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Abstract

Recent reinforcement learning (RL) methods have achieved success in various
domains. However, multi-agent RL (MARL) remains a challenge in terms of
decentralization, partial observability and scalability to many agents. Meanwhile,
collective behavior requires resolution of the aforementioned challenges, and
remains of importance to many state-of-the-art applications such as active matter
physics, self-organizing systems, opinion dynamics, and biological or robotic
swarms. Here, MARL via mean field control (MFC) offers a potential solution to
scalability, but fails to consider decentralized and partially observable systems. In
this paper, we enable decentralized behavior of agents under partial information by
proposing novel models for decentralized partially observable MFC (Dec-POMFC),
a broad class of problems with permutation-invariant agents allowing for reduction
to tractable single-agent Markov decision processes (MDP) with single-agent RL
solution. We provide rigorous theoretical results, including a dynamic programming
principle, together with optimality guarantees for Dec-POMFC solutions applied to
finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy
gradient methods for MARL via centralized training and decentralized execution,
together with policy gradient approximation guarantees. In addition, we improve
upon state-of-the-art histogram-based MFC by kernel methods, which is of separate
interest also for fully observable MFC. We evaluate numerically on representative
collective behavior tasks such as adapted Kuramoto and Vicsek swarming models,
being on par with state-of-the-art MARL. Overall, our framework takes a step
towards RL-based engineering of artificial collective behavior via MFC.

1 Introduction

Reinforcement learning (RL) and multi-agent RL (MARL) has found success in varied domains with
few agents, including e.g. robotics (Polydoros & Nalpantidis, 2017), language models (Ouyang et al.,
2022) or transportation (Haydari & Yılmaz, 2020). However, tractability issues remain for systems
with many agents, especially under partial observability (Zhang et al., 2021b). Here, specialized
approaches give tractable solutions, e.g. via factorizations (Qu et al., 2020; Zhang et al., 2021a). We
propose a general, tractable approach for a broad range of decentralized, partially observable systems.

Collective behavior & partial observability. Of practical interest is the design of simple local
interaction rules to fulfill global, cooperative objectives by emergence of global behavior (Vicsek &
Zafeiris, 2012). For example, intelligent self-organizing robotic swarms provide many applications
such as farming, and general design frameworks remains elusive (Hrabia et al., 2018; Schranz et al.,
2021). Other domains include group decision-making and opinion dynamics (Zha et al., 2020),
biomolecular self-assembly (Yin et al., 2008), and active matter (Cichos et al., 2020; Kruk et al.,
2020), e.g. nano-particles (Nasiri & Liebchen, 2022) or microswimmers (Narinder et al., 2018).
Overall, there is a need for scalable MARL under decentralization and partial information.

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).



Decentralized execution
(MFC-type Dec-POMDP)

...
<latexit sha1_base64="pzUJXgsZ3ixXd/X7vPzDKIDt2BA=">AAACfnicfVHbSsNAEJ3Ge73roy/BovhiTapgHwsi+Khgq9CGstlM2sVNNuxOhBL6Db7qp/k3bi+IacGBhcM5MztnZsJMCkOe911xVlbX1jc2t6rbO7t7+weHRx2jcs2xzZVU+jVkBqVIsU2CJL5mGlkSSnwJ3+4m+ss7aiNU+kyjDIOEDVIRC87IUu1epMj0D2pe3ZuGuwz8OajBPB77hxVuC3meYEpcMmO6vpdRUDBNgkscV3u5wYzxNzbAroUpS9AExdTt2D2zTOTGStuXkjtl/1YULDFmlIQ2M2E0NIvahPzVzkqtKG4GhUiznDDls05xLl1S7mR2NxIaOcmRBYxrYc26fMg042Q3VP3vp5KHSWdSSpryoEOU72i3YOKpw5JmOJMYBcUsp6QVYZgsEkpG46o9i794hGXQadT963rj6abWup8faBNO4BQuwIdbaMEDPEIbOAj4gE/4csA5dy6dq1mqU5nXHEMpnOYPrgTFbQ==</latexit>

i = 1, ... , N
<latexit sha1_base64="sZSkNUK753pcKn9PNVuo88lYLUE="></latexit>

...
<latexit sha1_base64="pzUJXgsZ3ixXd/X7vPzDKIDt2BA=">AAACfnicfVHbSsNAEJ3Ge73roy/BovhiTapgHwsi+Khgq9CGstlM2sVNNuxOhBL6Db7qp/k3bi+IacGBhcM5MztnZsJMCkOe911xVlbX1jc2t6rbO7t7+weHRx2jcs2xzZVU+jVkBqVIsU2CJL5mGlkSSnwJ3+4m+ss7aiNU+kyjDIOEDVIRC87IUu1epMj0D2pe3ZuGuwz8OajBPB77hxVuC3meYEpcMmO6vpdRUDBNgkscV3u5wYzxNzbAroUpS9AExdTt2D2zTOTGStuXkjtl/1YULDFmlIQ2M2E0NIvahPzVzkqtKG4GhUiznDDls05xLl1S7mR2NxIaOcmRBYxrYc26fMg042Q3VP3vp5KHSWdSSpryoEOU72i3YOKpw5JmOJMYBcUsp6QVYZgsEkpG46o9i794hGXQadT963rj6abWup8faBNO4BQuwIdbaMEDPEIbOAj4gE/4csA5dy6dq1mqU5nXHEMpnOYPrgTFbQ==</latexit>

xi
0

<latexit sha1_base64="F+mzz4Qn6rulYnSDaj7HQgXe03o="></latexit>

xi
1<latexit sha1_base64="wfwSO+tawWyjKiqRFLF4FpK6FIw="></latexit>

r (µN
0 )

<latexit sha1_base64="ElarFJmxYb2n4gmgKbSSrwxV7Rw="></latexit>

Centralized training system

...
<latexit sha1_base64="pzUJXgsZ3ixXd/X7vPzDKIDt2BA=">AAACfnicfVHbSsNAEJ3Ge73roy/BovhiTapgHwsi+Khgq9CGstlM2sVNNuxOhBL6Db7qp/k3bi+IacGBhcM5MztnZsJMCkOe911xVlbX1jc2t6rbO7t7+weHRx2jcs2xzZVU+jVkBqVIsU2CJL5mGlkSSnwJ3+4m+ss7aiNU+kyjDIOEDVIRC87IUu1epMj0D2pe3ZuGuwz8OajBPB77hxVuC3meYEpcMmO6vpdRUDBNgkscV3u5wYzxNzbAroUpS9AExdTt2D2zTOTGStuXkjtl/1YULDFmlIQ2M2E0NIvahPzVzkqtKG4GhUiznDDls05xLl1S7mR2NxIaOcmRBYxrYc26fMg042Q3VP3vp5KHSWdSSpryoEOU72i3YOKpw5JmOJMYBcUsp6QVYZgsEkpG46o9i794hGXQadT963rj6abWup8faBNO4BQuwIdbaMEDPEIbOAj4gE/4csA5dy6dq1mqU5nXHEMpnOYPrgTFbQ==</latexit>

i = 1, ... , N
<latexit sha1_base64="sZSkNUK753pcKn9PNVuo88lYLUE="></latexit>

...
<latexit sha1_base64="pzUJXgsZ3ixXd/X7vPzDKIDt2BA=">AAACfnicfVHbSsNAEJ3Ge73roy/BovhiTapgHwsi+Khgq9CGstlM2sVNNuxOhBL6Db7qp/k3bi+IacGBhcM5MztnZsJMCkOe911xVlbX1jc2t6rbO7t7+weHRx2jcs2xzZVU+jVkBqVIsU2CJL5mGlkSSnwJ3+4m+ss7aiNU+kyjDIOEDVIRC87IUu1epMj0D2pe3ZuGuwz8OajBPB77hxVuC3meYEpcMmO6vpdRUDBNgkscV3u5wYzxNzbAroUpS9AExdTt2D2zTOTGStuXkjtl/1YULDFmlIQ2M2E0NIvahPzVzkqtKG4GhUiznDDls05xLl1S7mR2NxIaOcmRBYxrYc26fMg042Q3VP3vp5KHSWdSSpryoEOU72i3YOKpw5JmOJMYBcUsp6QVYZgsEkpG46o9i794hGXQadT963rj6abWup8faBNO4BQuwIdbaMEDPEIbOAj4gE/4csA5dy6dq1mqU5nXHEMpnOYPrgTFbQ==</latexit>

Limiting Dec-MFC MDP 

...
<latexit sha1_base64="pzUJXgsZ3ixXd/X7vPzDKIDt2BA=">AAACfnicfVHbSsNAEJ3Ge73roy/BovhiTapgHwsi+Khgq9CGstlM2sVNNuxOhBL6Db7qp/k3bi+IacGBhcM5MztnZsJMCkOe911xVlbX1jc2t6rbO7t7+weHRx2jcs2xzZVU+jVkBqVIsU2CJL5mGlkSSnwJ3+4m+ss7aiNU+kyjDIOEDVIRC87IUu1epMj0D2pe3ZuGuwz8OajBPB77hxVuC3meYEpcMmO6vpdRUDBNgkscV3u5wYzxNzbAroUpS9AExdTt2D2zTOTGStuXkjtl/1YULDFmlIQ2M2E0NIvahPzVzkqtKG4GhUiznDDls05xLl1S7mR2NxIaOcmRBYxrYc26fMg042Q3VP3vp5KHSWdSSpryoEOU72i3YOKpw5JmOJMYBcUsp6QVYZgsEkpG46o9i794hGXQadT963rj6abWup8faBNO4BQuwIdbaMEDPEIbOAj4gE/4csA5dy6dq1mqU5nXHEMpnOYPrgTFbQ==</latexit>

by open-loop control

by optim
al det. policy,

()
<latexit sha1_base64="OcMRwZgtdhoEqs1xiI/Nsab1V/k=">AAACdXicfVFNSwMxEE3X7/qtRxGCteKp7vqBHkUvHitYLbRLyaazbTDZLMmsUJb+Ba/61/wlXs22RVwFBwKP92Yyb2aiVAqLvv9R8ebmFxaXlleqq2vrG5tb2zuPVmeGQ4trqU07YhakSKCFAiW0UwNMRRKeoufbQn96AWOFTh5wlEKo2CARseAMC6or4ri3VfMb/iToXxDMQI3MotnbrnS6fc0zBQlyyaztBH6KYc4MCi5hXO1mFlLGn9kAOg4mTIEN84nZMa07pk9jbdxLkE7YnxU5U9aOVOQyFcOh/a0V5LdWL7XC+CrMRZJmCAmfdoozSVHTYnTaFwY4ypEDjBvhzFI+ZIZxdAuq1inPLGr1/58lNS9MoNbSlmcegnwBtxAbT8yWNMuZhH6YT3NKWh5Falx15wh+L/8veDxtBGeNi/vz2vXN7DDLZI8ckGMSkEtyTe5Ik7QIJ0PySt7Ie+XT2/cOvaNpqleZ1eySUngnXzNowWc=</latexit>

()
<latexit sha1_base64="OcMRwZgtdhoEqs1xiI/Nsab1V/k=">AAACdXicfVFNSwMxEE3X7/qtRxGCteKp7vqBHkUvHitYLbRLyaazbTDZLMmsUJb+Ba/61/wlXs22RVwFBwKP92Yyb2aiVAqLvv9R8ebmFxaXlleqq2vrG5tb2zuPVmeGQ4trqU07YhakSKCFAiW0UwNMRRKeoufbQn96AWOFTh5wlEKo2CARseAMC6or4ri3VfMb/iToXxDMQI3MotnbrnS6fc0zBQlyyaztBH6KYc4MCi5hXO1mFlLGn9kAOg4mTIEN84nZMa07pk9jbdxLkE7YnxU5U9aOVOQyFcOh/a0V5LdWL7XC+CrMRZJmCAmfdoozSVHTYnTaFwY4ypEDjBvhzFI+ZIZxdAuq1inPLGr1/58lNS9MoNbSlmcegnwBtxAbT8yWNMuZhH6YT3NKWh5Falx15wh+L/8veDxtBGeNi/vz2vXN7DDLZI8ckGMSkEtyTe5Ik7QIJ0PySt7Ie+XT2/cOvaNpqleZ1eySUngnXzNowWc=</latexit>

C

D

A

B

y i
0

<latexit sha1_base64="AIN1VQEj778pwwog8BOUNgL9nUw="></latexit>

y i
1<latexit sha1_base64="pIlVprDLpTDKmLp2zDNCAkN1Pg8="></latexit>

ui
1<latexit sha1_base64="SE7TfvcN2iGHIJzhs+/C5MIJrJI="></latexit>

ui
0

<latexit sha1_base64="TzfuCQioZJIy/uxZgDwr9bxRBIk="></latexit>

µN
0

<latexit sha1_base64="yHg3PXfoAf5seFr9Se7Zpy5nH/w=">AAACeHicfVFNSwMxEE3X7/pZPXoJlqJeym5V9Fj04kkUrBXatWTTWRuabJZkVihLf4RX/WX+FU+mH4ir4EDg8d5M5s1MlEph0fc/St7C4tLyyupaeX1jc2t7p7L7YHVmOLS4lto8RsyCFAm0UKCEx9QAU5GEdjS8mujtFzBW6OQeRymEij0nIhacoaPaXZU93fT83k7Vr/vToH9BMAdVMo/bXqXU6fY1zxQkyCWzthP4KYY5Myi4hHG5m1lIGR+yZ+g4mDAFNsynfse05pg+jbVxL0E6ZX9W5ExZO1KRy1QMB/a3NiG/tVqhFcYXYS6SNENI+KxTnEmKmk6mp31hgKMcOcC4Ec4s5QNmGEe3o3KN8syiVv//WVDziQnUWtrizAOQL+AWYuOp2YJmOZPQD/NZTkHLo0iNy+4cwe/l/wUPjXpwUj+7O602L+eHWSX75IAckYCckya5JrekRTgZklfyRt5Lnx71Dr3jWapXmtfskUJ4jS+GfsJt</latexit>

µN
1<latexit sha1_base64="M1hrxDs3z1MCCW2kngsshqKA6k0="></latexit>

r (µN
1 )

<latexit sha1_base64="izvREbfrpBFeEQTuEJYUvQ9zrwA="></latexit>

⇡̌0
<latexit sha1_base64="M06Dyhp5MnjLkWREOj4kcCKmrPU="></latexit>

⇡̌1
<latexit sha1_base64="Z3UW2El68Q4zTepydLUOhGLUdRY="></latexit>

x̃ i
0

<latexit sha1_base64="6Axfi0l9Vhl5m6K9p+7I672cBik=">AAADfXicfVJdb9MwFPVaPkb52AePvFhUkXgYJRmg8TjBC49DotukNlS2c9NateNg30yLov6NvcLf4teAk7bQtBJXinR1zj32yfHluZIOw/DXXqd77/6Dh/uPeo+fPH12cHh0fOlMYQUMhVHGXnPmQMkMhihRwXVugWmu4IrPP9X81Q1YJ032FcscYs2mmUylYOih8RilSoDefpOTcHLYDwdhU3S3iVZNn6zqYnLUGY0TIwoNGQrFnBtFYY5xxSxKoWDRGxcOcibmbAoj32ZMg4urxvSCBh5JaGqs/zKkDbqpqJh2rtTcT2qGM7fN1eBfLmhdhemHuJJZXiBkYnlTWiiKhtYR0ERaEKhK3zBhpTdLxYxZJtAH1QuoKBwa/f8zW2xVm0BjlGv/8wzUDfhAXNqYbXFOMAVJXC1nWlzFud4CjJkj425BlxXQ3JoUXP2sTL3+XjAlsaR+RMFOUHW8G0quPMUNswmtXdE6Y++8pcqkgNQH8k8ljPYkrqebd4venJ5QQDFoabUU1tQ5L9baNWKmluWzsjV9u9oGunGTB1yv59cx2l6+3ebydBC9Hbz/8q5//nG1mPvkBXlJXpGInJFz8plckCERJCd35Af52fndDbon3cFytLO30jwnreqe/QGjnxz7</latexit>

x̃ i
1<latexit sha1_base64="AnHzkyOPcAf6BSG+xgud08kut20="></latexit>
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Figure 1: A: Partially-observable Vicsek problem: agents must align headings (arrows), but observe
only partial information (e.g. heading distribution in grey circle for orange agent). B: The decen-
tralized model as a graphical model (grey: observed variables). C: In centralized training, we also
observe the mean field, guiding the learning of upper-level actions π̌. D: The solved limiting MDP.

Scalable and partially observable MARL. Despite its many applications, decentralized coopera-
tive control remains a difficult problem even in MARL (Zhang et al., 2021b), especially if coupled
with the simultaneous requirement of scalability. Recent scalable MARL methods include graphical
decompositions (Qu et al., 2020; Zhang et al., 2021a) amongst others (Zhang et al., 2021b). However,
most remain limited to full observability (Zhang et al., 2021a). One line of algorithms applies
pairwise mean field (MF) approximations over neighbors (Yang et al., 2018), which has yielded
decentralized, partially observable extensions (Subramanian et al., 2021, 2022). Relatedly, MARL
based on mean field games (MFG, non-cooperative) and mean field control (MFC, cooperative)
focus on a broad class of systems with many exchangeable agents. While the theory for MFG is
developed (Huang et al., 2006; Şen & Caines, 2019; Saldi et al., 2019), to the best of our knowledge,
neither MFC-based MARL algorithms nor discrete-time MFC have been proposed under partial
information and decentralization, except in special linear-quadratic cases (Tottori & Kobayashi, 2022;
Wang et al., 2021). Further, MFGs have been useful for analyzing emergence of collective behavior
(Perrin et al., 2021; Carmona et al., 2022), but less for "engineering" collective behavior to achieve
global objectives as in MFC, which is our focus. This is in contrast to rational, selfish agents, as a
decomposition of global objectives into per-agent rewards is non-trivial (Waelchli et al., 2023; Kwon
et al., 2023). Beyond scalability to many agents, general MFC for MARL is also not yet scalable
to high-dimensional state-actions due to discretization of the simplex (Carmona et al., 2019b; Gu
et al., 2021), except in linear-quadratic models (Fu et al., 2019; Carmona et al., 2019a). Instead, we
consider general discrete-time MFC and scale to higher dimensions via kernels. We note that our
model has a similar flavor to TD-POMDPs (Witwicki & Durfee, 2010), as the MF also abstracts
influence from all other agents. However, TD-POMDP addresses different types of problems, as it
considers local per-agent states, while the MF is both globally shared and influenced by all agents.

Our contribution. A tractable framework for cooperative control, that can handle decentralized,
partially observable systems, is missing. By the preceding motivation, we propose such a framework
as illustrated in Figure 1. Our contributions may be summarized as (i) proposing the first discrete-
time MFC model with decentralized and partially observing agents; (ii) providing accompanying
approximation theorems, reformulations to a tractable single-agent Markov decision process (MDP),
and novel optimality results over equi-Lipschitz policies; (iii) establishing a MARL algorithm with
policy gradient guarantees; and (iv) presenting kernel-based MFC parametrizations of separate interest
for general, higher-dimensional MFC. The algorithm is verified on classical collective swarming
behavior models, and compared against standard MARL. Overall, our framework steps toward
tractable RL-based engineering of artificial collective behavior for large-scale multi-agent systems.
For the archival version of this work, we refer the reader to Cui et al. (2024).

2 Decentralized Partially Observable MFC

In this section, we introduce the motivating finite MFC-type decentralized partially observable control
problem, as a special case of cooperative, general decentralized partially observable Markov decision
processes (Dec-POMDPs (Bernstein et al., 2002; Oliehoek & Amato, 2016)). We then proceed to
simplify in three steps of (i) taking the infinite-agent limit, (ii) relaxing partial observability during
training, and (iii) correlating agent actions during training, in order to arrive at a tractable MDP with
optimality guarantees, see also Figures 1 and 2. Proofs are found in Appendices D–S.
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solves via deterministic upper-level MFC policy (Proposition 2)

solves via open-loop sequence of decision rules (Proposition 1)

solves via propagation of chaos (mean field limit, Theorem 1)

                                    Dec-MFC MDP (Centralized, fully observable), Section 2.4

Dec-MFC (Decentralized, mean field observable), Section 2.3

Dec-POMFC (Decentralized, partially observable), Section 2.2

                                    Finite MFC-type Dec-POMDP (Decentralized, partially observable), Section 2.1

reformulate as MDP

System of interest

Algorithmic solution

Figure 2: Three steps of approximation (mean field limit, open-loop control, and MDP reformulation)
allow us to reformulate the broad class of MFC-type Dec-POMDP to a tractable Dec-MFC MDP.

In a nutshell, Dec-POMDPs are hard, and hence we reformulate into the Dec-POMFC, for which
we develop a new theory for optimality of Dec-POMFC solutions in the finite Dec-POMDP. The
solution of Dec-POMFC itself also remains hard, because its MDP is not just continuous, but infinite-
dimensional for continuous state-actions. The MDP is later addressed in Section 3 by (i) kernel
parametrizations and (ii) approximate policy gradients on the finite Dec-POMDP (Theorem 3).

2.1 MFC-type cooperative multi-agent control

To begin, we define the finite Dec-POMDP of interest, which is assumed to be MFC-type. In other
words, (i) agents are permutation invariant, i.e. only the overall distribution of agent states matters,
and (ii) agents observe only part of the system. We assume agents i ∈ [N ] := {1, . . . , N} endowed
with random states xi

t, observations yit and actions ui
t at times t ∈ T := N from compact metric

state, observation and action spaces X , Y , U (finite or continuous). Agents depend on other agents
only via the empirical mean field µN

t := 1
N

∑
i∈[N ] δxi

t
. Policies are memory-less and shared by

all agents, archetypal of collective behavior under simple rules (Hamann, 2018), and of interest to
compute-constrained agents, including e.g. nano-particles or small robots. Optionally, memory and
history-dependence can be integrated into the state, see Appendix E. Agents act according to policy
π ∈ Π from a class Π ⊆ P(U)Y×T of policies, with spaces of probability measures P(·), equipped
with the 1-Wasserstein metric W1 (Villani, 2009). Starting with initial distribution µ0, xi

0 ∼ µ0, the
MFC-type Dec-POMDP dynamics are

yit ∼ P y(yit | xi
t, µ

N
t ), ui

t ∼ πt(u
i
t | yit), xi

t+1 ∼ P (xi
t+1 | xi

t, u
i
t, µ

N
t ) (1)

for all (i, t) ∈ [N ]×T , with transition kernels P : X×U×P(X ) → P(X ), P y : X×P(X ) → P(Y),
objective JN (π) = E[

∑
t∈T γtr(µN

t )] to maximize over π ∈ Π under reward function r : P(X ) →
R, and discount factor γ ∈ (0, 1). Results generalize to finite horizons, average per-agent rewards
rper : X → R, r(µN

t ) =
∫
rperdµ

N
t , and joint state-observation-action MFs via enlarged state space.

Since general Dec-POMDPs are hard (Bernstein et al., 2002), our model establishes a tractable special
case of high generality. Standard MFC already covers a broad range of applications, e.g. see surveys
for finance (Carmona, 2020) and engineering (Djehiche et al., 2017) applications, which can now be
handled under partial information. In addition, many classical, inherently partially observable models
are covered by MFC-type Dec-POMDPs, such as the Kuramoto or Vicsek models in Section 4, where
many-agent convergence is known as propagation of chaos (Chaintron & Diez, 2022).

2.2 Limiting MFC system

In order to achieve tractability for large multi-agent systems, the first step is to take the infinite-agent
limit. By a law of large numbers (LLN), this allows us to describe large systems only by the MF
µt. Consider a representative agent as in (1) with states x0 ∼ µ0, xt+1 ∼ P (xt+1 | xt, ut, µt),
observations yt ∼ P y(yt | xt, µt) and actions ut ∼ πt(ut | yt). Then, its state probability law
replaces the empirical state distribution, informally µt = L(xt) ≡ limN→∞ µN

t . Looking only at
the MF, we hence obtain the decentralized partially observable MFC (Dec-POMFC) system

µt+1 = L(xt+1) = T (µt, πt) :=

∫∫∫
P (x, u, µt)πt(du | y)P y(dy | x, µt)µt(dx) (2)

by deterministic transitions T : P(X )× P(U)Y → P(X ) and objective J(π) =
∑∞

t=0 γ
tr(µt).
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Approximation guarantees. Under mild continuity assumptions, the Dec-POMFC model in (2)
constitutes a good approximation of large-scale MFC-type Dec-POMDP in (1) with many agents.
Assumption 1a. The transitions P , P y and rewards r are Lipschitz with constants LP , LPy , Lr.
Assumption 1b. The class of policies Π is the set of all LΠ-Lipschitz policies for some LΠ > 0,
i.e. for all t ∈ T and π ∈ Π, we have that πt : Y → P(U) is LΠ-Lipschitz. Alternatively, we may
assume unrestricted policies if (i) observations only depend on an agent’s state, and (ii) |X | < ∞.

Lipschitz continuity of the model is commonly assumed (Huang et al., 2006; Gu et al., 2021; Mondal
et al., 2022), and in general at least (uniform) continuity is required: Consider a counterexample with
uniform initial µ0 over states A,B. If dynamics, observations, or rewards jump between regimes at
µ(A) = µ(B) = 0.5, the finite system will randomly experience all regimes, while limiting MFC
experiences only the regime at µ(A) = µ(B) = 0.5. Meanwhile, Lipschitz policies are not only stan-
dard in MFC literature (Pasztor et al., 2021; Mondal et al., 2022) by neural networks (NNs) (Araujo
et al., 2023), but also fulfilled for finite Y trivially without loss of generality (LΠ := diam(U)), and
for continuous Y by kernel parametrizations in Section 3. We extend MFC approximation theorems
(Gu et al., 2021; Mondal et al., 2022; Cui et al., 2023) to partial observations and compact spaces.

Theorem 1. Fix an equicontinuous family of functions F ⊆ RP(X ). Under Assumptions 1a–1b, the
MF converges in the sense of supπ∈Π supf∈F E

[∣∣f(µN
t )− f(µt)

∣∣]→ 0 at all times t ∈ T .

The approximation rate is O(1/
√
N) for finite state-actions, using equi-Lipschitz F (Appendix D).

Hence, the easier Dec-POMFC simplifies otherwise hard Dec-POMDPs. Indeed, we later show that
such optimal Lipschitz Dec-POMFC policies are guaranteed to exist via closedness of joint-measures
under equi-Lipschitz kernels (Appendix K), see Propositions 1, 2 and Theorem 2 later.
Corollary 1. Under Assumptions 1a–1b, any optimal Dec-POMFC policy π ∈ argmaxπ′∈Π J(π′)
is ε-optimal in the MFC-type Dec-POMDP, JN (π) ≥ supπ′∈Π JN (π′)− ε, with ε → 0 as N → ∞.

2.3 Rewriting policies with mean field observations

Now introducing the next system for reduction to an MDP, writing µ̄, π̄ etc., let policies depend also
on µt, i.e. policies "observe" the mean field. While we could reason that agents might observe the
MF or use filtering to estimate it (Åström, 1965), more importantly, the limiting MF is deterministic.
Therefore, w.l.o.g. we obtain the decentralized mean field observable MFC (Dec-MFC) dynamics

µ̄t+1 = T (µ̄t, π̄t(µ̄t)) :=

∫∫∫
P (x, u, µt)π̄t(du | y, µ̄t)P

y(dy | x, µ̄t)µ̄t(dx), (3)

with shorthand π̄t(µ̄t) = π̄t(· | ·, µ̄t), initial µ̄0 = µ0 and according objective J̄(π̄) =
∑∞

t=0 γ
tr(µ̄t)

to optimize over (now MF-dependent) policies π̄ ∈ Π̄ ⊆ P(U)Y×P(X )×T .

Deterministic open-loop control transforms optimal Dec-MFC policies π̄ ∈ argmaxπ̄′∈Π̄ J̄(π̄′) into
optimal Dec-POMFC policies π ∈ argmaxπ∈Π J(π) with decentralized execution, and vice versa:
For given π̄, compute deterministic MFs (µ̄0, µ̄1, . . .) via (3) and let π = Φ(π̄) by πt(du | y) =
π̄(du | y, µ̄t). Analogously, represent π ∈ Π by π̄ ∈ Π̄ with constant π̄t(ν) = πt for all ν.
Proposition 1. For any π̄ ∈ Π̄, define (µ̄0, µ̄1, . . .) as in (3). Then, for π = Φ(π̄) ∈ Π, we have
J̄(π̄) = J(π). Inversely, for any π ∈ Π, let π̄t(ν̄) = πt for all ν̄, then again J̄(π̄) = J(π).
Corollary 2. Optimal Dec-MFC policies π̄ ∈ argmaxπ̄′∈Π̄ J̄(π̄′) yield optimal Dec-POMFC
policies Φ(π̄), i.e. J(Φ(π̄)) = supπ′∈Π J(π′).

Knowing initial µ0 is often realistic, as deployment is commonly for well-defined problems of interest.
Even then, knowing µ0 is not strictly necessary (Section 4). In contrast to standard deterministic
open-loop control, (i) agents have stochastic dynamics and observations, and (ii) agents randomize
actions instead of playing a trajectory, still leading to quasi-deterministic MFs by the LLN.

2.4 Reduction to Dec-MFC MDP

Lastly, we reformulate as an MDP with more tractable theory and algorithms, writing µ̂, π̂ etc. The
recent MFC MDP (Pham & Wei, 2018; Carmona et al., 2019b; Gu et al., 2019) reformulates fully
observable MFC as MDPs with higher-dimensional state-actions. Similarly, we reduce Dec-MFC to
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an MDP with joint state-observation-action distributions as its MDP actions. The Dec-MFC MDP has
states µ̂t ∈ P(X ) and actions ht ∈ H(µ̂t) ⊆ P(X ×Y×U) in the set of joint ht = µ̂t⊗P y(µ̂t)⊗ π̌t

under any LΠ-Lipschitz policy π̌t ∈ P(U)Y . Here, ν ⊗K is the product measure of measure ν and
kernel K, and νK is the measure νK =

∫
K(· | x)ν(dx). For π̌t ∈ P(U)Y , µxy ∈ P(X × Y), we

write µxy ⊗ π̌t by letting π̌t constant on X . In other words, the desired joint ht results from all agents
replacing the previous system’s policy π̄t by lower-level policy π̌t, which may be reobtained from ht

(Appendix K, disintegration (Kallenberg, 2021)). Equivalently, identify H(µ) with µ and classes of
π̌t yielding the same joint, and in practice we parametrize π̌t. Thus, we obtain the MDP dynamics

ht ∼ π̂(µ̂t), µ̂t+1 = T̂ (µ̂t, ht) :=

∫∫∫
P (x, u, µ̂t)ht(dx,dy,du) (4)

for Dec-MFC MDP policy π̂ ∈ Π̂ and objective Ĵ(π̂) = E [
∑∞

t=0 γ
tr(µ̂t)]. The Dec-MFC MDP

policy π̂ is "upper-level", as we sample ht from π̂, to apply the lower-level policy π̌t[ht] to all agents.

Guidance by mean field dependence. Intuitively, the MF guides policy search in potentially hard,
decentralized problems, and reduces to a single-agent MDP where we make some existing theory
compatible. First, we formulate a dynamic programming principle (DPP), i.e. exact solutions by
Bellman’s equation for the value function V (µ) = suph∈H(µ) r(µ) + γV (T̂ (µ, h)) (Hernández-
Lerma & Lasserre, 2012). Here, a central theoretical novelty is closedness of joint measures under
equi-Lipschitz policies (Appendix K). Concomitantly, we obtain optimality of stationary deterministic
π̂. For technical reasons, only here we assume Hilbertian Y (e.g. finite or Euclidean) and finite U .
Assumption 2. The observations Y are a metric subspace of a Hilbert space. Actions U are finite.
Theorem 2. Under Assumptions 1a–1b and 2, there exists an optimal stationary, deterministic policy
π̂ for the Dec-MFC MDP, with π̂(µ) ∈ argmaxh∈H(µ) r(µ) + γV (T̂ (µ, h)).

Decentralized execution. Importantly, guidance by MF is only for training and not execution.
An optimal upper-level policy π̂ ∈ argmaxπ̂′∈Π̂ Ĵ(π̂) is optimal also for the initial system, if it is
deterministic, and an optimal one exists by Theorem 2. The lower-level policies π̄t ≡ π̌t are obtained
by inserting the sequence of MFs µ̂0, µ̂1, . . . into π̂, and remain non-stationary stochastic policies.

Proposition 2. For deterministic π̂ ∈ Π̂, let µ̂t as in (4) and π̄ = Ψ(π̂) by π̄t(ν) = π̌t for all ν, then
Ĵ(π̂) = J̄(π̄). Inversely, for π̄ ∈ Π̄, let π̂t(ν) = ν ⊗ P y(ν)⊗ π̄t(ν) for all ν, then Ĵ(π̂) = J̄(π̄).

Note that the determinism of the upper-level policy is strictly necessary: A simple counterexample is
a problem where agents should choose to aggregate to one state. If the upper-level policy randomly
chooses between moving all agents to either A or B, then a corresponding random agent policy splits
agents and fails to aggregate. At the same time, randomization of agent actions remains necessary for
optimality, as the problem of equally spreading would require uniformly random agent actions.

Complexity. Tractability of multi-agent control heavily depends on information structure (Mahajan
et al., 2012). General Dec-POMDPs have doubly-exponential complexity (NEXP, Bernstein et al.
(2002)) and are harder than fully observable control (PSPACE, Papadimitriou & Tsitsiklis (1987)). In
contrast, Dec-POMFC surprisingly imposes little additional complexity over standard MFC, as the
MFC MDP remains deterministic in the absence of common noise correlating agents (Carmona et al.,
2016). An analysis with common noise is possible, e.g. if observing the mean field, but out of scope.

3 Dec-POMFC Policy Gradient Methods

All that remains is to solve Dec-MFC MDPs. As we obtain continuous Dec-MFC MDP states and
actions even for finite X , Y , U , and infinite-dimensional ones for continuous X , Y , U , a value-based
approach can be hard. Our policy gradient (PG) approach allows finding simple policies for collective
behavior, with emergence of global intelligent behavior described by rewards r, under arbitrary
(Lipschitz) policies. For generality, we use NN upper-level and kernel lower-level policies. While
lower-level (Lipschitz, (Araujo et al., 2023)) NNs policies could be considered akin to hypernetworks
(Ha et al., 2016), the resulting distributions over NN parameters as MDP actions are too high-
dimensional and failed in our experiments. We directly solve finite-agent MFC-type Dec-POMDPs
by solving the Dec-MFC MDP in the background. Indeed, the theoretical optimality of Dec-MFC
MDP solutions is guaranteed over Lipschitz policies in Π.
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Corollary 3. Under Assumptions 1a–1b, a deterministic Dec-MFC solution π̂ ∈ argmaxπ̂′ Ĵ(π̂′) is
ϵ-optimal in the Dec-POMDP, JN (Φ(Ψ(π̂))) ≥ supπ′∈Π JN (π′)− ϵ, with ϵ → 0 as N → ∞.

Histogram vs. kernel parametrizations. Except for linear-quadratic algorithms (Wang et al.,
2021; Fu et al., 2019; Carmona et al., 2019a), the only approach to learning MFC in continuous
spaces X ⊆ Rn, n ∈ N (and here Y) is by partitioning and "discretizing" (Carmona et al., 2019b; Gu
et al., 2021).1 Unfortunately, partitions fail Lipschitzness and hence approximation guarantees, even
in standard MFC. Instead, we use kernel representations for MFs µN

t and lower-level policies π̌t.

We represent P(X )-valued MDP states µN
t not by counting agents in each bin, but instead mollify

around each center xb ∈ X of MX bins b ∈ [MX ] using kernels. The result is Lipschitz and
approximates histograms arbitrarily well (Miculescu, 2000, Theorem 1). Hence, we obtain input
logits Ib =

∫
κ(xb, ·)dµN

t = 1
N

∑
i∈[N ] κ(xb, x

i
t) for some kernel κ : X × X → R and b ∈ [MX ].

Output logits constitute mean and log-standard deviation of a diagonal Gaussian over parameter
representations ξ ∈ Ξ of π̌t. We obtain Lipschitz π̌t by representing π̌t via MY points yb ∈ Y such
that π̌t(u | y) =∑b∈[MY ] κ(yb, y)pb(u)/

∑
b∈[MY ] κ(yb, y). Here, we consider Lλ-Lipschitz maps

λb from parameters ξ ∈ Ξ to distributions pb = λb(ξ) ∈ P(U) with compact parameter space Ξ, and
for kernels choose RBF kernels κ(x, y) = exp(−∥x− y∥2/(2σ2)) with some bandwidth σ2 > 0.

Proposition 3. Under RBF kernels κ, for any ξ and Euclidean Y , lower-level policies Λ(ξ)(· | y) :=∑
b∈[MY ] κ(yb, y)λb(ξ)/

∑
b∈[MY ] κ(yb, y) are LΠ-Lipschitz in y as in Assumption 1b, whenever

σ2 exp2
(
− 1

2σ2 diam(Y)2
)
≥ 1

LΠ
diam(Y) diam(U)maxy∈Y∥y∥, and such σ2 > 0 always exists.

Proposition 3 ensures Assumption 1b if needed. To achieve optimality by Corollary 3, deterministic
policies commonly result from convergence of stochastic PGs, taking mean actions, or are guaranteed
by deterministic PGs (Silver et al., 2014; Lillicrap et al., 2016). Beyond allowing for (i) Lipschitz
guarantees, and (ii) finer control over agent actions, another advantage of kernels is (iii) the improved
complexity over histograms. Even a histogram with only 2 bins per dimension requires 2d bins in
d-dimensional spaces, while kernel representations may place e.g. 2 points per dimension, improving
upon the otherwise necessarily exponential complexity, see also Appendix A for empirical support.

Direct multi-agent reinforcement learning algorithm. Applying RL directly to the Dec-MFC
MDP would be satisfactory only under known MFC models. Importantly, (i) we do not always
have access to the model, and (ii) even if we do, parametrizing MFs in arbitrary compact X is hard.
Instead, it is more practical and tractable to train on a finite system. Our direct MARL approach
hence trains on a finite N -agent MFC-type Dec-POMDP of interest, in a model-free manner. In order
to exploit the underlying MDP, our algorithm assumes during training that (i) the MF is observed,
and (ii) agents can correlate actions (e.g. centrally, or sharing seeds). Therefore, the finite system
(1) is adjusted for training by correlating agent actions on a single centrally sampled lower-level
policy π̌t. Now write π̂θ(ξt | µ̃N

t ) as density over parameters ξt ∈ Ξ under a base measure (discrete,
Lebesgue). Substituting ξt as actions parametrizing ht in the MDP (4), e.g. by using RBF kernels,
yields the centralized training system as seen in Figure 1 for stationary policy π̂θ parametrized by θ,

π̌t = Λ(ξ̃t), ξ̃t ∼ π̂θ(µ̃N
t ),

ỹit ∼ P y(ỹit | x̃i
t, µ̃

N
t ), ũi

t ∼ π̌t(ũ
i
t | ỹit), x̃i

t+1 ∼ P (x̃i
t+1 | x̃i

t, ũ
i
t, µ̃

N
t ), ∀i ∈ [N ].

(5)

Policy gradient approximation. Since we train on a finite system, it is not immediately clear
whether centralized training really yields the PG for the underlying Dec-MFC MDP, also in existing
literature for learning MFC. We will show this practically relevant fact up to an approximation.
The general PG for stationary π̂θ (Sutton et al., 1999; Peters & Schaal, 2008) is ∇θJ(π̂

θ) =
(1 − γ)−1 Eµ∼d

π̂θ ,ξ∼π̂θ(µ)

[
Qθ(µ, ξ)∇θ log π̂

θ(ξ | µ)
]

with Qθ(µ̂, ξ) = E[
∑∞

t=0 γ
tr(µ̂t) | µ̂0 =

µ, ξ0 = ξ] under parametrized actions ξt in (4), and using sums dπ̂θ = (1− γ)
∑

t∈T γtLπ̂θ (µ̂t) of
laws of µ̂t under π̂θ. Our approximation motivates MFC for MARL by showing that the underlying
background Dec-MFC MDP is approximately solved under Lipschitz parametrizations, e.g. we
normalize parameters ξ to finite action probabilities, or use bounded diagonal Gaussian parameters.

1Existing Q-Learning with kernel regression (Gu et al., 2021) is for finite states X with kernels on P(X ),
and learns on the MFC MDP. We allow continuous Y by kernels on Y itself, and learn on the finite-agent system.
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Algorithm 1 Dec-POMFPPO (during centralized training)
1: for iteration n = 1, 2, . . . do
2: for time t = 0, . . . , Blen − 1 do
3: Sample central Dec-MFC MDP action π̌t = Λ(ξt), ξt ∼ π̂θ(µ̃N

t ).
4: for agent i = 1, . . . , N do
5: Sample per-agent action ũi

t ∼ π̌t(ũ
i
t | ỹit) for observation ỹit.

6: Perform actions, observe reward r(µ̃N
t ), next MF µ̃N

t+1, termination flag dt+1 ∈ {0, 1}.
7: for updates i = 1, . . . , NPPO do
8: Sample mini-batch b, |b| = blen from data B := ((µ̃N

t , ξt, r
N
t , dt+1, µ̃

N
t+1))t≥0.

9: Update policy π̂θ via PPO loss ∇θLθ on b, using GAE (Schulman et al., 2016).
10: Update critic V θ′

via critic L2-loss ∇θ′Lθ′ on b.

Assumption 3. The policy π̂θ(ξ | µ) and its log-gradient ∇θ log π̂
θ(ξ | µ) are LΠ̂, L∇Π̂-Lipschitz in

µ and ξ (or alternatively in µ for any ξ, and uniformly bounded). The parameter-to-distribution map is
Λ(ξ)(· | y) :=∑b κ(yb, y)λb(ξ)(·)/

∑
b κ(yb, y), with kernels κ and Lλ-Lipschitz λb : Ξ → P(U).

Theorem 3. Centralized training on system (5) approximates the true gradient of the underlying
Dec-MFC MDP, i.e. under RBF kernels κ as in Proposition 3, Assumptions 1a–1b and 3, as N → ∞,∥∥∥(1− γ)−1 Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[
Q̃θ(µ, ξ)∇θ log π̂

θ(ξ | µ)
]
−∇θJ(π̂

θ)
∥∥∥→ 0

with dNπ̂θ = (1− γ)
∑

t∈T γtLπ̂θ (µ̃N
t ) and Q̃θ(µ, ξ) = E

[∑∞
t=0 γ

tr(µ̃N
t )
∣∣ µ0 = µ, ξ0 = ξ

]
.

The value function Q̃θ in the finite system is then substituted in actor-critic manner by on-policy
and critic estimates. The Lipschitz conditions of π̂θ in Assumption 3 are fulfilled by Lipschitz
NNs (Pasztor et al., 2021; Mondal et al., 2022; Araujo et al., 2023) and our parametrizations. The
approximation is novel, building a foundation for MARL via MFC directly on a finite MARL
problem. Our results also apply to fully observable MFC by yt = xt. Though gradient estimates
allow convergence guarantees in finite MDPs (e.g. Qu et al. (2020, Theorem 5)), Dec-MFC MDP
state-actions are always non-finite. In practice, we use empirically more efficient proximal policy
optimization (PPO, Schulman et al. (2017); Yu et al. (2022)) to obtain the decentralized partially
observable mean field PPO algorithm (Dec-POMFPPO, Algorithm 1).

By Theorem 3, we may learn directly on the MFC-type Dec-POMDP system (1). During training,
the algorithm (i) assumes to observe the MF, and (ii) samples only one centralized ht. Knowledge of
the MF during training aligns our framework with the popular centralized training, decentralized
execution (CTDE) paradigm. During execution, decentralized policies suffice for near-optimality by
Corollary 3 without agents knowing the MF or coordinating centrally. Decentralized training can
also be achieved, if the MF is observable and all agents use the same seed to correlate their actions.

4 Evaluation

In this section, we empirically evaluate our algorithm, comparing against independent and multi-agent
PPO (IPPO, MAPPO) with state-of-the-art performance (Yu et al., 2022; Papoudakis et al., 2021). For
comparison, we share hyperparameters and architectures between algorithms, see Appendices A–C.

Problems. In the Aggregation problem we consider a typical continuous single integrator model,
commonly used in the study of swarm robotics (Soysal & Sahin, 2005; Bahgeçi & Sahin, 2005).
Agents observe their own position noisily and should aggregate. The classical Kuramoto model
is used to study synchronization of coupled oscillators, finding application not only in physics,
including quantum computation and laser arrays (Acebrón et al., 2005), but also in diverse biological
systems, such as neuroscience and pattern formation in self-organizing systems (Breakspear et al.,
2010; Kruk et al., 2020). Here, via partial observability, we consider a version where each oscillator
can see the distribution of relative phases of its neighbors. Finally, we implement the Kuramoto
model on a random geometric graph (e.g. (Diaz-Guilera et al., 2009)) via omitting movement in its
independent generalization, the Vicsek model (Vicsek et al., 1995; Vicsek & Zafeiris, 2012). Agents
j have two-dimensional position pjt and current headings ϕj

t , to be controlled by their actions. The
key metric of interest for both Kuramoto and Vicsek is polarization via the polar order parameter
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Figure 3: Dec-POMFPPO training curves (episode return) with shaded standard deviation over 3
seeds for N = 200 in (a) Aggregation; Vicsek on a (b): torus; (c): Möbius strip; (d): projective plane;
(e): Klein bottle; and (f) Kuramoto on a torus.

Figure 4: Training curves (episode return) with shaded standard deviation over 3 seeds and N = 200,
in (a) Aggregation (box), (b) Vicsek (torus), (c) Kuramoto (torus). For comparison, we also plot the
best return averaged over 3 seeds for Dec-POMFPPO in Figure 3 (MF).

R = | 1N
∑

j exp(iϕ
j
t )|. Here, R ranges from 0 – fully unsynchronized – to 1 – perfect alignment of

agents. Experimentally, we consider various environments, such as the torus, Möbius strip, projective
plane and Klein bottle. Importantly, agents only observe relative headings of others.

Training results. In Figure 3 it is evident that the training process of MFC for many agents is
relatively stable by guidance via MF and reduction to single-agent RL. In Appendix A, we also see
similar results with significantly fewer agents, comparable to results obtained with larger numbers of
agents. This highlights that the training procedure yields satisfactory outcomes, even in scenarios
where the mean field approximation may not yet be perfectly exact, further underscoring the generality
and ability to adapt across different regimes. On the same note, we see in Figure 4, that our method is
usually on par with state-of-the-art IPPO and MAPPO for many agents, e.g. here N = 200, although
standard MARL is more sample-efficient due to experience sharing and smaller action spaces.

Verification of theory. In Figure 5, as the number of agents rises, the performance quickly tends to
its limit, i.e. the objective converges, supporting Theorem 1 and Corollary 1, as well as applicability
to arbitrarily many agents. Analogously, conducting open-loop experiments on our closed-loop
trained system in Figure 6 demonstrates the robust generality of learned collective behavior with
respect to the randomly sampled initial agent states, supporting Theorem 3 and Corollary 2.

Qualitative analysis. In the Vicsek model, as seen exemplarily in Figure 6 and Appendix A, the
algorithm learns to align in various topological spaces. In all considered topologies, the polar order
parameter surpasses 0.9, with the torus system even reaching a value close to 0.99. As for the
angles at different iterations of the training process, as depicted in Figure 7, the algorithm gradually
learns to form a concentrated cluster of angles. Note that the cluster center angle is not fixed, but
rather changes over time. This behavior can not be observed in the classical Vicsek model, though
extensions using more sophisticated equations of motion for angles have reported similar results
(Kruk et al., 2020). For more details and further experiments or visualizations, we refer the reader
to Appendices A–C. Figure 7 and additional figures, with similar results for other topologies in
Appendix A, e.g. Figures 18–22, illustrate the qualitative behavior observed across the different
manifolds. Agents on the continuous torus demonstrate no preference for a specific direction across
consecutive training runs. Conversely, agents trained on other manifolds exhibit a tendency to avoid

Figure 5: The performance of the best of 3 Dec-POMFPPO policies transferred to N -agent systems
(in blue, error bars for 95% confidence interval), averaged over 50 episodes, and compared against
the performance in the training system (in red). Problems (a)-(f) and training are as in Figure 3.
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BA C

Figure 6: A, B: For the Vicsek (torus) problem with forward velocity control, the open-loop behavior
(B) shows little difference in performance of agents (rods, color indicating heading) over the closed-
loop behavior (A). C: Visualization of agents (triangles) under the Vicsek model on the torus.

BA

Figure 7: A: Agent angle alignment in the Vicsek model on the torus, plotted as density over time; B:
Alignment of agents in the Vicsek model on the projective plane, as in Figure 6.

the direction that leads to an angle flip when crossing the corresponding boundary. Especially for
the projective plane topology, the agents tend to aggregate more while aligning, even without adding
another reward for aggregation. For Aggregation in Figure 8, we also find successful aggregation
of agents in the middle. In practice, one may define any objective of interest. For example, we can
achieve misalignment in Figure 8, resulting in polar order parameters on the order of magnitude of
10−2, and showing the generality of the framework.

Additional experiments. Some other experiments are discussed in Appendix A, including the
generalization of our learned policies to different starting conditions, a comparison of the Vicsek
model trained or transferred to different numbers of agents, additional interpretative visualizations,
similar success for the Kuramoto model, and a favorable comparison between RBFs and histograms
for higher dimensions, showing the generality of the framework and supporting our claims.

5 Conclusion and Discussion

Our framework provides a novel methodology for engineering artificial collective behavior in a rigor-
ous and tractable manner, whereas existing scalable learning frameworks often focus on competitive
or fully observable models (Guo et al., 2023; Zheng et al., 2018). We hope our work opens up new
applications of partially-observable swarm systems. Our method could be of interest due to (i) its
theoretical optimality guarantees while covering a large class of problems, and (ii) its surprising
simplicity in rigorously reducing complex Dec-POMDPs to MDPs, with same complexity as MDPs
from fully observable MFC, thus allowing analysis of Dec-POMDPs via a tractable MDP.

The current theory remains limited to non-stochastic MFs, which in the future could be analyzed for
stochastic MFs via common noise (Perrin et al., 2020; Cui et al., 2023; Dayanikli et al., 2023). Further,
sample efficiency could be analyzed (Huang et al., 2023), and parametrizations for history-dependent
policies using more general NNs could be considered, e.g. via hypernetworks (Ha et al., 2016; Li
et al., 2023). Lastly, extending the framework to consider additional practical constraints and sparser
interactions, such as physical collisions or via graphical decompositions, may be fruitful.

BA

Figure 8: A: Qualitative behavior for misalignment of agents in the Vicsek (torus) problem. B: The
two-dimensional Aggregation problem, with agent distances to mean as colors.
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A Supplementary Experiments

In this section, we give additional details on experiments. The mathematical description of problems
can be found in Appendix C.

We use the manifolds as depicted in Figure 9 and as described in the following. Here, we visualize
the qualitative results as in the main text for the remaining topologies. Due to technical limitations,
all agents are drawn, including the ones behind a surface. To indicate where an agent belongs, we
colorize the inside of the agent with the color of its corresponding surface.

Figure 9: Two-dimensional manifolds visualized in three-dimensional space. In order from left to
right: Möbius strip, torus, projective plane (Boy’s surface), and Klein bottle (pinched torus).

Torus manifold. The (flat) torus manifold is obtained from the square [−1, 1]2 by identifying
(x,−1) ∼ (x, 1) and (−1, y) ∼ (1, y) for all x, y ∈ [−1, 1]. For the metric, we use the toroidal
distance inherited from the Euclidean distance d2, which can be computed as

d(x, y) = min
t1,t2∈{−1,0,1}

d2(x, y + 2t1e1 + 2t2e2)

where e1, e2 denote unit vectors. In Figure 9, we visualize the torus by mapping each point (x, y) ∈
[−1, 1]2 to a point (X,Y, Z) in 3D space, given by

X = (2 + 0.75 cos (π(x+ 1))) cos (π(y + 1)) ,

Y = (2 + 0.75 cos (π(x+ 1))) sin (π(y + 1)) ,

Z = 0.75 sin (π(x+ 1)) .

The results have been described in the main text in Figure 7. Here, also note that the torus – by
periodicity and periodic boundary conditions – can essentially be understood as the case of an infinite
plane, consisting of infinitely many copies of the square [−1, 1]2 laid next to each other.
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Möbius strip. The Möbius strip is obtained from the square [−1, 1]2 by instead only identifying
(−1,−y) ∼ (1, y) for all y ∈ [−1, 1], i.e. only the top and bottom side of the square, where directions
are flipped. We then use the inherited distance

d(x, y) = min
t2∈{−1,0,1}

d2(x, (1− 2 · 1t2 ̸=0, 1)
T ⊙ y + 2t2e2)

where ⊙ denotes the elementwise (Hadamard) product.

We visualize the Möbius strip in Figure 9 by mapping each point (x, y) ∈ [−1, 1]2 to

X =
(
1 +

x

2
cos
(π
2
(y + 1)

))
cos (π(y + 1)) ,

Y =
(
1 +

x

2
cos
(π
2
(y + 1)

))
sin (π(y + 1)) ,

Z =
x

2
sin
(π
2
(y + 1)

)
.

As we can see in Figure 10, the behavior of agents is learned as expected: Agents learn to align along
one direction on the Möbius strip.

Figure 10: Qualitative visualization of Vicsek behavior on the Möbius strip manifold for uniform
initialization. The 300 agents (triangles) align into one direction on the Möbius strip.

Projective plane. Analogously, the projective plane is obtained by identifying and flipping both
sides of the square [−1, 1]2, i.e. (−x,−1) ∼ (x, 1) and (−1,−y) ∼ (1, y) for all x, y ∈ [−1, 1]. We
use the inherited distance

d(x, y) = min
t1,t2∈{−1,0,1}

d2(x, (1− 2 · 1t2 ̸=0, 1− 2 · 1t1 ̸=0)
T ⊙ y + 2t1e1 + 2t2e2)

and though an accurate visualization in less than four dimensions is difficult, we visualize in Figure 11
by mapping each point (x, y) ∈ [−1, 1]2 to a point (X,Y, Z) on the so-called Boy’s surface, with

z =
x+ 1

2
exp (iπ(y + 1)) ,

g1 = −3

2
Im

(
z(1− z4)

z6 +
√
5z3 − 1

)
,

g2 = −3

2
Re

(
z(1− z4)

z6 +
√
5z3 − 1

)
,

g3 = Im

(
1 + z6

z6 +
√
5z3 − 1

)
− 1

2
,

X =
g1

g21 + g22 + g23
,

Y =
g2

g21 + g22 + g23
,

Z =
g2

g21 + g22 + g23
.

As we can see in Figure 11, under the inherited metric and radial parametrization, agents tend to
gather at the bottom of the surface.
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Figure 11: Qualitative visualization of Vicsek behavior on the projective plane manifold for uniform
initialization. The 300 agents (triangles) align over time by gathering at the bottom right.

Klein bottle. Similarly, the Klein bottle is obtained by identifying both sides of the square [−1, 1]2

and flipping one side, i.e. (x,−1) ∼ (x, 1) and (−1,−y) ∼ (1, y) for all x, y ∈ [−1, 1]. We use the
inherited distance

d(x, y) = min
t1,t2∈{−1,0,1}

d2(x, (1− 2 · 1t2 ̸=0, 1)
T ⊙ y + 2t1e1 + 2t2e2)

and visualize in Figure 12 by the pinched torus, i.e. mapping each (x, y) ∈ [−1, 1]2 to a point
(X,Y, Z) with

X = (2 + 0.75 cos (π(x+ 1))) cos (π(y + 1)) ,

Y = (2 + 0.75 cos (π(x+ 1))) sin (π(y + 1)) ,

Z = 0.75 sin (π(x+ 1))) cos
(π
2
(y + 1)

)
.

As we can see in Figure 12, agents may align by aggregating on the inner and outer ring, such that
they may avoid switching sides at the pinch.

Figure 12: Qualitative visualization of behavior on Klein bottle topology for uniform initialization:
The visualization in 3D is limited. Here, we use a pinched torus visualization that inverts itself at the
flat pinch (i.e. there is no "connection" between blue and red surfaces at the bottom). Over time, 300
agents (triangles) sometimes align by aggregating on the inner, avoiding side switches at the pinch.

Box. Lastly, the box manifold is the square [−1, 1]2 equipped with the standard Euclidean topology,
i.e. distances between two points x, y ∈ [−1, 1]2 are given by

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2,

while the sides of the square are not connected to anything else. We use the box manifold for the
following experiments in Aggregation, and mention it here for sake of completeness.

Ablation on number of agents. As seen in Figures 13 and 14, we can successfully train on various
numbers of agents, despite the inaccuracy of the mean field approximation for fewer agents as inferred
from Figure 5. This indicates that our algorithm is general and – at least in the considered problems –
scales to arbitrary numbers of agents.

Qualitative results for Kuramoto. The Kuramoto model, see Figure 15, demonstrates instability
during training and subsequent lower-grade qualitative behavior compared to the Vicsek model. This
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Figure 13: Training curves for Vicsek (torus), using RBF-based or discretization-based solutions. (a):
RBF, N = 25; (b): Discretization, N = 25; (c): RBF, N = 50; (d) : Discretization, N = 50.

Figure 14: Training curves for Vicsek (torus), using RBF-based or discretization-based solutions. (a):
RBF, N = 100; (b): Discretization, N = 100; (c): RBF, N = 150; (d) : Discretization, N = 150.

disparity persists even when considering more intricate topologies, despite being a specialization
of the Vicsek model. One explanation is that the added movement makes it easier to align agents
over time. Another general explanation could be that, despite initially distributing agents uniformly
across the region of interest, the learned policy causes the agents to aggregate into a few or even a
single cluster (though we do not observe such behavior in Figure 15). The closer particles are to
each other, the greater the likelihood that they perceive a similar or identical mean field, prompting
alignment only in local clusters. A similar behavior is observed in the classical Vicsek model, where
agents tend to move in the same direction after interaction. Consequently, they remain within each
other’s interaction region and have the potential to form compounds provided there are no major
disturbances. These can come from either other particles or excessively high levels of noise (Barberis,
2017). Although agents are able to align, the desired alignment remains to be improved, either via
more parameter tuning or improved algorithms.

Figure 15: Qualitative behavior of the learned behavior in the Kuramoto model with histogram over
angles, where in contrast to Vicsek, agents remain fixed in their initial position.

Effect of kernel method. While for low dimensions, the effect of kernel methods is not as pro-
nounced and mostly ensure theoretical guarantees, in Figures 16 and 17 we can see that training via
our RBF-based methods outperforms discretization-based methods for dimensions higher than 3 as
compared to a simple gridding of the probability simplex with associated histogram representation of
the mean field. Here, for the RBF method in Aggregation, we place 5 equidistant points yb on the axis
of each dimension. This is also the reason for why the discretization-based approach is better for low
dimensions d = 2 or d = 3, as more points will have more control over actions of agents, and can
therefore achieve better results, in exchange for tractability in high dimensions. This shows the ad-
vantage of RBF-based methods in more complex, high-dimensional problems. While the RBF-based
method continues to learn even for higher dimensions up to d = 5, the discretization-based solution
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eventually stops learning due to very large action spaces leading to increased noise on the gradient.
The advantage is not just in terms of sample complexity, but also in terms of wall clock time, as the
computation over exponentially many bins also takes more CPU time as shown in Table 1.

Figure 16: Training curves for d-dimensional Aggregation, using RBF-based vs. discretization-based
solutions. (a): RBF, d = 2; (b): Discretization, d = 2; (c): RBF, d = 3; (d) : Discretization, d = 3.

Figure 17: Training curves for d-dimensional Aggregation, using RBF-based vs. discretization-based
solutions. (a): RBF, d = 4; (b): Discretization, d = 4; (c): RBF, d = 5; (d) : Discretization, d = 5.

Table 1: Wall clock time for one training step averaged over 500 iterations in d-dimensional Aggrega-
tion, for 50 agents.

Dimensionality d RBF MFC [s] Discretization MFC [s] MARL (IPPO) [s]

2 5.64 5.69 146.58
3 6.16 7.96 147.03
4 6.97 17.26 147.29
5 8.31 76.33 146.91

Ablations on time dependency and starting conditions. As discussed in the main text, we also
verify the effect of using a non-time-dependent open-loop sequence of lower-level policies, and also
an ablation over different starting conditions. In particular, for starting conditions, to begin we will
consider the uniform initialization as well as the beta-1, beta-2 and beta-3 initializations with a beta
distribution over each dimension of the states, using α = β = 0.5, α = β = 0.25 and α = β = 0.75
respectively.

As we can see in Figure 18, the behavior learned for the Vicsek problem on the torus with N = 200
agents allows for using the first lower-level policy π̌0 at all times t under the Gaussian initialization
used in training to nonetheless achieve alignment. This validates the fact that a time-variant open-loop
sequence of lower-level policies is not always needed, and the results even hold for slightly different
initial conditions from the ones used in training.

Analogously, we consider some more strongly concentrated and heterogeneous initializations: The
peak-normal initialization is given by a more concentrated zero-centered diagonal Gaussian with
covariance σ2 = 0.1. The squeezed-normal is the same initialization as in training, except for
dividing the variance in the y-axis by 10. The multiheaded-normal initialization is a mixture of two
equisized Gaussian distributions in the upper-right and lower-left quadrant, where in comparison to
the training initialization, position variances are halved. Finally, the bernoulli-multiheaded-normal
additionally changes the weights of two Gaussians to 0.75 and 0.25 respectively.

As seen in Figure 19, the lower-level policy π̌0 for Gaussian initialization from training easily
transfers and generalizes to more complex initializations. However, the behavior may naturally be
more suboptimal due to the training process likely never seeing more strongly concentrated and
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Figure 18: Open-loop behavior by using the lower-level decision policy at time t = 0 for all times, on
Vicsek (torus) with N = 200 agents and various initializations. A: uniform initialization; B: beta-2
initialization; C: beta-1 initialization; D: beta-3 initialization.

heterogeneous distributions of agents. For example, in the peak-normal initialization in Figure 19,
we see that the agents begin relatively aligned, but will first misalign in order to align again, as the
learned policy was trained to handle only the wider Gaussian initialization.

Figure 19: Open-loop behavior by using the lower-level decision policy at time t = 0 for all times,
on Vicsek (torus) with N = 200 agents and various initializations. A: peak-normal initialization;
B: squeezed-normal initialization; C: multiheaded-normal initialization; D: bernoulli-multiheaded-
normal initialization.

No observations. As an additional verification of the positive effect of mean field guidance on
PG training, we also perform experiments for training PPO without any RL observations, as in
the previous paragraph we verified the applicability of learned behavior even without observing
the MF that is observed by RL during training. In Figure 20 we see that PPO is unable to learn
useful behavior, despite the existence of such a time-invariant lower-level policy from the preceding
paragraph, underlining the empirical importance of mean field guidance that we derived.

Transfer to differing agent counts. In Figure 21, we see qualitatively that the behavior learned for
N = 200 agents transfers to different, lower numbers of agents as well. The result is congruent with
the results shown in the main text, such as in Figure 5, and further supports the fact that our method
scales to nearly arbitrary numbers of agents.
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Figure 20: Qualitative behavior after training without observations for Vicsek (torus).

Figure 21: Qualitative behavior of the policy learned for N = 200 on Vicsek (torus), transferred to
different numbers of agents N . A: N = 25; B: N = 50; C: N = 100; D: N = 150.

Forward velocity control. We also allow agents to alternatively control their maximum velocity in
the range [0, v0]. Forward velocity can similarly be controlled, and allows for more uniform spreading
of agents in contrast to the case where velocity cannot be controlled. This shows some additional
generalization of our algorithm to variants of collective behavior problems. The corresponding final
qualitative behavior is depicted in Figure 22.

Figure 22: Qualitative behavior on Vicsek (torus) with N = 200 agents, additional forward velocity
control, and various initializations. A: peak-normal initialization; B: squeezed-normal initialization;
C: multiheaded-normal initialization; D: bernoulli-multiheaded-normal initialization.

Comparison of IPPO and MAPPO for low numbers of agents. Lastly, for completeness we show
the comparison of IPPO and MAPPO training results for various numbers of agents in Figures 23 and
24. The overall achieved performances are overall comparable to the results of the Dec-POMFPPO
method in Figure 5.
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Figure 23: IPPO training curves (episode return) with shaded standard deviation over 3 seeds and
various N , in (a) Aggregation (box), (b) Vicsek (torus), (c) Kuramoto (torus). For comparison, we
also plot the best return averaged over 3 seeds for Dec-POMFPPO in Figure 3 (MF).

Figure 24: MAPPO training curves (episode return) with shaded standard deviation over 3 seeds and
various N , in (a) Aggregation (box), (b) Vicsek (torus), (c) Kuramoto (torus). For comparison, we
also plot the best return averaged over 3 seeds for Dec-POMFPPO in Figure 3 (MF).

B Experimental Details

We use the RLlib 2.0.1 (Apache-2.0 license) (Liang et al., 2018) implementation of PPO (Schulman
et al., 2017) for both MARL via IPPO, and our Dec-POMFPPO. For MAPPO, we used the MARLlib
1.0.0 framework (Hu et al., 2023), which builds upon RLlib. For our experiments, we used no GPUs
and around 60 000 Intel Xeon Platinum 9242 CPU core hours, and each training run usually took at
most three days by training on up to 96 CPU cores. Implementation-wise, for the upper-level policy
NNs learned by PPO, we use two hidden layers with 256 nodes and tanh activations, parametrizing
diagonal Gaussians over the MDP actions ξ ∈ Ξ (parametrizations of lower-level policies).

In Aggregation, we define the parameters ξ ∈ Ξ for continuous spaces X ,Y,U ⊆ Rd by values in
Ξ := [−1, 1]2d. Each component of ξ is then mapped affinely to mean in U or diagonal covariance in
[ϵ, 0.5 + ϵ] with ϵ = 10−10/4, of each dimension. Meanwhile, in Vicsek and Kuramoto, we pursue a
"discrete action space" approach, letting Ξ := [−1, 1]3. We then affinely map components of ξ ∈ Ξ
to [ϵ, 0.5 + ϵ], which are normalized to constitute probabilities of actions in {−1, 0, 1} ⊆ U .

For the kernel-based representation of mean fields in d-dimensional state spaces X , we define points
xb by the center points of a d-dimensional gridding of spaces via equisized (MX = 5d hypercubes)
partitions. For the histogram, we similarly use the equisized hypercube partitions. For observation
spaces Y and the kernel-based representation of lower-level policies, unless noted otherwise (e.g. in
the high-dimensional experiments below, where we use less than exponentially many points), we
do the same but additionally rescale the center points ỹb around zero, giving yb = cỹb for some
c > 0 and MY = 5d. We use c = 0.75 for Aggregation and c = 0.1 for Vicsek and Kuramoto.
For the (diagonal) bandwidths of RBF kernels, in Aggregation we use σ = 0.12/

√
MX for states

and σ = 0.12c for observations. In Vicsek and Kuramoto, we use σ = 0.12/
√
2 for state positions,

σ = 0.12π for state angles, and σ = 0.06c or σ = 0.12πc for the first or second component of
observations respectively. For IPPO and MAPPO, we observe the observations yt directly. For
hyperparameters of PPO, see Table 2.

C Problem Details

In this section, we will discuss in more detail the problems considered in our experiments.

Aggregation. The Aggregation problem is a problem where agents must aggregate into a single
point. Here, X = Y = [−1, 1]d ⊆ Rd for some dimensionality parameter d ∈ N, and analogously
U = [−1, 1]d for per-dimension movement actions. Observations are the own, noisily observed
position, and movements are similarly noisy, using Gaussian noise. Overall, the dynamics are given
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Table 2: PPO hyperparameter values.

Hyperparameter Value

Discount factor γ 0.99
GAE lambda 1

KL coefficient 0.03
Clip parameter 0.2
Learning rate 0.00005

Training batch size Blen 4000
Mini-batch size blen 1000

Steps per batch NPPO 5

by

yt ∼ N
(
xt,diag(σ

2
y, . . . σ

2
y)
)
,

xt+1 ∼ N
(
xt + v0

ut

max(1, ∥ut∥2)
,diag(σ2

x, . . . σ
2
x)

)
for some velocity v0, where additionally, observations and states that are outside of the box [−1, 1]d

are projected back to the box.

The reward function for aggregation of agents is defined as

r(µt) = −cd

∫∫
∥x− y∥1µt(dx)µt(dy)− cu

∫∫ ∥∥∥∥ u

max(1, ∥u∥2)

∥∥∥∥
1

πt(du | x)µt(dx),

for some disaggregation cost cd > 0 and action cost cu > 0, where we allow the dependence of
rewards on actions as well: Note that our framework still applies to the above dependence on actions,
as discussed in Section 2, by rewriting the system in the following way. At any even time 2t, the
agents transition from state x ∈ X to state-actions (x, u) ∈ X ×U , which will constitute the states of
the new system. At the following odd times 2t+1, the transition is sampled for the given state-actions.
In this way, the mean field is over X ∪ (X × U) and allows description of dependencies on the
state-action distributions instead of only the state distribution.

For the experiments, we use σ2
x = 0.04, σ2

y = 0.04 and v0 = 0.1. The initial distribution of agent
positions is a Gaussian centered around zero, with variance 0.4. The cost coefficients are cd = 1 and
cu = 0.1. For simulation purposes, we consider episodes with length T = 100.

Vicsek. In classical Vicsek models, each agent is coupled to every other agent within a predefined
interaction region. The agents have a fixed maximum velocity v0 > 0, and attempt to align themselves
with the neighboring particles within their interaction range D > 0. The equations governing the
dynamics of the i-th agent in the classical Vicsek model are given in continuous time by

dpi = (v0 sin(ϕ
i), v0 cos(ϕ

i))Tdt

dϕi =
1

|Ni|
∑
j∈Ni

sin
(
ϕj − ϕi

)
dt+ σdW

for all agents i, where Ni denotes the set of agents within the interaction region, Ni := {j ∈ [N ] |
d(xi, xj) ≤ D}, and W denotes Brownian motion.

We consider a discrete-time variant where agents may control independently how to adjust their
angles in order to achieve a global objective (e.g. alignment, misalignment, aggregation). For states
xt ≡ (pt, ϕt), actions ut and observations yt, we have

(x̄, ȳ)T =

(∫∫
sin(ϕ− ϕt)1d(pt,p)≤Dµt(dp,dϕ),

∫∫
cos(ϕ− ϕt)1d(pt,p)≤Dµt(dp,dϕ)

)T

,

yt =
(
∥(x̄, ȳ)T ∥2, atan2 (x̄, ȳ)

)T
,

pt+1 = (pt,1 + v0 sin(ϕt), pt,2 + v0 cos(ϕt))
T ,
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ϕt+1 ∼ N (ϕt + ω0ut, σ
2
ϕ)

for some maximum angular velocity ω0 > 0 and noise covariance σ2
ϕ > 0, where atan2(x, y) is the

angle from the positive x-axis to the vector (x, y)T . Therefore, we have X = [−1, 1]2 × [0, 2π),
where positions are equipped with the corresponding topologies discussed in Appendix A, and
standard Euclidean spaces Y = [−1, 1]2 and U = [−1, 1]. Importantly, agents only observe the
relative headings of other agents within the interaction region. As a result, it is impossible to model
such a system using standard MFC techniques.

As cost functions, we consider rewards via the polarization, plus action cost as in Aggregation.
Defining polarization similarly to e.g. (Zapotecatl et al., 2016),

polt :=

∫∫
∠(x, x̄t)µt(dp,dϕ),

∠(x, y) := arccos

(
(cos(ϕ), sin(ϕ))T · y

∥y∥2

)
,

x̄t :=

∫∫
(cos(ϕ), sin(ϕ))Tµt(dp,dϕ)

where high values of polt indicate misalignment, we define the rewards for alignment

r(µt) = −capolt − cu

∫∫
|u|πt(du | x)µt(dx),

and analogously for misalignment

r(µt) = +capolt − cu

∫∫
|u|πt(du | x)µt(dx).

For our training, unless noted otherwise, we let D = 0.25, v0 = 0.075, ω0 = 0.2, σϕ = 0.02 and µ0

as a zero-centered (clipped) diagonal Gaussian with variance 0.4. The cost coefficients are ca = 1
and cu = 0.1. For simulation purposes, we consider episodes with length T = 200.

Kuramoto. The Kuramoto model can be obtained from the Vicsek model by setting the maximal
velocity v0 of the above equations to zero. Hence, we obtain a random geometric graph, where agents
see only their neighbor’s state distribution within the interaction region, and the neighbors are static
per episode. For parameters, we let D = 0.25, v0 = 0, ω0 = 0.2, σϕ = 0 and µ0 as a zero-centered
(clipped) Gaussian with variance 0.4. The cost coefficients are ca = 1 and cu = 0.1. For simulation
purposes, we consider episodes with length T = 200.

D Propagation of Chaos

Proof of Theorem 1. As in the main text, we usually equip P(X ) with the 1-Wasserstein distance.
In the proof, however, it is useful to also consider the uniformly equivalent metric dΣ(µ, µ

′) :=∑∞
m=1 2

−m|
∫
fm d(µ− µ′)| instead. Here, (fm)m≥1 is a fixed sequence of continuous functions

fm : X → [−1, 1], see e.g. (Parthasarathy, 2005, Theorem 6.6) for details.

First, let us define the measure ζπ,µt on X × U , defined for any measurable set A×B ⊆ X × U by
ζπ,µt (A× B) :=

∫
A

∫
Y
∫
B
πt(du | y)P y(dy | x, µt)µt(dx). For notational convenience we define

the MF transition operator T̃ such that

T̃ (µt, ζ
π,µ
t ) :=

∫∫
P (· | x, u, µt)ζ

π,µ
t (dx, du) = µt+1. (6)

Continuity of T̃ follows immediately from Assumption 1a and (Cui et al., 2023, Lemma 2.5) which
we recall here for convenience.

Proposition 4 ((Cui et al., 2023), Lemma 2.5). Under Assumption 1a, (µn, ζn) → (µ, ζ) implies
T̃ (µn, ζn) → T̃ (µ, ζ).
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The rest of the proof is similar to (Cui et al., 2023, Theorem 2.7) – though we remark that we
strengthen the convergence statement from weak convergence to convergence in L1 uniformly over
f ∈ F – by showing via induction over t that

sup
π∈Π

sup
f∈F

E
[∣∣f(µN

t )− f(µt)
∣∣]→ 0. (7)

Note that the induction start can be verified by a weak LLN argument which is also leveraged in the
subsequent induction step. For the induction step we assume that (7) holds at time t. At time t+ 1
we have

sup
π∈Π

sup
f∈F

E
[∣∣f(µN

t+1)− f(µt+1)
∣∣]

≤ sup
π∈Π

sup
f∈F

E
[∣∣∣f(µN

t+1)− f
(
T̃
(
µN
t , ζπ,µ

N

t

))∣∣∣] (8)

+ sup
π∈Π

sup
f∈F

E
[∣∣∣f (T̃ (µN

t , ζπ,µ
N

t

))
− f(µt+1)

∣∣∣] . (9)

We start by analyzing the first term and recall that a modulus of continuity ωF of F is defined as a func-
tion ωF : [0,∞) → [0,∞) with both limx→0 ωF (x) = 0 and |f(µ)− f(ν)| ≤ ωF (W1(µ, ν)),∀f ∈
F . By (DeVore & Lorentz, 1993, Lemma 6.1), such a non-concave and decreasing modulus ωF
exists for F because it is uniformly equicontinuous due to the compactness of P(X ). Analogously,
we have that F is uniformly equicontinuous in the space (P(X ), dΣ) as well. Recalling that P(X )
is compact and the topology of weak convergence is metrized by both dΣ and W1, we know that
the identity map id : (P(X ), dΣ) → (P(X ),W1) is uniformly continuous. Leveraging the above
findings, we have that for the identity map there exists a modulus of continuity ω̃ such that

|f(µ)− f(ν)| ≤ ωF (W1(idµ, id ν)) ≤ ωF (ω̃(dΣ(µ, ν)))

holds for all µ, ν ∈ (P(X ), dΣ). By (DeVore & Lorentz, 1993, Lemma 6.1), we can use the least
concave majorant of ω̃F := ωF ◦ ω̃ instead of ω̃F itself. Then, (8) can be bounded by

E
[∣∣∣f(µN

t+1)− f
(
T̃
(
µN
t , ζπ,µ

N

t

))∣∣∣] ≤ E
[
ω̃F

(
dΣ

(
µN
t+1, T̃

(
µN
t , ζπ,µ

N

t

)))]
≤ ω̃F

(
E
[
dΣ

(
µN
t+1, T̃

(
µN
t , ζπ,µ

N

t

))])
irrespective of both π and f by the concavity of ω̃F and Jensen’s inequality. For notational conve-
nience, we define xN

t := (xi,N
t )i∈[N ], and arrive at

E
[
dΣ

(
µN
t+1, T̃

(
µN
t , ζπ,µ

N

t

))]
=

∞∑
m=1

2−m E
[∣∣∣∣∫ fm d

(
µN
t+1 − T̃

(
µN
t , ζπ,µ

N

t

))∣∣∣∣]
≤ sup

m≥1
E
[
E
[∣∣∣∣∫ fm d

(
µN
t+1 − T̃

(
µN
t , ζπ,µ

N

t

))∣∣∣∣ ∣∣∣∣ xN
t

]]
.

Finally, we require the aforementioned weak LLN argument which goes as follows

E
[∣∣∣∣∫ fm d

(
µN
t+1 − T̃

(
µN
t , ζπ,µ

N

t

))∣∣∣∣ ∣∣∣∣ xN
t

]2

= E

∣∣∣∣∣∣ 1N
∑
i∈[N ]

(
fm(xi

t+1)− E
[
fm(xi

t+1)
∣∣ xN

t

])∣∣∣∣∣∣
∣∣∣∣∣∣ xN

t

2

≤ E


∣∣∣∣∣∣ 1N

∑
i∈[N ]

(
fm(xi

t+1)− E
[
fm(xi

t+1)
∣∣ xN

t

])∣∣∣∣∣∣
2
∣∣∣∣∣∣∣ xN

t


=

1

N2

∑
i∈[N ]

E
[(
fm(xi

t+1)− E
[
fm(xi

t+1)
∣∣ xN

t

])2 ∣∣∣ xN
t

]
≤ 4

N
→ 0.
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Here, we have used that |fm| ≤ 1, as well as the conditional independence of xi
t+1 given xN

t . In
combination with the above results, the term (8) thus converges to zero. Moving on to the remaining
second term (9), we note that the induction assumption implies that

sup
π∈Π

sup
f∈F

E
[∣∣∣f (T̃ (µN

t , ζπ,µ
N

t

))
− f(µt+1)

∣∣∣]
= sup

π∈Π
sup
f∈F

E
[∣∣∣f (T̃ (µN

t , ζπ,µ
N

t

))
− f

(
T̃ (µt, ζ

π,µ
t )

)∣∣∣]
≤ sup

π∈Π
sup
g∈G

E
[∣∣g(µN

t )− g(µt)
∣∣]→ 0

using the function g := f ◦ T̃πt
∗ which belongs to the class G of equicontinuous functions with

modulus of continuity ωG := ωF ◦ ωT̃ . Here, ωT̃ is the uniform modulus of continuity over all
policies π of µt 7→ T̃πt

∗ (µt) := T̃ (µt, ζ
π,µ
t ). The equicontinuity of {T̃πt

∗ }π∈Π is a consequence
of Lemma 4 as well as the equicontinuity of functions µt 7→ ζπ,µt which in turn follows from the
uniform Lipschitzness of Π. The validation of this claim is provided in the next lines. Note that this
also completes the induction and thereby the proof. For a sequence of µn → µ ∈ P(X ) we can write

sup
π∈Π

W1(ζ
π,µn

t , ζπ,µt )

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫∫ f ′(x, u)πt(du | y)(P y(dy | x, µn)− P y(dy | x, µ))µn(dx)

∣∣∣∣
+ sup

π∈Π
sup

∥f ′∥Lip≤1

∣∣∣∣∫∫∫ f ′(x, u)πt(du | y)P y(dy | x, µ)(µn(dx)− µ(dx))

∣∣∣∣ .
Starting with the first term, we apply Assumptions 1a–1b to arrive at

sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫∫ f ′(x, u)πt(du | y)(P y(dy | x, µn)− P y(dy | x, µ))µn(dx)

∣∣∣∣
≤ sup

π∈Π
sup

∥f ′∥Lip≤1

∫ ∣∣∣∣∫∫ f ′(x, u)πt(du | y)(P y(dy | x, µn)− P y(dy | x, µ))
∣∣∣∣µn(dx)

≤ sup
π∈Π

sup
∥f ′∥Lip≤1

sup
x∈X

∣∣∣∣∫∫ f ′(x, u)πt(du | y)(P y(dy | x, µn)− P y(dy | x, µ))
∣∣∣∣

≤ LΠ sup
x∈X

W1(P
y(· | x, µn), P

y(· | x, µ))

≤ LΠLPyW1(µn, µ) → 0

with Lipschitz constant LΠ corresponding to the Lipschitz function y 7→
∫
f ′(x, u)πt(du | y).

Alternatively, if P y is assumed independent of the mean field in Assumption 1b, the term is zero.

In a similar fashion, we point out the 1-Lipschitzness of x 7→
∫∫ f ′(x,u)

LΠLPy+1πt(du | y)P y(dy | x, µ),
as ∣∣∣∣∫∫ f ′(z, u)

LΠLPy + 1
πt(du | y)P y(dy | z, µ)−

∫∫
f ′(x, u)

LΠLPy + 1
πt(du | y)P y(dy | x, µ)

∣∣∣∣
≤
∣∣∣∣∫∫ f ′(z, u)− f ′(x, u)

LΠLPy + 1
πt(du | y)P y(dy | z, µ)

∣∣∣∣
+

∣∣∣∣∫∫ f ′(x, u)

LΠLPy + 1
πt(du | y)(P y(dy | z, µ)− P y(dy | x, µ))

∣∣∣∣
≤ 1

LΠLPy + 1
d(z, x) +

LΠ

LΠLPy + 1
W1(P

y(dy | z, µ), P y(dy | x, µ))

≤
(

1

LΠLPy + 1
+

LΠLPy

LΠLPy + 1

)
d(x, y) = d(x, y)

for z ̸= x. Alternatively, if the state space is assumed finite in Assumption 1b, the Lipschitzness
follows directly.
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This eventually yields the convergence of the second term, i.e.

sup
π∈Π

sup
∥f ′∥Lip≤1

∣∣∣∣∫∫∫ f ′(x, u)πt(du | y)P y(dy | x, µ)(µn(dx)− µ(dx))

∣∣∣∣
= sup

π∈Π
sup

∥f ′∥Lip≤1

(LPyLΠ + 1)

∣∣∣∣∫∫ f ′(x, u)

LPyLΠ + 1
πt(du | y)P y(dy | x, µ)(µn(dx)− µ(dx))

∣∣∣∣
≤ (LPyLΠ + 1)W1(µn, µ) → 0

and thus completes the proof.

In the special case of finite states and actions, the approximation rate can also be quantified to
O(1/

√
N) by considering equi-Lipschitz families of functions F with constant Lf . Then, there is no

need to consider the two different metrizations dΣ and W1, as they are Lipschitz equivalent, and one
can simply use the L1 distance. The convergence in the first term (8) is then directly via the weak
LLN at rate O(1/

√
N) by

sup
π∈Π

sup
f∈F

E
[∣∣∣f(µN

t+1)− f
(
T̃
(
µN
t , ζπ,µ

N

t

))∣∣∣]
≤ sup

π∈Π
Lf E

[∑
x∈X

∣∣∣µN
t+1(x)− T̃

(
µN
t , ζπ,µ

N

t

)
(x)
∣∣∣]

= sup
π∈Π

Lf

∑
x∈X

E

[
E

[∣∣∣∣∣ 1N
N∑
i=1

1x(x
i,N
t+1)− E

[
1

N

N∑
i=1

1x(x
i,N
t+1)

∣∣∣∣∣ xN
t

]∣∣∣∣∣
∣∣∣∣∣ xN

t

]]

≤ Lf |X |
√

4

N
,

while for the second term (9) we use the induction assumption, since T̃ is uniformly Lipschitz.

E Agents with Memory and History-Dependence

For agents with bounded memory, we note that such memory can be analyzed by our model by adding
the memory state to the usual agent state, and manipulations on the memory either to the actions or
transition dynamics.

For example, let zit ∈ Q := {0, 1}Q be the Q-bit memory of an agent at any time. Then, we may
consider the new X ×Q-valued state (xi

t, z
i
t), which remains compact, and the new U ×Q-valued

actions (ui
t, w

i
t), where wi

t is a write action that can arbitrarily rewrite the memory, zit+1 = wi
t.

Theoretical properties are preserved by discreteness of added states and actions.

Analogously, extending transition dynamics to include observations y also allows for description of
history-dependent policies. This approach extends to infinite-memory states, by adding observations
y also to the transition dynamics, and considering histories for states and observations. Define
the observation space of histories Y ′ := Y ×⋃∞

i=0(Y × U)i, and the according state space X ′ :=
X × ⋃∞

i=0(Y × U)i. The new mean fields µN
t , µt are thus P(X ′)-valued. The new observation-

dependent dynamics are then defined by

P ′(· | x, y, u, µ) = P (· | x1, u,marg1 µ)⊗ δ(x2,y,u)

where marg1 maps µ to its first marginal, x1 is the first component of x, and x2 is the (Y×U)t-valued
past history. Here, (x2, y, u) defines the new history of an agent, which is observed by

P y′(· | x, µ) = P y(· | x1,marg1 µ)⊗ δx2
.

Clearly, Lipschitz continuity is preserved. Further, we obtain the mean field transition operator

T ′(µt, h
′
t) :=

∫∫∫
P ′(· | x, y, u, µt)h

′
t(dx, dy,du).
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using X ′ ×Y ′ ×U -valued actions h′
t = µt ⊗P y(µt)⊗ π̌[h′

t] for some Lipschitz π̌[h′
t] : Y ′ → P(U).

And in particular, the proof of e.g. Theorem 1 extends to this new case. For example, the weak LLN
argument still holds by

E
[
dΣ
(
µN
t+1, T

′ (µN
t , h′

t

))]
≤ sup

m≥1
E
[
E
[∣∣∣∣∫ fm d

(
µN
t+1 − T ′ (µN

t , h′
t

))∣∣∣∣ ∣∣∣∣ xN
t

]]

≤ sup
m≥1

E

∣∣∣∣∣∣ 1N
∑
i∈[N ]

(
fm(xi

t+1, y
i
0, u

i
0, . . . , y

i
t, u

i
t)

−E
[
fm(xi

t+1, y
i
0, u

i
0, . . . , y

i
t, u

i
t)
∣∣ xN

t

])∣∣2 ∣∣∣ xN
t

] 1
2 ≤ 4

N
→ 0.

for appropriate sequences of functions (fm)m≥1, fm : X × (Y × U)t+1 → [−1, 1] (Parthasarathy,
2005) and∫

fm dT ′ (µN
t , h′

t

)
=

∫
fm(xt+1, y0, u0, . . . , yt, ut)P

′(dxt+1 | xt, yt, ut, µ
N
t )

π̌[h′
t](dut | yt)P y′(dyt | xt, µ

N
t )µN

t (dxt,dy0,du0, . . . ,dyt−1,dut−1).

Analogously, we can see that the above is part of a set of equicontinuous functions, and again allows
application of the induction assumption, completing the extension.

F Approximate MFC-type Dec-POMDP Optimality

Proof of Corollary 1. The finite-agent discounted objective converges uniformly over policies to the
MFC objective

sup
π∈Π

∣∣JN (π)− J(π)
∣∣→ 0 as N → ∞, (10)

since for any ε > 0, let T ∈ T such that
∑∞

t=T γt E
∣∣[r(µN

t )− r(µt)
]∣∣ ≤ γT

1−γ maxµ 2|r(µ)| < ε
2 ,

and further let
∑T−1

t=0 γt E
∣∣[r(µN

t )− r(µt)
]∣∣ < ε

2 by Theorem 1 for sufficiently large N .

Therefore, approximate optimality is obtained by

JN (π)− sup
π′∈Π

JN (π′) = inf
π′∈Π

(JN (π)− JN (π′))

≥ inf
π′∈Π

(JN (π)− J(π)) + inf
π′∈Π

(J(π)− J(π′)) + inf
π′∈Π

(J(π′)− JN (π′))

≥ −ε

2
+ 0− ε

2
= −ε

by the optimality of π ∈ argmaxπ′∈Π J(π′) and (10) for sufficiently large N .

G Equivalence of Dec-POMFC and Dec-MFC

Proof of Proposition 1. We begin by showing the first statement. The proof is by showing µ̄t = µt

at all times t ∈ T , as it then follows that J̄(π̄) =
∑∞

t=0 γ
tr(µ̄t) =

∑∞
t=0 γ

tr(µt) = J(π). At time
t = 0, we have by definition µ̄0 = µ0. Assume µ̄t = µt at time t, then at time t+ 1, by (2) and (3),
we have

µ̄t+1 =

∫∫∫
P (x, u, µt)π̄t(du | y, µ̄t)P

y(dy | x, µ̄t)µ̄t(dx) (11)

=

∫∫∫
P (x, u, µt)πt(du | y)P y(dy | x, µt)µt(dx) = µt+1 (12)

which is the desired statement. An analogous proof for the second statement completes the proof.
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H Optimality of Dec-MFC Solutions

Proof of Corollary 2. Assume J(Φ(π̄)) < supπ′∈Π J(π′). Then there exists π′ ∈ Π such that
J(Φ(π̄)) < J(π′). But by Proposition 1, there exists π̄′ ∈ Π̄ such that J̄(π̄′) = J(π′) and
hence J̄(π̄) = J(Φ(π̄)) < J(π′) = J̄(π̄′), which contradicts π̄ ∈ argmaxπ̄′∈Π̄ J̄(π̄′). Therefore,
Φ(π̄) ∈ argmaxπ′∈Π J(π′).

I Dynamic Programming Principle

Proof of Theorem 2. We verify the assumptions in (Hernández-Lerma & Muñoz de Ozak, 1992).
First, note the (weak) continuity of transition dynamics T̂ .

Proposition 5. Under Assumption 1a, T̂ (µn, hn) → T̂ (µ, h) for any sequence (µn, hn) → (µ, h)
of MFs µn, µ ∈ P(X ) and joint distributions hn ∈ H(µn), h ∈ H(µ).

Proof. The convergence hn → h also implies the convergence of its marginal
∫
Y hn(·,dy, ·) →∫

Y h(·,dy, ·). The proposition then follows immediately from Proposition 4. ■

Furthermore, the reward is continuous and hence bounded by Assumption 1a. It is inf-compact by

{h ∈ H(µ) | −r(µ) ≤ c} =

{H(µ) if −r(µ) ≤ c,
∅ else,

where H(µ) is closed by (Cui et al., 2023, Appendix A.2), and Lemma 2 if considering equi-Lipschitz
policies in Assumption 1b.

Further, by compactness of P(X × Y × U), H(µ) is compact as a closed subset of a compact set.

Lastly, lower semicontinuity of µ 7→ H(µ) is given, since for any µn → µ and h = µ⊗P y(µ)⊗ π̌ ∈
H(µ), we can find hn ∈ H(µn): Let hn = µn ⊗ P y(µn)⊗ π̌, then

W1(hn, h) = sup
f∈Lip(1)

∫∫∫
f(x, y, u)π̌(du | y) (P y(dy | x, µn)µn(dx)− P y(dy | x, µ)µ(dx))

≤ sup
f∈Lip(1)

∫∫∫
f(x, y, u)π̌(du | y) (P y(dy | x, µn)− P y(dy | x, µ))µn(dx)

+ sup
f∈Lip(1)

∫∫∫
f(x, y, u)π̌(du | y)P y(dy | x, µ) (µn(dx)− µ(dx))

≤ sup
f∈Lip(1)

∫ ∣∣∣∣∫∫ f(x, y, u)π̌(du | y) (P y(dy | x, µn)− P y(dy | x, µ))
∣∣∣∣µn(dx)

+ sup
f∈Lip(1)

∫∫∫
f(x, y, u)π̌(du | y)P y(dy | x, µ) (µn(dx)− µ(dx)) → 0

since the integrands are Lipschitz by Assumption 1a and analyzed as in the proof of Theorem 1.

The proof concludes by (Hernández-Lerma & Muñoz de Ozak, 1992, Theorem 4.2).

J Convergence Lemma

Lemma 1. Assume that (X, d) is a complete metric space and that (xn)n∈N is a sequence of elements
of X . Then, the convergence condition of the sequence (xn)n∈N, i.e. that

∃x ∈ X : ∀ε > 0 : ∃N ∈ N : ∀n ≥ N : d(x, xn) < ε (13)

holds, is equivalent to the statement

∀ε > 0 : ∃x ∈ X : ∃N ∈ N : ∀n ≥ N : d(x, xn) < ε. (14)
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Proof. (13) ⇒ (14): follows immediately.

(14) ⇒ (13): Choose some strictly monotonically decreasing, positive sequence of (εi)i∈N with
limi→∞ εi = 0. Then, by statement (14) we can define corresponding sequences (xi)i∈N and
(Ni)i∈N such that

∀n ≥ Ni : d(xi, xn) < εi. (15)

Consider i, i′ ∈ N and assume w.l.o.g. i < i′. We know by the triangle inequality

∀n ≥ max{Ni, Ni′} : d(xi, xi′) ≤ d(xi, xn) + d(xn, xi′) ≤ 2εi. (16)

Thus, the sequence (xi)i∈N is Cauchy and therefore converges to some x ∈ X because (X, d) is a
complete metric space by assumption. Specifically, this is equivalent to

∃x ∈ X : ∀ε > 0 : ∃I ∈ N : ∀i ≥ I : d(x, xi) < ε. (17)

Finally, statements (16), (17), and the triangle inequality yield

∃x ∈ X : ∀2ε > 0 : ∃N ∈ N : ∀n ≥ N : d(x, xn) ≤ d(x, xi) + d(xi, xn) < 2ε

which implies the desired statement (13) and concludes the proof.

K Closedness of Joint Measures under Equi-Lipschitz Kernels

Lemma 2. Let µxy ∈ P(X ×Y) be arbitrary. For any hn = µxy ⊗ π̌n → h ∈ P(X ×Y ×U) with
LΠ-Lipschitz π̌n ∈ P(U)Y , there exists LΠ-Lipschitz π̌ ∈ P(U)Y such that h = µxy ⊗ π̌.

Proof. For readability, we write µy ∈ P(Y) for the second marginal of µxy. The required π̌ is
constructed as the µy-a.e. pointwise limit of y 7→ π̌n(y) ∈ P(U), as P(U) is sequentially compact
under the topology of weak convergence by Prokhorov’s theorem (Billingsley, 2013). For the proof,
we assume Hilbert Y and finite actions U , making P(U) Euclidean.

First, (i) we show that π̌n(y) must converge for µy-a.e. y ∈ Y to some arbitrary limit, which we
define as π̌(y). It then follows by Egorov’s theorem (e.g. (Kallenberg, 2021, Lemma 1.38)) that for
any ϵ > 0, there exists a measurable set A ∈ Y such that µy(A) < ϵ and π̌n(y) converges uniformly
on Y \ A. Therefore, we obtain that π̌ restricted to Y \ A is LΠ-Lipschitz as a uniform limit of
LΠ-Lipschitz functions, hence µy-a.e. LΠ-Lipschitz. (ii) We then extend π̌ on the entire space Y to
be LΠ-Lipschitz. (iii) All that remains is to show that indeed, the extended π̌ fulfills h = µy ⊗ π̌,
which is the desired closedness.

(i) Almost-everywhere convergence. To prove the µy-a.e. convergence, we perform a proof by
contradiction and assume the statement is not true. Then there exists a measurable set A ⊆ Y with
positive measure µy(A) > 0 such that for all y ∈ A the sequence π̌n(y) ∈ P(U) does not converge
as n → ∞. We show that then, µy ⊗ π̌n does not converge to any limiting h̃ ∈ P(Y ×U), which is a
contradiction with the premise and completes the proof.

Lemma 3. There exists y∗ ∈ A such that for any r > 0, the set Br(y
∗) ∩A has positive measure.

Proof of Lemma 3. Consider an open cover
⋃

y∈A Br(y) of A using balls Br with radius r, and
choose a finite subcover {Br(yi)}i=1,...,K of A by compactness of Y . Then, there exists a ball
Br(y

∗) from the finite subcover around a point y∗ ∈ Y such that µy(Br(y
∗) ∩A) > 0, as otherwise

µy(A) = µy(
⋃K

i=1 Br(yi) ∩A) ≤∑K
i=1 µy(Br(yi) ∩A) = 0 contradicts µy(A) > 0.

By repeating the argument, there must exist y∗ ∈ A for which we have for any r > 0 that the
ball Br(y

∗) ∩ A has positive measure. More precisely, consider a sequence of radii rk = 1/k,
k ≥ 1, and repeatedly choose balls Brk+1

⊆ Brk from an open cover of Brk ∩ A such that
µ(Brk+1

∩ Brk ∩ A) > 0, starting with Br1 ⊆ Y such that µ(Br1 ∩ A) > 0. By induction,
we thus have for any k that µ(Brk ∩ A) > 0. The sequence (Brk)k∈N produces a decreasing
sequence of compact sets by taking the closure of the balls B̄rk . By Cantor’s intersection theorem
(Rudin, 1976, Theorem 2.36), the intersection is non-empty,

⋂
k∈N B̄rk ̸= ∅. Choose arbitrary

y∗ ∈ ⋂k∈N B̄rk , then for any r > 0 we have that Brk ⊆ Br(y
∗) for some k by rk → 0. Therefore,

µ(Br(y
∗) ∩A) ≥ µ(Brk ∩A) > 0. ■
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Bounding difference to assumed limit from below. Choose y∗ according to Lemma 3. By (14)
in Lemma 1, since π̌n(y

∗) ∈ P(U) does not converge, there exists ϵ > 0 such that for all r > 0,
infinitely often (i.o.) in n,

W1

(
π̌n(· | y∗),

1

µy(Br(y∗))

∫
Br(y∗)

π̃(· | y)µy(dy)

)

=
1

2

∑
u∈U

∣∣∣∣∣π̌n(u | y∗)− 1

µy(Br(y∗))

∫
Br(y∗)

π̃(u | y)µy(dy)

∣∣∣∣∣ > ϵ

where for finite U , W1 is equivalent to the total variation norm (Gibbs & Su, 2002, Theorem 4),
which is half the L1 norm, and π̃ is not necessarily Lipschitz and results from disintegration of h into
h = µy ⊗ π̃ (Kallenberg, 2021).

Now fix arbitrary ϵ′ ∈ ( ϵ2 , ϵ). Then, by the prequel, we define the non-empty set Ū(r) ⊆ U by
excluding all actions where the absolute value is less than ϵ−ϵ′

|U| , i.e.

Ū(r) :=
{
u ∈ U

∣∣∣∣∣
∣∣∣∣∣π̌n(u | y∗)− 1

µy(Br(y∗))

∫
Br(y∗)

π̃(u | y)µy(dy)

∣∣∣∣∣ ≥ ϵ− ϵ′

|U|

}
,

such that

1

2

∑
u∈Ū(r)

∣∣∣∣∣π̌n(u | y∗)− 1

µy(Br(y∗))

∫
Br(y∗)

π̃(u | y)µy(dy)

∣∣∣∣∣ > ϵ′ (18)

since we have the bound on the value contributed by excluded actions u ̸∈ Ū(r)

1

2

∑
u̸∈Ū(r)

∣∣∣∣∣π̌n(u | y∗)− 1

µy(Br(y∗))

∫
Br(y∗)

π̃(u | y)µy(dy)

∣∣∣∣∣ ≤ ϵ− ϵ′

2
< ϵ− ϵ′. (19)

By LΠ-Lipschitz π̌n, we also have for all y ∈ Br(y
∗) that W1(π̌n(y), π̌n(y

∗)) < LΠr. Hence, in
particular if we choose r = 1

LΠ
min

(
ϵ′ − ϵ

2 ,
ϵ′

2 ,
ϵ−ϵ′

4|U|

)
, then for all y ∈ Br(y

∗)

1

2

∑
u∈U

|π̌n(u | y)− π̌n(u | y∗)| < min

(
ϵ′ − ϵ

2
,
ϵ′

2
,
ϵ− ϵ′

4|U|

)
(20)

and in particular also

|π̌n(u | y)− π̌n(u | y∗)| < ϵ− ϵ′

2|U|
for all actions u ∈ Ū(r), such that by definition of Ū(r), we find that the sign of the value inside the
absolute value must not change on the entirety of y ∈ Br(y

∗), i.e.

sgn

(
π̌n(u | y)− 1

µy(Br(y∗))

∫
Br(y∗)

π̃(u | y′)µy(dy
′)

)

= sgn

(
π̌n(u | y∗)− 1

µy(Br(y∗))

∫
Br(y∗)

π̃(u | y′)µy(dy
′)

)
which implies, since the signs must match for all y with the term for y∗, by integrating over y

sgn

(∫
Br(y∗)

π̌n(u | y′)µy(dy
′)−

∫
Br(y∗)

π̃(u | y′)µy(dy
′)

)

= sgn

(∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y′))µy(dy
′)

)
. (21)
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From the triangle inequality,

1

2

∑
u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y))µy(dy)

∣∣∣∣∣
≤ 1

2

∑
u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y∗)− π̌n(u | y))µy(dy)

∣∣∣∣∣
+

1

2

∑
u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y)− π̃(u | y))µy(dy)

∣∣∣∣∣ ,
it follows then that for all y ∈ Br(y

∗) by (18) and (20), i.o. in n

1

2

∑
u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y)− π̃(u | y))µy(dy)

∣∣∣∣∣
≥ 1

2

∑
u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y))µy(dy)

∣∣∣∣∣
− 1

2

∑
u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y∗)− π̌n(u | y))µy(dy)

∣∣∣∣∣
> ϵ′ − ϵ′

2
=

ϵ′

2
. (22)

Pass to limit of Lipschitz functions. Now consider the sequence of m-Lipschitz functions fm : Y×
U → [0, 1],

fm(y, u) = min

{
1,
(
1− (md(y, y∗)−mr + 1)

+
)+}

· sgn
(∫

Br(y∗)

(π̌n(u | y∗)− π̃(u | y′))µy(dy
′)

)
,

where (·)+ = max(·, 0) and sgn is the sign function. Note that fm = 0 for all y ̸∈ Br(y
∗). Further,

as m → ∞,

fm(y, u) ↑ 1Br(y∗)(y) sgn

(∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y′))µy(dy
′)

)
.

Then, by the prequel, we have by monotone convergence, as m → ∞,∫∫
fm(y, u)(π̌n(du | y)− π̃(du | y))µy(dy)

=

∫
Br(y∗)

∑
u∈U

fm(y, u)(π̌n(u | y)− π̃(u | y))µy(dy)

→
∫
Br(y∗)

∑
u∈U

sgn

(∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y′))µy(dy
′)

)
(π̌n(u | y)− π̃(u | y))µy(dy)

=
∑

u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y)− π̃(u | y))µy(dy)

∣∣∣∣∣
+
∑

u̸∈Ū(r)

sgn

(∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y′))µy(dy
′)

)∫
Br(y∗)

(π̌n(u | y)− π̃(u | y))µy(dy)
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≥
∑

u∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y)− π̃(u | y))µy(dy)

∣∣∣∣∣
−
∑

u̸∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y)− π̌n(u | y∗))µy(dy)

∣∣∣∣∣
−
∑

u̸∈Ū(r)

∣∣∣∣∣
∫
Br(y∗)

(π̌n(u | y∗)− π̃(u | y))µy(dy)

∣∣∣∣∣
>

ϵ′

2
· 2µy(Br(y

∗))− 2ϵ′ − ϵ

4
· 2µy(Br(y

∗))− ϵ− ϵ′

2
· 2µy(Br(y

∗))

=
1

2

(
ϵ′ − ϵ

2

)
µy(Br(y

∗)) > 0

i.o. in n, for the first term by (21) and (22), second by (20) and third by (19), noting that ϵ′ > ϵ
2 .

Hence, we may choose m∗ such that e.g.∫∫
fm∗(y, u)(π̌n(du | y)− π̃(du | y))µy(dy) >

1

4

(
ϵ′ − ϵ

2

)
µy(Br(y

∗)).

Lower bound. Finally, by noting that 1
m∗ fm∗ ∈ Lip(1) and applying the Kantorovich-Rubinstein

duality, we have

W1(µy ⊗ π̌n, µy ⊗ π̃) = sup
f∈Lip(1)

∫∫
f(y, u)(π̌n(du | y)− π̃(du | y))µy(dy)

≥
∫∫

1

m∗ fm∗(y, u)(π̌n(du | y)− π̃(du | y))µy(dy)

>
1

m∗
1

4

(
ϵ′ − ϵ

2

)
µy(Br(y

∗)) > 0

i.o. in n, and therefore µy ⊗ π̌n ↛ µy ⊗ π̃. But h̃ = µy ⊗ π̃ was assumed to be the limit of µy ⊗ π̌n,
leading to a contradiction. Hence, µy-a.e. convergence must hold.

(ii) Lipschitz extension of lower-level policies. For finite actions, note that P(U) is (Lipschitz)
equivalent to a subset of the Hilbert space R|U|. Therefore, by the Kirszbraun-Valentine theorem (see
e.g. (Cobzaş et al., 2019, Theorem 4.2.3)), we can modify π̌ to be LΠ-Lipschitz not only µy-a.e., but
on full Y .

(iii) Equality of limits. We show that for any ϵ > 0, W1(h, µy⊗ π̌) < ϵ, which implies W1(h, µy⊗
π̌) = 0 and therefore h = µy ⊗ π̌. First, note that by the triangle inequality, we have

W1(h, µy ⊗ π̌) ≤ W1(h, µy ⊗ π̌n) +W1(µy ⊗ π̌n, µy ⊗ π̌)

and thus by µy ⊗ π̌n → h for sufficiently large n, it suffices to show W1(µy ⊗ π̌n, µy ⊗ π̌) < ϵ.

By the prequel, we choose a measurable set A ⊆ Y such that µy(A) < ϵ
2 diam(U) and π̌n(y)

converges uniformly on Y \A. Now by uniform convergence, we choose n sufficiently large such
that W1(π̌n(y), π̌(y)) <

ϵ
2 on Y \A. By Kantorovich-Rubinstein duality, we have

W1(µy ⊗ π̌n, µy ⊗ π̌) = sup
f∈Lip(1)

∫∫
f(y, u)(π̌n(du | y)− π̌(du | y))µy(dy)

≤
∫ (

sup
f∈Lip(1)

∫
f(y, u)(π̌n(du | y)− π̌(du | y))

)
µy(dy)

=

∫
W1(π̌n(y), π̌(y))µy(dy)

=

∫
A

W1(π̌n(y), π̌(y))µy(dy) +

∫
Y\A

W1(π̌n(y), π̌(y))µy(dy)
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<
ϵ

2 diam(U) diam(U) +
(
1− ϵ

2 diam(U)

)
ϵ

2
< ϵ.

This completes the proof.

L Equivalence of Dec-MFC and Dec-MFC MDP

Proof of Proposition 2. The proof is similar to the proof of Proposition 1 by induction. We begin
by showing the first statement. We show µ̄t = µ̂t at all times t ∈ T , as it then follows that
J̄(π̄) =

∑∞
t=0 γ

tr(µ̄t) =
∑∞

t=0 γ
tr(µ̂t) = Ĵ(π̂) under deterministic π̂ ∈ Π̂. At time t = 0, we have

by definition µ̄0 = µ0 = µ̂0. Assume µ̄t = µ̂t at time t, then at time t+ 1, we have

µ̂t+1 = T̂ (µ̂t, ht) =

∫∫∫
P (x, u, µ̂t)π̌[ht](du | y)P y(dy | x, µ̂t)µ̂t(dx) (23)

=

∫∫∫
P (x, u, µt)π̄t(du | y, µ̄t)P

y(dy | x, µ̄t)µ̄t(dx) = µ̄t+1 (24)

by definition of π̄t(ν) = π̌[ht], which is the desired statement. An analogous proof for the second
statement in the opposite direction completes the proof.

M Optimality of Dec-MFC MDP Solutions

Proof of Corollary 3. As in the proof of Corollary 2, we first show Dec-POMFC optimality
of Φ(Ψ(π̂)). Assume J(Φ(Ψ(π̂))) < supπ′∈Π J(π′). Then there exists π′ ∈ Π such that
J(Φ(Ψ(π̂))) < J(π′). But by Proposition 1, there exists π̄′ ∈ Π̄ such that J̄(π̄′) = J(π′). Fur-
ther, by Proposition 2, there exists π̂′ ∈ Π̄ such that J̄(π̄′) = Ĵ(π̂′). Thus, Ĵ(π̂) = J̄(π̄) =

J(Φ(Ψ(π̂))) < J(π′) = J̄(π̄′) = Ĵ(π̂′), which contradicts π̂ ∈ argmaxπ̂′ Ĵ(π̂′). Therefore,
Φ(Ψ(π̂)) ∈ argmaxπ′∈Π J(π′). Hence, Φ(Ψ(π̂)) fulfills the conditions of Corollary 1, completing
the proof.

N Lipschitz Continuity of RBF Kernels

Proof of Proposition 3. First, note that

|∇yκ(yb, y)| = exp

(−∥yb − y∥2
2σ2

) |⟨yb − y, y⟩|
2σ2

≤ 1

2σ2
diam(Y)max

y∈Y
∥y∥

for diameter diam(Y) < ∞ by compactness of Y , which is equal one for discrete spaces. Further,∣∣∣∣∣∣
∑

b′∈[MY ]

κ(yb′ , y)

∣∣∣∣∣∣ =
∑

b′∈[MY ]

κ(yb′ , y) ≥ MY exp

(
−diam(Y)2

2σ2

)
and |κ(yb, y)| ≤ 1.

Hence, the RBF kernel y 7→ κ(yb, y)pb = exp(−∥yb−y∥2

2σ2 ) with parameter σ2 > 0 on Y is Lipschitz
for any b ∈ [MY ], since for any y, y′ ∈ Y ,∣∣∇y

(
Z−1(y)κ(yb, y)

)∣∣
=

∣∣∣∣∣∣∣
∇yκ(yb, y)

∑
b′∈[MY ] κ(yb′ , y) +

∑
b′∈[MY ] ∇yκ(yb′ , y)κ(yb, y)(∑

b′∈[MY ] κ(yb′ , y)
)2

∣∣∣∣∣∣∣
≤ 1

M2
Y exp2

(
−diam(Y)2

2σ2

) ( 1

2σ2
diam(Y)max

y∈Y
∥y∥MY +MY

1

2σ2
diam(Y)max

y∈Y
∥y∥
)
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=
diam(Y)maxy∈Y∥y∥

σ2MY exp2
(
−diam(Y)2

2σ2

)
for any b ∈ [MY ]. Hence, by noting that the following supremum is invariant to addition of constants,

W1

Z−1(y)
∑

b∈[MY ]

κ(yb, y)pb, Z
−1(y′)

∑
b∈[MY ]

κ(yb, y
′)pb


= sup

f∈Lip(1)

∫
f

Z−1(y)
∑

b∈[MY ]

κ(yb, y)dpb − Z−1(y′)
∑

b∈[MY ]

κ(yb, y
′)dpb


= sup

f∈Lip(1),|f |≤ 1
2 diam(U)

∫
f

Z−1(y)
∑

b∈[MY ]

κ(yb, y)− Z−1(y′)
∑

b∈[MY ]

κ(yb, y
′)

 dpb

≤
∑

b∈[MY ]

∣∣Z−1(y)κ(yb, y)− Z−1(y′)κ(yb, y
′)
∣∣ sup
f∈Lip(1),|f |≤ 1

2 diam(U)

∫
fdpb

≤ MY
diam(Y)maxy∈Y∥y∥

σ2MY exp2
(
− 1

2σ2 diam(Y)2
)∥y − y′∥ · 1

2
diam(U).

which is LΠ-Lipschitz if

diam(Y) diam(U)maxy∈Y∥y∥
2σ2 exp2

(
− 1

2σ2 diam(Y)2
) ≤ LΠ

⇐⇒ σ2 exp2
(
− 1

2σ2
diam(Y)2

)
≥ 1

LΠ
diam(Y) diam(U)max

y∈Y
∥y∥.

Note that such σ2 > 0 exists, as σ2 exp2
(
− 1

2σ2 diam(Y)2
)
→ +∞ as σ2 → +∞.

O Policy Gradient Approximation

Proof of Theorem 3. Keeping in mind that we have the centralized training system for stationary
policy π̂θ parametrized by θ,

ξ̃t ∼ π̂θ(µ̃N
t ), π̌t = Λ(ξ̃t)

ỹit ∼ P y(ỹit | x̃i
t, µ̃

N
t ), ũi

t ∼ π̌t(ũ
i
t | ỹit), x̃i

t+1 ∼ P (x̃i
t+1 | x̃i

t, ũ
i
t, µ̃

N
t ), ∀i ∈ [N ],

which we obtained by parametrizing the MDP actions via parametrizations ξ ∈ Ξ, the equivalent
Dec-MFC MDP system concomitant with (4) under parametrization Λ(ξ) for lower-level policies is

ξt ∼ π̂θ(µ̂t), µ̂t+1 = T̂ (µ̂t, ξt) :=

∫∫∫
P (x, u, µ̂t)Λ(ξt)(du | y)P y(dy | x, µ̂t)µ̂t(dx) (25)

where we now sample ξt instead of ht. Note that for kernel representations, this new T̂ is indeed
Lipschitz, which follows from Lipschitzness of µ̂t ⊗ P y(µ̂t)⊗ Λ(ξt) in (µ̂t, ξt).

Lemma 4. Under Assumptions 1a and 3, the transitions T̂ of the system with parametrized actions
are LT̂ -Lipschitz with LT̂

:= 2LP + LPLλ + 2L′LPy .

Proofs for lemmas are found in their respective following sections.

First, we prove dNπ̂θ → dπ̂θ in P(P(X )) by showing at any time t that under π̂θ, the centralized
training system MF µ̃N

t converges to the limiting Dec-MFC MF µ̂t in (25). The convergence is in the
same sense as in Theorem 1.

Lemma 5. For any equicontinuous family of functions F ⊆ RP(X ), under Assumptions 1a–1b and 3,
at all times t we have

sup
f∈F

∣∣E [f(µ̃N
t )− f(µ̂t)

]∣∣→ 0. (26)
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We also show that Q̃θ(µ, ξ) → Qθ(µ, ξ), since we can show the same convergence as in (26) for new
conditional systems, where for any µ, ξ we let µ̃0 = µ = µ0 and ξ̃0 = ξ = ξ0 at time zero, where µ̃0

is the initial state distribution of the centralized training system.

Lemma 6. Under Assumptions 1a and 3, as N → ∞, we have for any µ ∈ P(X ), ξ ∈ Ξ that∣∣∣Q̃θ(µ, ξ)−Qθ(µ, ξ)
∣∣∣→ 0.

Furthermore, Qθ(µ, ξ) is also continuous by a similar argument.

Lemma 7. For any equicontinuous family of functions F ⊆ RP(X ), under Assumptions 1a and
3, at all times t ∈ T , the conditional expectations version of the MF is continuous in the starting
conditions, in the sense that for any (µn, ξn) → (µ, ξ),

sup
f∈F

|E [f(µ̂t) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂t) | µ̂0 = µ, ξ0 = ξ]| → 0.

Lastly, keeping in mind dNπ̂θ = (1− γ)
∑

t∈T γtLπ̂θ (µ̃N
t ), we have the desired statement∥∥∥(1− γ)−1 Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[
Q̃θ(µ, ξ)∇θ log π̂

θ(ξ | µ)
]
−∇θJ(π̂

θ)
∥∥∥

≤ (1− γ)−1
∥∥∥Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[(
Q̃θ(µ, ξ)−Qθ(µ, ξ)

)
∇θ log π̂

θ(ξ | µ)
]∥∥∥

+
∥∥∥(1− γ)−1 Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[
Qθ(µ, ξ)∇θ log π̂

θ(ξ | µ)
]
−∇θJ(π̂

θ)
∥∥∥

≤ (1− γ)−1
∥∥∥Eµ∼dN

π̂θ ,ξ∼π̂θ(µ)

[(
Q̃θ(µ, ξ)−Qθ(µ, ξ)

)
∇θ log π̂

θ(ξ | µ)
]∥∥∥

+

∥∥∥∥∥
∞∑
t=T

γt Eξ∼π̂θ(µ̃N
t )

[
Qθ(µ̃N

t , ξ)∇θ log π̂
θ(ξ | µ̃N

t )−Qθ(µ̂t, ξ)∇θ log π̂
θ(ξ | µ̂t)

]∥∥∥∥∥
+

∥∥∥∥∥
T−1∑
t=0

γt Eξ∼π̂θ(µ̃N
t )

[
Qθ(µ̃N

t , ξ)∇θ log π̂
θ(ξ | µ̃N

t )−Qθ(µ̂t, ξ)∇θ log π̂
θ(ξ | µ̂t)

]∥∥∥∥∥
→ 0

for the first term from Q̃θ(µ, ξ) → Qθ(µ, ξ) uniformly by Lemma 6 and compactness of the domain,
for the second by Assumption 3 and 1a uniformly bounding ∇θ log π

θ, Qθ and choosing sufficiently
large T , and for the third by repeating the argument for Q: Notice that∥∥∥∥∥

T−1∑
t=0

γt Eξ∼π̂θ(µ̃N
t )

[
Qθ(µ̃N

t , ξ)∇θ log π̂
θ(ξ | µ̃N

t )−Qθ(µ̂t, ξ)∇θ log π̂
θ(ξ | µ̂t)

]∥∥∥∥∥
≤
∥∥∥∥∥
T−1∑
t=0

γt Eξ∼π̂θ(µ̃N
t )

[ ∞∑
t′=T ′

γt′
(
E
[
r(µ̂t′)

∣∣ µ̂0 = µ̃N
t , ξ0 = ξ

]
∇θ log π̂

θ(ξ | µ̃N
t )

−E [r(µ̂t′) | µ̂0 = µ̂t, ξ0 = ξ]∇θ log π̂
θ(ξ | µ̂t)

)]∥∥
+

∥∥∥∥∥∥
T−1∑
t=0

γt Eξ∼π̂θ(µ̃N
t )

T ′−1∑
t′=0

γt′
(
E
[
r(µ̂t′)

∣∣ µ̂0 = µ̃N
t , ξ0 = ξ

]
∇θ log π̂

θ(ξ | µ̃N
t )

−E [r(µ̂t′) | µ̂0 = µ̂t, ξ0 = ξ]∇θ log π̂
θ(ξ | µ̂t)

)]∥∥ ,
where the inner expectations are on the conditional system. Letting T ′ sufficiently large bounds the
former term by uniform bounds on the summands from Assumption 3. Then, for the latter term,
apply Lemma 5 at times t′ < T ′ to the functions f(µ) =

∫
E [r(µ̂t′) | µ̂0 = µ, ξ0 = ξ]∇θ log π̂

θ(ξ |
µ)π̂θ(dξ | µ)dξ, which are continuous up to any finite time t′ by Lemma 7 and Assumption 3.
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P Lipschitz Continuity of Transitions under Parametrized Actions

Proof of Lemma 4. We have by definition∫∫∫
P (x, u, µ̂)Λ(ξ)(du | y)P y(dy | x, µ̂)µ̂(dx)

=

∫∫∫
P (x, u, µ̂)

∑
b∈[MY ] κ(yb, y)λb(ξ)(du)∑

b∈[MY ] κ(yb, y)
P y(dy | x, µ̂)µ̂(dx).

Consider any ξ, ξ′ ∈ Ξ, µ̂, µ̂′ ∈ P(X ). Then, for readability, write

µ̂xy := µ̂⊗ P y(µ̂), µ̂xyu := µ̂xy ⊗ Λ(ξ), µ̂xyux′ := µ̂xyu ⊗ P (µ̂),

µ̂′
xy := µ̂′ ⊗ P y(µ̂′), µ̂′

xyu := µ̂′
xy ⊗ Λ(ξ′), µ̂′

xyux′ := µ̂′
xyu ⊗ P (µ̂′),

∆P (· | x, u) := P (· | x, u, µ̂)− P (· | x, u, µ̂′),

∆Λ(· | y) :=
∑

b κ(yb, y) (λb(ξ)(·)− λb(ξ
′)(·))∑

b κ(yb, y)
,

∆P y(· | x) := P y(· | x, µ̂)− P y(· | x, µ̂′), ∆µ := µ̂− µ̂′

to obtain

W1

(∫∫∫
P (x, u, µ̂)

∑
b κ(yb, y)λb(ξ)(du)∑

b κ(yb, y)
P y(dy | x, µ̂)µ̂(dx),∫∫∫

P (x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x, µ̂′)µ̂′(dx)

)
= sup

f∈Lip(1)

∫∫∫∫
f(x′)

(
µ̂xyux′(dx, dy,du,dx′)− µ̂′

xyux′(dx, dy,du,dx′)
)

≤ sup
f∈Lip(1)

∫∫∫∫
f(x′)∆P (dx′ | x, u)µ̂xyu(dx, dy,du)

+ sup
f∈Lip(1)

∫∫∫∫
f(x′)P (dx′ | x, u, µ̂′)∆Λ(du | y)µ̂xy(dx, dy))

+ sup
f∈Lip(1)

∫∫∫∫
f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

∆P y(dy | x)µ̂(dx)

+ sup
f∈Lip(1)

∫∫∫∫
f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x, µ̂′)∆µ(dx)

≤ sup
f∈Lip(1)

sup
(x,y,u)∈X×Y×U

∣∣∣∣∫ f(x′)∆P (dx′ | x, u)
∣∣∣∣

+ sup
f∈Lip(1)

sup
(x,y)∈X×Y

∣∣∣∣∫∫ f(x′)P (dx′ | x, u, µ̂′)∆Λ(du | y)
∣∣∣∣

+ sup
f∈Lip(1)

sup
x∈X

∣∣∣∣∫∫∫ f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

∆P y(dy | x)
∣∣∣∣

+ sup
f∈Lip(1)

∣∣∣∣∫∫∫∫ f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x, µ̂′)∆µ(dx)

∣∣∣∣
bounded by the same arguments as in Theorem 1:

For the first term, we have that the function x′ 7→ f(x′) is 1-Lipschitz, and therefore

sup
f∈Lip(1)

sup
(x,y,u)∈X×Y×U

∣∣∣∣∫ f(x′) (P (dx′ | x, u, µ̂)− P (dx′ | x, u, µ̂′))

∣∣∣∣ ≤ LPW1(µ̂, µ̂
′)

by Assumption 1a.
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For the second term, we have LP -Lipschitz u 7→
∫
f(x′)P (dx′ | x, u, µ̂′), since for any f ∈ Lip(1)

and (x, y) ∈ X × Y , we obtain∣∣∣∣∫ f(x′)P (dx′ | x, u, µ̂′)−
∫

f(x′)P (dx′ | x, u′, µ̂′)

∣∣∣∣
≤ W1(P (x, u, µ̂′), P (x, u′, µ̂′)) ≤ LP d(u, u

′)

for any u, u′ ∈ U by Assumption 1a, and therefore

sup
f∈Lip(1)

sup
(x,y)∈X×Y

∣∣∣∣∫∫ f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y) (λb(ξ)(du)− λb(ξ

′)(du))∑
b κ(yb, y)

∣∣∣∣
≤
∑

b κ(yb, y)LPW1 (λb(ξ), λb(ξ
′))∑

b κ(yb, y)
≤ LPLλd(ξ, ξ

′)

by Assumption 3.

For the third term, we have L′-Lipschitz y 7→
∫∫

f(x′)P (dx′ | x, u, µ̂′)
∑

b κ(yb,y)λb(ξ
′)(du)∑

b κ(yb,y)
where

we define L′ := LP
diam(Y) diam(U)maxy∈Y∥y∥
2σ2 exp2(− 1

2σ2 diam(Y)2)
, since for any f ∈ Lip(1) and x ∈ X , we obtain∣∣∣∣∫∫ f(x′)P (dx′ | x, u, µ̂′)

(∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

−
∑

b κ(yb, y
′)λb(ξ

′)(du)∑
b κ(yb, y

′)

)∣∣∣∣
≤ LP · diam(Y) diam(U)maxy∈Y∥y∥

2σ2 exp2
(
− 1

2σ2 diam(Y)2
) d(y, y′)

for any y, y′ ∈ Y by Proposition 3 and the prequel, and therefore

sup
f∈Lip(1),x

∣∣∣∣∫∫∫ f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

(P y(dy | x, µ̂)− P y(dy | x, µ̂′))

∣∣∣∣
≤ L′LPyW1(µ̂, µ̂

′)

by Assumption 1a.

Lastly, for the fourth term, x 7→
∫∫∫

f(x′)P (dx′ | x, u, µ̂′)
∑

b κ(yb,y)λb(ξ
′)(du)∑

b κ(yb,y)
P y(dy | x, µ̂′) is

similarly (LP + L′LPy )-Lipschitz, since for any f ∈ Lip(1), we obtain∣∣∣∣∫∫∫ f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x, µ̂′)

−
∫∫∫

f(x′)P (dx′ | x′′, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x′′, µ̂′)

∣∣∣∣
≤
∣∣∣∣∫∫∫ f(x′) (P (dx′ | x, u, µ̂′)− P (dx′ | x′′, u, µ̂′))

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x, µ̂′)

∣∣∣∣
+

∣∣∣∣∫∫∫ f(x′)P (dx′ | x′′, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

(P y(dy | x, µ̂′)− P y(dy | x′′, µ̂′))

∣∣∣∣
≤ LP d(x, x

′′) + L′LPyd(x, x′′) = (LP + L′LPy )d(x, x′′)

for any x, x′′ ∈ X by the prequel, which implies

sup
f∈Lip(1)

∣∣∣∣∫∫∫∫ f(x′)P (dx′ | x, u, µ̂′)

∑
b κ(yb, y)λb(ξ

′)(du)∑
b κ(yb, y)

P y(dy | x, µ̂′) (µ̂(dx)− µ̂′(dx))

∣∣∣∣
≤ (LP + L′LPy )W1(µ̂, µ̂

′).

Overall, the map T̂ is therefore Lipschitz with constant LT̂ = 2LP + LPLλ + 2L′LPy .

Q (Centralized) Propagation of Chaos

Proof of Lemma 5. The proof is the same as the proof of Theorem 1. The only difference is that
for the weak LLN argument, we condition not only on x̃N

t , but also on ξ̃t, while for the induction
assumption, we still apply to equicontinuous functions by Assumption 3 and Lemma 4.
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In other words, for the weak LLN we use

E
[
dΣ

(
µ̃N
t+1, T̃

(
µ̃N
t , ξ̃t

))]
=

∞∑
m=1

2−m E
[∣∣∣∣∫ fm d

(
µ̃N
t+1 − T̃

(
µ̃N
t , ξ̃t

))∣∣∣∣]
≤ sup

m≥1
E
[
E
[∣∣∣∣∫ fm d

(
µ̃N
t+1 − T̃

(
µ̃N
t , ξ̃t

))∣∣∣∣ ∣∣∣∣ x̃N
t , ξ̃t

]]
.

and obtain

E
[∣∣∣∣∫ fm d

(
µ̃N
t+1 − T̃

(
µ̃N
t , ξ̃t

))∣∣∣∣ ∣∣∣∣ x̃N
t , ξ̃t

]2

= E

∣∣∣∣∣∣ 1N
∑
i∈[N ]

(
fm(xi

t+1)− E
[
fm(xi

t+1)
∣∣∣ x̃N

t , ξ̃t

])∣∣∣∣∣∣
∣∣∣∣∣∣ x̃N

t , ξ̃t

2

≤ 4

N
→ 0,

while for the induction assumption we use the equicontinuous functions µ 7→
∫
f(T̂ (µ, ξ))π̂θ(ξ |

µ)dξ by Assumption 3 and Lemma 4.

R Convergence of Value Function

Proof of Lemma 6. We show the required statement by first showing at all times t that

sup
f∈F

∣∣∣E [f(µ̃N
t )− f(µ̂t)

∣∣∣ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]∣∣∣→ 0. (27)

This is clear at time t = 0 by µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0 and the weak LLN argument as in the proof
of Lemma 5. At time t = 1, we analogously have

sup
f∈F

∣∣∣E [f(µ̃N
1 )− f(µ̂1)

∣∣∣ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]∣∣∣
≤ sup

f∈F

∣∣∣E [f(µ̃N
1 )− f(T̂ (µ̃N

0 , ξ̃0))
∣∣∣ µ̃0 = µ, ξ̃0 = ξ

]∣∣∣
+ sup

f∈F

∣∣∣E [f(T̂ (µ̃N
0 , ξ̃0))− f(µ̂1)

∣∣∣ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]∣∣∣ ,
and

sup
f∈F

∣∣∣E [f(µ̃N
t+1)− f(µ̂t+1)

∣∣∣ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]∣∣∣
≤ sup

f∈F

∣∣∣∣E [f(µ̃N
t+1)−

∫
f(T̂ (µ̃N

t , ξ′))π̂θ(ξ′ | µ̃N
t )dξ′

∣∣∣∣ µ̃0 = µ, ξ̃0 = ξ

]∣∣∣∣
+ sup

f∈F

∣∣∣∣E [∫ f(T̂ (µ̃N
t , ξ′))π̂θ(ξ′ | µ̃N

t )dξ′ − f(µ̂t+1)

∣∣∣∣ µ̃0 = µ = µ̂0, ξ̃0 = ξ = ξ0

]∣∣∣∣ ,
for times t+ 1 ≥ 1, each with the weak LLN arguments applied to the former terms (conditioning
not only on x̃N

t , but also ξ̃t), and the induction assumption applied to the latter terms, using the
equicontinuous functions µ 7→

∫
f(T̂ (µ, ξ))π̂θ(ξ | µ)dξ by Assumption 3 and Lemma 4.

S Continuity of Value Function

Proof of Lemma 7. For any (µn, ξn) → (µ, ξ), we show again by induction over all times t that for
any equicontinuous family F ,

sup
f∈F

|E [f(µ̂t) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂t) | µ̂0 = µ, ξ0 = ξ]| → 0 (28)

as N → ∞, from which the result follows. At time t = 0, we have by definition

sup
f∈F

|E [f(µ̂0) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂0) | µ̂0 = µ, ξ0 = ξ]| = 0.
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Analogously, at time t = 1 we have

sup
f∈F

|E [f(µ̂1) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂1) | µ̂0 = µ, ξ0 = ξ]|

= sup
f∈F

∣∣∣E [f(T̂ (µ̂0, ξ0))
∣∣∣ µ̂0 = µn, ξ0 = ξn

]
− E

[
f(T̂ (µ̂0, ξ0))

∣∣∣ µ̂0 = µ, ξ0 = ξ
]∣∣∣

= sup
f∈F

∣∣∣f(T̂ (µ̂n, ξn))− f(T̂ (µ̂, ξ))
∣∣∣→ 0

by equicontinuous f and continuous T̂ from Lemma 4.

Now assuming that (28) holds at time t ≥ 1, then at time t+ 1 we have

sup
f∈F

|E [f(µ̂t+1) | µ̂0 = µn, ξ0 = ξn]− E [f(µ̂t+1) | µ̂0 = µ, ξ0 = ξ]|

= sup
f∈F

∣∣∣∣E [∫ f(T̂ (µ̂t, ξ
′))π̂θ(ξ′ | µ̂t)dξ

′
∣∣∣∣ µ̂0 = µn, ξ0 = ξn

]
−E

[∫
f(T̂ (µ̂t, ξ

′))π̂θ(ξ′ | µ̂t)dξ
′
∣∣∣∣ µ̂0 = µ, ξ0 = ξ

]∣∣∣∣
= sup

g∈G
|E [g(µ̂t) | µ̂0 = µn, ξ0 = ξn]− E [g(µ̂t) | µ̂0 = µ, ξ0 = ξ]| → 0

by induction assumption on equicontinuous functions g ∈ G by Assumptions 1a and 3, Lemma 4,
and equicontinuous f ∈ F , as in Theorem 1.

The convergence of
∣∣Qθ(µn, ξn)−Qθ(µ, ξ)

∣∣→ 0 thus follows by Assumption 1a.
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