression of gene g, and δ is a pre-defined threshold for log fold change magnitude to be considered
biologically meaningful. The posterior probability of differential expression is therefore expressed
as p(Mg

1|xai , xbj ), which can be obtained via marginalization of the latent variables and categorical
covariates:

p(Mg
1|xai ,xbj ) =∑

s

∫
zai ,tai ,zbj ,tbj

p(Mg
1|zai , tai , zbj , tbj )p(s)dp(zai , tai |xai , s)dp(zbj , tbj |xbj , s),

where p(s) is the relative abundance of target cells in category s, and the integral can be computed
via Monte Carlo sampling using the variational posteriors qφz , qφt . Finally, the group-level posterior
probability of differential expression is∫

a,b

p(Mg
1|xa, xb)dp(a)dp(b),

where we assume that the cells a and b are independently sampled a ∼ U(a1, ..., am) and b ∼
U(b1, ..., bm). Computationally, this quantity can be estimated by a large random sample of pairs
from the cell group A and B. In our experiments, 10,000 cell pairs were sampled, 100 Monte Carlo
samples were obtained from the variational posteriors for each cell, and the δ threshold was set
to 0.25, which is the default value recommended by the scvi-tools Python library (Gayoso et al.,
2021a). Genes with group-level posterior probability of differential expression greater than 0.95
were considered for downstream pathway enrichment analysis.

B PATHWAY ENRICHMENT ANALYSIS

Pathway enrichment analysis refers to a computational procedure for determining whether a pre-
defined set of genes (i.e., a gene pathway) have statistically significant differences in expression
between two biological states. Many tools exist for performing pathway enrichment analysis (see
(Khatri et al., 2012) for a review). In our analyses we use Enrichr (Chen et al., 2013), a pathway anal-
ysis tool for non-ranked gene lists based on Fisher’s exact test, to find enriched pathways from the
KEGG pathway database (Kanehisa & Goto, 2000). Specifically, the Enrichr wrapper implemented
in the open-source GSEAPy1 Python library was used for our analyses. Pathways enriched at false
discovery rate smaller than 0.05—adjusted by the Benjamini-Hochberg procedure (Benjamini &
Hochberg, 1995)—are reported in this study.

C BASELINE MODELS

Because the choice of library size normalization method has been shown to drastically impact di-
mension reduction and subsequent clustering results of methods not designed to explicitly model

1https://gseapy.readthedocs.io/en/latest/
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library sizes (Risso et al., 2018), we consider CA methods specifically tailored for scRNA-seq count
data as baselines in this study. To our knowledge, CPLVM (contrastive Poisson latent variable
model) and CGLVM (contrastive generalized latent variable model) are the only CA methods that
explicitly model count-based scRNA-seq normalization (Jones et al., 2021). We present a summary
of previous work in CA in Supplementary Table 6. We also consider scVI, a deep generative model
for UMI count data that takes batch effect, technical dropout, and varying library size into modeling
considerations (Lopez et al., 2018), to illustrate the need for models specifically designed for CA.
Below we describe the CA methods CPLVM and CGLVM in more detail.

In CPLVM, variations shared between the background and target conditions are assumed to be cap-
tured by the shared latent variable values {zbi }ni=1 and {ztj}mj=1, and target condition-specific vari-
ations are captured by the salient latent variable values {tj}mj=1, where n,m are the number of
background and target cells, respectively. Library size differences between the two conditions are
modeled by {αbi}ni=1 and {αtj}mj=1, whereas gene-specific library sizes are parameterized by δ ∈ RG+,
where G is the number of genes. Each data point is considered Poisson distributed, with rate param-
eter determined by αbiδ� (S>zbi ) for a background cell i and by αtjδ� (S>ztj +W>tj) for a target
cell j, where S,W are model weights that linearly combine the latent variables, and� represents an
element-wise product. The model weights and latent variables are assumed to have Gamma priors,
δ has a standard log-normal prior, and αbi , α

t
j have log-normal priors with parameters given by the

empirical mean and variance of log total counts in each dataset. Posterior distributions are fitted
using variational inference with mean-field approximation and log-normal variational distributions.

The CA modeling approaches of CGLVM and CPLVM are similar. In CGLVM, however, the re-
lationships of latent factors are considered additive and relate to the Poisson rate parameter via an
exponential link function (similar to a generalized linear modeling scheme). All the priors and
variational distributions are Gaussian in CGLVM.

D MODEL OPTIMIZATION DETAILS

For all datasets, contrastiveVI models were trained with 80% of the background and target data;
the remaining 20% of the data was reserved as a validation set for early stopping to determine
the number of training epochs needed. Training was early stopped when the validation variational
lower bound showed no improvement for 45 epochs, typically resulting in 127 to 500 epochs of
training. All contrastiveVI models were trained with the Adam optimizer (Kingma & Ba, 2014)
with ε = 0.01, learning rate at 0.001, and weight decay at 10−6. The same hyperparameters and
training scheme were used to optimize the scVI models using only target data, usually with 274
to 500 epochs of training based on the early stopping criterion. As in Jones et al., the CPLVMs
were trained via variational inference using all background and target data for 2,000 epochs with the
Adam optimizer with ε = 10−8 and learning rate at 0.05, and the CGLVMs were similarly trained
for 1,000 epochs and learning rate at 0.01 (Jones et al., 2021). All models were trained with 10
salient and 10 background latent variables five times with different random weight initializations.
To understand the impact of the size of the salient latent space on model performance, we also
trained models with varying salient latent dimension sizes and obtained overall consistent results
(Supplementary Fig. 2).

E DATASETS AND PREPROCESSING

Here we briefly describe all datasets used in this work along with any corresponding preprocessing
steps. All preprocessing steps were performed using the Scanpy Python package (Wolf et al., 2018).
All our code for downloading and preprocessing these datasets is publicly available at https://
github.com/suinleelab/contrastiveVI. For all experiments we retained the top 2,000
most highly variable genes returned from the Scanpy highly variable genes function with
the flavor parameter set to seurat v3. For all datasets, the number of cells in the background
vs. target condition can be found in Supplementary Table 3.
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ZHENG ET AL., 2017

This dataset consists of single-cell RNA expression levels of a mixture of bone marrow mononuclear
cells (BMMCs) from 10x Genomics (10x Genomics, 2021). For our target dataset, we use samples
taken from patients with acute myeloid leukemia (AML) before and after a stem cell transplant. For
our background dataset, we use measurements taken from two healthy control patients released as
part of the same study. All data is publicly available: files containing measurements from the first
patient pre- and post-transplant can be found here and here, respectively; from the second patient
pre- and post-transplant here and here, respectively; and from the two healthy control patients here
and here.

HABER ET AL., 2017

This dataset (Gene Expression Omnibus accession number GSE92332) used scRNA-seq measure-
ments to investigate the responses of intestinal epithelial cells in mice to different pathogens. Specif-
ically, in this dataset, responses to the bacterium Salmonella and the parasite H. polygyrus were
investigated. Here our target dataset included measurements of cells infected with Salmonella and
from cells 10 days after being infected with H. polygyrus, while our background consisted of mea-
surements from healthy control cells released as part of the same study. The number of cells of each
cell type can be found in Supplementary Table 4.

MCFARLAND ET AL., 2020

This dataset measured cancer cell lines’ transcriptional responses after being treated with various
small-molecule therapies. For our target dataset, we used data from cells that were exposed to
idasanutlin, and for our background we used data from cells that were exposed to a control solution
of dimethyl sulfoxide (DMSO). TP53 mutation status was determined by cross-referencing with a
list of cell lines with mutations provided by the authors in the code repository accompanying the
paper. The data was downloaded from the authors’ Figshare repository. The number of cells for
each cell line can be found in Supplementary Table 5.

NORMAN ET AL., 2019

This dataset (Gene Expression Omnibus accession number GSE133344) measured the effects of
284 different CRISPR-mediated perturbations on K562 cells, where each perturbation induced the
overexpression of a single gene or a pair of genes. As done in the analysis from Norman et al. (2019),
we excluded cells with the perturbation label NegCtrl1 NegCtrl0 NegCtrl1 NegCtrl0
from our analysis. For our background dataset we used all remaining unperturbed cells, and for our
target dataset we used all perturbed cells that had a gene program label provided by the authors.

F EVALUATION METRICS

Here we describe the quantitative metrics used in this study. All metrics were computed using their
corresponding implementations in the scikit-learn Python package (Buitinck et al., 2013).

SILHOUETTE WIDTH

We calculate silhouette width using the latent representations returned by each method. For a given
sample i, the sillhouete width s(i) is defined as follows. Let a(i) be the average distance between i
and the other samples with the same ground truth label, and let b(i) be the smallest average distance
between i and all other samples with a different label. The silhouette score s(i) is then

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) .
A silhouette width close to one indicates that i is tightly clustered with cells with the same ground
truth label, while a score close to -1 indicates that a cell has been grouped with cells with a different
label.
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ADJUSTED RAND INDEX

The adjusted Rand index (ARI) measures agreement between reference clustering labels and labels
assigned by a clustering algorithm. Given a set of n samples and two sets of clustering labels
describing those cells, the overlap between clustering labels can be described using a contingency
table, where each entry indicates the number of cells in common between the two sets of labels.
Mathematically, the ARI is calculated as

ARI =

∑
ij

(
nij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

) ,
where nij is the number of cells assigned to cluster i based on the reference labels and cluster j
based on a clustering algorithm, ai is the number of cells assigned to cluster i in the reference set,
and bj is the number of cells assigned to cluster j by the clustering algorithm. ARI values closer
to 1 indicate stronger agreement between the reference labels and labels assigned by a clustering
algorithm.

NORMALIZED MUTUAL INFORMATION

The normalized mutual information (NMI) measures the agreement between reference clustering
labels and labels assigned by a clustering algorithm. The NMI is calculated as

NMI =
I(P ;T )√
H(P )H(T )

,

whereP and T denote empirical distributions for the predicted and true clusterings, I denotes mutual
information, and H the Shannon entropy.

G INTEGRATING OUT CONTRASTIVEVI’S LATENT VARIABLES

We first show that if

w ∼ Gamma(ρ, θ)

y|w ∼ Poisson(`w)

where ρ, θ ∈ R+ are the mean and shape parameter of the gamma distribution, respectively, and
` ∈ R+, then y follows a negative binomial distribution. We note that our analysis closely follows
that of Lopez et al. (2018) and Gayoso et al. (2021b); we include it again here for completeness.

p(y) =

∫
p(y|w)p(w)dw

=

∫
`ywye−`w

Γ(y + 1)

(
θ
ρ

)θ
wθ−1e−θw/ρ

Γ(θ)
dw

=
`y
(
θ
ρ

)θ
Γ(y + 1)Γ(θ)

∫
wy+θ−1e−

(
`+ θ

ρ

)
wdw

=
`y
(
θ
ρ

)θ
Γ(y + 1)Γ(θ)

Γ(y + θ)(
`+ θ

ρ

)y+θ
=

Γ(y + θ)

Γ(y + 1)Γ(θ)

(
θ

`ρ+ θ

)θ(
`ρ

`ρ+ θ

)y
.
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The integral in the third line is evaluated by observing that the integrand is the unnormalized proba-
bility density function of a gamma distribution. The final line is exactly the probability mass function
of a negative binomial distribution with mean `ρ and inverse dispersion θ.

Next, we can incorporate multiplication of y by zero as a mixture between a point mass at zero
and the original distribution of y. This enables us to write the probability mass function of
p(xng|zn, tn, `n, sn) as


p(xng = 0|vn, `n) = fgh(vn) + (1− fgh(vn))

(
θg

`nf
g
w(vn) + θg

)θg
p(xng = y|vn, `n) = (1− fgh(vn))

Γ(y + θg)

Γ(y + 1)Γ(θg)

(
θg

`nf
g
w(vn) + θg

)θg( `nf
g
w(vn)

`nf
g
w(vn) + θg

)y
,

where vn = {zn, tn, sn}, and y ∈ N+. Letting fw encode the mean of w and fh the probability of
technical dropout, this is exactly the probability mass function of a zero-inflated negative binomial
(ZINB) distribution.

H CONTRASTIVEVI EVIDENCE LOWER BOUND DERIVATION

Here we derive the variational lower bounds for contrastiveVI presented in the main text. For a given
target cell x the contrastiveVI generative model’s joint likelihood function factorizes as follows

p(x, z, t, `|s) = p(x|z, t, `, s)p(`|s)p(z)p(t)

Next, in order to perform variational inference we define the variational posterior as

q(z, t, `|x, s) = q(z|x, s)q(t|x, s)q(`|x, s)

Then we have

log p(x|s) = log

∫
p(x, z, t, `|s)dzdtd`

= log

∫
p(x, z, t, `|s)q(z, t, `|x, s)

q(z, t, `|x, s)
dzdtd`

≥
∫
q(z, t, `|x, s) log

p(x, z, t, `|s)
q(z, t, `|x, s)

dzdtd`

=

∫
q(z, t, `|x, s) log

p(x|z, t, `, s)p(z, t, `|s)
q(z, t, `|x, s)

dzdtd`

=

∫ (
q(z, t, `|x, s) log p(x|z, t, `, s) + q(z, t, `|x, s) log

p(z, t, `|s)
q(z, t, `|x, s)

)
dzdtd`

= Eq(z,t,`|x,s)[log p(x|z, t, `, s)]−DKL(q(z, t, `|x, s) || p(z, t, `|s))
= Eq(z,t,`|x,s)[log p(x|z, t, `, s)]−DKL(q(z|x, s) || p(z))
−DKL(q(t|x, s) || p(t))−DKL(q(`|x, s) || p(`|s))

where we use Jensen’s inequality in the third step and the independence of z, t, and ` to decompose
the KL divergence term in the last step. Next, for a background point b we assume our generative
process factorizes as

p(b, z, `|s) = p(b|z, `, s)p(`|s)p(z),
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with a corresponding variational posterior of

q(z, `|b, s) = q(z|b, s)q(`|b, s).

We then have

log p(b|s) = log

∫
p(b, z, `|s)dzd`

= log

∫
p(b, z, `|s)q(z, `|b, s)

q(z, `|b, s)
dzd`

≥
∫
q(z, `|b, s) log

p(b, z, `|s)
q(z, `|b, s)

dzd`

=

∫
q(z, `|b, s) log

p(b|z, `, s)p(z, `|s)
q(z, `|b, s)

dzd`

=

∫ (
q(z, `|b, s) log p(b|z, `, s) + q(z, `|b, s) log

p(z, `|s)
q(z, `|b, s)

)
dzd`

= Eq(z,`|b,s)[log p(b|z, `, s)]−DKL(q(z, `|b, s) || p(z, `|s))
= Eq(z,`|b,s)[log p(b|z, `, s)]−DKL(q(z, |b, s) || p(z))−DKL(q(`, |x, s) || p(`|s))

I FURTHER DETAILS ON THE CONTRASTIVEVI NETWORK ARCHITECTURE

Three separate encoder neural networks were used to parameterize our approximate posterior dis-
tributions for z, t, and `. Each network had a single hidden layer consisting of 128 nodes. This
was followed by a batch normalization layer (Ioffe & Szegedy, 2015), a rectified linear unit (ReLU)
activation function (Nair & Hinton, 2010), and then a dropout layer (Srivastava et al., 2014). During
training the dropout probability was set to 0.1. The resulting 128 node values were then used as
inputs for two linear layers that parameterized the given factor (e.g. for the encoder corresponding
to q(z|x, s), the linear layers parameterized the mean and variance of z). For results in the main text,
we used 10-dimensional mean and variance parameters for z and t, and we used a 1-dimensional
mean and shape parameter for `.

Our decoder network began with a single hidden layer taking in values of our three latent factors
(i.e., z, t and `) with an output dimension of 128. This was followed by batch normalization, a
ReLU activation function, and a dropout layer as described previously. The output of this sequence
was then fed to three separate decoder layers, one for each of the three parameters of the ZINB
distribution. To force the ZINB scale parameter to lie between 0 and 1, we applied a softmax
activation function to its corresponding decoder’s output. We note that similar decoding approaches
have been successfully used by previous unsupervised modeling approaches for scRNA-seq data
(Lopez et al., 2018; Gayoso et al., 2021b).

J SUPPLEMENTARY FIGURES
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Supplementary Figure 1: The contrastiveVI probabilistic graphical model. Unshaded nodes rep-
resent latent variables, while shaded nodes represent observed variables. Edges denote conditional
independence, while rectangles indicate independent replication.

Supplementary Figure 2: Model performance with varying (salient) latent dimension. Mean
and standard error of average silhouette width (silhouette), adjusted Rand Index (ARI), and nor-
malized mutual information (NMI) across five random model training trials are plotted for each
method’s (salient) latent variables at dimension = 2, 10, 32, 64 for all benchmark datasets. Results
for CGLVM with dimension = 64 are not included due to numerical instabilities resulting in NaN
values during optimization. Note y-axis scales vary in subplots.
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Supplementary Figure 3: Cell line separation by treatment type in McFarland et al., 2020.
UMAP plots of library-size-normalized and log-transformed data from McFarland et al. (2020) col-
ored by treatment type (left) and TP53 mutation status (right). Cells with wild type TP53 clearly
separate by treatment type.
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K SUPPLEMENTARY TABLES

Pathway Name Pathway Entry Adjusted p-value

Hematopoietic cell lineage hsa04640 9.35e-10
Asthma hsa05310 3.17e-08
Systemic lupus erythematosus hsa05322 4.91e-05
Antigen processing and presentation hsa04612 8.29e-05
Type I diabetes mellitus hsa04940 1.03e-04
Allograft rejection hsa05330 1.90e-04
Graft-versus-host disease hsa05332 3.41e-04
Leishmaniasis hsa05140 5.26e-04
Cell adhesion molecules hsa04514 5.26e-04
Rheumatoid arthritis hsa05323 1.09e-03
Chagas disease hsa05142 1.33e-03
Toxoplasmosis hsa05145 1.50e-03
Staphylococcus aureus infection hsa05150 3.18e-03
Intestinal immune network for IgA production hsa04672 4.04e-03
NF-kappa B signaling pathway hsa04064 4.04e-03
Viral myocarditis hsa05416 4.04e-03
Tuberculosis hsa05152 5.88e-03
Autoimmune thyroid disease hsa05320 7.14e-03
Inflammatory bowel disease hsa05321 7.61e-03
Legionellosis hsa05134 8.51e-03
Influenza A hsa05164 1.04e-02
B cell receptor signaling pathway hsa04662 1.59e-02
VEGF signaling pathway hsa04370 1.59e-02
Glycine, serine and threonine metabolism hsa00260 1.85e-02
Cytokine-cytokine receptor interaction hsa04060 1.89e-02
HTLV-I infection hsa05166 2.76e-02
Transcriptional misregulation in cancer hsa05202 2.76e-02
Fc epsilon RI signaling pathway hsa04664 2.81e-02
Apoptosis hsa04210 3.48e-02
Primary immunodeficiency hsa05340 4.57e-02
Pertussis hsa05133 4.57e-02
Colorectal cancer hsa05210 4.57e-02
Arachidonic acid metabolism hsa00590 4.57e-02
Osteoclast differentiation hsa04380 4.57e-02
Arginine and proline metabolism hsa00330 4.63e-02
T cell receptor signaling pathway hsa04660 4.69e-02

Supplementary Table 1: All pathways found to be enriched (false discovery rate < 0.05) based on
the differentially expressed genes for the two clusters in contrastiveVI’s salient latent space for the
dataset collected by Zheng et al., 2017.
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Pathway Name Pathway Entry Adjusted p-value
(Associated Differentially Expressed Genes)

Fat digestion and absorption mmu04975 2.35e-2
(Apoa1, Apoa4, Fabp1, Fabp2, Pla2g3)

Vitamin digestion and absorption mmu04977 2.35e-2
(Apoa1, Apoa4, Cubn, Rbp2)

Cholesterol metabolism mmu04979 2.93e-2
(Apoa1, Apoa4, Apoc2, Apoc3, Apoh)

Supplementary Table 2: All pathways found to be enriched (false discovery rate < 0.05) based on
the differentially expressed genes for the two clusters in contrastiveVI’s salient latent space for the
dataset collected in Haber et al. (2017).

Dataset Num. Samples Num. Samples Platform
(background) (target)

Zheng et al. 2017 4,457 12,399 GemCode
Haber et al., 2017 3,240 4,481 SMART-Seq2
McFarland et al., 2020 2,831 3,097 MIX-Seq
Norman et al., 2019 8,907 24,913 Perturb-Seq

Supplementary Table 3: Summary of datasets used.

Cell Type Number of cells
Healthy Salmonella H. polygyrus

(background) (target) (target)

Endocrine 112 69 82
Enterocyte 424 705 128
Enterocyte.Progenitor 545 229 586
Goblet 216 126 317
Stem 670 207 592
TA 421 112 353
TA.Early 792 300 436
Tuft 60 22 217

Supplementary Table 4: Number of cell types present in each condition for the dataset by Haber
et al. (2017).
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Cell Line Number of cells
DMSO-treated Idasanutlin-treated
(background) (target)

BICR6 UPPER AERODIGESTIVE TRACT 82 111
BICR31 UPPER AERODIGESTIVE TRACT 245 277
BT474 BREAST 53 71
BT549 BREAST 100 131
CAOV3 OVARY 97 140
CCFSTTG1 CENTRAL NERVOUS SYSTEM 103 77
COLO680N OESOPHAGUS 129 129
COV434 OVARY 60 75
DKMG CENTRAL NERVOUS SYSTEM 103 93
IALM LUNG 105 141
LNCAPCLONEFGC PROSTATE 139 113
LS1034 LARGE INTESTINE 72 118
NCIH226 LUNG 165 94
NCIH2347 LUNG 111 159
RCC10RGB KIDNEY 172 114
RCM1 LARGE INTESTINE 109 133
RERFLCAD1 LUNG 99 123
SH10TC STOMACH 123 122
SKMEL2 SKIN 150 141
SKMEL3 SKIN 145 183
SNU1079 BILIARY TRACT 101 105
SQ1 LUNG 113 150
TEN ENDOMETRIUM 155 177
UMUC1 URINARY TRACT 100 120

Supplementary Table 5: Number of cells by cell line present in each condition for the dataset by
McFarland et al. (2020).
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Adam Gayoso, Zoë Steier, Romain Lopez, Jeffrey Regier, Kristopher L Nazor, Aaron Streets, and
Nir Yosef. Joint probabilistic modeling of single-cell multi-omic data with totalvi. Nature Meth-
ods, 18(3):272–282, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
PMLR, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

26


	Introduction
	The contrastiveVI Model
	Results
	Cancer treatment response
	Infection response
	Small-molecule therapy response
	CRISPR perturbation response

	Discussion
	Further details on the contrastiveVI probabilistic model
	The contrastiveVI generative process
	Inference with contrastiveVI
	Differential gene expression analysis with contrastiveVI

	Pathway enrichment analysis
	Baseline models
	Model optimization details
	Datasets and preprocessing
	Evaluation Metrics
	Integrating out contrastiveVI's latent variables
	contrastiveVI evidence lower bound derivation
	Further details on the contrastiveVI network architecture
	Supplementary Figures
	Supplementary Tables

