
Non-Autoregressive Neural Machine Translation with Consistency
Regularization Optimized Variational Framework

Anonymous ACL submission

Abstract

Variational Autoencoder (VAE) is an effec-001
tive way to model the interdependency for002
Non-autoregressive neural machine translation003
(NAT). LaNMT, a representative VAE-based004
latent-variable NAT framework achieves great005
improvements to vanilla models, but still suf-006
fers from two main issues which lower down007
the translation quality: (1) mismatch between008
training and inference circumstances and (2)009
inadequacy of latent representations. In this010
work, we target on addressing these issues by011
proposing posterior consistency regularization.012
Specifically, we first apply stochastic data aug-013
mentation on the input samples to better adapt014
the model for inference circumstance, and then015
perform consistency training on posterior la-016
tent variables to train a more robust posterior017
network with better latent representations. Ex-018
periments on En-De/De-En/En-Ro benchmarks019
confirm the effectiveness of our methods with020
about 1.3/0.7/0.8 BLEU points improvement021
to the baseline model with about 12.6× faster022
than autoregressive Transformer.023

1 Introduction024

Neural Machine Translation (NMT) achieves great025

success in recent years, and typical sequence-to-026

sequence frameworks like Transformer (Vaswani027

et al., 2017) achieved state-of-the-art performance028

on the task of NMT. In this framework, source029

sentences are translated in an autoregressive (AT)030

manner where each token is generated depending031

on previously generated tokens, inevitably, such se-032

quential decoding strategy result in a high inference033

latency. To alleviate this issue, Non-autoregressive034

translation (NAT; Gu et al., 2018) was proposed to035

speed-up decoding procedure by generating target036

tokens in parallel. However, the translation quality037

of vanilla NAT is compromised, one of the most038

significant problem is multi-modality and it usually039

results in multiple translation results, duplicate or040

missing words in target sentences of NAT models041

(Gu et al., 2018). This situation results from the 042

conditional independence proposed by NAT, since 043

models are trained to maximize the log-probability 044

of target tokens at each position while the interde- 045

pendency is omitted. 046

The key to alleviate the multi-modality issue is 047

performing dependency reduction (Gu and Kong, 048

2021) by modeling the target dependency informa- 049

tion implicitly or explicitly so decoder can ease 050

the difficulty of learning and capturing the infor- 051

mation between target tokens and generate more 052

accurate translations. For example, Ghazvininejad 053

et al. (2019) (2020b) and Guo et al. (2020) model 054

the target dependency by providing observed tar- 055

get tokens in training and performing iterative in- 056

ference. Ran et al. (2021) generates intermediate 057

representations by permuting the source sentences 058

in the target order. Libovickỳ and Helcl (2018) 059

aligns model outputs with target tokens implicitly 060

by applying Connectionist Temporal Classification 061

(CTC; Graves et al., 2006). 062

Previous works have validated the effectiveness 063

of applying Variational Autoencoder (VAE) on AT 064

(Zhang et al. 2016; McCarthy et al. 2019; Su et al. 065

2018) and NAT (Kaiser et al. 2018; Shu et al. 2020) 066

frameworks to alleviate multi-modality issue. A 067

representative NAT model is LaNMT1(Shu et al., 068

2020) which encodes the source and target tokens 069

into intermediate Gaussian distribution latent vari- 070

ables and outperforms vanilla NAT with about 5.0 071

BLEU points on WMT14 En-De task with 12.5× 072

speedup to base Transformer. However, there ex- 073

ists a slight lag behind the state-of-the-art fully 074

NAT models. It may be attributed to two reasons: 075

(1) The inadequate representations of latent vari- 076

ables which are low in dimensions (4 to 32 is 077

recommended). This is significantly lower than 078

the model’s hidden size (512) while high-capacity 079

latent variables conversely deteriorate the perfor- 080

mance because the minimization between prior 081

1https://github.com/zomux/lanmt
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and posterior becomes difficult (Shu et al., 2020).082

(2) The mismatch between training and inference083

circumstances that the posterior module receives084

the gold sentence as inputs during training but im-085

perfect initial translation instead during inference.086

Thus, in this paper, we aim to improve the robust-087

ness of the latent representation and move the train-088

ing circumstance close to inference circumstance.089

To this end, we apply consistency regularization090

over the posterior network to improve its robustness091

for better latent representations since the posterior092

is the key module that both encoder and decoder093

are relying on its latent representations during train-094

ing. To cooperate with consistency regularization,095

and simultaneously, close the gap between training096

and inference circumstances for better refinement097

from imperfect initial translations during inference,098

four data augmentation methods are adopted to099

work together. Specifically, we first apply stochas-100

tic data augmentation methods e.g. Cutoff (Shen101

et al., 2020) to inject stochastic noises in posterior102

inputs x and y to get two different views. Both103

views are then forwarded to the posterior network104

for two latent variables z1, z2. As these two latent105

variables are derived from the same pair of input x106

and y, the gap between them is trained to be min-107

imised by consistency regularization. Meanwhile,108

posterior module receives noisy views instead of109

gold samples during training, it is more adaptive110

to the inputs with imperfect initial translations in111

inference.112

We verified the performance and effectiveness113

of our methods on WMT14 En-De, De-En and114

WMT16 En-Ro benchmarks. Our methods out-115

perform the latent variable baseline with about116

1.3/0.7/0.8 BLEU points improvement on three117

benchmarks. With these improvements, we achieve118

the comparable performance to the state-of-the-art119

fully NAT approaches: 25.47/30.23/31.56 BLEU120

scores on WMT14 En-De/De-En/WMT16 En-Ro121

with similar decoding speed, and it can be improved122

further with latent search. The contributions of our123

work can be summarized as follows:124

• To achieve better latent representations, we125

propose posterior consistency regularization126

on the posterior latent variables, which im-127

proves the translation quality by training a128

more robust posterior network.129

• To alleviate the mismatch between training130

and inference circumstances and cooperate131

with posterior consistency regularization, we 132

apply four data augmentation methods where 133

all of them benefit to the translation quality. 134

• We show our strategy is capable of improv- 135

ing the translation quality of the base latent- 136

variable NAT model to be comparable with 137

the state-of-the-art fully NAT frameworks. 138

2 Background 139

2.1 Non-Autoregressive Translation 140

Traditional sequence-to-sequence NMT models 141

generate target sentences in an autoregressive man- 142

ner. Specifically, given a source sentence x, AT 143

frameworks model the conditional probability of 144

y = {y1, y2, · · · , yly} by the following form: 145

log p(y|x) =
ly∑
i=1

log p(yi|y<i, x) (1) 146

where y<i indicates the target tokens already gener- 147

ated before yi. Hence, the target tokens are gener- 148

ated sequentially which results in a high decoding 149

latency. To alleviate this issue, vanilla NAT (Gu 150

et al., 2018) breaks the conditional dependency by 151

conditional independence assumption so that all 152

tokens can be generated independently. Following 153

its probability form: 154

log p(y|x) =
ly∑
i=1

log p(yi|x) (2) 155

where each target token yi now only depends on 156

the source sentence x. Benefit from the parallel 157

computing capability of hardware accelerators like 158

GPU or TPU, all tokens can be generated with one 159

iteration in an ideal circumstance. 160

2.2 Latent-Variable Model 161

We mainly focus on performing optimization on the 162

variational NAT framework proposed by Shu et al. 163

(2020). The network architecture is constructed 164

by four main components. An encoder pω(z|x) 165

encodes the source representation of input x and 166

computes the prior latent variable. An approxi- 167

mate posterior network qϕ(z|x, y) accepts both the 168

source sentence x and target sentence y as the in- 169

put and computes the posterior latent variable. A 170

length predictor p(ly|z) predicts the length of tar- 171

get sentence y, and finally a decoder pθ(y|x, z, ly) 172

with a length transform module to transform the 173
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latent variables z to the target length ly at first and174

reconstruct y from z with the source representa-175

tions of x. Note that the ly here is the gold length176

in training. Hence, the training objective is aiming177

to maximize the evidence lowerbound (ELBO):178

L(x, y;ϕ, θ, ω) = Ez∼qϕ [log pθ(y|x, z, ly)
+ log p(ly|z)]−KL [qϕ(z|x, y)| |pω(z|x)]

(3)179

where the latent variables z is constrained with180

the same length as x and the value is modeled181

as spherical Gaussian distribution. KL denotes182

Kullback-Leibler divergence.183

2.3 Consistency Regularization184

Consistency regularization is considered as an ef-185

fective method on semi-supervised learning to cap-186

ture the potential features from unlabeled samples187

(Sajjadi et al., 2016; Laine and Aila, 2017; Tar-188

vainen and Valpola, 2017; Xie et al., 2020). It189

is also utilized as a complementary regularization190

tool with other regularization methods to prevent191

model from overfitting (Liang et al., 2021). In a192

nutshell, consistency regularization assumes a well193

trained model should be robust enough to any small194

changes in the input samples or hidden states and195

generate invariant outputs (Xie et al., 2020). To196

this end, it regularizes model’s final outputs to be197

invariant to input samples with small stochastic198

noises injected by minimizing the gap between two199

augmented views of one sample.200

In this paper, we focus on a sub-module of the201

variational model and apply consistency regulariza-202

tion on it instead of the whole network. Along with203

data augmentation for noise injection, consistency204

regularization is capable to improve the representa-205

tion of this module and result in better translation206

quality.207

3 Approach208

The posterior module is considered to train with209

consistency regularization and data augmentation210

for better translation quality. In this section, we211

will introduce the details of our method, including212

the overall network architecture, the objective and213

procedure of training with consistency regulariza-214

tion, four data augmentation methods and three215

decoding strategies applied for inference.216

3.1 Model Architecture217

We follow the variational model architecture pro-218

posed by Shu et al. (2020) with four main com-219

ponents: encoder, posterior, length predictor and220

length predictor

linear

self-attention

feedforward

self-attention

feedforward

cross-attention

self-attention

feedforward

linear

self-attention

feedforward

cross-attention

length transform

linear

stochastic data augmentation

x y

x1 x2 y1 y2x

pω(z|x)

w/ gold ly
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Figure 1: The overall pipeline of training with posterior
consistency regularization

decoder module. Since we apply consistency reg- 221

ularization on the posterior, an additional stochas- 222

tic data augmentation module is added for noise 223

injection on posterior input samples. With two aug- 224

mented views derived from one sample, each sam- 225

ple thus appears twice in a training batch. Figure 226

1 shows the brief model architecture and training 227

pipeline of our work. The part in the dashed box is 228

the major difference to the base model. 229

3.2 Posterior Consistency Regularization 230

As discussed above, consistency regularization is 231

applied on the posterior module to improve its ro- 232

bustness. Given a training sample with a pair of 233

source sentence x = {x1, x2, · · · , xlx}, and tar- 234

get sentence y = {y1, y2, · · · , yly}, we first apply 235

data augmentation on both x and y twice to inject 236

stochastic noises and obtain two different views. 237

Both views are forwarded to the posterior network 238

qϕ(z|x, y) to predict the mean and variance vec- 239

tors of two latent variables z1 and z2. Since the 240

latent variables derive from the same input sample, 241

the consistency regularization method tries to mini- 242

mize the difference between these two latent vari- 243
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Figure 2: Four stochastic data augmentation methods we used for noise injection

ables by measuring bidirectional KL-divergence244

as follows:245

Lcons =
1

2
(KL(z1||z2) +KL(z2||z1)), (4)246

Combining with the basic negative log-likelihood247

(NLL) objective on the decoder, since there are two248

different z for the same sample, it is evaluated by249

averaging them:250

Lnll = −1

2
(log pθ(y|x, z1, ly) + log pθ(y|x, z2, ly))

(5)
251

Note that the gold length ly of target sentence y is252

used which is known during training. Similarly, the253

objective of the length predictor is calculated by:254

Llen = −1

2
(log p(ly|z1) + log p(ly|z2)) (6)255

To back propagate the gradient information from256

the decoder and length predictor to posterior, repa-257

rameterization trick is applied to sample z from258

qϕ where z = µ + θ ∗ N (0, 1) in Eq.(5) and (6).259

Here, µ and θ indicate mean and variance vector.260

For encoder, it not only generates representations261

of source sentence x but also computes the prior262

latent variables. Thus, we close the KL-divergence263

between prior and two posterior latent variables by:264

265

Lprior =
1

2
(KL(z1||zp) +KL(z2||zp)),

zp = pω(z|x)
(7)266

Finally, to achieve the similar goal of maximizing267

(3), we minimize the loss function by combining268

(4), (5), (6) and (7) as follows:269

Lloss = Lnll + Llen + Lprior + αLcons (8)270

where α here is the only hyperparameter to weight271

the consistency regularization loss.272

3.3 Data Augmentation Methods 273

Given an embedding matrix RL×d with L tokens 274

embedded into d-dimensions vectors, to generate 275

different views of each sample for the posterior net- 276

work inputs and perform consistency regularization 277

on the posterior network, as well as to close the gap 278

between training and inference circumstances, we 279

explore four data augmentation methods for this 280

purpose including dropout, feature cutoff, token 281

cutoff and replacement as presented in Figure 2. 282

Dropout Dropout (Srivastava et al., 2014) is 283

widely used as a regularization method to prevent 284

neural networks from overfitting. But in this paper, 285

we found that it is also an effective data augmen- 286

tation method for noise injection. Specifically, we 287

randomly choose values on token embeddings by a 288

specific proportion and force them to zero. 289

Cutoff This is a simple but effective augmenta- 290

tion method proposed by Shen et al. (2020). The 291

cutoff methods we adopted include token cutoff and 292

feature cutoff. For token cutoff, a specific propor- 293

tion of tokens are chosen from the token dimension 294

L and dropped by setting the vectors to zero. For 295

feature cutoff, the dropped values are chosen from 296

feature dimension d instead. 297

Replacement This is similar to the token replace- 298

ment adopted by BERT pre-training (Devlin et al., 299

2019) where the chosen token vectors are replaced 300

by the embedding of new tokens that randomly se- 301

lected from the vocabulary instead of setting them 302

to zero or any special tokens directly. 303

3.4 Decoding Strategies 304

Non-refinement For this strategy, we completely 305

follow the original design (Shu et al., 2020) where 306
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the posterior network is discarded since the target307

sentence y is unknown during inference. The fore-308

most step is to obtain the representations of x and309

the prior latent variable z from encoder with source310

input x. The latent variable is then used to deter-311

mine the target length and generate target sentence.312

Note that to avoid randomness during inference, z313

is set to its mean value µ instead of reparameteriza-314

tion sampling. This can be summarized as follows:315

316

µ0 = Epω(z|x)[z],

ly0 = argmaxly log p(ly|z = µ0),

y0 = argmaxy log pθ(y|x, ly0 , z = µ0)

(9)317

Deterministic Refinement The posterior net-318

work qϕ can be reused to take refinement on the319

initial output y0 above. However, its original de-320

sign allows iterative refinement with multiple steps321

which sacrifices huge cost in decoding speed for322

a tiny quality improvement. Thus, we consider323

refinement for one step only in this paper:324

µ1 = Eqϕ(z|x,y0)[z],

ly1 = argmaxly log p(ly|z = µ1),

y1 = argmaxy log pθ(y|x, ly1 , z = µ1)

(10)325

Here the y1 is the final output after refinement.326

Latent Search Since reparameterization is dis-327

abled in above two strategies to generate determin-328

istic results, it is also capable to search the best329

latent variable from Gaussian distribution. Specifi-330

cally, m prior latent variables are sampled by repa-331

rameterization and decoded in parallel, result in332

m target candidates for each source sentence. To333

get the best result, we select the candidate with the334

highest score by averaging the log-probability of335

tokens as the final output. This is different from336

Shu et al. (2020) or Noisy Parallel Decoding (NPD;337

Gu et al. 2018) which rescore the candidates by338

autoregressive teacher and cuts the decoding speed339

by half, our no-rescoring strategy is still effective340

and much faster.341

4 Experiments342

In this section, we will introduce the settings of343

our experiments, report the main results and com-344

pare our model to the representative NAT frame-345

works. Our experiments mainly focus on (1) the346

improvement benefit from our optimization to for-347

mer VAE-based NAT model. (2) The effectiveness348

of consistency regularization and different data aug-349

mentation methods.350

4.1 Experimental Setup 351

Dataset Three of the commonly used machine 352

translation benchmarks are adopted to evaluate our 353

proposed method: WMT14 English<->German2 354

(En-De and De-En, 4.5M) and WMT16 English- 355

>Romanian3 (En-Ro, 610K). We follow previous 356

works’ data preprocessing configurations to pre- 357

process the data (En-De: Shu et al., 2020, En-Ro: 358

Ghazvininejad et al. 2019). To learn the subword 359

vocabulary, we apply SentencePiece (Kudo and 360

Richardson, 2018) to generate joint subword vocab- 361

ulary of 32K tokens for each dataset respectively. 362

Knowledge Distillation Following previous stud- 363

ies on NAT that models are trained on distilled data 364

generated by autoregressive teacher, we also ap- 365

ply sentence-level knowledge distillation for all 366

datasets to obtain less noisy and more deterministic 367

data. In this work, Transformer (Vaswani et al., 368

2017) with base settings is adopted and reproduced 369

as the teacher model for data distillation. 370

Implementation Details The model is trained 371

by the objective function illustrated on Eq.(8). To 372

avoid posterior collapse, freebits annealing (Chen 373

et al., 2017) is applied on KL terms in Eq.(7) to 374

keep a distance between prior and posterior. Its 375

threshold is fixed to 1 for the first half training 376

steps, and linearly decay to 0 on the second half. 377

For both dataset, we train the model with a batch 378

size of approximate 40K tokens for overall 100K 379

steps on four Tesla V100 GPUs and continue to 380

fine-tune it for additional 20K steps with freebits 381

annealing disabled. 382

For network settings, we use 6 layers en- 383

coder and decoder with dmodel/dfeedforward = 384

512/2048. Following Shu et al. (2020), the pos- 385

terior network contains 3 transformer layers and 386

the dimension of latent variable is set to 8. We 387

set dropout between attention layers with rate of 388

0.1/0.3 for WMT14 En<->De and WMT16 En- 389

>Ro respectively and label smoothing rate ϵ = 390

0.1 on the target tokens. Models are trained by 391

Adam (Kingma and Ba, 2015) with settings of 392

β = (0.9, 0.98) and ϵ = 1e− 4. We use the same 393

strategy as Vaswani et al. (2017) to schedule the 394

learning rate and set warm-up steps to 4000. To ob- 395

tain the final model, we average 5 best checkpoints 396

chosen by validation BLEU score. By default, we 397

set rate of 0.3/0.2/0.1/0.2 for four data augmenta- 398

2https://www.statmt.org/wmt14/
3https://www.statmt.org/wmt16/
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Models Iter. WMT14
En-De

WMT14
De-En

WMT16
En-Ro Speed

AT
Transformer (Vaswani et al., 2017) N 27.30 / / /
Transformer (ours) N 27.18∗ 31.28∗ 33.73∗ 1.0×

Iterative
NAT

NAT-IR (Lee et al., 2018) 10 21.61 25.48 29.32 1.5×
CMLM (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 1.7×
LevT (Gu et al., 2019) Adv. 27.27 / / 4.0×
JM-NAT (Guo et al., 2020) 10 27.69 32.24 33.52 5.7×

Fully NAT

Vanilla-NAT (Gu et al., 2018) 1 17.69 21.47 27.29 15.6×
Imitate-NAT (Wei et al., 2019) 1 22.44 25.67 28.61 18.6×
FlowSeq (Ma et al., 2019) 1 23.72 28.39 29.73 1.1×
NAT-DCRF (Sun et al., 2019) 1 23.44 27.22 / 10.4×
BoN (Shao et al., 2020) 1 20.90 24.60 28.31 10.7×
AXE (Ghazvininejad et al., 2020a) 1 23.53 27.90 30.75 /
GLAT (Qian et al., 2021) 1 25.21 29.84 31.19 15.3×
Reorder-NAT (Ran et al., 2021) 1 22.79 27.28 29.30 16.1×
SNAT (Liu et al., 2021) 1 24.64 28.42 32.87 22.6×

Baselines
and Ours

LT (Kaiser et al., 2018) / 19.80 / / 3.8×
LaNMT (Shu et al., 2020) 1 22.20 26.76∗ 29.21∗ 22.2×
+ refinement 2 24.10 29.47∗ 30.76∗ 12.5×
+ latent search w/ rescoring 2 25.10 / / 6.8×
Ours, decode w/o refinement 1 23.67 27.39 29.90 25.6×
+ latent search (m=9) w/o rescoring 1 24.89 30.11 31.40 21.1×
+ latent search (m=19) w/o rescoring 1 25.20 30.70 31.65 17.6×
decode w/ refinement 2 25.47 30.23 31.56 12.6×
+ latent search (m=9) w/o rescoring 2 26.02 31.23 32.50 11.0×

Table 1: BLEU scores and speedup rates for performance comparison on WMT14 En-De, De-En and WMT16
En-Ro benchmarks without rescoring. We report the best scores here among all tested combinations of data
augmentation methods with consistency regularization. Iter. denotes the number of iterations during inference. Adv.
means adaptive. / denotes the value is not reported, * denotes the results obtained by our implementation.

tion methods: dropout, feature cutoff, token cutoff399

and token replacement respectively with the weight400

term α = 0.1 at Eq.(8).401

Evaluation For all benchmarks, we use sacre-402

BLEU4 (Post, 2018) to evaluate BLEU score of403

translation results. Following Lee et al. (2018) and404

Shu et al. (2020), repetition tokens are removed405

before generating the final outputs for evaluation.406

The results of latent search is obtained by the mean407

score of 5 independent runs on the test set of each408

benchmark to get more precise measures since repa-409

rameterization causes randomness in decoding.410

To evaluate the decoding speed, following pre-411

vious works (e.g. Gu et al. 2018, Lee et al. 2018),412

models are run on WMT14 En-De test set with413

batch size of 1 under the environment with one414

GPU only. The mean value of decoding latency415

4https://github.com/mjpost/sacrebleu

among all samples is collected and represent as the 416

decoding speed. Meanwhile, base Transformer is 417

reproduced and evaluated on the same machine to 418

obtain the speed up rates. 419

Baselines We set former VAE based NAT frame- 420

works proposed by Kaiser et al. (2018) and Shu 421

et al. (2020) as the main baselines to present the 422

improvement of our method. We also compare 423

our model with other representative NAT and AT 424

frameworks. The performance measures including 425

BLEU score and speedup rate of other models are 426

directly obtained from the figures reported on their 427

original paper, while some unreported measures 428

are obtained by our implementation. 429

4.2 Results and Analysis 430

The main results on the benchmarks are illustrated 431

on Table 1, we report the best scores of our experi- 432
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ments among different tested combinations of data433

augmentation methods with consistency regulariza-434

tion. As the performance measure shown in Ta-435

ble 1, our methods significantly outperform former436

VAE-based baselines, with about 5.6 BLEU points437

improvement to the discrete latent variable model438

(Kaiser et al., 2018) and 1.4/1.3, 0.6/0.7, 0.7/0.8439

points improvement on non-refinement/refinement440

decoding to continuous latent variable baseline441

(Shu et al., 2020) on WMT14 En-De, De-En and442

WMT16 En-Ro benchmarks without latent search.443

All measures indicate that our posterior consistency444

regularization method greatly enhances the robust-445

ness of the VAE-based model and results in an446

improved translation quality.447

Comparing to other representative AT and NAT448

models, our method shows the superiority of de-449

coding speed to AT and iterative NAT models450

while there are only about 2 BLEU points lag be-451

hind. With the refinement decoding, our model452

also achieves a comparable translation quality to453

the state-of-the-art fully-NAT approaches with sim-454

ilar decoding latency.455

The results of latent search is encouraging. Ben-456

efit from the parallel computing capability of GPU,457

latent search sacrifices very small decoding speed458

to achieve about 0.5/1.0/0.9 BLEU improvements459

for refinement decoding and 1.2/2.7/1.5 BLEU460

improvements for non-refinement decoding on461

WMT14 En-De / De-En / WMT16 En-Ro bench-462

marks with m = 9.463

Effectiveness of Data Augmentation Methods464

In this work, we adopt four different data augmen-465

tation strategies as the stochastic noise injection466

method to cooperate with consistency regulariza-467

tion. To evaluate their effectiveness and the impact468

for translation quality, all data augmentation meth-469

ods are tested with the default configurations on470

all of the benchmarks. The results are reported on471

Table 2. The method we adopt combining poste-472

rior consistency regularization with data augmen-473

tation is effective and capable to achieve higher474

BLEU scores than the baseline. Specifically, to-475

ken replacement achieves the highest score on all476

of benchmarks with refinement decoding since the477

posterior network is trained on sentences with in-478

correct tokens, this is more similar to the inference479

circumstance. With the non-refinement decoding,480

non of the methods can dominate all benchmarks481

since the posterior is discarded.482

Method En-De De-En En-Ro

w
/r

efi
ne

m
en

t Baseline 24.10 29.47∗ 30.76∗

Dropout 25.08 29.74 30.85
Token Cutoff 25.06 30.05 31.34
Feat. Cutoff 25.13 29.58 30.95
Token Repl. 25.33 30.23 31.56

w
/o

re
fin

em
en

t Baseline 22.20 26.76∗ 29.21∗

Dropout 23.25 26.93 29.40
Token Cutoff 23.67 27.18 29.55
Feat. Cutoff 23.51 26.92 29.90
Token Repl. 22.98 27.39 29.68

Table 2: BLEU scores for baseline and our models
with different data augmentation methods. * denotes
the results obtained by our implementation. Baseline
indicates Shu et al. (2020)

Method α = 0 0.1 0.2

Baseline 24.10
Dropout 24.76 25.08 24.84
Token Cutoff 24.82 25.06 25.17
Feature Cutoff 24.82 25.13 25.14
Token Repl. 25.05 25.33 25.47

Table 3: BLEU scores on WMT14 En-De for baseline
and our methods with different weight α for consistency
regularization objective. Specially, α = 0 indicates
training with consistency regularization disabled.

Effectiveness of Consistency Regularization 483

Consistency regularization should work together 484

with stochastic data augmentation which is widely 485

known as a trick to train robust neural networks 486

(Shorten and Khoshgoftaar 2019; Shen et al. 2020). 487

Thus, to confirm that the model is not just benefit 488

from data augmentation only but the contribution 489

of posterior consistency regularization, we disable 490

the consistency regularization module by setting 491

α = 0 at Eq.(8) and train the model with four data 492

augmentation methods respectively on WMT14 493

En-De dataset. The results illustrate on Table 3. 494

Without consistency regularization, the data aug- 495

mentation methods still result in improvement to 496

baseline, but a slight lag is exist behind the model 497

with consistency regularization enabled. In other 498

words, consistency regularization can improve the 499

translation quality further. Thus, it is confirmed 500

that consistency regularization is effective and ca- 501

pable to train a more robust latent representation 502

in this work. Besides, with different weights for 503

consistency regularization objective term, the best 504

7



α for cutoff and replacement is 0.2 and dropout is505

0.1 on WMT14 En-De in our experiments.506

Effect of Augmentation Rate To investigate the507

impact of augmentation rate, we train the models by508

different augmentation rates with default α = 0.1509

on WMT14 En-De dataset. Results are illustrated510

on Table 4. The best augmentation rate is differ-511

ent for each augmentation methods. According512

to this experiment, 0.1/0.2 (or 0.3) is the best for513

token and feature cutoff. Token replacement be-514

haves similarly to token cutoff (both are token-level515

augmentation) but the best rate is completely dif-516

ferent. It could be attribute to the mechanism that517

model can potentially learn from the incorrect to-518

kens and revise them, which mostly benefits to the519

inference where there are massive incorrect tokens520

from initial translations on refinement decoding.521

However, token cutoff simply zero-out the tokens522

during training, since there is no blank token in523

initial decoding outputs, a higher rate may con-524

versely enlarge the mismatch between training and525

inference.

Method rate = 0.1 0.2 0.3
Token Cutoff 25.06 24.98 24.54
Feature Cutoff 24.93 25.13 25.13
Token Repl. 25.26 25.33 25.22

Table 4: Effect of the rate for augmentation methods

526

Tradeoff between Speed and Quality The trade-527

off between the speedup rate and translation quality528

on WMT14 En-De dataset is shown in Figure 3. We529

draw the scatter points by evaluating the proposed530

model on various number of candidates sampled531

for latent search. It can be observed that both de-532

coding with or without refinement can benefit from533

latent search while the decoding speed remains ac-534

ceptable. Specifically, the non-refinement decoding535

with more latent candidates can reach the level of536

refinement approach. However, refinement decod-537

ing can achieve further improvements and reaches538

the peak of about 26.2 BLEU points.539

Summary Summarize from the experiments and540

corresponding results illustrated on Table 2, 3 and541

4, the mechanism of data augmentation and consis-542

tency regularization in this paper can be explained543

in two ways: firstly, data augmentation methods544

help the posterior network learn the capability of545

encoding correct latent variables from incomplete,546

Figure 3: Tradeoff between decoding speed and transla-
tion quality on WMT14 En-De benchmark.

incorrect or noisy sentences, which narrows the 547

gap between training and inference circumstances. 548

Thus, our posterior network can do better refine- 549

ment on the initial translation y0 from Eq.(9) which 550

is relatively noisy and imperfect. Secondly, con- 551

sistency regularization helps the posterior network 552

learn to be more consistent on latent variables under 553

the impact of noises in input samples, this poten- 554

tially improves the robustness of posterior network 555

and latent representations which result in further 556

improvements. Both strategies cooperate together 557

and maximize the overall translation quality. 558

Conclusion 559

In this work, we introduce posterior consistency 560

regularization along with a series of data augmen- 561

tation methods on the posterior module of a vari- 562

ational NAT model to improve its performance of 563

translation quality. This method trains the poste- 564

rior network to be consistent to stochastic noises 565

in inputs and potentially improves its representa- 566

tions. Meanwhile, data augmentation closes the 567

gap between training and inference circumstances. 568

Both are highly benefit to decoding and refine- 569

ment step. Experiments on WMT14 En-De, De-En 570

and WMT16 En-Ro benchmarks show that our ap- 571

proach achieves a significant improvement to the 572

baseline model and a comparable translation qual- 573

ity to other state-of-the-art fully NAT models with 574

fast decoding speed. As the effectiveness of con- 575

sistency regularization and data augmentation is 576

verified by our experiments, it is promising to be 577

applied on other models and tasks in the future. 578
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