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Abstract

Inspired by recent findings on the fractal geometry of language, we introduce
Recursive INference Scaling (RINS) as a complementary, plug-in recipe for scaling
inference time in language and multimodal systems. RINS is a particular form
of recursive depth that significantly outperforms +55 other variants, including the
recent “repeat-all-over” (RAO) strategy in Mobile LLM (Liu et al., [2024) and
latent recurrent thinking (Geiping et al.,|2025). Unlike prior works, we carry out
our comparisons on a compute-matched regime, and demonstrate that for a fixed
model size and training compute budget, RINS substantially improves language
modeling performance. It also generalizes beyond pure language tasks, delivering
gains in multimodal systems, including a +2% improvement in 0-shot ImageNet
accuracy for SigLIP-B/16. Additionally, by deriving data scaling laws, we show that
RINS improves both the asymptotic performance limits and the scaling exponents.
More importantly, with light-weight (linear) adapters (comprising < 1% of model
parameters) and stochastic dropout, RINS offers a no-regret strategy, meaning that
RINS-enabled pretraining improves performance in language modeling even when
recursive depth is not applied at inference time. This corresponds to improving
performance on a training compute-, parameter-, and inference-matched regime,
suggesting its potential as a viable component of LLM pretraining!

1 Introduction

There has been a proliferation of research in recent years pointing to the pivotal role of scale, and how
its benefits could be predicted empirically (Hestness et al.,|2017; |Kaplan et al.,2020; |/Alabdulmohsin
et al.,2022; Bansal et al., 2022} |Zhai et al.,[2022)). Generally, the performance of deep neural networks
f(x) (such as its error rate or log-perplexity) often follows a power law f(z) ~ Sx~° + ¢ as one
varies a dimension z, such as the data size or model parameters. These “scaling laws,” as they are
known today, have been used, among others, to determine the training data size needed for a specified
level of accuracy (Cho et al., 2015; Beleites et al., 2013} [Figueroa et al., 2012)) and to optimize the
model architecture (Kaplan et al., [2020; [Hoffmann et al., 2022} |Alabdulmohsin et al., 2024b), with
some theoretical justification (Bahri et al., 2021} |Hutter, [2021}; [Sharma and Kaplan, |2022)).

Besides this conventional approach of scaling training compute, the impact of increased inference
compute on model performance has emerged as another key scaling dimension. For example, chain-
of-thought (CoT) prompting show that eliciting longer inference paths through additional token
generation could improve the reasoning capabilities of LLMs (Wei et al., [2024)), similar to the
success of critiquing before evaluating (Ankner et al.,[2024). Also, AlphaCode (Li et al.,[2022)) and
Codex (Chen et al}|2021) generate multiple samples during inference to enhance code generation.
Remarkably, Brown et al.[(2024) shows that the benefit of sampling multiple solutions in tasks such
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Figure 1: LEFT: In RINS, the model f : & — Y is split into two parts: the first block f4 : X — X
is applied iteratively to its own output 7 times before passing the output to the second block. RIGHT:
Illustrative examples of models with different signatures and degrees. From top to bottom: (1)
Baseline (Signature: AB, Degree: 1), a feedforward architecture with no recursion. (2) repeat-all-over
(RA) (Liu et al.,|2024])), where the entire model is recursively applied on its output. When recursion is
done twice, it has a signature of ABAB. (3) RINS with signature A3B. (4) (A%B), whose degree is 2, in
which the same parameter sharing signature is applied on each of the two blocks A and B.

as mathematics and coding—when measured by coverage—holds for up to four orders of magnitude
of inference compute. Thus, inference compute follows systematic scaling patterns that can be
leveraged to improve models. Refer to the survey by Welleck et al.| (2024) for more details.

Recently, it has also been noted that language exhibits a “self-similar” (fractal) nature, meaning
that similar patterns repeat across different scales of its representation, from individual words
to entire sentences and paragraphs (Alabdulmohsin et al.| |2024a). Inspired by this finding, we
examine if recursive depth, which can be interpreted as a form of scale-invariant decoding, offers a
complementary approach for scaling inference time in language models. To this end, we examine an
extensive set of parameter-sharing strategies and, indeed, identify the best to be a special form of
recursion, which we term Recursive INference Scaling (RINS). We show that RINS yields significant
performance gains over +55 other methods when controlling for model size and training compute.

RINS builds upon the concept of model recursion but recasts it as a powerful inference-time scaling
strategy. It leverages a simple yet profound idea: use your existing architecture and training compute
budget as is, but exploit the self-similar structure of language by recursively applying an early portion
of your network to refine its output. In turn, this simple strategy improves performance significantly.

Recursion has shown promise in language modeling, with recent work by [Liu et al.| (2024) and
Geiping et al.|(2025) demonstrating that recursive architectures outperform similarly sized vanilla
models trained on a similar number of tokens. However, while such works demonstrate the sample
efficiency of recursive architectures, in which models are compared when trained on a similar number
of tokens, their analysis does not explicitly account for the increased computational cost of recursive
operations during training. Hence, it remains unclear whether the performance gains observed in
prior work come from the inherent advantages of model recursion or simply from having increased
the training compute. Indeed, our findings suggest that for moderately sized models (over 1 billion
parameters), the performance gains of “repeat-all-over” (RAO) in MobileLLM (Liu et al., [2024)
can be matched by training the baseline model longer to consume an equivalent compute. RINS, by
contrast, significantly outperforms all other baselines on a compute- and parameter-matched setup,
including when scaling inference by increasing the context length (see Figure 2).

Crucially, a stochastic variant of RINS not only can enhance performance further, such as in multi-
modal systems, but also provides the flexibility to optionally forgo increased inference computation
at test time with minimal performance degradation. We show that combining stochastic RINS with
lightweight (linear adapters), comprising < 1% of parameters, offers a no-regrer strategy, meaning
that RINS-enabled pretraining improves performance in langauge modeling even when recursive
depth is not applied at inference time! See Section @] for details.

We conduct our experiments mostly on compact models, which are typically intended for deployment
environments with stringent memory limitations (Liu et al.l 2024). Given the direct relation between
a model’s memory footprint and its parameter count (e.g. a 1 billion parameter model with 16-bit
floating-point precision requires 2GB of DRAM)), the ability to enhance accuracy while maintaining a
fixed parameter count is highly desirable. RINS achieves this by unlocking significant gains without
increasing parameter count for the same training compute. In Section[6] we study the effect of sharing
the KV cache during recursion to reduce memory footprint even further. While KV cache sharing
diminishes some of the gain, RINS with KV cache sharing still enjoys an advantage.



Statement of Contribution. In summary, we introduce Recursive INference Scaling (RINS), a
complementary plug-in method for scaling inference time. We:

1. propose a taxonomy of parameter-sharing architectures, empirically evaluating their effec-
tiveness. Our comprehensive analysis identifies RINS as a powerful approach, outperforming
+55 other methods like RAO used in Mobile LLM (Liu et al., [2024) and latent recurrent
thinking (Geiping et al.l 2025)), and scaling inference by increasing the sequence length.

2. unlike prior works, we control for training compute FLOPs in our comparisons.

3. unlike prior works, we study the effectiveness of recursive depth beyond language to
multimodal systems that incorporate language in their processing, such as contrastive
models. In particular, our SigL.IP-RINS-B/16 outperforms the popular SigL.IP-B/16 (Zhai
et al.| 2023) by a wide margin; e.g. improving 0-shot accuracy in ImageNet from 77.3% to
79.6% and CIFAR100 from 70.3% to 80.7%.

4. argue that the performance gain of RINS likely stems from the self-similar (fractal) nature
of language, by showing that a similar analysis in vision yields minimal improvements.

5. derive data scaling laws for RINS, revealing improvements in both the asymptotic perfor-
mance limit and convergence speed (i.e. scaling exponent).

6. show that stochastic RINS can enhance performance even further, such as in multimodal sys-
tems, while offering the option to revert to non-recursive inference at test time with minimal
performance degradation. In particular, with lightweight (linear) adapters, stochastic RINS
offer a no-regret strategy, suggesting its potential as a viable component of LLM pretraining.

7. analyze the impact of KV cache sharing to reduce memory footprint even further and show
that RINS continues to offer an advantage in that setup.

2 Recursive Inference Scaling

Overview. Before describing how RINS works, we formalize definitions. Let X be a fixed domain,
often the space of sequences of soft tokens of embedding dimension d. Let L. = {ly, 15, ...,1,,} be a
fixed set of n unique blocks, where each block [, : X — X is a function mapping from the input
space X to the same output space X'. By “unique” here we simply imply that such blocks (which
typically comprise of multiple layers each) are not constrained to share the same parameters. Let
G(LL) be the space of all possible computation graphs representing neural network architectures that
can be constructed by composing blocks from the set L, while f € G(IL) be one specific architecture.

Figure (right) illustrates some examples for the case when |IL| = 2. For instance, one can repeatedly
apply the entire model, as in the “repeat-all-over” (RAO) approach in Mobile LLM (Liu et al.| [2024)),
or recursively apply a strict subset of the architecture, such as a single a block within the model. The
choice of arrangement of blocks can significantly impact the model’s performance and efficiency.

Formally, let C'(f) be the actual computational cost (in FLOPs) of training f € G(IL) on a dataset
sampled i.i.d. from distribution D, considering only the forward pass. Also, £(f) is a performance
metric of interest (e.g., validation loss) for model f, with lower values being better.

Definition 2.1. For a fixed set of blocks L and a training compute budget ¢, a recursive architecture
f* € G(LL) is called “better” than another f € G(L) if C(f*) < C(f) < cand E[L(f*)] < E[L(f)].

In other words, we search for the architecture f*, constructed only from the set of blocks L, that
minimizes the loss under the constraint of a bounded training compute c.

Model recursion offers a simple, plug-in approach for scaling inference time. By applying some layers
iteratively to their own output, we effectively increase the computational path length during inference
without altering the underlying model architecture. This allows us to exploit the benefits of increased
inference compute. Importantly, it is complementary to other techniques like chain-of-thought (CoT)
prompting (Wei et al.,|2024) and repeated sampling (Li et al.l 2022} |Chen et al., [2021)).

Taxonomy. As discussed in Section[I] language has been shown to exhibit self-similarity, meaning
that similar patterns repeat across multiple levels of granularity, from the structure of individual
sentences to the composition of entire texts (Alabdulmohsin et al.l 2024a). This observation suggests
that recursive (scale-invariant) decoding could be particularly beneficial for language processing.



31

Model Size: 300M

Model Size: 600M

Model Size: 300M

Model Size: 600M

Baseline
— RAO
— RINS
— Long-Seq

Baseline

Baseline
— RAO
— RINS
— Long-Seq

Baseline
— RAO
— RINS
—— Long-Seq

C4 Log-PPL
ca :I}.ogAPPL
SlimPajama Log-PPL
S\imPaJar&a Log-PPL

a
0.58 1.08 1.58 0.08

Training FLOPs (layers)

2.08 1.08 2.08 3.08

Training FLOPs (layers)

4.08 0.08 0.58 1.08 1.58

Training FLOPs (layers)

2.08 1.08 2.08 3.08

Training FLOPs (layers)

4.08

Figure 2: Language models are trained on 200B tokens. The z-axis is the training cost in units
of layer x step. Notably, the performance advantage of RINS increases with longer training. The
long-sequence baseline, using a context length of 1,536 tokens, exhibits lower performance due to
processing fewer examples to maintain the same FLOPs count. See Figure |3af for longer training
durations and Figure [] for larger (1B parameter) models, further demonstrating the value of RINS.
Sharp drops in perplexity near the end of training are due to learning rate cooldown.

Model Size (# params) Recursive Signature # examples / core / sec (1) Peak Memory Usage (GiB) ()

Baseline (AB) 22.7 2.60
2
300M RINS (A3B) 18.1 3.31
RINS (A°B) 13.9 3.56
RAO (ABAB) 12.6 4.35
Baseline (AB) 12.0 3.92
2
600M RINS (A3 B) 8.5 5.70
RINS (A°B) 6.4 6.31
RAO (ABAB) 6.5 7.48

Table 1: A summary of latency and memory footprint of recursive architectures. We observe that
RINS with A%Bsignature has a significantly better latency and memory footprint than RAO and still
outperforms it significantly in terms of quality.

To determine the extent to which this is true, we systematically explore a vast space of parameter
sharing strategies. We use the following taxonomy based on two key concepts: (1) signature and (2)
degree. The “signature” of an architecture describes how parameter sharing is applied across different
blocks of the model. For example, an architecture with the signature AB2C indicates that the model is
partitioned into three unique blocks (4, B, and C) of equal size. The processing flow would be: apply
block A on the input, apply B to A’s output, apply B again to its own output (hence the exponent), and
apply C to the output of B. Note that while the signature AB2C has the same parameter count as ABC, it
incurs =~ 33% more compute due to the repeated use of block B. This highlights the trade-off between
computational cost and performance using recursion that we will carefully study in this work.

On the other hand, “degree” specifies if recursive depth is nested, as illustrated in Figure|l| (bottom).
A degree of 2, for example, means that each of the blocks A, B, and C in our example have themselves
the same recursive pattern used in the overall model. This adds another dimension to our taxonomy,
allowing for a finer-grained classification of recursive architectures. Degree makes notation concise,
but is not necessary; e.g. (ABB). is equivalent to ABBCDD CDD. By systematically varying both
signature and degree, we can comprehensively explore the space of recursive models and identify
optimal configurations. Appendix [A]provides a detailed pseudocode. With this framework, we now
state our main question: Which family of architectures (i.e. signatures and degrees) lead to better
performance according to Definition[2.1|\under fixed compute budget?

To reiterate, this is a non-trivial question because it is possible for a non-recursive model to outperform
all others given that it sees more training examples, since we always match from FLOPs. For instance,
increasing the context length can be inferior to longer training within a compute constraint, as shown
in Section 3] Nevertheless, our analysis reveals that Recursive INference Scaling (RINS) emerges as a
clear winner. Its consistent superiority suggests that it captures a fundamental principle for efficiently
processing language. We hypothesize that this is due to the self-similar geometry of language.

Definition 2.2. RINS corresponds to architectures with degree 1 and signature A”B, for some r > 1.
In other words, RINS partitions a model depthwise into two equally-sized blocks A and B. The first

block A is recursively applied on its own output - times before applying B. See Figure|Ifor illustration
and Appendix [A]for a detailed pseudocode. In Section[6] we study the optimal value of r.



\ BL RAO RINS | \ BL RAO RINS

OpenBookQA 37.14+0.8 40.0£0.6 39.0+0.3 | BoolQ 53.1+4.7 58.3+ 0.6 59.5+0.8
PIQA 65.8 £ 3.4 68.8 + 0.5 69.8+0.3 SIQA 40.2 £0.5 40.0 £ 0.5 40.9+04
HellaSwag 46.0 £ 1.0 49.6 £0.3 50.2+ 0.5 | CommonSenseQA 29.0+£1.6 31.3+£1.7 324+1.0

Table 2: 0-shot evaluation in downstream common sense reasoning tasks. All models are 600M
parameters, pretrained on the compute-equivalent of 500B tokens in the baseline (BL). The best
signatures for RAO and RINS in Figure@ are used in this evaluation. See Appendix E]for details.

Main Claim. Our claim can be summarized as follows. Once a language model is chosen and
the training compute budget is planned, one should enable RINS during training, which does not
change the model size, and train the new RINS-enabled model for the same amount of compute.
Our empirical results demonstrate that RINS-enabled models will consistently outperform baseline
models. In addition, stochastic RINS, particularly with linear adapters (see Section EII), offers the
option of forgoing scaling inference at test time with little performance degradation.

3 Experimental Results

In this section, we study the impact of various parameter-sharing strategies in language modeling,
following the taxonomy introduced in Section 2} We show how RINS emerges as a clear winner. All
experiments are carried out using the Big Vision codebase (Beyer et al.,2022).

Setup. First, we train a decoder-only transformer language model (Vaswani et al., [2017) with
relative position embeddings and sequence packing. We use C4/English tokenizer with a vocabulary
size of 32K. The model is trained on a mixture of C4 (Raffel et al., |2020) and SlimPajama (Soboleva
et al.| [2023) with equal weight using a batch size 1,024 and context length 1,024. The non-recursive
baseline is trained for 200K steps, which amounts to about 200B training tokens. Other recursive
models are trained on fewer tokens in order to match the same total compute FLOPs.

The optimizer is Adam (Kingma and Bal 2014) with learning rate 5 x 10~* and weight decay
5 x 1072, using an inverse square root decay schedule with 5K warm-up and 5K cool-down steps.
This learning rate was chosen by sweeping across the values Ir € {1072,5 x 1074,107%,5 x 1075}
with wd = lr/10. The reported value yielded the best performance for the non-recursive baseline.
The full training configuration along with a list of all the architectures we sweep across (i.e. signature
and degree) can be found in Appendix [E] Each model is trained on 16 x 16 TPUvV5 chips for
approximately 2.2K core-hours. Models that failed OOM were excluded. Overall, we train 59 models
of two sizes: 300M and 600M parameters, which include RAO (Liu et al., 2024) and latent recurrent
thinking (Geiping et al.,|2025) whose signature is AB"C. In all models, the embedding dimension is
1,536 and the MLP dimension is 6,144. In Figure[3a] we present results using models with 1 billion
parameters.

Results. Figure [2| shows that RINS outperforms all other approaches. Importantly, the optimal
number of recursion rounds in RINS (e.g. whether to use A%B or A3B or more recursions) depends
on the allocated training compute budget. This is seen in Figure2]in the fact that the non-recursive
baseline AB (a special case of RINS with » = 1) initially outperforms all other models, before its
performance saturates and recursive models begin to outperform it for the same training compute
FLOPs and parameter count. We study the relation between the optimal number of recursion rounds
and compute later in Section [6] In addition, RINS outperforms scaling inference time by only
increasing the sequence (context) length (green vs. red curves in Figure[2). A summary of latency
and memory footprint is provided in Table[T}

Longer Training Duration. One observation in Figure [2]is that the performance gap seems to
widen in favor of RINS as more training compute is allocated. To verify this, we resume training
the 600M-parameter models on 500B training tokens. Here, we only compare RINS with the
non-recursive baseline and RAO, since RAO was identified in prior works to outperform other
parameter-sharing strategies (Liu et al.| 2024). Figure [3ashows that the performance gap continues
to increase in favor of RINS. This improvement also persists downstream, as shown in Table
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cost. For p; = 0, RINS@1x is significantly worse, with perplexity scores > 3. As expected, RINS
converges in performance to the baseline as p, — 1. Similar results using C4 are in Appendix E}

4 Stochastic Recursive Inference Scaling

Next, we investigate the effect of stochastically dropping blocks during training, inspired by the
regularization technique of stochastic depth (Huang et al.,[2016). Our primary goal is to determine
whether this approach can further enhance the performance of RINS while simultaneously offering
the flexibility of reverting to non-recursive inference without significant degradation in model quality.

To recall, RINS has the signature A™B for some r > 1. To implement stochastic RINS, we introduce a
skip probability p, € [0, 1) and sample during training the number of recursion rounds in each step
to be 1 + n, where 7 is a binomial random variable with probability of success 1 — p, and number of
trials 7 — 1. Thus, block A is always executed at least once. During inference, we are free to choose
how to scale compute by setting the value of > 1. See the detailed pseudocode in Appendix [A] For
this, we train bigger models with 1 billion parameters. We use an embedding dimension 2,048 and
MLP dimension 8,192. All models have 18 decoder blocks. We train for 500K steps and compare
RINS with signature A®B against the non-recursive baseline.

Figure ] summarizes the advantages of stochastic RINS. Notably, we observe that as p, > 0 increases,
stochastic RINS mitigates the performance degradation incurred when scaling is not applied at
inference time, while still offering big gains when inference time is scaled. Not surprisingly, though,
scaling inference time is less effective when p; increases, suggesting a tradeoff between flexibility at
inference time and the magnitude of potential gains from scaling. As shown in Figure [3b] similar
conclusions hold in the asymptotic (infinite-compute) regime, assuming the loss follows a power law
relation (Kaplan et al.,[2020). We resolve this apparent tradeoff in Section [ using linear adapters.

5 Multimodal Systems

Setup. Besides language, we study the impact of RINS in vision-language pretraining, motivated by
the fact that such models also process natural language. We pretrain SiglL.IP-B/16 models, which are
contrastive models trained using the sigmoid loss on English-language image—text pairs (Zhai et al.,



Dataset AB Long-Seq ABAB AAB

ImageNet 73.4 73.0 721 74.1
0-shot classification ~ CIFAR100 68.9 63.6 65.3 72.2
Pet 90.4 90.0 90.7 90.0
COCO img2txt@1 62.7 62.0 61.1 62.3
COCO img2txt@5 84.8 84.1 82.9 84.1
COCO img2txt@10 90.7 90.4 89.5 90.2
COCO txt2img@1 44.6 442 432 45.1
COCO txt2img@5 69.6 69.4 68.4 70.0
Retrieval COCO txt2img@10 78.8 78.7 77.5 79.0
Flickr img2txt@1 89.6 87.2 87.9 88.9
Flickr img2txt@5 98.0 97.8 97.5 98.5
Flickr img2txt@10 99.1 98.9 98.9 99.3
Flickr txt2img@1 75.1 731 732 74.3
Flickr txt2img@5 923 92.1 91.5 92.4
Flickr txt2img@10 95.6 95.6 95.6 95.8

Table 3: Performance of Sigl.IP-B/16 on ImageNet (Deng et al., [2009), CIFAR100 (Krizhevsky,
2009), Pet (Parkhi et al., 2012), COCO (Chen et al., 2015), and Flickr (Young et al.| [2014). All
models are identical in size to SigLIP-B/16 and have the same training compute FLOPs. Long-Seq is
SigLIP-B/16 trained on higher resolution of 280 and text length 80 (25% increase in sequence length
— 50% increase in inference cost, similar to AAB). Wilcoxon signed rank test (Wilcoxon, |[1992)), gives
p = 0.003 so the evidence in favor of RINS is statistically significant at the 99% confidence level.

2023)). We follow |Zhai et al.[(2023)) in most aspects. Images are resized to 256 x 256 with 16 x 16
patch sizes. Texts, on the other hand, are tokenized using C4 tokenizer (Raffel et al.,[2020) with a
vocabulary size of 32K, and we keep a maximum of 64 tokens. The optimizer is Adam with learning
rate 10~ and weight decay 10~%, using an inverse square root decay schedule with SK warm-up and
cool-down steps. For the baseline, we use SigL.IP-B/16 pretrained on 10B training examples. Again,
recursive models are trained on fewer examples to match the total training compute cost. Due to the
amount of compute involved in these experiments, we only compare the non-recursive baseline (with
signature AB) against RAO (with signature ABAB) and RINS (signature A%B) with degree 1.

Results. Table [3| shows that RINS (with signature A%B) outperforms the non-recursive baseline,
including with long sequence length, and RAO in zero-shot and retrieval evaluations. Of importance
is the impact in ImageNet O-shot classification, where we see an improvement of about +0.7%.

Overtraining. Next, we demonstrate that RINS can substantially advance state-of-the-art results in
multimodal systems for a given model size in the overtraining regime. We train a recursive variant of
SigLIP-B/16, denoted SigLIP-RINS-B/16, using the signature A®B. In light of the findings presented
later in Section[6] we increase the number of recursions here given the increase in compute.

We adhere to the training protocol outlined above, with the exception that SigL.IP-RINS-B/16 is now
trained on 40B examples, matching the training data scale of the widely-used, publicly available
SigLIP-B/16 checkpoint. Note that both models have an identical size. Moreover, following |Pouget
et al.| (2024), we utilize a training mixture comprising both English and multilingual data to enhance
cultural diversity, and report the cultural metrics recommended in [Pouget et al.| (2024) as well
as multilinguality evaluations using XM3600 dataset (Thapliyal et al. |2022). So, to ensure an
appropriate comparison of results, we re-train Sigl.IP-B/16 on 40B examples from the same data
mixture. The primary datasets for cultural diversity evaluation are Dollar Street (Rojas et al., 2022),
GeoDE (Ramaswamy et al., 2024), and Google Landmarks Dataset v2 (GLDv2) (Weyand et al.|
2020). We use the Gemma tokenizer (Mesnard et al., 2024).

As shown in Table[6] SigLIP-RINS-B/16 significantly outperforms the standard SigLLIP-B/16 across
all benchmarks. In fact, stochastic RINS with skip probability p, = i improves results even further.
Crucially, these results demonstrate that RINS offers a fundamental advantage in multimodal learning
that are not replicated by simply overtraining a non-recursive counterpart.

6 Further Analysis

Vision. As previously discussed, the performance gains in RINS are consistent with the self-similar
nature of language. By performing a recursive, scale-invariant decoding, RINS introduces an inductive



Dataset ‘ SigLIP-B/16 ‘ SigLIP-RINS-B/16
1

1

ps =0 1 )

ImageNet 77.3 79.0 79.6 79.2

0-shot classification ~ CIFAR100 70.3 78.5 80.7 81.7
Pet 92.6 94.8 94.4 92.7

GeoLoc:Dollar Street 17.6 19.7 19.2 19.3
GeoLoc:GeoDE-Country 22.5 233 24.7 239

Cultural di it GeoLoc:GeoDE-Region 36.1 37.7 39.7 38.7
vitural diversity Dollar Street 515 529 53.1 531
GeoDE 93.1 93.7 94.3 94.2

GLDv2 51.6 53.7 524 525

Multilinguality XM3600 img2txt@1 48.4 53.5 52.6 51.8
XM3600 txt2img@1 39.5 43.0 43.1 41.9

COCO img2txt@1 67.6 69.4 70.0 69.5

Retrieval COCO txt2img@1 50.3 51.5 524 52.0
etneva Flickr img2txt@1 91.9 92.9 935 924
Flickr txt2img@1 80.1 80.7 81.4 80.5

Table 4: Performance of multilingual Sigl.IP models on various datasets under an overtraining regime.
All models are identical in size to SigLIP-B/16. As shown in the rightmost columns, stochastic RINS
(ps > 0) outperforms the other models. Full retrieval & multilinguality results are in Appendix

bias that encourages the model to recognize and exploit recurring patterns at different scales (see
Appendix [D|for further discussion). To test if this is likely the source of its advantage, we conduct a
similar empirical evaluation in vision, a domain lacking self-similarity. Appendix [G]provides the
full evaluation results using encoder-only vision transformers (ViT) (Dosovitskiy et al., |2021) on
ImageNet-ILSRCV2012 (Deng et al.L|2009). We observe that recursive architectures, including RINS,
do not confer any advantage in the supervised image classification domain, in agreement with our
hypothesis that relates the success of RINS to fractal structure of language.

Data Scaling Laws. Next, we investigate the influence of Recursive INference Scaling (RINS)
on the data scaling behavior of language models. Specifically, we fit a power law of the form
e(x) = Br~ ¢+ €, to the log-perplexity loss () as a function of the training FLOPs x. This allows
us to analyze the impact of RINS on both the scaling exponent ¢ and the asymptotic performance
limit £, revealing whether the performance gains in RINS stem from an improved scaling exponent,
a lower asymptotic limit, or a combination of both. We use the 600M-parameter language models in
Figurewhose signature is A”B, for r € {1,2, 3,4}, where r = 1 corresponds to the non-recursive
baseline. As shown in Figure[Sal RINS improves both the scaling exponent and the asymptotic limit.
The improvement in the asymptotic limit provides further evidence that the performance gap in favor
of RINS is not closed by overtraining non-recursive models.

Optimal Number of Recursion Rounds. We observe from the scaling parameters in the previous
section that if the performance of RINS is modeled as a power law f,.(x) = 8,2 + ., then ¢,
increases with r while ¢,. decreases. Furthermore, the coefficient 5, also increases with r. This
implies that while scaling inference by increasing r might initially exhibit a higher loss due to the
larger 3., its faster convergence (c,-) and lower asymptotic limit (¢,-) will eventually lead to superior
performance. In other words, using the higher recursion level is advantageous eventually, which is
consistent with the experimental results. To quantify this more explicitly, we train language models
with four signatures A"B: r € {1,2,3,4}. Then, we plot the optimal value of r against training
compute. As shown in Figure [5b] the optimal value of r monotonically increases with training
compute, in agreement with earlier results. Also, smaller models benefit more from RINS.

Adding Linear Adapters. Earlier in Section[d] we showed that enabling stochastic RINS during
training exhibits a tradeoff between worst-case and best-case performance, depending on whether
or not RINS is applied at inference time. Next, we introduce a additional improvement: when a
maximum of r recursion rounds are used in stochastic RINS, we add r lightweight, linear adapters
(i.e. linear projection layers) to the output before the projection head. The choice of which adapter
to apply is a function of how many recursion rounds are used. Specifically, if signature A"B is used,
the r-th adapter is applied. Empirically, this introduces < 1% more parameters and has a negligible
impact on FLOPs. Yet, it resolves the tradeoff encountered earlier as shown in Figure [6] (left). With
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Figure 6: LEFT 2 PLOTS: y-axis corresponds to performance when RINS is enabled during training
but disabled at inference time in 600M-parameter LMs. ps = % in stochastic RINS with linear
adapters matches the baseline at 1 x the inference cost while p; = 0.8 results in a better language
model, even though all models have the same training compute, parameter count, and inference cost.
We speculate this is because RINS provides a better inductive bias. RIGHT 2 PLOTS: RINS with

ps = 0.5 improves performance with KV cache sharing, although the improvement diminishes.

linear adapters, stochastic RINS can provide a no-regret strategy, where performance improves in
RINS-enabled pretraining even when RINS is not applied at test time.

Adding KV Cache Sharing. Finally, RINS by itself reduces the memory footprint by matching
performance using small models, which is important for compact models as discussed earlier. We
now push this memory reduction further by analyzing the effect of KV cache sharing, where queries
during recursion attend to the tokens and keys of the first block in RINS. Specifically, for models
with signature A"B, in every subsequence use of block A, queries attend to the cached keys and values
of the first call of A. This ensures that memory footprint does not grow with recursive depth. Figure [f]
shows that while KV cache sharing diminishes the gain, RINS with KV cache sharing still offers an
advantage compared to the baseline.

7 Discussion and Related Works

The premise that extending inference time enhances the quality of language model outputs finds
support in cognitive science. Human deliberation, often associated with System 2 thinking, is
linked to improved decision-making capabilities (Lawson et al., [2020). Mirroring this, numerous
computational strategies have been developed to scale inference within Large Language Models
(LLMs). Prompt-based methods like Chain-of-Thought (CoT) (Wei et al.,|2024) and critique-then-
generate approaches (Ankner et al.,|2024) are prominent examples. Other iterative refinement methods
like ReAct (Yao et al.} 2023)), Self-Refine (Madaan et al.| 2024)), and Reflexion, which incorporate
feedback and reflection, also improve inference quality. Even simpler strategies, capitalizing on the
stochastic nature of LLM decoding that generate multiple responses and select among them, such as
self-consistency (Wang et al.,[2023)), have shown efficacy that scales well across multiple orders of
magnitude of inference compute (Brown et al., 2024).



However, the assumption of monotonic improvement with increased inference calls is not guaranteed
to hold. As argued by Chen et al. (Chen et al., [2024)), repeated sampling may lead to convergence
towards the most probable, but not necessarily the optimal, solution. This is particularly pertinent for
challenging instances where the probability of a correct answer is below chance (i.e., < 0.5).

In this work, we introduce a complementary approach, called Recursive INference Scaling (RINS),
which can be integrated with other techniques. RINS identifies a specific form of model recursion
as an effective inference scaling strategy, demonstrating significant performance gains over various
other recursive architectures, including latent recurrent thinking (Geiping et al.,2025) and the Repeat
All Over (RAO) strategy identified by |Liu et al.|(2024) as state-of-the-art for mobile LLMs.

Recursion is a form of parameter sharing, a technique that has been explored for a while. Illustrative
examples include Universal Transformers (Dehghani et al.;2019) and ALBERT (Lan et al.,[2020). De-
spite their innovative design, their scaling exponents were smaller than in the vanilla transformer (Tay
et al.| 2022a)) so they failed to subsume it (Tay et al., [2022b)). RINS, by contrast, improves both the
scaling exponents and asymptotic performance limits.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our experimental setup in details (see for example Section[3) and
include the full training configurations in Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our experiments are based on the open-sourced Big Vision codebase, but
we do not release the code. However, we describe everything needed to reproduce our
experiments in detail, and provide the full training configurations in Appendix [E]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all training and test details in the paper (see Sections[3] [5] and[6]
and the Appendices) including a description of how the hyperparameters were selected (see
Section 3] for language and Section 5| for SigLIP).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]

Justification: See the error bars in Table[2] For SigLIP experiments, we do not provide error
bars because each experiment is quite expensive compute-wise and we cannot train multiple
models.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe compute resources (e.g. topology and compute hours) in Section 3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses on improving the performance of language models and mul-
timodal systems. The technique introduced in this work is not tied to particular applications
or deployments.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets (papers, codes, datasets, etc) are properly cited in the paper.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper doesn’t release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:

Guidelines: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A Recursive Inference Scaling (RINS) Pseudocode

class RecursiveBlock():
config: Dict # single block config

signature: str = "a"
degree: int = 1
p_skip: Tuplel[float, ...]J] # skip prob for blocks

def __call__(self, x):
"""Call model on input x."""
if degree == 1:
blocks = {c: SingleBlock(config=self.config
) for ¢ in set(self.signature)}
else:
blocks = {c: RecursiveBlock(
config=self.config, signature=self.signature,
degree=self.degree - 1, p_skip=self.p_skip
) for ¢ in set(self.signature)}
inputs = x
# forward pass
for i in range(len(self.signature)):

c = self.signaturel[il]
choice = random.uniform()
if self.degree == 1: # stochastic RINS

if choice > self.p_skipl[i]:
x = blocks[cl(x) # else skip
else:
x = blocks[c](x)
return x

Figure 7: Numpy-like syntax for models with a fixed signature and degree. When no stochastic depth
is applied, we have p; = 0. In RINS, we expand p; into a tuple of the form (0, ps, ps, . .., ps,0),
where the first and last entries are zero to guarantee they are executed, which is equivalent to sampling
the number of recursion rounds from a binomial distribution as described in Section E}
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B Retrieval and Multilinguality Detailed Results

The following tables provide the full retrieval and multilinguality results for SigL.IP-RINS-B/16.

Language Image-to-Text Retrieval @ 1 Text-to-Image Retrieval @ 1
SigLIP- SigLIP-RINS-B/16 SigLIP- SigLIP-RINS-B/16
B/16 B/16
ps =0 ps = % ps =% ps =0 ps =1 ps =1

ar 54.4 58.8 59.0 58.2 42.2 45.8 46.7 453
bn 7.0 11.2 10.3 8.7 4.8 72 6.8 5.1
cs 51.1 55.8 55.8 54.5 40.5 45.0 44.6 43.0
da 61.3 68.8 68.8 65.2 45.8 51.6 52.6 49.8
de 81.5 84.1 83.3 833 69.3 72.2 72.4 71.5
el 38.8 45.8 44.9 429 274 32.1 322 31.5
en 55.6 56.7 56.0 56.3 53.2 53.4 534 53.2
es 67.9 713 71.7 70.4 62.7 63.7 63.5 63.9
fa 54.4 61.3 58.6 59.6 48.1 51.6 51.6 51.9
fi 34.6 43.2 43.0 39.8 21.9 28.4 28.8 25.9
fil 19.0 21.8 20.5 19.4 104 12.5 12.3 11.3
fr 74.8 77.6 76.2 76.9 67.0 69.5 69.9 68.0
hi 20.6 26.5 25.9 235 10.5 14.6 14.4 12.3
hr 46.9 574 56.2 53.1 33.6 41.2 40.4 37.9
hu 47.6 55.2 53.9 53.9 374 427 431 41.2
id 74.1 77.8 77.7 78.4 65.3 68.0 63.2 67.0
it 73.9 79.1 77.5 77.3 67.3 70.4 70.2 69.9
iw 48.2 56.8 54.5 523 37.5 439 43.1 40.8
ja 48.8 57.8 57.9 53.9 38.1 432 42.0 39.6
ko 58.6 65.6 63.3 63.3 50.0 53.4 52.5 51.7
mi 0.7 0.7 0.8 0.6 0.2 0.4 0.3 0.3
nl 61.8 67.8 65.0 66.2 55.1 58.8 59.0 577
no 61.0 68.9 67.1 66.8 45.5 52.5 52.0 50.9
pl 62.3 63.9 67.4 67.1 54.0 57.6 59.0 57.1
pt 69.6 71.1 70.1 71.4 61.5 62.6 63.3 63.2
quz 7.2 7.7 79 7.7 3.1 3.0 32 2.9
1o 52.7 61.4 60.5 60.0 39.8 48.5 48.3 46.0
ru 66.7 70.8 69.5 70.3 61.3 64.2 64.3 64.2
sV 66.8 71.9 71.9 70.1 51.3 55.3 56.6 54.4
SW 9.2 10.2 10.0 9.4 4.6 52 5.4 44
te 1.1 1.4 1.6 1.0 0.5 0.5 0.7 0.5
th 29.5 38.2 35.1 34.5 21.5 24.7 23.1 24.0
tr 529 58.0 57.9 57.6 44.3 47.3 46.9 46.6
uk 52.2 58.1 56.1 56.6 38.7 443 44.9 42.8
vi 73.8 79.3 78.4 77.8 61.8 65.7 66.4 65.5
zh 55.3 60.2 60.5 58.7 44.9 48.3 49.8 47.1

Table 5: Per-language retrieval evaluations using the Crossmodal-3600 dataset|Thapliyal et al.| (2022).
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Metric SigLIP-B/16 SigLIP-RINS-B/16
(370M params) (370M params)
=0 1 1
DPs = 1 2
Multilinguality
XM3600 img2txt@1 48.4 53.5 52.6 51.8
XM3600 img2txt@5 68.4 72.6 72.0 70.9
XM3600 img2txt@ 10 74.4 78.1 77.5 76.5
XM3600 txt2img@1 39.5 43.0 43.1 419
XM3600 txt2img@5 59.5 63.0 63.1 61.6
XM3600 txt2img@ 10 66.1 69.3 69.3 68.0
Retrieval

COCO img2txt@1 67.6 69.4 70.0 69.5
COCO img2txt@5 87.2 88.6 88.9 88.3
COCO img2txt@10 92.6 93.2 93.5 93.2
COCO txt2img@1 50.3 51.5 524 52.0
COCO txt2img@5 74.7 75.2 76.0 75.7
COCO txt2img@10 82.6 83.0 83.5 83.2
Flickr img2txt@1 91.9 92.9 93.5 92.4
Flickr img2txt@5 99.3 98.7 99.5 98.7
Flickr img2txt@10 99.6 99.5 99.7 99.3
Flickr txt2img@1 80.1 80.7 81.4 80.5
Flickr txt2img@5 94.6 94.3 95.4 95.0
Flickr txt2img@10 97.1 97.0 97.4 97.0

Table 6: Performance of multilingual Sigl.IP models on various datasets under an overtraining regime.
All models are identical in size to SigL.IP-B/16. As shown in the rightmost columns, stochastic RINS
(ps > 0) outperforms the other models. Full retrieval & multilinguality results are in Appendix

C Zero-shot Evaluation on Common Sense Reasoning Tasks

This section describes the evaluation setup for assessing the zero-shot common sense reasoning
capabilities of the language model (Table [2).

Datasets. Each model is evaluated on six benchmarks:

* OpenBookQA: A multiple-choice question answering dataset requiring knowledge from an
open book of elementary level science facts (Mihaylov et al., [2018).

* BoolQ: A yes/no question answering dataset requiring the model to determine the truthful-
ness of a given statement based on a provided passage (Clark et al.|[2019)).

* PIQA: A multiple-choice benchmark focusing on physics-related reasoning, such as how
we interact with objects in daily life (Bisk et al., 2020).

» SIQA: A multiple-choice dataset focusing on social common sense reasoning (Sap et al.,
2019).

* HellaSwag: A multiple-choice dataset focusing on sentence completion (Zellers et al.,
2019).

* CommonSenseQA: A multiple-choice question answering dataset with distractors (Talmor
et al.,[2019).

Prompting. Each model is evaluated in a zero-shot setting, meaning it does not receive any training
examples specific to the task. Instead, since all tasks above have multiple-choice answers, we
evaluate the log-perplexity of each option, applying a causal mask, after concatenating the contextual
information (if any), followed by the prefix and the answer. Then, we select the choice that has the
lowest per-token log-perplexity score as the model’s answer.

We do not apply any prompting, except in BoolQ and PIQA. In BoolQ, we use the prompt template:

<data[’passage’]> Based on this, the answer to the question:
<data[’question’]>, is: ...,

which we have found to improve performance significantly.

In PIQA, we formulate each sentence in the form:
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The goal is: {goal} The solution is: {sol}.

We do this in PIQA because, otherwise, the sentences can be difficult to understand, even for humans.
In one example, for instance, the goal is: "Deep clean coffee grinder." and the two possible solutions
are: "Scrape with rice." and "Scrape with flour." Concatenating directly would result in sentences like
"Deep clean coffee grinder. Scrape with rice." whose are unclear.

Evaluation Metric. The evaluation metric is accuracy. For each example, the model’s predictions
are compared to the ground truth labels, and the accuracy is calculated as the percentage of correct
predictions. The model is evaluated in a deterministic mode, meaning no randomness is involved in
the inference process.
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D Recursion and Self-Similarity
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Figure 8: Caption

How does depth-wise model recursion relate to self-similarity of language across the temporal
dimension? We provide an illustration of this in Figure

Informally, one might view the early layers in a neural network to be transforming the raw linguistic
input into a richer language that is appended with useful, high-level details. For instance, in the
sentence “the evil queen appears ...”, early layers potentially through mechanisms like attention, might
modify the token “queen” to incorporate features such as part-of-speech (POS) tagging, sentiment,
and grammatical information. Subsequent layers can then iteratively incorporate progressively
higher-level contextual information.

The concept of self-similarity in temporal sequences, including language, hints that higher-order
linguistic features exhibit patterns analogous to those present in the raw input. If this property holds
for language, it implies that the same neural network block can be recursively applied to generate
increasingly abstract features.

However, while this interpretation offers a conceptual framework, it is essential to acknowledge that it
remains a hypothesis. Empirical evidence has demonstrated the self-similarity of log-perplexity scores
in language (i.e. surprise of information-theoretic complexity), indicating that patterns observed
at the word level are mirrored at sentence and potentially higher levels of linguistic structure. The
efficacy of Recursive INference Scaling (RINS) is another evidence in favor of the informal picture
above.
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E Configuration

E.1 Architecture Sweep

We use the following pseudocode when sweeping across recursive architectures. The goal is to ensure
that we only compare architectures that have a similar size.

# baseline
add (signature=’A’, degree=1)

# RAO

add (signature=’AA’, degreel)
add (signature=’AAA’, degreel)
add (signature=’AAAA’, degreel)

# other architectures

for signature in [?ABB’, ’ABA’, ’AAB’, ’ABBC’, ’AABC’, ’ABCC’, ’ABBB’, ’AAAB’, ’AABB’]:
for degree in [1, 2, 3]:
num_unique_blocks = len(set(signature) ** degree unique_layers
num_layers_per_block = num_layer_in_baseline_model // num_unique_blocks

if num_layers_per_block > O0:
add (signature=signature, degree=degree)
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E.2 Training Configuration
E.2.1 Language Modeling

"""Config for training a decoder-only language model."""

config.seed = 0
config.total_steps = ... # swept
config.vocab_size = 32,000

config.input = dict ()
config.input.max_len = 1,024 # or 1,536 for long-sequence baseline
config.tokenizer = ’c4_en’

config.input.data = { # equal weight
>cd/en’: 1.0,
’huggingface:cerebras__slimpajama_627b’: 1.0,

for dataset_name in config.input.data:
config.input[dataset_name] = {}
config.input [dataset_name].data = dict(
name=dataset_name,
split=’train’,
)
config.input [dataset_name].shuffle_buffer_size = 250,000

config.input.batch_size = 1,024

# Optimizer section
config.optax_name = ’scale_by_adam’
config.grad_clip_norm = 1.0

config.lr = b5e-4

config.wd = 5e-5

config.schedule = dict(decay_type=’rsqrt’,
warmup_steps=5,000,
cooldown_steps=5,000,
)

E.2.2 Vision: Image Classification

"""Config for training a ViT model."""

config.seed = 0
config.total_epochs = ... # swept
config.num_classes = 1,000
config.init_head_bias = -6.9

config.input = dict ()
config.input.batch_size = 1,024
config.input.shuffle_buffer_size = 250,000

# preprocessing

config.input.pp = ’value_range(-1, 1)|inception_crop(224)|flip_1r’
config.mixup = dict(p=0.2, fold_in=None)

# Optimizer section

config.optax_name = ’scale_by_adam’

config.grad_clip_norm = 1.0

config.optax = dict(mu_dtype=’bfloatl6’, b2=0.95)

config.lr = 0.001
config.wd = 0.0001

config.schedule = dict(decay_type=’cosine’, warmup_steps=10,000)
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E.2.3 Language-Image Pretraining

"""Config for training a SigLIP model."""
config.seed = 0
config.total_examples = ... # swept

config.input = dict ()
config.input.batch_size = 1,024 x 32
config.input.shuffle_buffer_size = 250,000

# preprocessing

config.input.tokenize = mc4 # multilingual c4
config.input.max_len = 64 # for text
config.input.prefetch = 1 # save host memory
# model

config.model.bias_init = -10.0
config.model.temperature_init = 10.0

# Optimizer section
config.optax_name = ’scale_by_adam’
config.grad_clip_norm = 1.0

config.lr = 0.001
config.wd = 0.0001

config.schedule = dict(decay_type=’cosine’, warmup_steps=20_000)
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F C4 Evaluation Results with Stochastic RINS
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Figure 9: Performance of stochastic RINS (A®B) with varying inference costs for 1B parameter LMs
on C4, similar to Figure ] reported on SlimPajama. The z-axis represents the training compute cost.
The legend indicates the inference cost of each stochastic RINS configuration relative to the baseline;
e.g. 1.5z denotes 50% increase in inference cost. For p; = 0, RINS@]1x is significantly worse, with
perplexity scores > 3. As expected, RINS converges in performance to the baseline as p; — 1.
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G Vision

As previously discussed, the performance gains in RINS are consistent with the self-similar nature
of language. By performing a recursive, scale-invariant decoding, RINS introduces an inductive
bias that encourages the model to recognize and exploit recurring patterns at different scales (see
Appendix [D]for further discussion). To test if this is likely the source of its advantage, we conduct a
similar empirical evaluation in vision, a domain lacking self-similarity.

Setup. We train an encoder-only vision transformer ViT-B/16 |Dosovitskiy et al.| (2021)) on ImageNet-
ILSRCV2012 |Deng et al.|(2009). The non-recursive baseline model is trained for either 300 or 1,000
epochs using a batch size 1,024, while recursive models are trained on fewer epochs to match the
same total training compute FLOPs. We apply MixUp (probability 0.2) during training [Zhang et al.
(2018) and use learned position embedding. The optimizer is Adam where we tune the learning rate
for each architecture in the setIr € {1072, 7x 107%,3x 10~%,107*} with weight decay wd = Ir/10,
on a small validation split. We use a cosine learning rate schedule with 10K warm-up steps. Images
are resized to 224 x 224 and 16 x 16 patch sizes are used. The full training configuration is in
Appendix [E]

Results. As presented in Table[/| parameter-sharing techniques, including RINS, do not confer any
advantage in supervised image classification. The non-recursive baseline, when trained on longer
sequence lengths (i.e., higher image resolution) to match the inference cost of recursive architectures,
surpasses all other methods. This starkly differs from the results observed in language modeling,
where RINS provides significant gains even when compared against models that scale inference by
increasing the sequence length.

Architecture \ Val Real v2 Avg
300 epochs
(ABB)2 75.2 81.4 62.7 73.1
A@336 75.7 81.0 62.3 73.0
AAB 75.2 80.5 61.4 72.4
ABBC 75.1 80.2 61.3 72.2
A@224 74.9 80.1 61.3 72.1
1,000 epochs
A@336 77.6 82.7 64.6 75.0
ABBC 76.3 81.6 63.2 73.7
AABC 76.0 81.4 62.4 73.2
AA 75.8 81.4 62.4 733
AAA 757 80.8 62.0 72.8

Table 7: Performance of the top 5 architectures on ILSRCV2012 classification. The table compares
the performance of recursive architectures with a baseline trained 224- and 336-resolution images.
The baseline A@336, trained on higher-resolution to match the inference cost of the recursive models,
outperforms all parameter-sharing architectures. We use the notation (signature)degree-
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