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ABSTRACT

Data augmentation is widely used in machine learning to enhance training datasets
by introducing minor variations to the original data, traditionally aiming to prevent
overfitting and improve model performance. This paper explores a novel applica-
tion of data augmentation during the inference stage to enhance out-of-distribution
(OOD) detection. The proposed method involves replicating the inference image
multiple times, applying various transformation techniques to each replica, and
then evaluating the detectors using these augmented images. The effectiveness of
this approach is assessed across different detectors, models, and datasets, demon-
strating its potential to improve OOD detection capabilities.

1 INTRODUCTION

In the current era of Artificial Intelligence (AI), Machine Learning (ML) models play a crucial role
in numerous applications ranging from computer vision to natural language processing. However,
despite their success, these models often face inputs for which they have not been trained (i.e.,
uncertainty). Out-of-distribution (OOD) data, which are different from training data in terms of
distribution, can lead to erroneous and unreliable predictions, which in turn can have detrimental
consequences in critical applications (e.g., functional safety-related systems). Therefore, OOD data
detection has become an important area of research in the trustworthy ML field.

OOD detectors are tools that can identify if a given input falls outside the distribution of the training
data. They are crucial in ensuring that the model performs well (in the sense of reducing false-
positives) not just on the data that contains images of the training classes, but also on new, unseen
and unknown. If we perform a thorough review of the state of the art, we observe that different
detectors are proposed (see Section [d). The standard approach for OOD detection involves gener-
ating a scoring function from the trained network such that the In-Distribution (ID) samples show
significantly different scores than OOD.

Data augmentation is a technique commonly used in ML to increase the amount of training data
while diversifying the “view” of an input to which a model is exposed. It consists of creating new
data samples conceptually class agnostic, from existing ones by applying transformation techniques
(e.g., rotation, scaling, horizontal/vertical flipping). It is commonly used during model training with
the aim of preventing overfitting, increasing data diversity and quantity, improving model perfor-
mance and compensating for missing data.

In this paper, we propose employing augmentation during inference and combine it with OOD de-
tectors to increase the models’ degree of trustworthiness. Unlike the traditional use of data augmen-
tation, which is to use it only in training, our approach is based on replicating the inference image a
number of times and applying transformation techniques to each of the replicas. In this way, we can
evaluate each replica on the detector(s) and observe if the results are consistent with small perturba-
tions of each input. We evaluate this approach on different detectors, models and datasets, in order
to know if this can improve the detection of OODs. For this purpose, we have taken as a base work
the articles of |Sun et al.[(2022) and [Park et al.| (2023)).

The remainder of this publication is organized as follows. Section [2] describes the proposed ap-
proach. Section [3] performs the evaluation of the contribution in two different scenarios. Section ]
performs a review of the available literature. Finally, Section E] draws the obtained conclusions.
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2 APPROACH DESCRIPTION

In this study, we propose a novel approach to improve OOD detection using multiple transformed
instances of a single image. Our approach relies on the principle of internal consistency. Similar to
how psychological tests use varied phrasing of similar questions to enhance accuracy, completeness,
and reliability, our proposed method evaluates the consistency of detector results when subjected to
sets of transformed inputs. In other words, it reduces response bias and ensures that responses are
not influenced by the interpretation of a single question (or input image, in our case).

Thus, just as psychologists ask the same question, rephrased differently, we evaluate the model
with the same original image but replicated and transformed in a different way. Hence, allowing to
judge consistency of response. Input transformations cannot be either too small, as this would only
result in an increase of resource usage without any benefit, or too much, as this would only create a
significant reduction of the classification capabilities of the model. In this paper, we propose using
common augmentation methods for the input transformations. Note that what actually constitutes
an optimal augmentation level is still an open question.
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Figure 1: Process of the proposed approach.

The process of the proposed approach (see Figure[I) is as follows:

1. Image Replication: We start with an original image, denoted as I,,;4, and create X copies
of it. This results in a set of images I, Is, ..., I x, where each of them is identical to the
original.

2. Random Transformations: Each image I; is then subjected to a random augmentation,
obtaining X augmented images I = T;(I;).
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3. Model Inference: We then perform inference using a pre-trained model on each trans-
formed image I/, resulting in a set of feature vectors Fi, Fs, ..., Fx .

4. OOD Detection: Each feature vector F; is provided to an OOD detector D, which outputs

a score.

S; = D(F})
The score S; indicates the degree to which the model believes the image I/ to be out-of-
distribution.

5. Median Calculation: Finally, we calculate the median of all scores .S; to obtain a final OOD
verdict for the original image I,,.;4. This is given by

Smedian = median({Sl, SQ, ceey Sx})

We calculate the median using the results obtained by the detectors. That is, we calculate the median
with the results of each augmented image. This results in a median score for each original image.

This approach leverages the power of ensemble methods and robust statistics (the median) to provide
a more reliable and robust OOD detection mechanism. Future work could explore different types of
transformations and models, as well as other statistical measures beyond the median.

From a computational point of view, our approach leads to an increase in processing time and a
higher use of hardware resources as it needs to perform inference on a higher number of images.
Nevertheless, as there are use cases (e.g., medical image processing) where an increase of this mag-
nitude is not a showstopper, the overhead seems tolerable. Note though that in this research we do
not perform any timing or performance examination.

3  EVALUATION

In this section, we evaluate the performance of the OOD detectors when combined with our ap-
proach. Specifically, we assess the detectors by applying them to augmented replicas. For this
purpose, we calculate the median value of the detector results for the replicated images. For ex-
ample, if we have 8 replicas, we observe the score provided by the detector for these 8 cases and
compute the median result. By calculating the median of the replicates, we can find the midpoint of
the same varied question, i.e., the same image is transformed differently.

Note that the scripts used to perform the evaluation are published in|[Unknown|(2024) and are based
on code from|Sun et al.| (2022)) and [Park et al.| (2023)).

OOD Detectors. The analysis is performed using various differential detectors identified during the
literature review: Energy by |Liu et al.|(2020), Nearest Neighbor Guidance (NNGuide) by [Park et al.
(2023), Maximum Softmax Probability (MSP) by |[Hendrycks & Gimpel| (2016), MaxLogit by [We1
et al.| (2022)), Self-Supervised Outlier Detection (SSD) by Sehwag et al.|(2021)), Mahalanobis by|Lee
et al.[ (2018)), and K-th Nearest Neighbor (KNN) by |Sun et al.| (2022). For further information on
these detectors, see Section [}

Metrics to Evaluate the Performance of the Approach. To validate our approach, we examine
two metrics: (i) the false positive rate for OOD instances when the true positive rate for ID instances
is set at 95% (i.e., False Positive Rate at 95% True Positive Rate (FPR95)), and (ii) the Area Under
the Receiver Operating Characteristic Curve (AUROC). These metrics are widely used in OOD de-
tection to evaluate the performance of models for distinguishing between ID and OOD (as in Sun
et al.| (2022); |Park et al.| (2023); Hendrycks & Gimpel (2016); Wei et al.[(2022)). In OOD detection,
lower values of FPR95 indicate superior performance, as they represent fewer negative samples be-
ing incorrectly classified as positive when the true positive rate is set to 95%. Conversely, higher
values of AUROC indicate higher performance, as they reflect a greater ability of the model to dis-
tinguish between in-distribution and out-of-distribution samples. Consequently, for our approach to
be considered valid, FPR95 must decrease and AUROC should increase as the number of augmented
replicas increases.

Diverse Evaluations. To ensure the robustness of our contribution, we perform the same analysis in
different scenarios. This involves using various training data (i.e., ID datasets with different sizes),
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different models (e.g., MobileNetV2, ResNet), different data augmentation techniques (e.g., Pixel
Flip, AugMix), and different datasets as OOD. The analysis is conducted in two scenarios. In the
first scenario, we use a ResNet18 model trained with the CIFAR-10 dataset. In the second scenario,
we employ a MobileNetV2 model trained with the MedMNIST PathMNIST dataset by [Yang et al.
(2023) .

3.1 ID: CIFAR-10 AND RESNETI18

Model architecture. For the first experiment, the model employed is a ResNet18, specifically the
one used by |Sun et al.|(2022). The model is trained with CIFAR-10 dataset by Krizhevsky & Hinton
(2009), that are sized 3 x 32 x 32. The only difference between the model of [Sun et al.| (2022)
and this one, is that this model has been trained with some additional transformation technique (i.e.,
random pixel flip). The model has been trained through 100 epochs and results in an accuracy of
94.24%.

OOD datasets. In addition, it is examined with different OOD datasets, both near OOD and far
OOD. Street View House Numbers (SVHN) (Netzer et al.l [2011), Describable Textures Dataset
(DTD) (Cimpoi et al, [2014), Places365 (Zhou et al., 2017, iSUN (Xu et al., |2015), Large-scale
Scene UNderstanding (LSUN) (Yu et al.;2015) and CIFAR-100 (Krizhevsky & Hintonl 2009). The
latter is considered near OOD as images are similar or even collisions (e.g., trucks in Cifar-10 and
vehicles in Cifar-100, which contains some trucks).

Augmentation techniques. The model is trained with traditional augmentation techniques such as
Random Crop and Random Horizontal Flip. Besides, in order to increase diversity, we add some
noise to the images by changing the color of randomly selected pixels (see Figure [I). Note that
the transformations applied during the training process are also utilized during inference. In other
words, the same augmentation techniques are applied during both training and inference.

Obtained results employing augmented replicas. Firstly, in this preliminar analysis we inspect
if the use of augmented replicas improves detection. In other words, we examine if infering higher
number of transformed images reduces FPR95 and increases AUROC values. Table [T] depicts the
FPRO5 obtained with different replica numbers. All scenarios, i.e., datasets and detectors, show an
enhancement in increasing the number of augmented replicas. In other words, calculating the median
of the scores that belong to the same image transformed differently through several replicas improves
the detection of OODs. Some detectors show a more significant improvement than others, but in all
cases, a decrease of the FPR95 metric is observed. Furthermore, in the case of AUROC analysis,
equivalent results are obtained. Table 2] shows that increasing the number of replicas improves the
AUROC result in all the cases, with no exception. In conclusion, the improved AUROC and FPR95
results indicate that the use of our approach improves the detection of OOD.

Table 1: FPROS5 values for different detectors, datasets and number of replicas (i.e., 1, 8 and 32).
Results obtained with ResNet18 model trained with CIFAR-10 dataset.

SVHN iSUN CIFAR-100 LSUN DTD Places365
detectors 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32

energy 15.07 13.08 1271 [ 29.71 26.57 26.14 | 51.05 4951 4872 | 1722 1536 1479 [ 2562 1578 1537 | 21.29 1991 20.00
nnguide 16.14 1435 1397 | 39.88 36.80 3598 | 60.76 60.17 59.09 | 23.74 2227 21.46 | 18.14 11.81 11.13 | 27.85 26.69 26.19
msp 37.30 29.68 27.44 | 52.18 45.61 4345 | 63.08 57.75 56.38 | 39.98 33.80 31.74 | 70.48 5475 51.12 | 4425 38.16 36.80
maxlogit 1623 14.08 13.18 | 31.60 28.50 26.81 | 51.43 49.79 4837 | 18.60 16.64 15.59 | 29.34 17.22 1681 | 22.75 2129 20.73
ssd 1574 14.68 14.06 | 94.25 9475 9494 | 7850 78.65 77.97 | 49.17 48.65 47.82 | 2358 798 793 | 5198 50.67 49.80
mahalanobis | 13.87 12.40 1199 | 90.03 90.33 90.17 | 74.47 73.70 72.95 | 44.40 4276 4194 | 21.67 736 7.11 | 45.67 43.51 4270
knn 2473 2256 21.37 | 3440 3132 3059 | 5223 50.40 48.81 | 28.71 25.86 2491 | 5438 44.61 4358 | 31.62 29.88 28.96

Table 2: AUROC values for different detectors, datasets and number of replicas (i.e., 1, 8 and 32).
Results obtained with ResNet18 model trained with CIFAR-10 dataset.

SVHN iSUN CIFAR-100 LSUN DTD Places365

detectors 1 8 32 1 8 32 1 8 32 1 8 32 1 8 32 ‘ 1 8 32

energy 97.17 9754 97.63 | 9436 9497 9512 | 83.03 88.88 89.10 | 96.75 97.15 97.27 | 9489 96.52 96.66 | 96.10 96.37 96.43
nnguide 96.67 97.10 97.19 | 92.19 9296 93.15 | 83.94 84.82 85.10 | 9539 95.85 96.00 | 95.77 96.99 97.10 | 94.62 9495 95.01
msp 94.85 95.69 95.94 | 91.99 9294 93.17 | 88.11 89.08 89.35 | 94.36 95.16 9541 | 87.22 9020 90.77 | 93.75 94.43 9458
maxlogit 97.02 9743 97.54 | 9419 94.86 95.01 | 88.01 8892 89.14 | 96.59 97.03 97.16 | 9442 9625 96.41 | 9595 96.26 96.32
ssd 96.82 97.19 97.30 | 67.77 68.88 69.05 | 75.66 76.76 77.18 | 88.19 88.94 89.21 | 95.81 97.73 97.78 | 88.73 89.46 89.58
mahalanobis | 97.34 97.68 97.78 | 76.72 78.06 7833 | 79.95 81.04 81.50 | 91.28 91.98 9224 | 9598 97.80 97.85 | 91.53 92.19 9231
knn 95.94 9643 96.56 | 94.06 94.71 94.87 | 89.73 90.47 90.67 | 9545 95.96 96.10 | 82.16 84.69 8500 | 9493 9532 9539
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Figure [2] can be considered a summary of Tables [T] and [2] Figure shows the mean values of all
detectors. In other words, we calculate the mean value of detectors with one replica, 8 replicas and
32 in order to examine the tendency of detectors. The graphs show the FPR95 decreasing while
AUROC values increase in all datasets. In addition, it is possible to observe that the improvement
is not linear. In both metrics, it reaches an asymptote. Hence, although our proposal improves
detection, it is also a limited enhancement.
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Figure 2: Mean FPRO5 and mean AUROC of all detectors through different OOD datasets. Results
obtained with ResNet18 model trained for CIFAR-10 dataset.

Non Augmented vs Augmented inference. The results presented above compare traditional ap-
proaches and the use of large number of augmented replicates. However, this does not indicate that
the detection of OOD is necessarily superior to using the detectors as in the current literature. That is,
without replication and transformation. Thereby, we compare the results with one augmented image
vs non augmented. In other words, we examine the difference between i) traditional OOD analysis
without data augmentation during inference and ii) using augmented images during inference.

Tables [3|and [] provide the obtained results. The comparison is done with 32 replicas and the tables
also provides the Improvement column (i.e., Impr.). If there is an improvement the result appears
with +. On the contrary, if there is no improvement it appears with — and the value is boxed. Tables
[3|and [] show that there are only a few cases where there is no improvement. Besides, in some of
these cases the difference is very small.

Table 3: FPRO9S5 values for different approaches (i.e., no augmentation vs 32). Results obtained with
ResNet18 model trained with CIFAR-10 dataset.

SVHN iSUN ‘ CIFAR-100 LSUN DTD ‘ Places365
detectors no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr.
energy 1425 1271 +1.54 | 2871 26.14  +2.57 | 50.33 4872 +1.61 | 1643 1479 +1.64 | 1236 1537 |—3.01| | 20.81 20.00 +0.81
nnguide 1576 1397 +1.79 | 39.92 3598 +3.94 | 60.12 59.09 +1.03 | 23.11 2146 +1.65| 8.88 11.13 2751 2619 +1.32
msp 34.10 27.44 +6.66 | 49.94 4345 +649 | 60.60 5638 +4.22 | 37.73 31.74 +5.99 | 57.82 51.12 0 | 4231 36.80 +551
maxlogit 1558 13.18 +2.40 | 30.87 26.81 50.96 4837 +2.59 | 17.94 1559 +2.35| 1441 16.81 4 2247 2073 +1.74
ssd 1593 14.06 +1.87 | 9440 9494 79.28 77.97 +1.31 | 49.27 47.82 +145|4532 793 43739 | 5326 49.80 +3.46
mahalanobis | 14.01  11.99 +2.02 | 90.12 90.17 7472 7295 +1.77 | 4426 4194 +2.32 | 4496 7.11  +37.85 | 4633 4270 +3.63
knn 2408 2137 +2.71 | 33.96 30.59 51.48 4881 +2.67 | 28.61 2491 +3.70 | 63.85 43.58 +20.27 | 31.59 2896 +2.63

Table [4] displays how most cases of non-improvement occur in DTD datasets. Although the dif-
ferences are not large, they occur with different detectors. It is also essential to mention that in
this same dataset, where the other detectors did not perform so well (e.g., Mahalanobis, SSD and
KNN), they have improved considerably with our approach. So for some cases, our approach con-



Under review as a conference paper at ICLR 2025

Table 4: AUROC values for different approaches (i.e., no augmentation vs 32). Results obtained
with ResNet18 model trained with CIFAR-10 dataset.

SVHN iSUN CIFAR-100 LSUN DTD Places365
detectors no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr.
energy 9732 97.63 +0.31 | 9447 95.12 +0.65 | 88.18 89.10 +0.92 | 9691 9727 +0.36 | 97.29 96.66 |—0.63| | 96.16 96.43 +0.27
nnguide 96.74 97.19 +0.45 | 9224 93.15 4091 | 8448 8510 +0.62 | 95.65 96.00 +0.35 | 97.58 97.10 |—0.48|| 9479 95.01 +0.22
msp 95.11 9594 +0.83 | 9229 93.17 +0.88 | 88.35 89.35 +1.00 | 94.64 9541 +0.77 | 91.11 90.77 |—-0.34|| 93.94 9458 +0.64
maxlogit 97.17 97.54 +0.37 | 94.34 9501 +0.67 | 88.19 89.14 +0.95 | 96.76 97.16 +0.40 | 97.05 9641 |—-0.64]| | 96.02 96.32 +0.30
ssd 96.85 9730 +0.45 | 69.03 69.05 +0.02 | 76.18 77.18 +1.00 | 88.62 89.21 +0.59 | 88.79 97.78 +8.99 | 88.87 89.58 +0.71
mahalanobis | 97.39 97.78 +0.39 | 77.92 7833 +0.41 | 80.50 81.50 +1.00 | 91.66 9224 +0.58 | 88.76 97.85 +9.09 | 91.71 9231 +0.60
knn 96.05 96.56 +0.51 | 94.26 94.87 +0.61 | 89.95 90.67 +0.72 | 9557 96.10 +0.53 | 73.17 85.00 +11.83 | 95.03 9539 +0.36

verges towards the detection performance of traditional inference, but, in the majority of the cases,
it improves results considerably.

Accuracy evaluation. The employed model results in an accuracy of 94.24%. This value is obtained
with the validation dataset of Cifar-10 with no augmentation technique applied (i.e., as commonly
calculated). However, as in our approach we employ augmentation techniques during inference,
the accuracy is also affected. Replica 1 resulted in an accuracy of 94.12, 8 replicas resulted in
an accuracy of 94.17, and 32 replicas in an accuracy of 94.20. Hence, with these results, we can
not state that increasing the number of replicas or using augmented replicas have a statistically
significant impact on the accuracy.

3.2 ID: PATHMNIST AND MOBILENETV?2

Model architecture. For the second analysis, we use MobileNetV2 architecture for the model.
This different model architecture ensures that the contribution is not only viable for ResNets. Fur-
thermore, the model is trained with PathMNIST dataset (Yang et al., [2023) from the MedMNIST
collection. MedMNIST comprises a series of datasets from the medical field. PathMNIST dataset
offers two advantages in our analysis. Firstly, the source images are sized 3 x 224 x 224, allowing
us to examine if the proposed approach is viable for larger images. Secondly, the medical domain is
particularly interested in being able to classify images with certainty. Besides, the timing cost that
entails our approach, as it requires inferring a larger set of images, is not critical for a high number
of use cases (e.g., diagnostics). The MobileNetV2 model has been trained through 100 epochs, with
a resulting accuracy of 94.33%.

OOD datasets. In addition, the model is evaluated with different OOD datasets: Describable Tex-
tures Dataset (DTD) (Cimpoi et al., [2014), Places365 (Zhou et al., 2017), SUN (Xiao et al.,|2010),
iNaturalist (Van Horn et al.| [2018)).

Augmentation technique. The images are resized to a fixed size, which is required by OOD data
sets with different sizes. Center crop of size 192 x 192 pixels is performed for the resize. The
image is randomly flipped horizontally with a probability of 0.5. Random Rotation until 30 degrees
is also applied. Finally, AugMix technique applies a combination of augmentations with a severity
level of 5 to enhance the diversity of the replicas. Note that Hendrycks et al.| (2019) proposed
AugMix with the aim of “improving robustness and uncertainty”. The transformation techniques
used in inference are the same ones used in the training process.

It is noteworthy to mention that different transformation techniques (compared to Section [3.1]) are
used to ensure that our approach is not only valid for specific transformations. Besides,

Obtained results employing augmented replicas. In this analysis, we obtain similar results and
conclusions to the previous experiment. Tables [5]and [6] provide the results of AUROC and FPR95
for the different replicas (i.e., 1, 8 and 32) and datasets.

Results from Tables [5| and [6] show that the performance of the detectors is improved by using trans-
formed replicates. On the one hand, FPR95 decreases in all presented scenarios, with no exception.
On the other hand, AUROC value increases when we employ a higher number of replicas. Thereby,
all employed detectors improve in all datasets with our approach.

Figure [3] shows the mean value of the detectors using different number of replicas. In this case, we
evaluate it with 1, 8 and 32 replicas. The image clearly shows that both AUROC and FRP95 are
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Table 5: FPR9S5 values for different detectors, datasets and number of replicas (i.e., 1, 8 and 32).
Results obtained with MobileNetV2 model trained with PathMNIST dataset.

iNaturalist SUNS0 DTD Places50

detectors 1 8 32 1 8 32 1 8 32 1 8 32

energy 2441 9.62 9.09 | 29.54 1491 1452|2562 1578 1537 | 32.81 1743 17.28
nnguide 1528 490 428 | 2226 10.39 9.76 | 18.14 11.81 11.13 | 25.83 1237 11.30
msp 65.30 4897 4443 | 6595 4756 43.07 | 70.48 5475 51.12 | 68.64 49.77 45.14
maxlogit 28.59 11.77 11.07 | 32.73 16.60 16.04 | 29.34 17.22 16.81 | 36.39 19.29 18.53
ssd 29.59 7.06 6.62 | 3595 694 638 | 2358 798 793 | 4271 9.75 8.82
mahalanobis | 28.32 632 588 | 33.60 6.32 552 |21.67 736 7.1 |40.77 9.10 7.90
knn 58.09 4345 41.87 | 58.53 4097 39.83 | 54.38 44.61 4358 | 63.43 46.08 43.95

Table 6: AUROC values for different detectors, datasets and number of replicas (i.e., 1, 8 and 32).
Results obtained with MobileNetV2 model trained with PathMNIST dataset.

iNaturalist SUNS50 DTD Places50

detectors 1 8 32 1 8 32 1 8 32 1 8 32

energy 96.11 98.00 98.12 | 95.09 97.25 97.38 | 9489 96.52 96.66 | 94.61 9696 97.12
nnguide 96.84 98.41 98.51 | 95.89 97.80 97.90 | 9577 96.99 97.10 | 95.37 9749 97.61
msp 89.38 92.88 93.51 | 89.35 9297 9355 | 87.22 90.20 90.77 | 88.59 92.41 93.06
maxlogit 95.68 97.77 9790 | 9476 97.09 97.23 | 9442 96.25 96.41 | 9426 96.77 96.95
ssd 9542 9795 98.07 | 9492 97.86 98.00 | 95.81 97.73 97.78 | 94.17 97.52 97.70
mahalanobis | 95.57 98.01 98.12 | 95.11 9793 98.07 | 9598 97.80 97.85 | 9440 97.60 97.78
knn 86.70 90.07 90.41 | 87.83 91.47 91.77 | 82.16 84.69 85.00 | 86.54 90.37 90.82

improving. Furthermore, they show how that improvement reaches an asymptote. The improvement
is significant from 1 to 8 but slows down from 8 to 32 replicates. Therefore, we conclude that there
is little to gain from more than 32 replicas for this case (i.e., model, training dataset, transformation

techniques).
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Figure 3: Mean FPR95 and mean AUROC of all detectors through different OOD datasets. Results
obtained with MobileNetV2 model trained for PathMNIST dataset.

Non Augmented vs Augmented inference. Tables [3]and ] displays the obtained results. Similar to
Cifar-10 results, Tables[3]and[d]report that there are only a few cases where there is no improvement.
Furthermore, there are no cases with a significant deteriorate.
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Table 7: FPR95 values for different approaches (i.e., no augmentation vs 32). Results obtained with
MobileNetV2 model trained with PathMNIST dataset.

iNaturalist SUNS0 DTD Places50

detectors no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr.

energy 607 9.09 |-3.02]| 1574 1452 +122 [ 1236 1537 [-3.01|| 1814 1728 +0.86
nnguide 460 428 4032 | 1188 976 4212 | 888 1113 [—2.25]| 13.68 1130 +2.38
msp 4728 4443 +2.85 | 56.69 4307 +13.62 |57.82 5112 +6.70 | 57.87 4514 +12.73
maxlogit 779 11.07 18.14 1604 +2.10 | 1441 16.81 2055 18.53  +2.02
ssd 6449 662 +57.87 | 81.69 638 47531 | 4532 7.93 43739 | 8237 882 +73.55
mahalanobis | 64.36 588  +5848 | 81.05 552 47553 | 4496 7.1  +37.85 | 81.73 7.90 +73.83
knn 7455 41.87 +32.68 | 85.17 39.83 +4534 | 6385 43.58 +2027 | 8597 4395 +42.02

Table 8: AUROC values for different approaches (i.e., no augmentation vs 32). Results obtained
with MobileNetV2 model trained with PathMNIST dataset.

iNaturalist SUNS0 DTD Places50

detectors no 32 Impr. no 32 Impr. no 32 Impr. no 32 Impr.

energy 9846 98.12 [—0.34]] 9725 97.38 +0.13 | 9729 96.66 [—0.63]|96.92 97.12 +0.20
nnguide 9844 98.51  +0.07 | 9746 97.90 +0.44 | 9758 97.10 |[-0.48||97.05 97.61 +0.56
msp 9347 9351  +0.04 | 9209 93.55 +1.46 | 9111 9077 [—0.34]|91.56 93.06 +1.50
maxlogit 9827 97.90 97.03 9723 4020 | 97.05 9641 |—0.64]| 96.68 9695 +0.27
ssd 85.83 98.07 +1224 | 7881 98.00 +19.19 | 8879 97.78 4899 | 7847 97.70 +19.23
mahalanobis | 85.71 98.12 +12.41 | 78.86 98.07 +19.21 | 88.76 97.85 +9.09 | 7854 97.78 +19.24
knn 7435 9041 +16.06 | 6923 9177 +2254 | 7317 8500 +11.83 | 69.18 90.82 +21.64

Accuracy evaluation. The accuracy obtained evaluating the validation dataset with no augmenta-
tion is 94.33. If we employ transformed images and replicas, the accuracies obtained are 92.42 (one
replica), 92.12 (8 replicas) and 92.25 (32 replicas).

4 RELATED WORK

In the realm of OOD detectors for Neural Networks (NNs), several noteworthy methods have been
proposed. MSP method by /Hendrycks & Gimpel|(2016)), leverages probabilities from softmax distri-
butions, observing that correctly classified examples often have greater maximum softmax probabil-
ities than erroneously classified and OOD examples. The MaxLogit method by|Wei et al.|(2022), ad-
dresses the overconfidence issue in neural networks by enforcing a constant vector norm on the log-
its during training. The Mahalanobis method utilizes the Mahalanobis distance for OOD detection
(Lee et al.| [2018). The Self-Supervised Outlier Detection (SSD) method employs self-supervised
representation learning (Sehwag et al, |2021) followed by a Mahalanobis distance-based detection
in the feature space. The GradNorm method uses information extracted from the gradient space for
OOD detection (Huang et al.| 2021). The KNN method employs non-parametric nearest-neighbor
distance for OOD detection (Sun et al., [2022). The Energy-based method uses an energy score for
OOD detection, distinguishing in- and out-of-distribution samples more effectively than traditional
softmax scores (Liu et al.|,[2020). Lastly, the Nearest Neighbor Guidance (NNGuide) method guides
the classifier-based score to respect the boundary geometry of the data manifold, reducing the over-
confidence of OOD samples while preserving the fine-grained capability of the classifier-based score
(Park et al.,[2023). These methods represent the current state-of-the-art in OOD detection for NN.

5 CONCLUSIONS

This paper proposes to use augmented replicas during inference to improve OOD detectors. This
work offers a simple but effective contribution. By simply replicating images and transforming
them before inference, we are able to improve OOD detection in the vast majority of the cases. In an
abstract, one can say that we allow the OOD detectors to view the inputs from slightly different per-
spectives. This approach enhances the “knowledge” they may gain, including determining whether
an input is OOD. Furthermore, the contribution is based on simple statistics such as the median,
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but it is also open to more elaborate statistical methods. Therefore, with the presented results, we
conclude that our proposal is a contribution to the field of trustworthy Al.
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A APPENDIX:

In the data and results presented throughout this article, the augmentation used for inference was the
same as that used during the training process. However, in this section, we also evaluate the results
of the two models with varying levels of image transformations during inference. Since the models
were not retrained, the transformation level during training remains unchanged, e.g., 5 pixel flips in
CIFAR-10 and AugMix severity level of 5. For inference, some of the transformation parameters
are modified.

Random Pixel Flip For the CIFAR-10 model, trained with 5 Random Pixel Flips, we evaluated its
performance with different numbers of pixel flips. Figure ] shows the FPR95 and AUROC data for
two detectors as the image noise increases, i.e., with an increasing number of Random Pixel Flips.
The Out-of-Distribution (OOD) data used in this experiment is taken from the CIFAR-100 dataset
(near OOD).

The graph indicates that as the noise in the images increases, both FPR95 and AUROC improve.
However, there is a point where the noise becomes counterproductive, making it difficult to identify
the discriminating characteristics of the images. Depending on the measurement and the detector,
the optimal number of Random Pixel Flips varies, but it generally falls within the range of 8 to 32.

FPR95 and AUROC values for NNGuide and KNN
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NNGuide FPR95
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0 20 0 60 80 100 120
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Figure 4: FPR95 and AUROC for NNGuide and KNN with different numbers of Pixel Flips trans-
formation. Results predictions are obtained with the median value of 8 replicas and Cifar-100 OOD.

AugMix Figure [5] depicts the results with different AugMix severity levels. The graph presents
the results for SUN50 OOD. In this case, NNGuide results do not vary significantly with different
severities. However, for KNN, increasing severity is counterproductive.
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In summary, these data show that identifying the optimal technique is not straightforward. The
variation in results depends on several factors, including the model, detector, ID data, OOD data,
transformation, and the level of transformation.

FPR95 and AUROC values for NNGuide and KNN
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Figure 5: FPR95 and AUROC for NNGuide and KNN with different severity of AugMix transfor-
mation. Results predictions are obtained with the median value of 8 replicas and SUN50 OOD.

These results suggest that the approach allows for manipulation of the transformation level. How-
ever, further study is needed to determine which transformations are effective and how to select the
optimal levels.
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