
BLaDE:
Robust Exploration via Diffusion Models

Zhaohan Daniel Guo∗
DeepMind

danielguo@deepmind.com

Shantanu Thakoor∗
DeepMind

thakoor@deepmind.com

Bilal Piot∗
DeepMind

piot@deepmind.com

Mohammad Gheshlaghi Azar∗
DeepMind

mazar@deepmind.com

Abstract

We present Bootstrap your own Latents with Diffusion models for Explo-
ration (BLaDE), a general approach for curiosity-driven exploration in complex,
partially-observable and stochastic environments. BLaDE is a natural extension of
Bootstrap Your Own Latents for Exploration (BYOL-Explore) which is a multi-
step prediction-error method at the latent level that learns a world representation,
the world dynamics, and provides an intrinsic-reward all-together by optimiz-
ing a single prediction loss with no additional auxiliary objective. Contrary to
BYOL-Explore that predicts future latents from past latents and future open-loop
actions, BLaDE predicts, via a diffusion model, future latents from past observations,
future open-loop actions and a noisy version of future latents. Leaking information
about future latents allows to control the variance of the distribution of future
latents which makes the method agnostic to stochastic traps. Our experiments
on different noisy versions of Montezuma’s Revenge show that BLaDE handles
stochasticity better than Random Network Distillation, Intrinsic Curiosity Module
and BYOL-Explore without degrading the performance of BYOL-Explore in the
non-noisy and fairly deterministic Montezuma’s Revenge.

1 Introduction

Real-world environments (i) are complex (with high-dimensional and noisy observations) and (ii)
have stochastic dynamics. These properties can cause vanilla uncertainty-based and count-based
exploration methods to fail and generate trivial behavior. In this paper, we focus on two important
types of stochasticity that are omnipresent in the real world and relate to the properties described
earlier. First, (i) stochasticity at the observation-level due to sensor noise and complexity of the
environment that is independent of the underlying dynamics—for example, observations with white
noise [24]. Second, (ii) stochasticity at the action-level due to imperfect actuators or to inherently
stochastic dynamics—for example, sticky actions [17].

Stochasticity of type (i) gives rise to what is popularly known as the TV noise problem [24]. This
type of stochasticity is inherently difficult for vanilla count-based methods because noise at the
observation level may dramatically increase the number of possible observations. This could render
the exploration method ineffective if there is no representation learning method that helps filtering
the noise from the observation. Stochasticty of type (ii) causes the phenomenon commonly known
as stochastic traps [25]. For instance, methods based on future targets regression (minimizing the

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

squared-norm error between future predictions and future targets) to generate intrinsic rewards are
easily stuck in states where the actions have controllable but high-variance future outcomes such
as throwing a dice or playing roulette. Indeed, those methods will converge towards predicting the
expectation of future targets and their intrinsic rewards towards the variance of the future-target
distribution (see App. A for a detailed explanation). This incompressible variance term in future-target
predictions is often referred as aleatoric uncertainty.

Theoretically, one well-known, sound and general method to deal with stochasticities of type (i) and
(ii) is to use ensemble methods [25, 28, 27, 19, 23, 22]. However, practically, those methods are hard
to train and scale. Indeed, they require careful initialisation and data-masking of the different networks
of the ensemble to avoid all the networks to converge towards the same values to quickly [22]. Besides,
by nature, they do require several networks to form the ensemble which may not scale for bigger
architectures. In this paper, we chose another direction to deal with stochasticities of type (i) and (ii)
that is scalable. Our idea is very simple and consists in modifying a state-of the art prediction-error
method at the latent level called BYOL-Explore [11]. Specifically, instead of using a regression
approach to predict future (latent) targets, our approach, called Bootstrap you own Latents with
Diffusion models for Exploration (BLaDE), uses a generative approach via a diffusion model where
noisy future targets are provided as inputs in addition to a representation of past observations-actions
and future open-loop actions. First, this allows to fully model the distribution whereas a regression
approach only model the expectation which is problematic to avoid stochastic traps. Second, by
providing bits of information of the future targets to the diffusion model, it becomes possible to
predict future targets and considerably reduce the variance of future targets (aleatoric uncertainty).
This allows to generate intrinsic rewards that are agnostic to stochasticity. In our experiments, we
show that BLaDE can perform well under stochasticities of type (i) and (ii) whereas other state-of-the
art exploration methods such as Random Network Distillation (RND) [4] fails under stochaticity of
type (i) and BYOL-Explore [11] fails under stochaticity of type (ii). In addition, BLaDE retains the
performance of BYOL-Explore on environments with deterministic dynamics.

2 Method

2.1 Background and Notation

We consider a discrete-time interaction process [18, 15, 16, 7] between an agent and its environment
where, at each time step t ∈ N, the agent receives an observation ot ∈ O and generates an action
at ∈ A. We consider an environment with stochastic dynamics p : H × A → ∆O

2 that maps a
history of past observations-actions and a current action to a probability distribution over future
observations. More precisely, the space of past observations-actions isH =

⋃
t∈NHt whereH0 = O

and ∀t ∈ N∗,Ht+1 = Ht ×A×O. We consider policies π : H → ∆A that maps a history of past
observations-actions to a probability distribution over actions. Finally, an extrinsic reward function
re : H×A → R maps a history of past observations-actions to a real number.

2.2 Reminder of BYOL-Explore

BYOL-Explore world model is a multi-step predictive world model operating at the latent level.
It is inspired by the self-supervised learning method BYOL [10] in computer vision and adapted to
interactive environments (see Section 2.1). Similar to BYOL, BYOL-Explore model trains an online
network using targets generated by an exponential moving average (EMA) target network. However,
BYOL obtains its targets by applying different augmentations to the same observation as the online
representation, whereas BYOL-Explore model gets its targets from future observations processed
by an EMA of the online network, with no hand-crafted augmentation. Also BYOL-Explore model,
uses a recurrent neural network (RNN) [14, 6] to build the agent state, i.e., the state of RNN, from
the history of observations, whereas the original BYOL only uses a feed-forward network for encoding
the observations. In the remainder of this section, we will explain: (i) how the online network builds
future predictions, (ii) how targets for our predictions are obtained through a target network, (iii) the
loss used to train the online network, and (iv) how we compute the uncertainties of the world model.

2We write ∆Y the set of probability distributions over a set Y .

2

EMA Target
Encoder

Encoder

Open-loop
RNN cell

Open-loop
RNN cell

Open-loop
RNN cell

Closed-loop
RNN cell

EMA Target
Encoder

EMA Target
Encoder

Predictor Predictor Predictor

Figure 1: BYOL-Explore’s Neural Architecture (see main text for details).

(i) Future Predictions. The online network is composed of an encoder fθ that transforms an
observation ot into an observation-representation fθ(ot) ∈ RN , where N ∈ N∗ is the embedding
size. The observation-representation fθ(ot) is then fed alongside the previous action at−1 to a
RNN cell hcθ that is referred as the close-loop RNN cell. It computes a representation bt ∈ RM of
the history ht ∈ Ht seen so far as bt = hcθ(bt−1, at−1, fθ(ot)), where M ∈ N∗ is the size of the
history-representation. Then, the history-representation bt is used to initialize an open-loop RNN
cell hoθ that outputs open-loop representations (bt,k ∈ RM)K−1

k=1 as bt,k = hoθ(bt,k−1, at+k−1) where
bt,0 = bt and K is the open-loop horizon. The role of the open-loop RNN cell is to simulate future
history-representations while observing only the future actions. Finally, the open-loop representation
bt,k is fed to a predictor gθ to output the open-loop prediction ẑt,k = gθ(bt,k) ∈ RN at time t + k
that plays the role of our future prediction at time t+ k.

(ii) Targets and Target Network. The target network is an observation encoder fϕ whose param-
eters are an EMA of the online network’s parameters θ. It outputs targets zt+k = fϕ(ot+k) ∈ RN
that are used to train the online network. After each training step, the target network’s weights are
updated via an EMA update ϕ← αϕ+ (1− α)θ where α is the target network EMA parameter. A
sketch of the neural architecture is provided in Fig. 1, with more details in App. B.

(iii) Online Network Loss Function. Suppose our RL agent collected a batch of trajectories(
(ojt , a

j
t)
T−1
t=0

)B−1

j=0
, where T ∈ N∗ is the trajectory length and B ∈ N∗ is the batch size. Then, the

loss LBYOL-Explore(θ) to minimize is defined as the average cosine distance between the open-loop
future predictions ẑt,k = gθ(b

j
t,k) and their respective targets zt+k = fϕ(o

j
t+k) at time t+ k:

LBYOL-Explore(θ, j, t, k) =

∥∥∥∥∥ gθ(b
j
t,k)

∥gθ(bjt,k)∥2
− sg

(
fϕ(o

j
t+k)

∥fϕ(ojt+k)∥2

)∥∥∥∥∥
2

2

,

LBYOL-Explore(θ, j, t, k) =

∥∥∥∥∥ ẑjt,k

∥ẑjt,k∥2
− sg

(
zjt+k

∥zjt+k∥2

)∥∥∥∥∥
2

2

,

LBYOL-Explore(θ) =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

1

K(t)

K(t)∑
k=1

LBYOL-Explore(θ, j, t, k),

where K(t) = min(K,T − 1− t) is the valid open-loop horizon for a trajectory of length T and sg
is the stop-gradient operator.

3

(iv) World Model Uncertainties The uncertainty associated to the transition (ojt , a
j
t , o

j
t+1) is the

sum of the corresponding prediction losses:

ℓ jt =
∑

p+q=t+1

LBYOL-Explore(θ, j, p, q),

where 0 ≤ p ≤ T − 2, 1 ≤ q ≤ K and 0 ≤ t ≤ T − 2. This accumulates all the losses corresponding
to the world-model uncertainties relative to the observation ojt+1. Thus, a timestep receives intrinsic
reward based on how difficult its observation was to predict from past partial histories. We use
normalized versions of the world model uncertainties ℓ jt as intrinsic rewards rji,t see App. B.2.

2.3 Reminder of Diffusion Models

Fundamentally, one can see training a diffusion model [13, 21, 26] as training a denoiser gθ. Provided
a context c and a noisy input z̃ of the original input z, the goal of the denoiser is to output z or
equivalently the noise ϵ. The context c provides additional information to the denoiser in order to
denoise z̃ into z. In practice, we use noisy inputs of the form:

z̃ =
√
αlz +

√
1− αlϵ, (1)

where ϵ ∼ N (0, 1) is Gaussian noise, αl = (1 − β)l is the amount of noise controlled by the
parameters β ∈ [0, 1], strength of the noise, and l, number of iterations of the noise which is sampled
uniformly between [0, L] with L ∈ N∗. The denoiser gθ takes as inputs z̃, the number of iterations l
and the context c and outputs ϵ̂ = gθ(c, z̃, l). The loss used to trained the denoiser gθ is:

LDIFF(θ) = E
[
∥ϵ− gθ(c, z̃, l)∥22

]
. (2)

We also remark by inverting Eq. (1) that z = (z̃ −
√
1− αlϵ)

1√
αl

. Therefore, we can easily express
the predicted original input ẑ from the predicted noise ϵ̂ and the noisy input (z̃, l):

ẑ = (z̃ −
√
1− αlϵ̂)

1√
αl

. (3)

2.4 BLaDE

Open-loop
RNN cell

EMA Target
Encoder

Predictor

Open-loop
RNN cell

EMA Target
Encoder

Predictor

Figure 2: BLaDE’s and BYOL-Explore’s pre-
dictor architectures.

BLaDE and BYOL-Explore are very similar but dif-
fer in two points: (1) the architecture of the predictor
gθ and (2) how the intrinsic reward is derived. For
BLaDE, the predictor is a diffusion model with in-
puts the context bt,k and the couple (z̃t,k, lt,k), which
represents the leaked information from the future
at time t + k. The predictor outputs a predicted
noise ϵ̂t,k = gθ (bt,k, (z̃t,k, lt,k)). The input z̃t,k
is a noisy version of the future latent zt+k and lt,k
represents the quantity of noise added. More pre-
cisely, for each couple (t, k), we sample a Gaussian
noise ϵt,k ∼ N (0, 1

N), a number of iterations lt,k
uniformly in [0, L] and uses the future latent zt+k to
compute z̃t,k via Eq.1:

z̃t,k =
√

αlt,kzt+k +
√
1− αlt,kϵt,k.

The number of iteration lt,k is passed as a one-hot
encoding of size L to the predictor gθ. It is important
to remark that we do not sample the noise according
to a centered-normalized Gaussian but by N (0, 1

N)
where N is the number of features. Then, from the
predicted noise ϵ̂t,k and the noisy input (z̃t,k, lt,k), we can reconstruct the predicted original output
using Eq. (3):

ẑt,k = (z̃t,k −
√
1− αlt,k ϵ̂t,k)

1√
αlt,k

.

4

For a batch of data
(
(ojt , a

j
t)
T−1
t=0

)B−1

j=0
, the BLaDE’s loss for an element of the batch j, time t, and

open-loop step k is similar to the BYOL-Explore loss between predictions and targets:

LBLaDE(θ, j, t, k) =

∥∥∥∥∥ ẑjt,k

∥ẑjt,k∥2
− sg

(
zjt+k

∥zjt+k∥2

)∥∥∥∥∥
2

2

,

LBLaDE(θ) =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

1

K(t)

K(t)∑
k=1

LBLaDE(θ, j, t, k),

Contrary to a diffusion model that uses a L2 loss between the noise and the predicted noise (see
Eq.(2)), here, we use a cosine loss between the original target and its reconstructed prediction from
the noise. Those are almost equivalent in theory and we made this choice in practice to make the
BLaDE and BYOL-Explore losses similar.

Contrary to BYOL-Explore, we do not compute the uncertainties ljt directly from the losses that
trains the world model. Instead we use a slightly tweaked loss:

LκBLaDE(θ, j, t, k) =

∥∥∥∥∥ ẑj,κt,k

∥ẑj,κt,k ∥2
− sg

(
zjt+k

∥zjt+k∥2

)∥∥∥∥∥
2

2

,

where the predictions ẑj,κt,k have been computed from noisy inputs z̃j,κt,k with a fixed amount of noise
iterations lj,κt,k = κ where κ is an integer in]0, L]. Then, we compute the uncertainties ljt using those
fixed-amount of noise losses:

ℓ jt =
∑

p+q=t+1

LκBLaDE(θ, j, p, q),

where 0 ≤ p ≤ T −2, 1 ≤ q ≤ K and 0 ≤ t ≤ T −2. The idea behind using a fixed amount of noise
κ for the intrinsic rewards is to be able to control how much variance of the future targets is added in
the intrinsic rewards (as explained in details in App. A). Controlling this variance allows us to avoid
stochastic traps and not get attracted to them. Indeed, with κ small we provide an input z̃j,κt,k to the
predictor that is very similar to its target zjt+k and that can help the predictor disambiguate between
different future predictions if the environment is stochastic. On other terms, we are providing/leaking
noisy information about the future to the predictor to allow it disambiguate between different future
outcomes and therefore reduce the variance added to the intrinsic rewards. Naturally, the more
stochastic the environment is, the lower the threshold κ should be to control the added variance. It
is totally possible to provide future information to the diffusion model as the intrinsic rewards are
computed in the learner and not at acting time.

3 Experiments

We run our experiments on BLaDE with the threshold κ = 10, the amount of noise β = 0.05 and
the number of noise iterations L = 100. We provide details on the neural network architectures in
App. B as well as more hyperparameters values in App.D.

Stochastic Grid World. We first give an illustrative example on a small, partially-observable
gridworld domain. We create a simple maze, with bouncing doors (see fig. 3 left). The agent sees a
small window of radius 2 around it. The first red door is a stochastic bouncing door, where it moves
left or right uniformly randomly, while the other doors bounce back and forth deterministically. We
ran BYOL-Explore and BLaDE as pure exploration (no extrinsic reward) and track how many doors
the agent is able to visit. As fig. 3 right shows, BYOL-Explore is only able to pass the first door, and
we see that it actually gets stuck moving around the first door. On the other hand BLaDE is able to
get pass and explore all four doors consistently. This result highlights that stochastic dynamics is an
important limitation of BYOL-Explore, and that BLaDE can be completely robust to it.

Atari Learning Environment [3]. This is a widely used RL benchmark, comprising approximately
50 Atari games. These are 2-D, fully-observable, (fairly) deterministic environments for most of the

5

Figure 3: Left: Gridworld Maze. The white box is the agent. The red block is a stochastic door block that
randomly moves left and right. The dark blue, green, and orange blocks are deterministic door blocks that
bounce back and force. The purple and light blue blocks are just there for tracking purposes. Right: BLaDE is
able to visit all four doors while BYOL-Explore is stuck at the first one.

games but have a very long optimization horizon (episodes last for an average of 10000 steps) and
complex observations (preprocessed greyscale images which are 84× 84 byte arrays). We select one
of the hardest exploration and probably the most well-known games [2] to conduct our experiments,
namely Montezuma’s Revenge. To show the robustness of BLaDE, we add three types of noise to
the environment. First, a non-actionable additive noise which is a 84× 84 random array of integer
values {−1, 0,+1} that are independently and uniformly chosen at each time-step. This array is
simply added to the 84× 84 image byte array. It is important to remark that the addition is done at the
byte level which means that −1 + 0 = 255 and 255 + 1 = 0. Second, an actionable additive noise
which is a 84 × 84 random array of integer values {−1, 0,+1} that are uniformly chosen at each
beginning of the episode and at each time the action no-op is taken. This array is also simply added
to the 84× 84 image byte array. It is important to remark that this noise is added at each time-step but
changes (is resampled) only at the reset of each episode and when the action no-op is taken. Third,
a noise that fundamentally changes the dynamics and that has been previously introduced in [17]
called sticky-actions. In an environment with sticky actions, the probability of the action chosen by
the agent a to be the action At executed at time t is 1 − p and with probability p the action at−1

executed at time t− 1 is also executed at time t:

At =

{
a, with probability 1− p,

at−1, with probability p.

We set p to be 0.1 in our experiments.

Figure 4: Examples of the classical Montezuma’s Revenge game without noise.

Comments on the choices of noise. The non-actionable additive noise is independent of the
dynamics and models a noise at the observation level due to imperfect sensors for instance. It has been
chosen to artificially increase the observation space and render ineffective naive exploration methods
based on counting the number of visits or predicting a random function of a given observation such
as RND. The actionable additive noise increases the stochasticity of the dynamics of the no-op action,
it should therefore be challenging for any prediction-error based method such as BYOL-Explore
and ICM. In addition, it also artificially increases the observation space by choosing the no-op
action which should render RND ineffective. Finally, sticky-actions increases the stochasticity of
the dynamics for every action which is problematic for prediction-error based methods such as
BYOL-Explore.

6

Figure 5: Examples of additive noise added to the classical Montezuma’s Revenge game.

Experimental Setup. In addition to BLaDE, we also run baselines, namely BYOL-Explore, RND
and ICM. We run experiments on two different evaluation regimes. The first regime uses a mixed
reward function rt = re,t + λri,t which is a linear combination of the normalized extrinsic rewards
re,t and intrinsic rewards computed by the agent ri,t with mixing parameter λ. This may be the most
important regime for a practitioner as we can see if our intrinsic rewards help improve performance,
with respect to the extrinsic rewards, compared to the pure RL agent. The second regime is fully
self-supervised where only the intrinsic reward ri,t is optimized. This regime gives us a sense of how
pure exploration methods perform in complex environments.

Choice of RL algorithm. We use VMPO [29] as our RL algorithm. VMPO is an efficient on-policy
optimization method that has achieved strong results across both discrete and continuous control
tasks, and is thus applicable to all of the domains we consider. Further details regarding the RL
algorithm setup and hyperparameters are provided in Appendix.

Performance Metrics. In the mixed regime, we evaluate performance in terms of the agent score at
a number of observations/frames t, Agentscore(t), as measured by undiscounted episode return [9, 1].
The number of frames t corresponds to all the frames generated by all the actors by interacting with
the environment, even the skipped ones. Frames/observations can be skipped if there is an action
repeat which is the case in Atari where the action repeat is of 4. In the intrinsic regime, we evaluate
performance in terms of the total number of rooms visited at a number of observations/frames t since
beginning of training. Note that accessing later rooms requires navigating complex dynamics such as
collecting keys to open doors, avoiding enemies, and carefully traversing rooms filled with traps such
as timed lasers. Finally, we follow the classical 30 random no-ops evaluation regime [20, 30], and
average performance over 10 episodes and over 3 seeds. In the figures, we show best seed, average
performance and worst seed.

Results We run our experiments in the mixed and intrinsic regimes in Montezuma’s Revenge
for BLaDE and the baselines in the non-noisy classical environment as well as the non-actionable
and noisy, actionable and noisy and sticky-action environments. As expected when additive noise is
added, RND’s performance is flatlining as shown in Fig. 8 and in Fig. 7. However, we can see that
BYOL-Explore performs well in the non-actionable noisy case (see Fig. 7) as the active representation
learning seems to filter irrelevant features to perform efficient exploration. However, in the actionnable
noisy case presented in Fig. 8, we see the performance of BYOL-Explore dropped and with more
variance. This is also expected as it is a method based on prediction error that is subject to stochatics
traps generated by stochastic dynamics. We see that this problem is aggravated in the sticky action
case (see Fig. 9) where BYOL-Explore completely flatlined. Finally, we see that BLaDE is able to
perform well across all types of noise in the mixed and intrinsic regime.

4 Limitations

Even if our method improves BYOL-Explore and seems more robust than state-of-the art baselines
such as RND, there are still several limitations. First, we use diffusion models with only one step of
denoising to build our future predictions whereas classical diffusion models use hundreds of denoising
steps. We have not tried increasing the number of denoising steps since we were looking for a
computationally efficient method but this trade-off between efficiency (fast) and more compute (better
samples) needs to be studied in the future. Second, leaking information about future outcomes might

7

Figure 6: Results on classical non-noisy environment. Left: figure shows the agent score
Agentscore(t) for the mixed regime. Right: figure shows the number of rooms visited since beginning
of training in the intrinsic regime.

Figure 7: Results on non-actionable and noisy environment. Left: figure shows the agent score
Agentscore(t) for the mixed regime. Right: figure shows the number of rooms visited since beginning
of training in the intrinsic regime.

Figure 8: Results on actionable and noisy environment. Left: figure shows the agent score
Agentscore(t) for the mixed regime. Right: figure shows the number of rooms visited since beginning
of training in the intrinsic regime.

8

Figure 9: Results on environment with sticky actions. Left: figure shows the agent score
Agentscore(t) for the mixed regime. Right: figure shows the number of rooms visited since beginning
of training in the intrinsic regime.

lead to worst representation because the context may not be used as much as in the BYOL-Explore
loss, however we do not observe this in terms of final performance in our Atari experiments. Third,
we use a fixed global threshold κ irrespective of the dynamics. Ideally, κ should be adaptive and
could be high for states with deterministic dynamics and low for states with stochastic dynamics.

Finally, BLaDE inherits some limitations from BYOL-Explore. First, we are still learning with
short-term predictions which can be uninformative if not much changes happen in the environment in
few steps. Second, mixing intrinsic and extrinsic reward is not adaptive and should be tuned while
learning. Thirdly, we use Gated Recurrent Units (GRUs) [5] as working memories which have some
deficiencies regarding handling properly long-term dependencies.

5 Conclusion

We have shown that state-of-the art exploration methods could fail when real-world noise is introduced
in the fairly deterministic benchmark they have been previously tested on, namely Atari games.
More precisely, Random Network Distillation (RND) fails in the presence of stochasticity at the
observation-level and BYOL-Explore fails when the underlying dynamics is stochastic. However,
BYOL-Explore is still robust to the observation-level noise that does not affect the dynamics. To
tackle this problem, we have introduced a simple and scalable modification of BYOL-Explore, called
BLaDE, that uses a diffusion model instead of regression to predict future targets. This allows to
not only model the expectation of the future-target distribution but the entire distribution. To avoid
stochastic traps inherent to predicting the expectation, we provide information about the future
outcomes to help the diffusion model predict the correct future outcome which allows to control the
variance of future targets and produces intrinsic rewards that are not attracted to states with high
variance future outcomes. In our experiments, we show with different types of noise that BLaDE is a
robust exploration method and that performs as well as BYOL-Explore in the classical deterministic
setting. However, BLaDE has still some limitations such as the noise threshold κ that is fixed for all
the states. In the future, we would like to find a way to make it adaptive to the level of stochasticity
of each state.

Acknowledgments and Disclosure of Funding

We would like to thank Abbas Abdolmaleki, Florent Altche, Bernardo Avila Pires, Arunkumar
Byravan, Adrià Puidomenech Badia, Daniele Calandriello, Jean-Bastien Grill, Tim Harley, Steven
Kapturowski, Thomas Keck, Daniel Jarrett, Jean-Baptiste Lespiau, Kat McKinney, Remi Munos,
Kyriacos Nikiforou, Georg Ostrovski, Razvan Pascanu, Miruna Pislar, Doina Precup, Alaa Saade,
Satinder Singh, Hubert Soyer, Pablo Sprechmann, Corentin Tallec, Yunhao Tang, and Michal Valko
for their support and advice in developing this work.

9

References
[1] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvit-

skyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human
benchmark. In International Conference on Machine Learning, pages 507–517. PMLR, 2020.

[2] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in neural
information processing systems, pages 1471–1479, 2016.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In Seventh International Conference on Learning Representations, pages
1–17, 2019.

[5] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[6] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[7] Mayank Daswani, Peter Sunehag, and Marcus Hutter. Q-learning for history-based reinforce-
ment learning. In Asian Conference on Machine Learning, pages 213–228. PMLR, 2013.

[8] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on machine
learning, pages 1407–1416. PMLR, 2018.

[9] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex
Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for
exploration. arXiv preprint arXiv:1706.10295, 2017.

[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

[11] Zhaohan Daniel Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché,
Corentin Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al.
Byol-explore: Exploration by bootstrapped prediction. arXiv preprint arXiv:2206.08332, 2022.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[15] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media, 2004.

[16] Marcus Hutter et al. Feature reinforcement learning: Part I. unstructured MDPs. De Gruyter
Open, 2009.

10

[17] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[18] R Andrew McCallum. Instance-based utile distinctions for reinforcement learning with hidden
state. In Machine Learning Proceedings 1995, pages 387–395. Elsevier, 1995.

[19] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-
covering and achieving goals via world models. Advances in Neural Information Processing
Systems, 34:24379–24391, 2021.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[21] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[22] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep rein-
forcement learning. Advances in Neural Information Processing Systems, 31, 2018.

[23] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29:4026–4034, 2016.

[24] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 16–17, 2017.

[25] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-
ment. In International Conference on Machine Learning, pages 5062–5071. PMLR, 2019.

[26] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

[27] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference on
Machine Learning, pages 8583–8592. PMLR, 2020.

[28] Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International conference on machine learning, pages 5779–5788. PMLR, 2019.

[29] H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy
maximum a posteriori policy optimization for discrete and continuous control. arXiv preprint
arXiv:1909.12238, 2019.

[30] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[31] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]

11

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] We are not

including theoretical results.
(b) Did you include complete proofs of all theoretical results? [N/A] We are not including

theoretical results.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [No] The code is
proprietary

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify the main training details in the paper and we include a
full list of hyperparameters description in the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report error bars in learning curves of the agent score
for every agent we run.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We include all the information
regarding the compute in the appendix.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the ALE and

DM-HARD-8 and we cite the creators.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We did not use crowdsourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We did not use crowdsourcing.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We did not use crowdsourcing.

12

A Regression Approach and Stochastic traps

A well known vanilla uncertainty-based exploration method consists in predicting future targets zt+1

from a history-representation bt of past observations-actions and future open-loop actions at via
regression. This method is referred as a one-step prediction error method at the latent-level if zt+1 is
a function of the observation or at the observation-level if zt+1 = ot+1. The representation bt can
be learned via a representation learning method or simply be, in a toy scenario, bt = (ot, at−1). In
any case, using a simple regression technique to compute the intrinsic rewards will lead towards
trivial behaviors if the underlying dynamics zt+1 ∼ p(.|bt, at) is stochastic. Indeed, let gθ be
a parameterized predictor that is trained to predict zt+1 with inputs (bt, at) with the following
regression loss:

LReg(θ, zt+1) = E
[
∥zt+1 − gθ(bt, at)∥22

]
.

Then, if gθ is expressive enough, we have:

argmin
θ
LReg(θ, zt+1) = E[zt+1|(bt, at)],

min
θ
LReg(θ, zt+1) = E

[
∥zt+1 − E[zt+1|(bt, at)]∥22

]
= E [Var[zt+1|(bt, at)]] .

As the intrinsic rewards are derived from the prediction loss, we see that when the loss is minimized,
we introduce the (expected-conditional) variance of the future-target distribution in the intrinsic
rewards. This added variance is problematic because it encourages the agent to seek for states with
uncertain future outcomes and stay there. Those states are known as stochastic traps.

One way to reduce the variance of future targets Var[zt+1|(bt, at)] is to provide more information to
the predictor to predict more accurately zt+1. Indeed, we know from the general law of total variance
that for any random variable couple (X,Y) we have:

Var(Y) = E[Var[Y |X]] + Var[E[Y |X]].

Therefore the more information we provide to the predictor, the lower the (expected-conditional)
variance is going to be. Let’s note z̃t+1 the additional information provided to the predictor then we
have by the law of total variance:

E [Var[zt+1|(bt, at)]] ≥ E [Var[zt+1|(bt, at, z̃t+1)]] .

Of course if z̃t+1 = zt+1 then the expected-conditional variance becomes null as we provide all the
information to the predictor to predict zt+1. Providing too much information will solve the problem
of stochastic traps as there is no more residual variance but will forbid the predictor to understand
the dynamics between (bt, at) and zt+1 as it could directly predict zt+1 from z̃t+1. Therefore z̃t+1

should contain enough information to reduce the (expected-conditional) variance but not too much
to allow the predictor to understand the dynamics between zt+1 and (bt, at) and learn to smoothly
reduce the epistemic uncertainty.

B General BYOL-Explore and BLaDE Architecture

The online network is composed of:

• Encoder: fθ : O → RN

• Close-loop RNN cell: hcθ : RM × RN ×A → RM

• Open-loop RNN cell: hoθ : RM ×A → RM

• In the case of BYOL-Explore, the predictor is: gθ : RM → RN

• In the case of BLaDE the predictor is: gθ : RM+N+L → RN

The target network is composed of:

• EMA encoder: fϕ : O → RN

13

EMA Target
Encoder

Encoder

Open-loop
RNN cell

Open-loop
RNN cell

Open-loop
RNN cell

Closed-loop
RNN cell

EMA Target
Encoder

EMA Target
Encoder

Predictor Predictor Predictor

Figure 10: BYOL-Explore’s Neural Architecture.

Open-loop
RNN cell

EMA Target
Encoder

Predictor

Open-loop
RNN cell

EMA Target
Encoder

Predictor

Figure 11: BLaDE’s and BYOL-Explore’s predictor architectures.

B.1 Detailed BYOL-Explore and BLaDE architecture for Atari

In Atari, the size of the observation-representation N = 512 and the size of the history-
representation M = 256.

• Encoder: fθ : O → RN : The encoder is instantiated as a Deep ResNet [12] stack. The
greyscale image observation is passed through a stack of 3 units, each comprised of a 3× 3
convolutional layer, a 3× 3 maxpool layer, and 2 residual blocks. The number of channels
for the convolutional layer and the residual blocks are 16, 32, and 32 within each of the 3
units respectively. We use GroupNorm normalization [31] with one group at the end of each
of the 3 units, and use ReLU activations everywhere. The output of the final residual block
is flattened and projected using a single linear layer to an embedding of dimension 512.

• Close-loop RNN cell: hcθ : RM × RN × A → RM is a simple Gated Recurrent Unit
(GRU) [5]. We provide the past-action to the close-loop RNN cell, embedded into a
representation of size 32.

• Open-loop RNN cell: hoθ : RM ×A → RM is a simple Gated Recurrent Unit. We provide
the past-action to the open-loop RNN cell, embedded into a representation of size 32.

• Policy head πψ : RN → R|A|, value head vψ : RN → R. The outputs of the policy head
are passed through a softmax layer to form the probabilities for each action to be taken.

14

• The predictor for BYOL-Explore gθ : RM → RN is a simple Multi-Layer Perceptron
(MLP) with three hidden layer of size (512, 512, 512).

• The predictor for BLaDE gθ : RM+N+L → RN is a simple Multi-Layer Perceptron (MLP)
with three hidden layer of size (512, 512, 512).

B.2 Details of Reward Normalization Mechanism

We use a similar reward normalization scheme as in RND [4] and normalize the raw rewards
((ℓ jt)

T−2
t=0)B−1

j=0 by an EMA estimate of their standard deviation.

More precisely, we first set the EMA mean to r = 0, the EMA mean of squares to r2 = 0 and the
counter to c = 1. Then, for the c-th batch of raw rewards ((ℓ jt)

T−2
t=0)B−1

j=0 , we compute the batch mean
rc and the batch mean of squares r2c :

rc =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

ℓ it , r2c =
1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

(ℓ it)
2.

We then update r, r2 and c:

r ← αrr + (1− αr)rc, r2 ← αrr2 + (1− αr)r2c , c← c+ 1,

where αr = 0.99. We compute the adjusted EMA mean µr, the adjusted EMA mean of squares µr2 :

µr =
r

1− αcr
, µr2 =

r2

1− αcr
·

Finally the EMA estimation of the standard deviation is σr =
√
max(µr2 − µ2

r, 0) + ϵ, where
ε = 10−8 is a small numerical regularization. The normalized rewards are rji,t = ℓ jt /σr.

C Baselines

Random Network Distillation (RND) [4] is a simple exploration method that consists in training
an encoder such that its outputs fit the outputs of another fixed and randomly initialized encoder and
using the training loss as an intrinsic reward to be optimized by an RL algorithm. More precisely,
let N ∈ N∗ be the embedding size and let us note fθ : O → RN the encoder, also called predictor
network, with trainable weights θ and fϕ : O → RN the fixed and randomly initialized encoder,
also called target network, with fixed weights ϕ. In addition, let us suppose that we have a batch of

trajectories
(
(ojt , a

j
t)
T−1
t=0

)B−1

j=0
collected by our RL agent, then the loss LRND(θ) to minimize w.r.t.

the online network parameters is defined as:

LRND(θ, j, t) = ∥fθ(ojt)− sg(fϕ(o
j
t))∥22, LRND(θ) =

1

BT

B−1∑
j=0

T−1∑
t=0

LRND(θ, j, t),

and the unnormalized reward associated to the transition (ojt , a
j
t , o

j
t+1) is defined as ℓ jt = LRND(θ, j, t+

1) where 0 ≤ t ≤ T − 2. To obtained the final intrinsic rewards, we just normalize them to be as
close as possible to the original RND implementation:rji,t =

ℓ i
t

σr
.

Intrinsic Curiosity Module (ICM) [24] is a one-step prediction error method at the latent level.
It consists in training an encoder fθ : O → RN that outputs a representation that is robust to
uncontrollable aspects of the environment and then use this representation as inputs of a one-step
prediction error model gϕ : RN ×A → RN which error is used as an intrinsic reward to be optimized
by an RL algorithm. To build a representation robust to uncontrollable dynamics, the idea used in ICM
is to train an inverse dynamics model pθ : RN ×RN → A that predicts the distribution of actions
that led to the transition between two consecutive representations fθ(ot), fθ(ot+1). More precisely,

15

Fixed Target
Encoder

Predictor
Encoder

Figure 12: RND’s Neural Architecture.

let us suppose that we have a batch of trajectories
(
(ojt , a

j
t)
T−1
t=0

)B−1

j=0
collected by our RL agent, then

the loss LINV(θ) to minimize in order to train our encoder and inverse dynamcis model is:

LINV(θ, j, t) = − ln
(
pθ(a

j
t |fθ(o

j
t), fθ(o

j
t+1))

)
, LINV(θ) =

1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

LINV(θ, j, t),

which is a simple cross-entropy loss. Simultaneously, ICM also trains the one step prediction error
model by minimizing the following one-step prediction loss:

LICM(ϕ, j, t) = ∥gϕ(fθ(ojt), a
j
t)− sg(fθ(o

j
t+1))∥22, LICM(ϕ) =

1

B(T − 1)

B−1∑
j=0

T−2∑
t=0

LICM(θ, j, t),

and the unnormalized reward associated to the transition (ojt , a
j
t , o

j
t+1) is defined as ℓ jt = LICM(θ, j, t)

where 0 ≤ t ≤ T − 2. To obtained the final intrinsic rewards, we just normalize them :rji,t =
ℓ j
t

σr
.

Action
Predictor

Embedding
Predictor

Encoder EncoderEncoder

Encoder

Figure 13: ICM’s Neural Architecture.

16

D Hyperparameter Settings

After normalizing the rewards, we rescale them by 1− γ. We similarly use PopArt normalization
on the output of the value network. We choose an horizon K = 8. We use a discount factor of
γ = 0.999. To train the value function, we use VTrace [8] without offpolicy corrections to define
TD targets for MSE loss with a loss weight of 0.5. We add an entropy loss with a loss weight of
0.001. The VMPO parameters ηinit and αinit are initialized to 0.5. ϵη and ϵα are set to 0.01 and
0.005 respectively. We scale the BYOL loss by a factor of 5.0 when combining losses. The VMPO
top-k parameter is set to 0.5. We use the Adam optimizer with learning rate 10−4 and b1 = 0.9. The
target network for VMPO is updated every 10 learner steps.

We use a batch size of 32 and a sequence length of 128; and a distributed learning setup using 4
TPUv2 for learning and 400 CPU actors for generating data via another inference server using 4
TPUv2 to evaluate the policy, similar to Agent57 [1].

17

	Introduction
	Method
	Background and Notation
	Reminder of BYOL-Explore
	Reminder of Diffusion Models
	BLaDE

	Experiments
	Limitations
	Conclusion
	Regression Approach and Stochastic traps
	General BYOL-Explore and BLaDE Architecture
	Detailed BYOL-Explore and BLaDE architecture for Atari
	Details of Reward Normalization Mechanism

	Baselines
	Hyperparameter Settings

