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Abstract
In the context of improving the measurement of pain and emotional well-being among diverse populations,
we sought to detect random responders or survey bots that are not responsive to item content. We adapted
the L1P1 algorithm by Ilagan and Falk (2024), which uses a permutation test and outlier statistics to
compute a p-value and do classification under the null that the response vector is exchangeable. As the
response options for the Likert-type items could yield missing data, simulations evaluated two variants of
outlier statistic computations that used the expectation-maximization algorithm: one in which means and
covariances were pre-computed and re-used for all rows, and another in which a leave-one-out approach
was used. Results indicated that the L1P1 algorithm works as expected, but a leave-one-out strategy works
best, and respondents with few completed items are flagged at higher rates due to loss of specificity. Based
on simulations, we then performed classification for an empirical dataset (N = 11, 197) with 76 Likert-type
items. Flagging rates were similarly higher for respondents with fewer completed items, but otherwise
low. We therefore expect that random responders would likely not have strong influence on subsequent
analyses for this measurement project.

Keywords: Patient-reported outcome measures; Person-centered measurement, Survey bots, Careless responding, Machine
Learning, Missing Data, Permutation test

The equitable people-centered health measurement (EPHM) project aims to improve the measure-
ment of pain and emotional well-being among diverse populations (e.g., Sawatzky et al., 2024).1
Towards this end, pain and well-being items (Kopec et al., 2006) are measured in a calibration sample
and a mixture item response model is developed for each item bank to incorporate heterogeneity in
the measurement parameters. Subsequently, the relation between class probabilities and a host of
social determinants of health variables are investigated. The results of these models are then carried
forward to develop computer adaptive tests (CAT) based on the mixture model (for supporting
research, see Sajobi et al., 2022; Sawatzky et al., 2012, 2024; Sawatzky et al., 2018). It is hoped that
this approach will help personalize health measurements by tailoring the selection and scoring of
items for individuals.

Since a large and diverse calibration sample was desired, the project team collected online data from
various sources. However, any online data collection endeavor must worry about contamination with

1Future updates and publications about the project will be posted to: https://www.healthyqol.com
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participants who do not take the study seriously, and there is persistent worry regarding computer
generated responses by survey bots (Perkel, 2020). Recent articles review strategies to deal with such
bots, including deterrence/prevention as well as detection (e.g., Simone, 2019; Storozuk et al., 2020).
Some steps were taken to prevent survey bots at the time of data collection (e.g., the survey was not
widely distributed on social media), and some information was also made available for detection (e.g.,
checking postal code versus self-reported location).

Here we focus only on efforts to help ensure the integrity of the EPHM calibration sample by
detailing an additional flag for random responders or survey bots based on the work of Ilagan and
Falk (2024). Under the assumption that Likert-type items are exchangeable for random responders or
survey bots, these authors’ L1P1 algorithm calibrates sensitivity for detecting such aberrant responses
using an unsupervised classification approach. However, using this algorithm with the EPHM data
required some modifications for use with missing data. In the remainder of this manuscript, we
first describe some details of the EPHM calibration data as it relates to L1P1. We then describe two
strategies for adapting L1P1 to the case of missing data, followed by simulations evaluating these two
approaches. Finally, we provide results of flagging rates by L1P1 on the actual EPHM calibration
sample.

1. Motivation: EPHM calibration data
The main focus of measurement consisted of pain and emotional well-being item banks developed
by Kopec et al. (2006). Included were the original item banks (including items that were removed
from the final item banks due to poor fit or suspected differential item functioning). Given this
setup, a measurement model could be designed to detect random responding (e.g., Jin et al., 2018;
Ulitzsch et al., 2022). However, we thought it more expedient to use L1P1 as it does not require a
known measurement model for humans and it would be quicker to study with a large sample or in
simulations.

Based on Falk et al. (in press), we would expect L1P1 to perform well for EPHM data. As L1P1
was initially developed to handle items with the same number of response options (Ilagan & Falk,
2024), we used just the 76 items (out of 84) with 5 ordinal response options (35 pain, 41 emotional
well-being).2 In simulations with real measurement instruments and 5 category items, L1P1 achieved
good classification accuracy (>90%) for inventories with greater than 50 items (Falk et al., in press).
Simulations also suggest that uniform information functions (as opposed to peaked information) are
good, which appears to be the case for the item banks considered (Kopec et al., 2006).

However, the survey also included “Prefer not to answer” and “Do not know” options for the
Likert-type items. For our purposes, these responses were coded as missing data. In addition, some
respondents did not complete all survey items or did not finish the questionnaire. As a result, we had
data from 11,197 respondents who had at least one complete response on the 76 items, with a total of
10.1% missing data (Figure 1). Of these responses, data were collected from an online survey panel
(N = 5, 336), from partner health organizations (N = 4, 891), and through a mix of other means
(N = 970). Since L1P1 does not readily handle missing data, we pursue a modification of it in the
following section.

2. L1P1 andmissing data
Let i = 1, . . . , n and j = 1, . . . ,m index respondents and items, respectively, with zij ∈ {1, 2, . . . , kj}
the observed response to item j for respondent i, zi =

[
zi1, zi2, . . . , zim

]⊤ respondent i’s full
response pattern, and Z stacking all n response patterns row-wise. Let yi ∈ {0, 1} be a true class
label, with 0 indicating a diligent human and 1 indicating a random responder.

2L1P1 has been recently adapted to be able to accommodate inventories with a different number of response options
(Ilagan & Falk, 2025b).
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Figure 1. Missing data patterns

For respondent i, classification can be done using the following strategy:

1. Randomly permute zi, to create B new response patterns: z(1)
i , z(2)

i , . . . , z(B)
i .

2. For zi and its B permutations, compute outlier statistics, xi, and x(1)
i , x(2)

i , . . . , x(B)
i . More than

one outlier statistic per response pattern may be computed.

3. Collapse outlier statistics to a single dimension, ri and r(1)
i , r(2)

i , . . . , r(B)
i , and rank-order in terms of

suspiciousness. The value pi indicates the proportion of permutations that are at least as suspicious
as zi.

4. Classify using some threshold τ, ŷi = I{pi ≥ τ}, where 1 –τ corresponds to the desired sensitivity
(e.g., τ = .05 is 95% sensitivity).

L1P1 is unique in several respects. At step 1 it assumes random responders have response vectors
whose values are exchangeable. Knowledge of the exact data generating mechanism for random
responders is not explicitly required, nor is it required for diligent humans.

In addition, step 2 involves computation of outlier statistics. Two examples are Mahalanobis
distance (Mahalanobis, 1936; Zijlstra et al., 2011) and person-total cosine similarity,3 which require
an estimate of the item means, µ̂, and covariances, Σ̂. For instance, Mahalanobis distance for person
i is: √

(zi – µ)⊤Σ–1(zi – µ) (1)

3Whereas person-total correlation is the Pearson correlation between a response vector, zi, and some mean reference
vector, e.g., µ̂, person-total cosine similarity is the cosine similarity between these two vectors.
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and person-total cosine similarity is:

z⊤i µ
∥zi∥∥µ∥

(2)

where the numerator contains an inner product and the denominator contains Euclidean norms. Thus,
xi may be a vector of length two that contains Mahalanobis distance and person-total cosine similarity.
Importantly, L1P1 uses a leave-one-out strategy where Z–i, the original Z omitting observation i,
is used to compute µ̂–i and Σ̂–i, which are then used to compute xi, and x(1)

i , x(2)
i , . . . , x(B)

i , from zi
and z(1)

i , z(2)
i , . . . , z(B)

i . For example, µ̂–i and Σ̂–i are substituted for µ and Σ in (1) and (2). At step 3,
outlier statistics may be collapsed to a single dimension by computing the distance to some ideal,
non-suspicious point.4 For example, (0, +1) are the least suspicious values for Mahalanobis distance
and person-total cosine similarity. The distance between (0, +1) and zi is represented by ri.

To handle missing data, we pursue modifications to steps 1 and 2. First, step 1 permutes zi,c
to obtain new response patterns, where zi,c is respondent i’s response vector containing only their
complete responses. Second and at step 2, under ignorable missing data mechanisms, consistent
estimates of means and covariances of the items can often (though not always) be obtained using
direct maximum likelihood under the assumption of multivariate normality (Yuan, 2009). Under
the original L1P1 algorithm, leave-one-out would be used for each permutation test. We may omit
observation i when obtaining µ̂–i and Σ̂–i to maximize the log-likelihood:

l–i(θ) =
n∑
i′ ̸=i

(
–

1
2

log |Σi′,c(θ)| –
1
2

(zi′,c – µi′,c(θ))⊤Σi′,c(θ)–1(zi′,c – µi′,c(θ)) –
1
2
mi′ log(2π)

)
(3)

where θ is a vector of parameters (all means and covariances), µi,c(θ) and Σi,c(θ) are partitions of
µ(θ) and Σ(θ) that correspond to complete observations for respondent i, and mi is their number of
complete responses.

Alternatively, since n is large and we need to perform many permutation tests, we may obtain
estimates µ̂ = µ(θ̂) and Σ̂ = Σ(θ̂) just once that maximize the log-likelihood for all respondents:

l(θ) =
n∑
i=1

(
–

1
2

log |Σi,c(θ)| –
1
2

(zi,c – µi,c(θ))⊤Σi,c(θ)–1(zi,c – µi,c(θ)) –
1
2
mi log(2π)

)
(4)

In either case, although the full µ̂ (or µ̂–i) and Σ̂ (or Σ̂–i) are obtained for all items, only
the complete subset of elements for respondent i are used to compute outlier statistics, xi, and

x(1)
i , x(2)

i , . . . , x(B)
i , from zi,c and its B permutations.

For both strategies, we obtain estimates using software with the expectation-maximization (EM)
algorithm (Falk, 2024; Städler & Bühlmann, 2012). When µ̂ and Σ̂ are re-used for each permutation
test, we refer to this as “pre-computed”, and when leave-one-out is used for each permutation test
we refer to this as “LOO”. The pre-computed strategy slightly violates the premises of the L1P1
algorithm, which could result in a loss of sensitivity. However, it is unclear whether this would
occur at such a large sample size. Pre-computing also takes much less time as the item means and
covariances only need to be computed once, whereas under LOO Equation 3 needs to be maximized
for each row in the dataset.

4Any distance metric may suffice, though we used an equation that itself resembled Mahalanobis distance, encompassing
the covariance among outlier statistics xi and x(1)

i , x(2)
i , . . . , x(B)

i . For more details, we refer to Ilagan and Falk (2024).
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3. Simulations
We conducted a small set of simulations to evaluate algorithm performance for classification of
random responders specifically for conditions similar to the EPHM data. We also wanted to evaluate
the two strategies for computing item means and covariances under missing data.

3.1 Data generation and analysis
To mimic EPHM calibration data, the total sample size for each generated dataset was fixed at 11,197.
We manipulated random responder contamination rate (.05, .5, and .95). We generated hypothetical
human data by utilizing estimated model parameters for EPHM data based on a 2-dimensional
graded response model with a logit link function (Reckase, 2009; Samejima, 1969), and with very
simple structure utilizing all 84 items for both pain and emotional well-being item banks.5 Only item
parameters from the 76 5-category items were then used. These model parameter estimates were
treated as true values in generating hypothetical responses when yi = 0. Although not corresponding
to a mixture model and possibly contaminated with random responders, parameter estimates from
this analysis looked reasonable in light of work by Kopec et al. (2006). Thus, we argue this is a
reasonable strategy for generating hypothetical humans. For yi = 1, each item response was drawn
from a uniform distribution over the 5 possible response categories. Once a complete dataset with
the desired proportion of humans and bots was generated, these rows were randomly sorted, and
missing data was induced using the exact same missing data patterns as under the EPHM calibration
sample.

We generated 100 datasets per each contamination rate and analyzed them using the pre-compute
strategy. Due to computational time, we generated 20 datasets per each contamination rate for use
with the LOO strategy. For both strategies, B = 1, 000 permutations were used and person-total
cosine similarity and Mahalanobis distance were used as outlier statistics. Since we later wished to
be cautious about accidentally flagging humans on the real EPHM data, we used τ = .1 for 90%
sensitivity as we expected it would exhibit more specificity than τ = .05 as used by Ilagan and
Falk (2024). Custom R code and results for these simulations are available on the Open Science
Framework: https://osf.io/t7br2/.

3.2 Results
We report three calibration metrics: sensitivity (

∑n
i=1 I

{
ŷi = yi = 1

}
/
∑n

i=1 I
{
yi = 1

}
), specificity

(
∑n

i=1 I
{
ŷi = yi = 0

}
/
∑n

i=1 I
{
yi = 0

}
), and classification accuracy ( 1

n
∑n

i=1 I
{
ŷi = yi

}
). Each were

averaged across all datasets for all cells of the design, but also binned by the number of complete
responses available for any given row.

LOO was able to maintain the target sensitivity as it had around 90% sensitivity across all
contamination rates and across rows with different amounts of missing data (bottom of Figure 2).
However, pre-computing experienced a loss of sensitivity, especially under lower contamination
and when the row had more complete responses (top of Figure 2). Presumably, a more complete
response pattern may allow the row to influence mean and covariance estimates, making it look less
suspicious.

While specificity looked similar across pre-computing and LOO, it only achieved acceptable rates
(> 90%) with 20-30 complete responses or more, and when contamination was .5 or .05 (Figure 3).

Classification accuracy tended to be slightly better under LOO than it was under pre-computing
(Figure 4). Though in some cases, accuracy was the same or differed by only a percentage point.

Overall then, LOO should be slightly preferred as it may flag a few more random responders
than will pre-computing, but either strategy should yield rather similar results.

5Reverse-worded items were reverse-coded prior to these analyses.
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Figure 2. Sensitivity
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4. Empirical results
On the actual EPHM data, we applied L1P1 by pre-computing means and covariances and with LOO
with B = 1, 000 and τ = .1 for 90% sensitivity. We report results of LOO since it performed slightly
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better in simulations and resulted in flagging only an additional 16 respondents. The number of
flagged respondents (i.e., ŷi = 1) was also binned by the number of complete responses (Table 1). For
some respondents a flag could not be generated and was marked as “NA” for missing; this typically
occurred when the respondent utilized only one or two response categories across all completed
items and also when the respondent completed very few items (Table 1). Though flagging rates
also tended to be higher when the respondent used few response categories (Table 2). In examining
the data source, we noticed that the highest flagging rates were among the online survey panel
participants, as opposed to those recruited by partner health organizations or other sources (Table 3).

Table 1. Flag rates for EPHM data by number of completed items

Complete Items N N Flag Prop. Flag N NA Prop. NA

(0,10] 415 172 0.41 174 0.42

(10,20] 272 73 0.27 36 0.13

(20,30] 245 42 0.17 17 0.07

(30,40] 391 65 0.17 14 0.04

(40,50] 108 10 0.09 4 0.04

(50,60] 130 17 0.13 2 0.02

(60,70] 251 23 0.09 1 0.00

(70,76] 9385 254 0.03 65 0.01

Overall 11197 656 0.06 313 0.03

N = count or sample size; Prop. = Proportion; NA = Missing, no flag could
be generated.
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Table 2. Flag rates for EPHM data by number of categories used

1 2 3 4 5

yi = 0 0 148 478 3498 6104

yi = 1 0 260 178 104 114

Table 3. Flag rates for EPHM data by data source

N N Flag Prop.Flag N NA Prop. NA

Online survey panel 5336 490 0.09 230 0.04

Partner health organizations 4891 122 0.02 64 0.01

Other 970 44 0.05 19 0.02

N = count or sample size; Prop. = Proportion; NA = Missing, no flag could be generated.

5. Conclusion
L1P1 can be combined with modern ways to handle missing data such as the EM algorithm to
compute means and covariances for use with outlier statistics. Doing this using LOO for each
row appeared to perform best in simulations. Although the performance of L1P1 with real data
from heterogeneous populations has been evaluated (Falk et al., in press; Ilagan & Falk, 2024), the
present simulations could be improved by introducing some heterogeneity for simulated humans.
Nonetheless, we sought quick answers as to whether such an algorithm was feasible for the real
EPHM data. Handling of missing data is now available in a forked version of the detranli package
(Ilagan & Falk, 2025a) and may eventually be incorporated into the main repository.

Combining results from simulations and the actual EPHM analyses, application of L1P1 with
LOO suggests that data collection was not overrun with random responders. Although 6% and 3% of
respondents were either flagged or a flag could not be generated, the majority of these respondents
completed few items. Based on simulations, for those with few complete responses (e.g., less than
20-30), the results of L1P1 may not be trustworthy as many diligent humans may be accidentally
flagged. Furthermore, respondents with few completed items would presumably have little influence
on any subsequent analyses (i.e., development of the mixture CAT) as they would contribute few
responses to the estimated model(s). Such a conjecture could be tested by performing a sensitivity
analysis with and without flagged respondents.
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