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UNLEARNING PARADOX: AUDITING RESIDUAL IDEN-
TITY TRACES IN FACE RECOGNITION
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(a) Classification Unlearning (b) Identity Unlearning (c)  Unlearning Paradox
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after unlearning

Seen Classes Unseen Classes Unlearned
Classes

(d)  Semantic Unlearning Evaluation
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Figure 1: Illustration of the unlearning paradox in face recognition. (a) Traditional classification
unlearning evaluates success by reduced accuracy on forgotten classes in a closed-set scenario. (b) In
face recognition, embeddings enable verification of both seen and unseen identities, making simple
class removal inefficient. (c) Even after unlearning, the samples of forgotten identity exhibit high
similarity, revealing the paradox. (d) We propose semantic unlearning evaluation, where success is
determined by the absence of recoverable identity semantics rather than accuracy degradation.

ABSTRACT

Face recognition systems raise a critical privacy question: how do we prove that
a person’s biometric data has been deleted when laws such as GDPR or CCPA
require it? We highlight an unlearning paradox - A model can still verify “for-
gotten” identities because face recognition works in an open set, where unseen
identities remain recognizable. This makes standard accuracy-based tests mis-
leading. We contribute three ideas. (1) We formalize this paradox and show why
current metrics give a false sense of forgetting. (2) We design a generative au-
diting framework that reconstructs faces from embeddings, exposing that existing
methods keep up to 57% of identity information even when they appear to suc-
ceed. (3) We propose FUSE (Forgetting Using Structural Erasure), which treats
identities as hypercones and erases them with region-aware surrogates while pre-
serving recognition of others. On CASIA-WebFace and D-LORD, FUSE reduce
the amount of semantic residual (>0.6) for forget set while retaining high verifica-
tion for non-target classes. Our work shifts evaluation from accuracy to semantics,
setting stronger privacy standards for face recognition.

1 INTRODUCTION

When a European citizen discovers their face in a commercial recognition system and invokes their
“right to be forgotten” under GDPR Article 17, the system must delete their biometric data. But
here’s the problem: how can we verify that their identity has actually been erased from the model,
not just the database? With over 1 billion faces enrolled in recognition systems worldwide Jain
et al. (2024), this is not a hypothetical concern, rather it is a daily privacy challenge with legal
ramifications.

Current machine unlearning methods fail catastrophically when applied to face recognition Nguyen
et al. (2022). These methods, designed for classification tasks Li et al. (2025), assume that forgetting
success can be measured by accuracy degradation on removed classes. But face recognition operates
fundamentally differently Deng et al. (2019). These systems work by computing embedding simi-
larities in an open-set scenario, where the model must recognize identities it has never seen during
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training Günther & Boult (2017). This leads to what we call the unlearning paradox: if a face
recognition model truly maintains its discriminative power, it should successfully verify a “forgot-
ten” identity just as it verifies any unseen person. The very property that makes face recognition
useful by generalizing to unseen identities, which makes it impossible to verify forgetting through
conventional metrics Sekhari et al. (2021).

This paradox is not just theoretical. When we audit existing unlearning methods through genera-
tive reconstruction, we find they retain up to 57% of identity information in the embedding space,
even when verification accuracy appears to drop. Methods like gradient ascent Thudi et al. (2022),
boundary shifting Chen et al. (2023), and saliency-based unlearning Fan et al. (2024) all suffer from
this fundamental issue. The forgotten faces can still be reconstructed from their supposedly erased
embeddings. Privacy regulations require verifiable deletion, but current evaluation protocols us-
ing match/non-match tests Carlini et al. (2022) fundamentally cannot distinguish between a truly
forgotten identity and one that simply behaves like an unseen person.

We need a complete rethinking of how unlearning works in embedding spaces. Rather than try-
ing to degrade verification accuracy, which contradicts the model’s purpose, we must ensure that
identity-specific semantic information cannot be recovered from the feature space. This requires
understanding how identities are geometrically encoded Wang et al. (2018); Liu et al. (2017) and
developing methods to surgically remove these representations while preserving the overall discrim-
inative structure Wang et al. (2025).

In this paper, we formalize the unlearning paradox and demonstrate why conventional evaluation
fails for open-set recognition systems (refer to Figure 1 for visual understanding). We introduce se-
mantic residual auditing as a stronger evaluation framework that quantifies hidden identity leakage
directly from the embedding space, without requiring image generation. Based on these insights, we
propose FUSE (Forgetting Using Structural Erasure), a geometry-aware method that models iden-
tity distributions as hypercones and performs targeted semantic erasure. Unlike existing approaches
that modify classifiers Tarun et al. (2023) or individual embeddings, FUSE transforms the geometric
structure of identity regions, achieving demonstrable privacy protection while maintaining recogni-
tion capability.

Our contributions are:

• Theoretical Foundation: We formalize the unlearning paradox, proving that verification-
based evaluation cannot distinguish between successful forgetting and natural generaliza-
tion in open-set systems Sekhari et al. (2021); Günther & Boult (2017).

• Generative Auditing Framework: We propose a reconstruction-free evaluation tech-
nique, termed Semantic Residual, that reveals existing methods Fan et al. (2024); Chen
et al. (2023) leak substantial identity information despite apparent forgetting.

• FUSE Method: We introduce a geometry-aware unlearning approach using hypercone
modeling and region-aware surrogate representations that achieves near-zero semantic
leakage, building on geometric insights from Deng et al. (2019); Wang et al. (2018).

• Comprehensive Evaluation: We demonstrate across multiple datasets that FUSE elimi-
nates identity reconstruction while preserving 85% discriminability, setting new standards
for privacy-compliant face recognition.

1.1 RELATED WORK

Classification based unlearning: Most existing unlearning techniques focus primarily on the clas-
sifier layer Fan et al. (2024); Zhou et al. (2025), often by removing or fine-tuning the weights as-
sociated with specific output logits or applying parameter resets Tarun et al. (2023); Kodge et al.
(2024). Unlearning in such cases can be performed via gradient ascent Golatkar et al. (2020); Cha
et al. (2024); Thudi et al. (2022) strategy for the data to be forgotten while using gradient descent for
the retaining data. Differential privacy-based techniques Gupta et al. (2021) were introduced in ma-
chine unlearning to limit the retention of sensitive information during retraining. Projection-based
unlearning methods remove information from the parameter or embedding space by projecting gra-
dients onto the null space of the forgotten data Chen et al. (2024); Hoang et al. (2024); Ilharco et al.
(2023).
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More recently, adversarial strategies have been explored Shan et al. (2020); Di et al. (2025), where
unlearning is achieved by generating adversarial perturbations. Another approach involves boundary
shifting Chen et al. (2023), which shrinks the decision space of the forgetting class and expands
the boundary of a shadow class to remove targeted information. Apart from sample unlearning,
Hayase et al. (2020) formalized unlearning at finer levels to forget selective information by framing
forgetting as an optimization problem that balances removal and retention.

Feature Level unlearning: Unlike traditional unlearning methods that focus on classification mod-
els, several approaches have been formulated for feature removal. These methods focus on shifting
features using contrastive loss Wang et al. (2025) and alignment Wang et al. (2024). Supervision-free
Shen et al. (2024) unlearning models target the cluster as class labels are absent. Influence functions
Warnecke et al. (2021) are used to approximate the effect of training data on model parameters and
update using first and second-order derivatives rather than doing iterative optimization-based re-
training. Meanwhile, in contrastive learned models like SimCLR Chen et al. (2020), MoCo He et al.
(2020) and CLIP Radford et al. (2021), unlearning is performed by targeting the unique character-
istics of contrastive learning. Wang et al. (2025) modifies the contrastive learning objective through
alignment calibration by incorporating a positive term to reduce sensitivity to unlearned data.

Unlearning in face recognition models in the literature is limited to classification settings or attribute-
level unlearning Choi & Na (2023); Guo et al. (2022). It progressively detaches selective features
from the learned model by learning correlations in the latent space and each feature’s effect on the
output space. Our work fundamentally differs from existing approaches by targeting the geometric
structure of the feature space for the data to be forgotten, focusing on the overall class distribution
rather than individual logits or sample-level features.

2 RETHINKING IDENTITY UNLEARNING IN EXISTING SYSTEMS

In face recognition, the goal is to check if a query image xq matches any enrolled identity from a
gallery {x1

g, x
2
g, . . . , x

n
g }. Unlike closed-set classification, these systems work in an open-set setting.

Instead of predicting class labels, the model uses a feature extractor fθ : RH×W×C → Rd to map
both query and gallery images into a d-dimensional embedding space. For two images, verifica-
tion using feature space is done by comparing embeddings with a similarity metric such as cosine
similarity:

sim(fθ(xq), fθ(x
i
g)) ≥ τ

If the similarity exceeds a threshold τ , the system declares a match; otherwise, it declares a mis-
match. This process relies only on the geometry of the embedding space and ignores the classifier
head used in training.

Formally, let the training set be Dtr = {(xi, yi)}Ni=1, where xi are face images and yi ∈ Y are
identity labels. The model is trained with a discriminative loss Ldisc (e.g., ArcFace Deng et al.
(2019), CosFace Wang et al. (2018)) so that embeddings of identities in Y are well separated. At
test time, the system sees a new set Dte = {x′

j}Mj=1 with identities zj ∈ Z, where Z may be
disjoint or only partially overlap with Y (Z ∩ Y ⊆ ∅). Despite being trained on Y , the model
must generalize to unseen identities in Z by encoding features that remain discriminative Sekhari
et al. (2021). Verification at test time therefore depends only on embedding similarity, not on class
predictions.

Now consider unlearning. Suppose we want to forget a subset of training identities Yu ⊂ Y , with
corresponding data Du = {(x, y) | y ∈ Yu}. After unlearning, we obtain an updated extractor
fθu . In principle, the embeddings of Yu should no longer be tied to their original labels. In practice,
however, the system still works in an open-set setting. Forgotten samples may behave like unseen
identities: they still cluster together in the embedding space and remain verifiable under fθu . This
means that even if the classifier layer forgets Yu, the embeddings may still carry strong identity
representations in the feature space.

We call this the Unlearning Paradox. Consider two cases:

• Unseen identity: If Z was never part of training, the model can still verify it. This reflects
generalization of the embedding space.

3
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• Forgotten identity: If Yu was trained but later unlearned, we expect the model to fail on
it. Yet in practice, the embeddings of Yu may still form a cluster, allowing verification just
as in the unseen case.

Definition (Unlearning Paradox). Let Y be the set of training identities, Yu ⊆ Y the forget set,
and Z a set of test identities with Z ∩ Y = ∅ (open set). Let fθ be the encoder before, and
fθ− after unlearning. With the verification decision verτ (x, x

′; f) = 1[⟨f(x), f(x′)⟩ ≥ τ ] and
the same-identity verification rate V (f, τ ;S) over pairs drawn from identity set S, the unlearning
paradox occurs when

V
(
fθ− , τ ;Yu

)
≈ V

(
fθ− , τ ;Z

)
.

Intuitively: after unlearning, forgotten identities behave like unseen identities under verification, so
closed-set accuracy drops or pass/fail verification on Yu alone cannot certify forgetting in open-set
face recognition.

This paradox reveals a contradiction. In open-set systems, verifying unseen identities is considered
a success, but verifying forgotten ones is treated as a failure. Yet both outcomes stem from the
same embedding geometry. Verification measures discriminability, not label memory. Therefore,
accuracy drops alone cannot prove that an identity has been erased. True forgetting in feature space
must be assessed with additional probes, such as generative reconstruction or distributional shift
analysis.

3 METHODOLOGY: FORGETTING USING STRUCTURAL ERASURE

In representation-based unlearning, the goal is to directly target and remove the latent representation
of a class from the embedding space, rather than merely modifying classifier weights. The key idea
is to ensure that even if test samples of a forgotten identity still cluster together for verification, but
at different positions in the feature space, the model no longer retains the semantic traces that encode
that identity. To achieve this, we propose FUSE (Forgetting Using Structural Erasure), which con-
structs surrogate representations from external samples, searches for their alignment with the target
identity’s representation in the learned feature space, and then erases these directions to suppress
residual identity information.

3.1 SURROGATE REPRESENTATION RETRIEVAL

To erase the semantic footprint of an identity from the feature space, it is crucial to first characterize
how that identity is distributed in the embedding space. As in the pixel space, it is easy to visualize
a person; however, the representation in the learned embedding space is less intuitive. For multiple
images of an identity, the encoder produces embeddings {zi = fθ(xi) | xi ∈ DYu}, which is not
a single point but instead span a local region on the unit hypersphere Sd−1. This region can be
understood as the geometrical support of the class within the embedding space, and any effective
unlearning strategy must identify and remove the structural directions that define this support.

However, a face is composed of semantically distinct subregions (such as the nose, lips, and eyes),
each contributing differently to the embedding. Simply unlearning from complete face images fails
to capture the intra-class variation arising from these subregions. To expose these variations, we
employ region-based embeddings in addition to whole-face embeddings. Let zface ∈ Rd denote
a complete face embedding and zreg

r ∈ Rd the embedding of region r ∈ {nose, eyes,mouth, . . . }.
By stochastically combining these subregional embeddings, we synthesize surrogate representations
that span the latent variability of the identity. This process is implemented using a vector database
that contains embeddings of full images and regions obtained by performing a masking operation.
For a target identity yu, we retrieve: (i) its samples embeddings {zface

i } ∼ 5-10, (ii) its region em-
beddings {zreg

r,i}, (iii) its prototype embedding z̄yu
= 1

N

∑
i zi, and (iv) prototypes of semantically

close neighbors {z̄yn
} identified using cosine similarity. These retrieved vectors collectively serve as

surrogate traces that approximate how the forgotten identity is encoded in the representation space,
forming the foundation for structural erasure in subsequent steps.

4
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3.2 STRUCTURAL TRACE IDENTIFICATION

A single facial region, such as the eyes or nose, is not unique enough to reliably represent an iden-
tity, since many individuals may share similar local features. However, when different regions are
combined together, they form a unique signature that characterizes a face. In face recognition mod-
els trained with margin-based losses like ArcFace, each regional embedding lies on a hypersphere,
where angular distances encode similarity. To ensure that combinations of regions also respect this
spherical geometry, we generate fused embeddings using spherical linear interpolation (SLERP)
rather than simple averaging. Given two normalized regional embeddings zreg

1,i and zreg
2,i for class i,

we form a composite embedding as:

zcombo
i = SLERP (zreg

1,i, z
reg
2,i, α) =

sin((1− α)θ)

sin θ
zreg
1,i

sin(αθ)

sin θ
zreg
2,i

where θ = arccos(zreg⊤
1,i zreg

2,i) is the geodesic angle between them and α is interpolation parameter.
To learn which variations are truly identity-specific, we use a contrastive learning objective. A small
projection network pσ : Rd → Rd is used, which aims to map fused embeddings to the structural
space of the class. Positive pairs are embeddings from different samples of the same identity, while
negatives come from different identities. With normalized features si = pσ(z

combo
i ), the contrastive

loss is:

Lstruct = −
∑

i,j∈Yu

log
exp(s⊤i sj/τ)∑

k∈Y exp(s⊤i sk/τ)
,

which encourages embeddings of the same person (under different regional combinations) to stay
close, while separating them from other identities. The loss is also used to enforce the combined
embedding with the class prototype using context-based dropout to introduce intra-class variation.
With this, we obtain a set of candidate vectors si that contains variations to represent the target class.

3.3 TARGET REGION FORMATION

Retain
Space

Retain
Space

After
Unlearning 

Objective

Candidate 
Vectors

Dead Space

Distribution 
Modelling

Forget set

Retain set

Figure 2: Structural erasure flow of FUSE il-
lustrating ‘dead space’ formation using surrogate
representation.

In our proposed FUSE algorithm, we aim to
obtain a “dead space” in the feature space re-
gion where a target class used to reside. With
the obtained candidate features si, where i =
1, 2, . . . , k belonging to a class Yu (forget set),
we aim to localize a region. Rather than
feature-based unlearning, our proposed FUSE
algorithm aims to focus on class-geometry-
based unlearning. With our theoretical under-
standing of face recognition models Deng et al.
(2019), samples of a class Yu follow angular
relationships and form a hyperconical structure
on the surface of a high-dimensional hyper-
sphere as shown in Figure 2.

We model the embedding distribution of each
identity k ∈ Y as a spherical cone in the em-
bedding space, described by two key parame-
ters: a cone center that captures the most rep-
resentative direction of the identity, and a cone
spread that quantifies the variability of samples
around this center.

Cone Center (Modal Direction): For an identity k, let Sk = {i : yi = k} denote the set of
samples belonging to it, with embeddings {si}. The cone center is simply the mean direction of all
embeddings:

µk =
1

|Sk|
∑
i∈Sk

si, µk ←
µk

∥µk∥2

This normalized vector µy represents the “axis” of the identity cone, pointing toward the most typical
embedding location for class k.
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Cone Spread (Angular Deviation): Not all embeddings perfectly align with the center. To measure
how much they deviate, we compute the angular distance between each embedding si and the cone
axis µk: θi = arccos(⟨si, µk⟩). The overall spread is defined as the root-mean-square angular
deviation:

σk =

√
1

|Sk|
∑
i∈Sk

θ2i

Here, σk captures how tightly or loosely the embeddings of identity y cluster around their cone
center. A smaller spread indicates a compact, well-defined identity cluster, whereas a larger spread
corresponds to greater intra-class variability.

Probabilistic Cone Model: To capture the variability of embeddings within each identity cone, we
model their angular distribution using a wrapped normal distribution on the hypersphere. Intuitively,
this distribution treats deviations from the cone center as angular noise, while respecting the spheri-
cal geometry of the embedding space. For an embedding si associated with identity k : k ∈ Y , the
log-probability of belonging to the cone is given by:

log p(si | k) ∝ −
1

2σ2
k

[θ]
2
, LLproxy(si; k) = exp

(
− θ2

2σ2
k

)
∈ (0, 1]

This probabilistic formulation provides a tractable density model over embeddings, where identities
with small σk form sharply concentrated cones, while those with larger spreads capture more intra-
class variation. We approximate the likelihood of an embedding si under class k by a Gaussian-like
function of its angular deviation from the class center. Formally, we use the unnormalized log-
likelihood model log p(si | k). For practical evaluation, we define a bounded proxy likelihood
score LLproxy which provides a tractable similarity measure even though it is not a fully normalized
density on the hypersphere.

3.4 GEOMETRY-AWARE ERASURE

We proposed a region-based loss function for the purpose of trace removal from the feature space.

Cone Repulsion Loss: To explicitly erase the representation of a target identity Yu, we introduce a
cone repulsion loss that forces embeddings to move away from their original identity cone. The key
idea is that samples belonging to the forgotten identity should no longer remain within the angular
region characterized by their cone center and spread.

Let SYu
denote the set of samples from the target identity, and let s̃i be their modified embeddings

under the unlearned model. For each sample, we measure its angular distance from the original cone
axis µYu . The repulsion loss is defined as:

Lcr =
1

|SYu
|
∑

i∈SYu

max
(
0, ασYu

− arccos(⟨s̃i, µYu
⟩)
)
,

where σYu
is the spread of the original cone, and α > 0 is a repulsion factor (e.g., α = 3) that

enforces a 3-sigma repulsion rule.

Intuitively, this loss penalizes embeddings that remain within the angular radius ασYu
of the orig-

inal cone center. By pushing samples outside this region, the model ensures that the samples lie
away from the original cone distribution. Instead, these embeddings migrate into unrelated or noisy
regions of the hypersphere, thereby destroying the semantic coherence of the target identity. Geo-
metrically, the repulsion loss carves out a dead space around the original cone axis, forcing target
identity embeddings to relocate beyond the angular boundary ασYu , ensuring that the erased identity
cannot be easily reconstructed.

Cone Preservation Loss: While the repulsion loss enforces forgetting for the target identity, it is
equally important to preserve the structural integrity of all non-target identities. To achieve this, we
introduce a cone preservation loss that maintains the original angular distribution of embeddings for
k ̸= Yu. Formally, let porig(s | k) and pFUSE(s̃ | k) denote the original and modified angular dis-
tributions for identity k. We measure their divergence using the Kullback–Leibler (KL) divergence,

6
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aggregated over all non-target classes:

Lcp =
∑

k ̸= Yu
|Sk|
|Dtr|

DKL
(
porig(s | k) ∥ pFUSE(s̃ | k)

)
where |Dtr| is the total dataset size and the weighting factor |Sk|/|Dtr| ensures that identities with
fewer samples are not underrepresented. The KL divergence can be approximated using the wrapped
normal cone model, and substituting the wrapped normal form yields a tractable angular expression:

DKL(porig ∥ pFUSE) =
1

|Sk|
∑

i ∈ Sk
[
log porig(si | k)− log pFUSE(s̃i | k)

]
DKL(porig ∥ pFUSE) =

1

2|Sk|
∑

i ∈ Sk

[(
arccos(⟨s̃i, µk⟩)

)2
σ2
k

−
(
arccos(⟨si, µk⟩)

)2
σ2
k

]
This formulation penalizes deviations of modified embeddings from their original cone structure, ef-
fectively locking non-target identities to their characteristic angular distributions. As a result, while
the target identity is dispersed and forgotten, the remaining identities remain stable and discrimina-
tive, preserving recognition performance for the retain set.

Global Loss: In addition to preserving individual identity cones, it is important to maintain the
global geometric structure of the embedding space. Drastic modifications during unlearning may
unintentionally distort inter-class relationships, leading to degraded discriminability among the re-
tained identities. To mitigate this, we introduce a global distribution consistency loss that enforces
stability of pairwise angular relationships across the entire dataset.

Formally, let {si} denote the original embeddings and {s̃i} are the corresponding modified embed-
dings after unlearning. We define the Global loss as:

Lg =
1

|Dtr ̸= Yu|2
∑

i, j
[
⟨si, sj⟩ − ⟨s̃i, s̃j⟩

]2
,

where ⟨si, sj⟩ denotes the cosine similarity between embeddings si and sj .

This objective penalizes discrepancies between the original and modified similarity structures,
thereby ensuring that the relative angular positioning of embeddings remains intact. In effect, the
global distribution consistency loss acts as a regularizer, while the repulsion and preservation losses
operate locally at the level of specific identities. This term prevents large-scale distortions in the
overall feature space topology, safeguarding discriminability among the retained set and stability
of inter-class geometry. The complete unlearning objective combines all three loss components:
Ltotal = λ1Lcr + λ2Lcp + λ3Lg where λ1, λ2, λ3 > 0 are weighting hyperparameters that control
the relative importance of each objective.

4 RESULTS

We evaluate our method on two large-scale publicly available datasets: CASIA-WebFace and D-
LORD and LFW. All implementation and dataset details are provided in Appendix D. In this section,
we provide detailed experiments and analysis for our proposed unlearning method.

Baselines: We use existing unlearning methods trained on same protocol for fair comparison. We
leverage Fine Tuning (Warnecke et al. (2021); Golatkar et al. (2020)), Gradient Ascent (GA) (Thudi
et al. (2022)), l1-sparse (Jia et al. (2023)), Random Labeling (RL) (Hayase et al. (2020)), Boundary
Shrinking (BS), Boundary Expansion (BE) (Chen et al. (2023)), SalUn (Fan et al. (2024)) and SG-
unlearn (Di et al. (2025)) for efficient comparison.

Evaluation Criteria: We evaluate unlearning effectiveness across three complementary dimen-
sions. First, for membership analysis, we measure membership inference attack (MIA) accuracy
Carlini et al. (2022), where effective unlearning reduces performance to near-random ( 0.5). Sec-
ond, for feature-level evaluation, we compute verification accuracy (VA) using feature similarity:
Vr for retain classes, Vf for the forget set, and Vuc for unseen classes. The absolute difference
|Vf −Vuc| indicates whether forgotten identities are transformed into “unknown” identities. We also
assess class drift for feature-level analysis (see Appendix C.2).
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Table 1: Quantitative comparison of FUSE with existing unlearning techniques. VA represents
Verification Accuracy, and SR represents Semantic Residual. All experiments are performed on the
ResNet-50 backbone initially trained with ArcFace loss.

CASIA-Webface DLORD
VA SR VA SRModel MIAa

Vr Vf Vuc Vf − Vuc Gr Gf
MIAa

Vr Vf Vuc Vf − Vuc Gr Gf

OG 0.903 0.926 0.836 0.867 0.031 1.000 0.000 0.784 0.847 0.795 0.814 0.019 1.000 0.000
FT 0.582 0.863 0.802 0.752 0.050 0.420 0.385 0.539 0.782 0.784 0.797 0.013 0.385 0.372
GA 0.621 0.834 0.518 0.774 0.256 0.488 0.643 0.692 0.749 0.519 0.638 0.119 0.362 0.374
l1-sparse 0.572 0.795 0.647 0.721 0.074 0.540 0.648 0.493 0.751 0.558 0.630 0.072 0.442 0.401
RL 0.539 0.815 0.692 0.737 0.045 0.559 0.539 0.512 0.792 0.539 0.619 0.080 0.410 0.485
BS 0.562 0.827 0.684 0.793 0.109 0.532 0.572 0.568 0.763 0.603 0.623 0.020 0.386 0.403
BE 0.429 0.813 0.659 0.693 0.034 0.561 0.537 0.482 0.683 0.581 0.554 0.027 0.404 0.395
SalUn 0.485 0.858 0.599 0.649 0.050 0.498 0.487 0.441 0.774 0.597 0.672 0.075 0.412 0.382
SG 0.503 0.849 0.680 0.728 0.048 0.525 0.461 0.381 0.753 0.606 0.642 0.036 0.481 0.342
FUSE (ours) 0.519 0.851 0.739 0.751 0.012 0.632 0.391 0.461 0.780 0.635 0.653 0.018 0.538 0.328

Semantic Evaluation: We further propose Semantic Residual (SR) auditing (see Appendix C.1),
a generation-free, score-matching based evaluation of privacy leakage. Unlike generative auditing,
which relies on noisy reconstructions and uncertain classification, SR directly quantifies residual
identity traces in the embedding space without image synthesis. For a given condition c, we define:

SR(c) = min(1,
L̃score
Lscore

), Lscore = E
[
∥ϵθ(xt, t, c)− ϵtrue∥2

]
,

where Lscore and L̃score are computed under the original and unlearned distributions, respectively. We
report SR for retain (Gr) and forget (Gf ) sets, where high Gf indicates semantic leakage (unlearning
failure), and low Gf reflects effective forgetting while maintaining discriminability.
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Figure 3: Comparison of the
average distributional shift of
forget set class w.r.t. to the
original distribution.

Class Drift: For samples belonging to the forget class, our objec-
tive is to quantify how strongly they still align with their original
class distribution after unlearning. Since the classifier proxy (e.g.,
class weight vector) is no longer available, we instead measure the
average distributional shift of a class relative to the original cone
distribution. The mathematical formulation of class drift in pre-
sented in Appendix C.2. The class drift values lie between 0 and 1.
The value decreases monotonically as the angle between the class
samples and cone θ increases, approaching 0 as z drifts far from
the class cone. A low class drift suggests that the embedding has
drifted away from the original class cone, implying more effective
unlearning. We can see from the Figure 3, our method achieves
lowest value, showing highest drift of class distribution.

(a) Original Model Representation (a) FUSE - unlearned representation

Forget set - BLUE

Retain Set - RED, GREEN 

Figure 4: Feature Representation before
and after unlearning.

Feature representation: We visualize embedding distri-
butions of unseen samples before and after unlearning to
assess FUSE’s impact on class representation (Figure 4).
Before unlearning, unseen samples form compact clusters
around their class centers, reflecting strong discriminabil-
ity. After FUSE, retain set samples remain tightly clus-
tered around their means, showing high retention, while
forget set samples also form coherent clusters but are no
longer aligned with their original centers. It highlights
the central contribution of our approach: while the dis-
criminative capacity of the embeddings remains intact,
the identity-specific alignment is disrupted, achieving un-
learning at the representation level.

Quantitative Results: Table 1 highlights trade-offs among existing unlearning methods. The base-
line (OG) shows high MIA and verification on the forget set, indicating no forgetting. Fine-tuning
(FT) reduces MIA but at the cost of retain utility (Vr). Gradient-based methods (GA, l1-sparse)
achieve partial forgetting but leave a large Vf–Vuc gap. SalUn and SG balance forgetting and reten-
tion better but still leak semantic information (higher Gf ). In contrast, FUSE attains near-random
MIA and preserves verification on seen (Vr) and unseen (Vuc) classes, minimizes |Vf − Vuc|. For
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(b) Sample size of forget class
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Cone repulsion loss Erasure loss Erasure loss  + 
global loss

Erasure loss + 
surrogate + global 
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(c) Effect of various components

Figure 5: Ablation study of FUSE. (a) Retain accuracy vs. number of forget classes, showing FUSE
maintains higher performance under increasing forget sets. (b) Class drift vs. forget class size,
highlighting robustness with smaller classes. (c) Effect of individual components for unlearning.

semantic residual as well, FUSE achieves the highest Gr for the retain set and the lowest Gf for the
forget set.

Ablation Study: Figure 5 presents an ablation study on the effect of different factors in FUSE. In
Figure 5a, as the number of forget classes increases, all methods show reduced retain accuracy, but
FUSE consistently preserves higher performance, demonstrating more selective forgetting. Figure
5b shows that smaller forget class sizes cause larger drift due to unstable class modeling, yet FUSE
achieves the lowest drift overall, indicating robustness of its cone–based design. Figure 5c examines
individual components. Cone repulsion alone provides partial forgetting but hurts retention, while
adding preservation loss improves balance. The best trade-off is achieved when global and surrogate
losses are included. Together, these results confirm that each component contributes meaningfully,
with the full FUSE framework achieving the most stable and effective unlearning.

0.0

0.2

0.4

0.6

0.8

FT GA L1-sparse RL BS BE SalUn SG FUSE (ours)

Class Drift Retain accuracy

Figure 6: Performance evaluation
(Class drift and retention accuracy -
higher is better) on top-10 hard set.

Hard Set Retention: Owing to the fine-grained nature of
face recognition, unlearning can disproportionately affect
closely related classes. To study this, we construct a hard set
by retrieving the top-k nearest classes from the training set
using cosine similarity, with k = 10 in our experiments. For
these classes, we evaluate both the average retain accuracy
and the class drift (higher values are better). Results (Fig-
ure 6) show that retaining performance on the hard set is sig-
nificantly more challenging compared to the overall dataset.
However, due to its geometry-aware preservation of retain
class distributions, FUSE achieves consistently higher reten-
tion on the hard set than competing approaches, demonstrat-
ing superior robustness in fine-grained scenarios.

Open Set Recognition: We evaluate the unlearned FUSE model on the LFW dataset, contain-
ing unseen identities. Verification uses thresholding: two images x1 and x2 are the same identity
if sim(x1, x2) ≥ τ . The original model achieves 95.7% accuracy, while FUSE reaches 94.49%,
showing strong generalization. This demonstrates that unlearning a class with FUSE does not com-
promise the model’s discriminative capability.

5 CONCLUSION

In this paper, we explore a fundamental aspect of machine unlearning for discriminative models such
as face recognition systems. We formalize unlearning in the context of fine-grained classification,
where an ideal unlearning method must preserve high discriminability for unseen classes and un-
seen samples of forgotten classes, thereby maintaining generalization, while simultaneously erasing
semantic traces of the target identity. Unlike prior approaches that primarily rely on verification ac-
curacy, which inherently reflects retention rather than forgetting, we propose to evaluate unlearning
through the persistence of semantic information in the feature space. We introduce FUSE, a method
that erases the distribution of a target class by dispersing its feature cone, effectively removing
residual semantics while safeguarding the representational integrity of identities. Our experimental
results demonstrate that FUSE preserves generalization capability while achieving semantic forget-
ting, establishing a novel and necessary direction for unlearning in discriminative models.

9
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ETHICAL CONSIDERATION

This work does not involve potential malicious or unintended uses, fairness considerations, privacy
considerations, security considerations and crowd sourcing. All experiments on facial images are
performed on publicly available datasets.

REPRODUCIBILITY STATEMENT

We provide details to reproduce our results with all implementation and training details mentioned
in the Appendix D. We will release the code upon acceptance.
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APPENDIX

A REPULSION FACTOR

To formalize the repulsion margin in our cone-based unlearning framework, we draw upon the well-
established 3-sigma rule of Gaussian distributions. For a random variable X ∼ N (µ, σ2), approx-
imately 68% of the probability mass lies within one standard deviation (µ ± σ), 95% within two
(µ ± 2σ), and 99.7% within three (µ ± 3σ). Consequently, the probability of observing a sample
outside the µ ± 3σ interval is less than 0.3%. This property provides a natural statistical threshold
for distinguishing inliers from outliers in a Gaussian-like distribution.

In our setting, the angular distribution of embeddings around the class center µy can be modeled
using a wrapped normal distribution. Here, σy represents the angular spread of embeddings within
the cone. By enforcing a repulsion margin of at least 3σy , we effectively push the forgotten class
embeddings into regions of the hypersphere that lie outside the statistically plausible support of
their original distribution. This guarantees, with high probability, that embeddings no longer remain
consistent with the identity they once represented. At the same time, embeddings of retain classes are
preserved through cone-preservation and global consistency losses, ensuring that the discriminative
geometry of the feature space remains intact.

This statistical perspective highlights why the 3-sigma margin is not an arbitrary design choice but
a principled boundary for unlearning. By displacing forgotten embeddings beyond the 99.7% con-
fidence region of their original cone, we ensure that the model no longer encodes those identities
in a semantically valid form, while retaining the broader discriminative power of the feature ex-
tractor. Thus, the 3-sigma rule provides both a theoretical guarantee of forgetting and a geometric
interpretation of how far embeddings must be displaced to erase identity traces effectively.

B HYPERSPHERE-CONSTRAINED OPTIMIZATION FOR UNLEARNING

In face recognition, embeddings are typically constrained to lie on the unit hypersphere. This con-
straint ensures compatibility with popular margin-based objectives such as ArcFace or CosFace,
which assume normalized feature vectors for stable angular comparisons. When performing un-
learning, it is therefore essential to maintain this geometric property: embeddings of both retained
and forgotten identities must remain normalized while undergoing repulsion, preservation, and con-
sistency updates. To achieve this, we formulate unlearning as a constrained optimization problem
on the hypersphere and solve it using a projected gradient descent scheme.

1. Hypersphere Constraint: Each modified embedding is explicitly normalized to unit
length:

∥z̃i∥2 = 1 ∀i, z̃i ←
z̃i
∥z̃i∥2

.
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2. Optimization Algorithm: The total unlearning objective, L, combines repulsion, preser-
vation, and consistency losses. We optimize it while ensuring that embeddings remain on
the hypersphere:

• Gradient Computation: gi = ∇z̃i Ltotal

• Tangent Space Projection: project the gradient onto the tangent plane of the hyper-
sphere to prevent updates that move embeddings off the sphere:

gtangent
i = gi − (z̃⊤i gi) z̃i

• Gradient Update: z̃(t+1)
i = z̃

(t)
i − η gtangent

i

• Sphere Projection: renormalize the embedding after each step to strictly enforce the
hypersphere constraint:

z̃
(t+1)
i ← z̃

(t+1)
i

∥z̃(t+1)
i ∥2

B.1 THEORETICAL ANALYSIS

We now provide a theoretical analysis of our hypersphere-constrained unlearning framework, focus-
ing on convergence guarantees, angular preservation properties, and forgetting effectiveness. This
analysis demonstrates that the proposed objectives are not only geometrically meaningful but also
enjoy favorable optimization properties under mild assumptions.

Proposition 1 (Local Convergence). Under standard regularity conditions (Lipschitz-continuous
gradients and a bounded feasible set), the projected gradient descent algorithm converges to a local
minimum of the constrained optimization problem.

Proof Sketch. The feasible set of embeddings lies on the unit hypersphere, which is a smooth Rie-
mannian manifold. Since the loss functions (repulsion, preservation, consistency) are differentiable,
the projected gradient method coincides with Riemannian gradient descent. Existing results in op-
timization on Riemannian manifolds guarantee convergence to stationary points under standard as-
sumptions, similar to the Euclidean setting.

Proposition 2 (Inter-Class Angular Preservation). For any pair of non-target identities yi, yj ̸=
ytarget, the angular distortion between their cone centers after unlearning is bounded as

∣∣⟨µyi
, µyj
⟩ − ⟨µ̃yi

, µ̃yj
⟩
∣∣ ≤ ϵ,

where ϵ depends on the magnitude of embedding modifications and the weight of the consistency
loss λ3.

Proof Sketch. The global consistency loss penalizes deviations in pairwise cosine similarities be-
tween embeddings. As λ3 increases, the optimizer is forced to preserve inter-class angular relation-
ships more faithfully. Thus, in the limit of large λ3, angular distortions among non-target classes
vanish.

Proposition 3 (Target Identity Separation). At convergence, the embeddings of the target identity
satisfy the separation condition

min
i∈Sytarget

arccos
(
⟨z̃i, µytarget⟩

)
≥ ασytarget − δ,

where δ → 0 as the repulsion weight λ1 →∞.

This bound guarantees that all target identity embeddings are pushed outside their original cone by
at least the specified angular margin, ensuring that the forgotten identity cannot retain a compact or
recoverable cluster.

Computational Complexity

The computational bottleneck arises from the global consistency loss, which requires pairwise sim-
ilarity computations across the dataset, scaling as O(|D|2). For large datasets, this cost can be mit-
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igated by subsampling pairs, adopting mini-batch approximations, or using structured regularizers
that approximate global similarity preservation.

C EVALUATION METHODS

C.1 SEMANTIC RESIDUAL

To compute how much class-related information is held by the new distribution (from the unlearned
model) for the forget class, we leverage a diffusion-based generative model. This model is pre-
trained on the original model (before unlearning), taking the original class distribution as conditional
guidance. Since the distribution is changed for the unlearned model for the forgotten class, the
conditions will also be changed. Thus, for this changed distribution, how much the diffusion model
knows what to generate is computed using semantic residual.

For any denoising diffusion model, we compute the mean squared error (MSE) between the predicted
noise and the ground-truth noise under both the original and modified conditioning distributions.
From the original distribution, the score matching error is: From original distribution:

Lscore = Ec ∼ porig
[
∥ϵθ(xt, t, c)− ϵtrue∥2

]
From the modified (unlearned) distribution, it is defined as:

L̃score = Ec ∼ pnew
[
∥ϵθ(xt, t, c)− ϵtrue∥2

]
Finally, we define the Semantic Residual (SR) as the normalized reduction in score-matching error:

SR = min(1,
L̃score

Lscore
)

This ratio measures how much semantic information from the original distribution persists after
unlearning.

The resulting range for SR is SR ∈ [0, 1]. The normalized SR metric represents the proportion of
original performance retained after the unlearning process.

• if SR = 0 This is the ideal outcome, signifying perfect forgetting. It means the new
model’s performance on the class is zero, so no semantic information remains.

• SR = 1: This signifies no forgetting. The new model’s performance is equal to the original,
indicating that the unlearning process was ineffective.

• This indicates partial retention. The value of SR shows what percentage of the original
performance on the class still exists in the unlearned model. For example, SR =0.5 means
50% of the original predictive power for that class remains.

A higher SR for the forget set (Gf ) indicates stronger semantic leakage, while lower values demon-
strate effective removal of identity traces. Conversely, stable values of SR on the retain set (Gr)
confirm preservation of discriminative capacity. We take a denoising UNET, for any time step t, we
add some noise as forward noising. Take a batch of conditions c ∼ pnew and c ∼ porig (e.g., embed-
dings of the unlearned model and original model for a class). For each condition, run the diffusion
model at a timestep t and get the predicted noise ϵθ(xt, t, c). Then we compute the ratio of the MSE
of the predicted and ground-truth noise ϵtrue added during the forward process.

Lscore measures how wrong the model is in predicting the noise trajectory under a given condition.
But in diffusion, predicting the noise correctly = reconstructing the data distribution correctly. Thus,
SR acts as a proxy for how much meaningful structure remains in the embedding from the unlearned
distribution with respect to the original distribution. Mathematically, predicting noise is the same as
estimating the gradient of the log-probability (the “score” of the data distribution):

ϵθ(xt, t, c) ≈ −
√
1− ᾱt∇x log p(xt|c).

So the model isn’t just denoising—it’s learning the geometry of the conditional data distribution.
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• If SR is close to 1, embedding still drives accurate generation, with high semantic leakage
(identity not forgotten).

• If SR is close to 0, the model cannot use the embedding to generate: successful unlearning.

C.2 CLASS DRIFT

We aim to compute the average class distribution shift for the forget class. Formally, let µA denote
the modal direction and σA the angular spread of class A. For an embedding z, the angular distance
from the class center is θ = arccos(⟨z, µA⟩). The cone-based log-likelihood of z under class A is
given by: log p(z | A) ∝ − θ2

2σ2
A
. Equivalently, we define the normalized likelihood score as:

LL(z;A) = exp
(
− θ2

2σ2
A

)
.

A high LL(z;A) indicates that the embedding remains highly consistent with the original distribu-
tion of class A. A low LL(z;A) suggests that the embedding has drifted away from the original class
cone, implying more effective unlearning.

We compute the aggregate of mean likelihood over the class samples Y :

LL(A) =
1

Y

∑
z∈Y

LL(z;A).

Values near 1: embeddings remain tightly aligned with the original cone (strong trace). Values near
0: embeddings have large angular drift (weak or no trace).

D IMPLEMENTATION DETAILS

For all experiments, we use the ResNet-50 backbone, trained on the loss arcface and cosface. For
training a face recognition model, two datasets are used: CASIA-WebFace and D-LORD. For
CASIA-WebFace, 10,000 classes are used for training, and 575 are kept for unseen class testing.
For D-LORD, 1600 are used for training, while 600 are used for unseen testing. The FR model is
trained using a 128 batch size, a learning rate of 1e− 4, and using SGD as optimizer.

For training FUSE, training is performed for 20 epochs, and the forget set size varies for different
experiments, as shown in the ablation study. For surrogate formation, the face image is divided
into two parts, the upper face and the lower face. Repulsion Factor (α). We recommend values in
the range α ∈ [2, 4] to enforce meaningful separation while avoiding over-displacement that could
distort nearby cones. Baselines are also trained with the same parameters for fair comparison.

Loss Weights. A balanced configuration is λ1 = 1.0 (repulsion as primary driver), λ2 = 1.0 (equal
importance to preservation), and λ3 = 0.1 (light regularization for global consistency).

For semantic residual (SR) evaluation, we use IDiffFace (guided diffusion), taking class embeddings
as conditions. We use test unseen samples from classes, take a random t for denoising and compute
error. The training of this diffusion is done using an initial ArcFace model without any unlearning,
the training parameters are the same as in the main paper.

E DISCUSSIONS

E.1 COMPUTATIONAL EFFICIENCY

Our proposed FUSE training is computationally efficient, leveraging a small CNN-based feature
extractor to obtain class-level representations. Our loss objectives consist of simple repulsion and
preservance terms. To reduce the computational cost of the global loss, we compute it on a randomly
selected subset of sample pairs in each training epoch. The surrogate data representation similarly
employs a lightweight 3-layer MLP to generate face-related embeddings. For evaluating Semantic
Residual, we avoid full denoising, which is costly, and instead compute the reconstruction error at a
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single random time step per sample, significantly reducing computation while retaining meaningful
evaluation.

E.2 LIMITATIONS

Our work with FUSE establishes a first step toward principled representation unlearning in face
recognition, but several directions remain open for future research. The cone-based parameterization
provides a tractable way to model identity distributions, yet future approaches could extend this to
richer distributions that disentangle pose, age, and illumination, enabling more precise forgetting
while preserving retention. Similarly, while FUSE leverages fixed hyperparameters for repulsion,
preservation, and consistency, adaptive strategies for tuning these weights dynamically may improve
stability across datasets and varying unlearning scales.

Beyond the algorithm itself, our evaluation framework, particularly Semantic Residual (SR), offers
a generation-free measure of semantic leakage, but it can be expanded with stronger adversarial tests
such as inversion and membership inference to provide more rigorous privacy guarantees. Extending
the principles of distribution erasure and semantic auditing beyond faces to other fine-grained tasks
like text, voice, or multimodal models may uncover broader foundations for representation-level
unlearning.
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